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ABSTRACT  

The objective of this work is to formulate a nonlinear, coupled model of a container ship during 
parametric roll resonance, and to validate the model using experimental data. 
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INTRODUCTION 

Parametric resonance is a phenomenon where 
changes in the model parameters induce a 
resonance. This is known to occur for the 
rolling of ships with significant changes of 
restoring characteristics due to wave passage 
along the hull and wave excited vertical 
motions—typical ships affected by this are 
fishing vessels and container ships. The 
phenomenon is characteristic when sailing in 
head or stern seas with wave lengths similar to 

the ship length, encounter frequency of about 
twice the roll natural frequency, and wave 
heights above a ship-dependant threshold 
value. 

Neves and Rodríguez (2005a, b, 2006a) 
developed a third-order model describing 
strongly coupled heave, roll and pitch restoring 
terms via a multivariable Taylor expansion up 
to the third order. This model has been 
validated against experimental results for 

1 Corresponding author. E-mail: c.holden@ieee.org 
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fishing vessels (Neves and Rodríguez, 2005a, 
b, 2006a).  

In this work, the proposed model is used to 
describe the motion of a container ship. The 
parameters are determined numerically from 
the vessel loading condition and line drawings 
An alternative (more accurate) methodology 
based on the instantaneous determination of the 
calm water and wave pressure fields, is 
introduced. This is achieved employing a 
dedicated panel method code. The fidelity of 
the container ship model is then assessed using 
experimental data of a 1:45 scale model of a 
container vessel with an overall length of 294 
m. This vessel has a large, flat, overhanging 
stern and pronounced bow flare—
characteristics representative for modern 
container vessels, and known to be prone to 
parametric roll resonance.  

The experiments were conducted in a 
towing tank in head seas regular and irregular 
waves for different forward speeds and wave 
heights and frequency. Parametric roll 
resonance was observed in some runs, but not 
in others, giving us a wide range of conditions 
with which to verify the model. Free roll decay 
tests were also performed in calm water.  

MODEL 

A linear or non-linear 1DOF model can, in 
certain cases, capture the rolling of ships. In the 
case where parametric resonance may occur, 
however, the nonlinear coupling between pitch, 
roll and heave are important to understand the 
phenomenon. This gives rise to the 3DOF 
model presented in Neves and Rodríguez 
(2006a):  

Let 

 
   
s = z(t) !(t) "(t)#$ %&

T

 (1) 

where  z  is the heave displacement, ! is the roll 
and !  is the pitch angle of the vessel.  

This gives a model  

 
    
(M + A)!!s + B( !!)!s + c

r
(s," ) = c

ext
(" , !" , !!" )  (2) 

where   M !R
3"3  is the diagonal rigid body 

inertia of the vessel.   A !R
3"3 is the 

hydrodynamic generalized added mass. 
  B !R

3"3 is the hydrodynamic damping, which 
is non-linear in roll. 

   
c

r
!R

3 is the non-linear 
vector of restoring forces and moments, which 
depends on the relative motions between ship 
hull and wave elevation  ! (t) . The vector 

    
c

ext
!R

3  represents the external wave 
excitation forces and moments, which change 
with wave heading, encounter frequency, wave 
amplitude and time, and it is assumed—for  
simplicity—to be independent of the state 
variables s .   

Added Mass and Damping 

The hydrodynamic mass and damping matrices 
can be expressed as 

 

    

A =

Z
!!z

0 Z
!!!

0 K
!!" 0

M
!!z

0 M
!!!

#

$

%
%
%
%

&

'

(
(
(
(

 (3) 

 

    

B =

Z
!z

0 Z
!!

0 K
!" ( !") 0

M
!z

0 M
!!

#

$

%
%
%
%

&

'

(
(
(
(

 (4) 

where all terms except for 
  
K
!!
 can be evaluated 

by means of potential theory. Mathematically, 

  
K
!!
can be approximated as 

 
   
K
!!
( !!) !! = K

!!
!! + K

!! !!
!! !!  (5) 

This consists of a linear part (potential and 
linear skin friction) and a nonlinear term 
(viscous effects). Linear and non-linear 
coefficients in (5) may be computed using the 
formulae given in Himeno (1981). 
Alternatively, the damping can be estimated 
from data of roll decaying tests at the 
appropriate forward speed of the vessel.  

Non-Linear Restoring Forces and Moments 

The vector 
  
c

r
 of non-linear restoring forces 

and moments can be approximated as 
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where indices (1), (2) and (3) respectively refer 
to first, second and third order terms.  

The first order terms correspond to the calm 
water hydrostatics: 
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where !  is water density, 
 g

is the acceleration 
of gravity, 

  
A

0
is the waterplane area, 

  
x

f
0

the 
longitudinal coordinate of the centroid of the 
waterplane area,  GM is the transverse meta-
centric height, and  GML  the longitudinal 
metacentric height.  

Two different effects cause second- and 
third-order terms: subscripts   (m)  refer to body 
motions and   (w)  to wave effects. Derivations 
of these actions, based on multivariable Taylor 
series expansions have been presented in Neves 
and Rodríguez (2005a, 2006a): 

 

  

Z
r (m)

(2)
=

1

2
Z

zz
z

2
+ 2Z

z!
z!( +Z

""
" 2

+ Z
!!
! 2 )

K
r (m)

(2)
= K

z"
z" + K

"!
"!

M
r (m)

(2)
=

1

2
M

zz
z

2
+ 2M

z!
z!( +M

""
" 2

+ M
!!
! 2 )

 

The second-order restoring forces caused 
by waves can be written as 
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Third order restoring forces due to body 
motions can be written as 
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Finally, third order restoring forces due to 
waves can be written as 
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Note the strong coupling between all three 
degrees of freedom. Also note that the time-
dependant terms are explicit functions of the 
wave elevation  ! (t) , and therefore implicit 
functions of time. Further details and analytical 
expressions relating the coefficients to the 
characteristics of the vessel can be found in 
Neves and Rodríguez (2005a, 2006a). In this 
paper a more general procedure is introduced 
for the computation of the derivatives of the 
Taylor series expansions. 

Calm Water Derivatives 

In equation (6) the terms 
  
c

r (m)

(2)  and 
  
c

r (m)

(3)  
describe the changes in the restoring 
characteristics of the vessel due to the changes 
in pressure associated with the bodily motions 
of the vessel. 

It is possible to show that nonlinear 
hydrostatic actions  may be expressed as: 

  
Z(z,!,") = #g($

1
% $

0
)  
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where 
 
!

0
 is the average submerged volume, 

  
!

1
(z,",#) is the instantaneous submerged 

volume, 
 
z

G
is the vertical coordinate of centre 

of gravity and
  
x

B1
(z,!,") , 

  
y

B1
(z,!,")  and 

  
z

B1
(z,!,")  are the coordinates of instantaneous 

centroid of
 
!

1
. These express-ions allow the 

numerical determination of all the calm water 
derivatives appearing in equation (6). This is 
achieved by means of suitably discrediting the 
instantaneous displaced hull for generic 
displacements

  
z,!,"#$ %& . Tables A1 and A2 in 

the Appendix show the second and third order 
coefficients. 

Wave Effect Derivatives 

The terms 
   
c

r ( w)

(2)  and 
   
c

r ( w)

(3)  in Equation (6)
describe the changes in the restoring char-
acteristics of the vessel due to the cyclic 
changes in pressure associated with the wave 
profile moving along the hull.  

In regular seas, incident wave elevation can 
be written as 
 

  
! (x, y,t;") = A

w
cos(kxcos" + ky sin " #$

e
t) (7) 

where 
 
A

w
 is wave amplitude,  k wave number, 

! wave heading and 
 
!

e
 encounter frequency, 

and the special coordinates are described 
relative to an inertial coordinate system 
traveling with the vessel.  

The velocity potential for the undisturbed 
incident wave is given by  
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A
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The first and second order generalized 
Froude-Krilov forces are: 
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where 
 
n

j
 is the normal to the hull surface, j = 

3, 4 and 5 for heave, roll and pitch, respective-
ly. After computing the forces for a ship at 
arbitrary positions, the wave passage 
derivatives may be obtained according to the 
expressions given in Tables A3 and A4 in the 
Appendix.  

Since the waves are regular, the coefficients 
can be described as a sum of a sine and a 
cosine term. For instance, the second-order 
term

  
K

!"
(t) , which is proportional to wave 

amplitude, can be written as 
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where 
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 and 
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 are constants.  

Similarly, the third-order terms 
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(t)  and 
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(t)  (also proportional to wave amplitude) 

can be expressed as 
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Note that these two functions represent 
periodic excitation of roll, and are multiplied 
with, respectively,   z(t)!(t) and  !(t)"(t) .  z  and 
!  are both periodic functions dependent on 
wave amplitude.  

The third-order term
  
K

!!"
(t) , proportional 

to the square of the wave amplitude, can be 
written as 

  

K!!" (t) = A
w

2
K!!"0

+ K!!"c
cos(2#

e
t)$

%

+K!!"s
sin(2#

e
t)&'

(11) 

which is comprised of a constant term plus a 
super-harmonic of double the encounter 
frequency.  
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CHARACTERISTICS OF THE VESSEL 

To test the fidelity of the model, numerical 
simulations were compared to experimental 
results. The experiments were conducted on a 
1:45 scale model of a 294m long container 
ship. The main characteristics of the vessel can 
be found in Table 1.  

Table 1: Vessel main characteristics (full scale) 

Displacement 76,468,800 kg 

Hull length 280.982 m 

Hull breadth amidships 32.26 m 

Hull draught amidships 11.75 m 

Roll radius of gyration 12.234 m 

Transverse metacentric 
height 1.843 m 

The ship’s stability curve can be seen in 
Figure 1.  

 

Fig. 1: Static stability curve and the odd seventh-order fit.  

TESTED CONDITIONS 

In this paper, we consider only the regular 
wave conditions. A total of 22 tests were 
performed in regular seas. The test conditions 
can be seen in Table 2.  

The first column is the Froude number. The 
second column is the encounter frequency. The 
third column is the ratio of the encounter 
frequency to the vessel’s natural roll frequency. 
Parametric resonance is known to occur when 
this is approximately 2. The fourth column is 
the wave height, and the last column is the test 
number. The tests were performed in order of 
increasing test number.  

Table 2: Tested conditions 

 
F

n
 

 
!

e
 Tuning H (m) Test # 

0.5519 1.85 5 1173 

0.1035 

0.5519 1.85 7 1181 

0.5677 1.91 5 1175 

0.1035 

0.5677 1.91 7 1183 

0.1035 0.5756 1.93 3 1179 

0.0879 0.5662 1.90 5 1192 

0.0931 0.5723 1.92 5 1193 

0.0983 0.5783 1.94 5 1191 

3 1177 

5 1172 0.1035 0.5844 1.96 

7 1180 

0.1087 0.5904 1.98 5 1184 

0.1137 0.5963 2.00 5 1185 

0.1189 0.6023 2.02 5 1186 

0.1241 0.6084 2.04 5 1187 

0.1345 0.6204 2.08 5 1188 

0.1397 0.6265 2.10 5 1190 
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0.1448 0.6324 2.12 5 1189 

0.1035 0.5933 1.99 3 1178 

0.1035 0.6031 2.03 5 1174 

5 1176 

0.1035 0.6231 2.09 

7 1182 

RESULTS 

Some of the results from the experiments, 
plotted together with the simulation results, can 
be seen in Figures 2–19.  The figures match the 
order in Table 2, which corresponds to 
decreasing values of  ! / L .  

It can be observed that the model provides a 
good description of the phenomenon for all 
length ratios; both in terms of roll amplitude 
and rate of amplification. Conditions with/ 
without parametric resonance are well mod-
eled, as shown in Figure 20, except for the test 
cases corresponding to tunings in both 
extremes of the range of instability for the 

  ! / L = 1.00  wave condition, at which the 
bifurcation points are quite sensitive to 
variation of parameters. It should be noted that 
the sensitivity of the limits of stability to 
changes in the system parameters has already 
been pointed out in Neves and Rodríguez 
(2006b) in particular with regard to changes in 
initial conditions.  

The differences near the regions of 
bifurcations defined by limits of stability may 
be observed in Figure 20, which shows a 
comparison in the frequency domain of 
different maximum roll amplitudes for waves 
of length equal to the ship length 
and

  
A

w
= 2.5m . A condition for 

  
A

w
= 3.5m  is 

also included. In Figure 21 we can see the 
complete numerical mapping of roll amplitudes 
(indicated by the scaled color variation) for 
different tunings (or, equivalently, forward 

speeds) and wave amplitudes for the same 
  ! / L = 1.00  wave condition. 

 

Fig. 2: Exp. 1173 (  ! / L = 1.10 ). No parametric resonance. 

 

Fig 3: Exp. 1181 (  ! / L = 1.10 ). No parametric resonance. 

 

Fig. 4: Exp. 1175 (  ! / L = 1.05 ). No parametric resonance. 
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Fig. 5: Exp. 1183 (  ! / L = 1.05 ). Weak amplification. 

 

Fig. 6: Exp. 1179 (  ! / L = 1.02 ). No parametric resonance. 

 

Fig. 7: Exp. 1191 (  ! / L = 1.00 ). Parametric resonance 

occurs. 

 

Fig. 8: Exp. 1177 (  ! / L = 1.00 ). Weak amplification. 

 

Fig. 9: Exp. 1172 (  ! / L = 1.00 ). Parametric resonance 
occurs. 

 

Fig. 10: Exp. 1180 (  ! / L = 1.00 ). Parametric resonance 

occurs. 
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Fig. 11: Exp. 1184 (  ! / L = 1.00 ). Parametric resonance 

occurs. 

 

Fig. 12: Exp. 1185 (  ! / L = 1.00 ). Parametric resonance 

occurs. 

 

Fig. 13: Exp. 1186 (  ! / L = 1.00 ). Parametric resonance 

occurs. 

 

Fig. 14: Exp. 1187 (  ! / L = 1.00 ). Parametric resonance 

occurs. 

 

Fig. 15: Exp. 1188 (  ! / L = 1.00 ). Parametric resonance 

occurs. 

 

Fig. 16: Exp. 1178 (  ! / L = 0.97 ). Parametric resonance 

occurs. 
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Fig. 17: Exp. 1174 (  ! / L = 0.95 ). Parametric resonance 

occurs. 

 

Fig. 18: Exp. 1176 (  ! / L = 0.90 ). No parametric resonance. 

 

Fig. 19: Exp. 1182 (  ! / L = 0.90 ). Parametric resonance 

occurs. 
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Fig. 20: Maximum roll amplitudes for  ! / L = 1 . Subscript e is 

experimental results, subscript n numerical. Number in 

parenthesis is wave height. 
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Fig. 21: Limits of stability for  ! / L = 1 . 

CONCLUSIONS 

A third order model for parametric resonance 
with coupling in roll-pitch-heave previously 
developed and validated with fishing vessels 
has been applied to a large container ship and 
validated showing good agreement with 
experimental and numerical results.  

The accuracy of the model was best for 
heave and roll, while there was some 
discrepancy between experimental and 
numerical results for pitch for some conditions.  

The model shows good agreement with the 
experimental results for roll both in the 
experiments where parametric roll excitation 
occurred, and in the experiments where it didn't 
occur. The range of encounter frequencies in 
which parametric excitation did occur is 
relatively wide. For these conditions the effects 
of tuning, speed and wave amplitude are 
clarified, as shown in Figures 20–21.  
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APPENDIX 

Table A1 – Hydrostatic restoring coefficients (calm water): 
second order 
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Table A2 – Hydrostatic restoring coefficients (calm water): 
third order 
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Heave-roll-pitch coupling 
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Table A3 – Derivatives due to wave passage: second order 
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Table A4 – Derivatives due to wave passage: third order 
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