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Abstract: Cement is the most utilised construction material and the second most consumed commodity in 

the world after water. It has been reported that the heavily energy-intensive processes that are involved in 

its production account for about 7 to 10 % of the total global anthropogenic carbon dioxide (CO2), which is 

the main cause of climate change; and are also expensive economically. Energy and cost efficiency can 

however be achieved by reducing on the amount of clinker, and in its place utilising pozzolans, which require 

less process heating and emit lower levels of CO2. This research aimed to provide an original contribution to 

the body of knowledge by investigating Anthill Soil (AHS) for pozzolanic properties. Cement was replaced in 

concrete with AHS by weight using 5% increments by weight, from 0 to 30% at the point of need. Durability 

was investigated using the water absorption and sulfate tests. Results of the chemical analysis by X-Ray 

Diffraction (XRD) showed that AHS contained the chemical composition required for pozzolans, and the 

compressive strengths achieved were for classes that are listed by standards as being durable and suitable for 

structural applications. The behaviour of AHS in workability, density, gain in compressive strength over time, 

water absorption and sulfate tests were also consistent with the characteristics of pozzolans, leading to a 

conclusion that it may be suitable for use as a pozzolan to improve the properties of concrete, reduce on the 

harmful effects of cement production to the environment and lower the overall cost of concrete, allowing for 

the construction of low cost buildings. 
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1. Introduction 

Literature has reported that alongside contributing to the sustainability of concrete, pozzolans result in 

more durable and affordable concrete [1]. It has been further argued that cement is one of the most 

notorious contributors to global anthropogenic carbon dioxide (CO2) [2]. Cement was described by Zhou et 

al. [3] as the most utilised construction material, its global consumption only seconding that of water, and it 

is the main ingredient of concrete, constituting between 7 to 15% of the total mass of concrete [4]. The 

yearly global production of cement is about 1.6 billion tonnes, and accounts for approximately 7% of the 

total global CO2 emissions [3]. Surprising, global emissions that amount from aviation were estimated at 

2% by Johnson & Gonzalez [5], which is substantially lower than those from cement. More so, it has also 

been claimed that cement is the most energy intensive material produced after steel and aluminium, since 

it has been estimated that the production of a ton of cement emits approximately a corresponding ton of 

CO2 [3]. In concurrence with Zhou et al. [3], research by the Mineral Products Association [6] reported that 

the Embodied Carbon Dioxide (ECO2) of cement from cradle to factory gate was 930kg CO2 per ton on 
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average.  

The CO2 that is emitted by the production of cement has been attributed to the raw materials, fossil fuels 

and electrical power that is used up by the production processes as is shown in (1) below [7]. The calcination 

of raw materials to produce cement requires temperatures of above 14500C [8]. 

 

CO2 total = CO2 raw materials + CO2 fuels + CO2 electric power                                     (1) 
 

Further arguments in literature have been raised in relation to the cost of cement. It has been opined that 

cement is the most expensive constituent of concrete, its price bearing an astronomical increase annually, 

and thereby becoming a major hindrance to the delivery of affordable housing and other infrastructure [8]. 

With these price increases, the basic need for low-cost but functional materials for construction cannot be 

emphasised enough [9]. In the wake of a global warming threat and skyrocketing prices of cement, and with 

a heavy demand for concrete in the developing world and other major and equally populous economies such 

as China and India predicted, cement producing companies have not anticipated in the foreseeable future 

any major changes in production that will reduce on emissions and cost [1]. However, energy and cost 

efficiency can be achieved by reducing on the amount of clinker, and in its place utilising pozzolans that 

require less process heating, emit fewer levels of CO2 and are less expensive [10]. 

Anthills are soil grains coated with sticky hardening secretions from the recta and mouths of ants, and are 

very cohesive in nature [11]. Subsequently, Nene & Parihar [12], Odumodu [13] and Olaniyi & Umoh [11] 

opined that AHS must have a high plasticity index, and should therefore be superior to ordinary clay. AHS has 

been observed to endure extremely hot daytime and low night time tropical temperatures with no evidence 

of stress. AHS has also been observed to withstand heavy rainfall without disintegrating. Further, people 

have been observed to use AHS on paths that carry heavy human traffic as well as constructing traditional 

huts, and at the same time on plinths of the huts as additional mountings or footings. The authors observed a 

substantial quantity of AHS in tropical Africa, and using it in concrete could have a significant impact on 

reducing the amount of cement in concrete mixes and subsequently the cost. According to Olaniyi & Umoh 

[11], anthills are available all over the world, with the distribution depending on the soil and vegetation, 

climatic features and the presence of water. 

This research aimed at exploring the suitability of Anthill Soil (AHS) as a pozzolan following these two 

objectives:  

1) Investigating the feasibility of using AHS in concrete through analysing its chemical composition, 

workability, density and compressive and tensile strengths of the resultant concrete. 

2) Examining the durability of concrete made using AHS in terms of water absorption and sulfate 

resistance. 

So as to gain an in-depth knowledge on the performance of AHS in concrete, the fundamental quantitative 

method was used, with validity and reliability based on empirical data that was obtained from laboratory 

experiments, which by and large were cross-referenced with those of 100% cement. Kothari [14] argues 

that the findings of the empirical study are capable of being verified by experiments, and that evidence 

gathered by this method is the most powerful.  

2. Why Use Pozzolans in Concrete? 

Pozzolans are defined by Bapat [1] as aluminosiliceous or siliceous materials in finely divided form. 

They do not contain enough calcium to form cementitious materials, and need to combine with calcium 

hydroxide [Ca(OH)2], also known as lime, from the hydration of cement [1]. As they are not hydraulic, 

they do not harden by themselves when they come into contact with water, but in amorphous state, and 



 

 

through secondary hydration react with the lime that is released by the initial hydration in the presence 

of water to form further calcium silicate and calcium aluminate compounds, which are strength 

developing and less permeable [1].  

Pozzolans mainly consist of reactive silicon dioxide (SiO2) or glass, and aluminium oxide (Al2O3), with the 

remainder being iron oxide (Fe2O3) and other chemicals [15]. Calcium oxide (CaO) is essential for early 

strength development, whereas SiO2 and Al2O3 are vital for latter age strength development, also known as 

the secondary hydration phase [16]. Due to low levels of CaO, pozzolans do not contribute to the early age 

strength gain during the early hydration phase, but only act as inert fillers. As a result, Nehdi et al. [17] 

opined that pozzolans may not be an alternative to admixtures where early age is of importance, even 

though Shetty [8] argued that consideration should also be taken with pozzolans as their gain in strength 

after 28 days is usually substantial. 

During this early period, pozzolans are still beneficial because they increase the reactivity of cement by 

promoting early hydration due to increased space for the growth of hydrates that results from an increase in 

effective water cement ratio (WCR) as the water to solid ratio is kept constant [1]. The reactivity of cement is 

also enhanced by Pozzolans in the early age through the seeding effect that results from the addition of 

nucleation sites on the filler surface for hydrates from cement, as well as the change on the packing of 

particles [1]. The latter age strength that is associated with Pozzolans is due to the reaction of SiO2 with free 

lime  from cement hydration through the secondary reaction over time to form strength giving compounds 

such as Calcium Silicate Hydrate (C-S-H) as is shown in (2) after Bapat [1]. 

 

Pozzolans + Ca(OH)2 (free lime) + H2O (water) = Calcium-Silicate-Hydrate (C-S-H)         (2) 
 

The C-S-H that is formed as a result of cement being replaced with Pozzolans changes from fibrillary to 

foil-like, resulting in a less well-interconnected capillary pore structure, thereby inhibiting bleeding by filling 

capillary channels and voids which were occupied by water and water-soluble lime, leading to lower 

permeability and consequently enhanced durability [18]. This secondary C-S-H is also less dense than the 

cement components from which it is generated [19]. Pozzolans also improve durability by absorbing alkalis 

due to their low ratio of CaO/SiO2 [1]. The finely divided particles of Pozzolans micro-fill the voids that are 

found in the transition zone of plain concrete [1]. This transition zone is the interfacial region between 

coarse aggregate and hardened cement, where the cement paste is of poor quality due to internal bleeding, 

and aggregates are large and flaky, both of which weaken the bond between the cement paste and 

aggregates. Pozzolans reduce the width of the transition zone, porosity and the amount of free lime between 

cement and aggregates, thereby contributing to enhanced strength and durability [1]. 

Sulfate attack due to sodium sulfate (Na2SO4) is characterised by expansion due to the presence of Ca(OH)2, 

which reacts with sulfates to form gypsum [CaSO4.2(H2O)], and/or with unhydrated aluminate (C3A) and 

alumina-bearing hydration products, to form ettringite, whereas attack due to magnesium sulfate (MgSO4) is 

characterised by the loss of strength from formation of the non-cementitious insoluble brucite [Mg(OH)2], 

which destroys the C-S-H gel to form Magnesium Silicate Hydrate (M-S-H), that is not cementitious [1]. Due 

to the packing effect by unreacted particles, pozzolans reduce alite (C3S) that otherwise promotes attack by 

sulfates and consume lime, the product of hydration, thereby hindering further production of gypsum during 

sulfate attack [1]. 

Pozzolans reduce the heat of hydration of wet concrete by 60%, aid pumpability and provide a better 

finish to freshly placed concrete [20]. Fologbade [21] in agreement with Kosmatka et al. [20] posited that 

the use of Pozzolans would be suitable for mass concreting and concrete works in hot climates by virtue of 

their slow strength development that is facilitated by their low heat of hydration, which reduces thermal 



 

 

stresses. The use of Pozzolans also helps in preserving the environment by adding sustainability to concrete 

through the reduction of CO2 that is emitted during the production of cement, optimising on the amount of 

concrete consumed by reducing the mass per unit volume of mixes due to their lower particle specific gravity 

and improving the properties of both fresh and hardened concrete; thereby enhancing the service life of 

structures [1] and [22]. Pozzolans also improve the workability of mixes, with high slumps being attributed 

to their lower density compared with that of cement, which increases the volume of mixes, prevents block 

formation of cement particles, and by the filler effect of their finer particles between aggregates and cement 

grains, reduce friction, thereby facilitating a better flow of concrete [23]. 

3. Research Significance 

Abundantly observed in North Eastern Kenya by the authors, and could be by extension in many other hot 

climates, the potential of using AHS as a pozzolan to replace cement is high, but it has been remotely studied, 

and its use as such is currently non-existent. There is also debate as to its pozzolanity, with Olaniyi et al. [11] 

and Otieno et al. [24] reporting that it could have pozzolanic properties, but Sanguansub [25] claiming that it 

may not have any cementation other than suction, and attributing its good condition to rapid repairs by ants. 

Limited work was found on the performance of AHS in water absorption or sulfate aggressive environments, 

which has been found to be a major durability issue for concrete [1].  

Among the parameters tested were the chemical composition of AHS by exploring minimum chemical 

composition requirements against the recommendations of the American Society for Testing and Materials 

[26] and British Standards Institution [15] and [27], and the density of AHS concrete, which, according to 

Shetty [8] should fall within 2000 and 2600 kg/m3 for concrete. Compressive strength, which according to 

Arya [28] is the most important parameter in the design of structural concrete, since it can influence the long 

term serviceability of concrete, its ability to carry load and resist chemical infiltration as well as the cost of 

design and that of the overall project was also investigated. Other parameters considered were the gain in 

strength over time, which is an important characteristic of pozzolans, and performance in water absorption 

and resistance to sulfate attack, both of which count towards the durability of concrete [1]. In fact, Neville & 

Brooks [29] attached a higher importance to permeability over the chemical composition of a cement paste 

when it comes to durability, and argued that the ingress of harmful chemicals is the main cause of the 

corrosion of steel in concrete. Mehta [30] on the other hand posited that the diffusivity of sulfate ions, which 

is the main cause and control of the rate of degradation by sulfate attack varies by several orders of 

magnitude, compared with aluminate (C3A), which only varies between 1% and 12%.  

4. Experimental Programme 

Anthill Soil (AHS) was harvested from the Eastern province of Kenya and transported to the UK for tests 

under licence. The qualitative chemical composition of AHS was obtained using X-Ray Diffraction (XRD). Well 

graded washed concrete sand of between 0 to 4.75 mm was used for fine aggregates, whereas for coarse 

aggregates, crushed limestone graded between 4.75 to 16mm was used conforming to BS EN 12620 [31]. 

This grading, according to Shetty [8] aids in achieving a better interlocking effect in concrete. Cement used 

was 52.5N snowcrete ordinary Portland cement, in accordance to BS EN 197-1 [15]. 

BS 5328 [32] gives methods of specifying concrete mixes using mix proportions for Standard mixes (ST). 

From Table 5 of BS 5328-2 [32], it is possible to target a slump based on the weight of cement and aggregate 

proportions, with total free water, which is specified in Table 14 of BS 5328-1 [33]. However, as this work 

also aimed at investigating the effect of AHS on the workability of concrete, the ST5 mix from Table 5 of 

British Standards [32], which is expected to have a slump of 125 mm at 370kg of cement, 1770kg of total 



 

 

aggregates and a maximum Water Cement Ratio (WCR) of 0.45 to achieve a concrete of strength grade C50, 

was deliberately manipulated with more cement and aggregates than those specified by BS 5328 [32], and a 

WCR of 0.5 in a bid to achieve the lowest slumps possible for the control mix. 

The quantities of cement, fine aggregates, coarse aggregates and water used were 380kg, 760kg, 1140kg 

and 180 litres per cubic meter respectively or a mix proportion of 1: 2: 3. AHS was dried and sieved using a 

45 μm sieve conforming to BS 410-1 [34], to achieve a degree of fineness of not more than 63μm [35]. 

Cement was then replaced by weight using AHS at replacements of 0% to 30%, at 5% steps. The 0% 

replacement, also known as the control in this research, was used as the reference to which all performances 

were compared [36]. Concrete mixing conformed to ASTM C192 [37]. Aggregates, cement and water were 

introduced into a concrete mixer. The top of the mixer was covered to prevent evaporation and the mixer 

was run for a total of eight minutes with a three-minute rest in between the mixing. To determine 

workability, a slump test conforming to BS EN 12350 [38] was carried out, and the measurement was taken 

as is shown in Fig. 1. 

 
Fig. 1. Measurement of slump [38]. 

 

Cubes measuring 100 × 100 × 100 mm were then cast for compressive strength tests, and at the same 

time cylinders of 300 height and 150 mm diameter were made for the splitting tensile strength tests to BS EN 

12390-2 [39]. The specimens were stripped after 24 hours and kept submerged in water in a curing tank 

whose temperature was maintained at 200C ±2, and a pH of 7 until their ages of testing conforming to BS EN 

12390-2 [39]. Compressive tests were carried out at 7, 28, 56, and 90 days, following the rationale already 

discussed that the strength development due to pozzolanic reaction is slower compared to that of cement. BS 

EN 12390-3 [40] requires that at least three specimens be made for each test in order to ensure repeatability. 

For this study, ten identical specimens were cast for each test and a standard deviation was calculated. 

The density of specimens was calculated by dividing mass / volume after weighing them in air and also 

while submerged in water and was reported in kilograms per cubic meter (Kg/m3) [41]. Compressive tests 

were conducted to BS EN 12390-3 [40], whereby the strength (stress) is calculated by dividing maximum 

load at failure (Newtons) / cross sectional area (mm2) and reported in Newtons per square millimetre 

(N/mm2). The results reported for compressive strength were converted from mean strengths (fcm) to 

characteristic strengths (fcu) using equation (3) after Arya [28]. Tensile strength (splitting tensile) tests were 

conducted to BS EN 12390-6 [42] utilisng 150mm diameter cylinders. 

 
fcu = fcm – 1.64 s.d (N/mm2)                                 (3) 

 
where s.d is the standard deviation of the data collected 

The water absorption test was carried out on the replacement that was found to have achieved the 

highest compressive strength from the strength tests described above, with the rationale based on Arya’s [28] 

argument that durability is directly proportional to the compressive strength of concrete, and was conducted 

to BS EN 772-11 [43]. Test cubes were oven dried and weighed after curing before being immersed in water 

to a depth of 5 mm for a total of 10 minutes, after which they were re-weighed and the coefficient for water 

absorption (Cw.s) determined as specified in BS EN 772-11 [43]. 



 

 

Sulfate elongation tests conformed to ASTM C1012 [44], which specifies the test method for length change 

of hydraulic cement mortars exposed to sulfate solutions. Mortar bar prism samples of size 160 mm × 40 mm 

× 40 mm and 100 mm × 100 mm × 100 mm cubes were cast for the 5% replacement level (found to have 

achieved the highest compressive strength from the tests above). Two cubes were crushed to ensure that 

the mortar had achieved compressive strengths of not less than 20.0 ± 1.0 N/mm2. The lengths of the bars 

were taken before immersion in 5% sodium sulfate (Na2SO4), 5% magnesium sulfate (MgSO4) and 2.5% + 

2.5% Na2SO4 and MgSO4 solutions at laboratory temperatures of 23± 20C. A pH of 6 to 8 was maintained on 

the sulfate solutions throughout the testing period. Lengths were measured at weeks 1, 2, 3, 4, and 8, and at 

4, 8, and 9 months using a comparator. Readings were taken as an average of ten prisms. Length changes 

were calculated by using (4).  

                                    (4) 

where: 

ΔL = percentage change in length at age of measuring, 

Lx = Comparator reading at age of measuring (mm), 

Li = Comparator reading on immersion (mm), 

Lg = 160 mm (nominal length between the innermost ends of the molds used). 

Compressive strength deterioration was assessed using the method taken from Moon et al. [22], who studied 

deterioration from sulfate attack on cube specimens by measuring the Strength Deterioration Factor (SDF), which 

was calculated by using (5). 

                                (5) 

where fcw’ is the compressive strength of cube specimens immersed in the control solution (N/mm2) and fcs’ 

is the compressive strength of cube specimens immersed in the sulfate solutions (N/mm2). Visual 

observations for surface deterioration were made at the end of the 270 days immersion period. 

5. Results and Discussions 

5.1. Chemical Analysis 

The American Society for Testing and Materials [26] and British Standards [15], [27] recommendations for 

natural pozzolans suitable for concrete are that the chemical composition should constitute of a sum of at 

least 70% Silicon dioxide (SiO2), Aluminium oxide (Al2O3), and Iron oxide (Fe2O3); a maximum of 10% 

Calcium oxide (CaO) and a Loss On Ignition (LOI) of not more than 10%. The values in Table 1, obtained by X-

Ray Diffraction (XRD) on the sample of AHS that was used for this study show a combination of SiO2, Al2O3, 

and Fe2O3 of more than 70%, LOI of less than 10% and a CaO content of less than 10%, satisfying the 

requirements of these standards for natural pozzolans.  

 

Table 1. Chemical Composition of AHS Used 
Chemical Percentage composition 

Calcium oxide (CaO) 2.3 

Silicon dioxide (SiO2) 58.3 

Aluminium oxide (Al2O3) 20.4 

Ferric oxide (Fe2O3) 6.8 

Magnesium oxide (MgO) 2.7 

Potassium oxide (K2O) 1.4 

Sodium oxide (Na2O) 0.6 

Sulphur trioxide (SO3) 0.3 

Loss on ignition (LOI) 8.4 



 

 

5.2. Workability 

Fig. 2 shows the slumps of AHS replaced concrete over the seven replacement levels. According to 

literature, pozzolans improve the workability of concrete mixes due to their lower densities compared with 

that of cement, which increases the volume of mixes, prevents block formation of cement particles, and by 

the filler effect of their finer particles between aggregates and cement grains, reduce friction between 

particles, facilitating a better flow of concrete [23]. The density of AHS as a clay, being 1800kg/m3 is lower 

than that reported for cement (3100 kg/m3) [45] and [48]. AHS was observed to behave like a pozzolan by 

improving workability of the concrete studied, with workability increasing with further replacement. 
 

 
Fig. 2. Workability of AHS replaced concrete. 

 

5.3. Density 

Table 2 shows the standard deviation of the cube density data, whereas Fig. 3 shows the densities of AHS 

replaced specimens over 90 days of curing. Whereas the density of the control specimens increased with 

time due to the production of Ca(OH)2, a product of the hydration of cement [1], those of the AHS-replaced 

specimens were observed to decrease with curing age, a characteristic which was explained by Bapat [1] as 

being a result of the eventual consumption of Ca(OH)2 by the reaction that involves pozzolans during the 

secondary hydration to form the less dense C-S-H. AHS’s behaviour in density is consistent with literature 

that the strength giving C-S-H produced as a result of the pozzolanic reaction is less dense than the cement 

components from which it is generated [19].  

 

 
Fig. 3. Densities of AHS replaced specimens over 91 days (kg/m3). 



 

 

Table 2. Standard Deviation (σ) of Cube Densities 

 (Kg/m3) 

 
0% 

7 days 
8.9 

28 days 
8.3 

56 days 
7.4 

90 days 
9.2 

5% 8.1 10.9 11.2 9.5 

10% 7.9 8.1 6.9 11.4 

15% 11.2 9.6 9.2 11.0 

20% 8.1 8.4 10.7 10.1 

25% 7.7 11.3 8.3 9.8 

30% 9.3 9.5 8.7 10.6 

 

5.4. Compressive Strengths (fcu) 

Table 3 shows the standard deviations calculated from compressive test results achieved for the ten results 

per test of AHS replacements, whereas in Fig. 4 are the average characteristic compressive strengths (fcu) 

achieved by the specimens over 90 days of curing. British Standards Institution (BSI) BS 8500 [46] lists 

concrete class C25 as the lowest strength grade that could be termed as durable and suitable to be used for 

structural applications. From the results, whereas only the 5% and 10% replacements achieved strengths 

that were above this grade at 28 days, all replacements were above this strength grade at 90 days. Compared 

with the control specimens, the gain in strength of the AHS specimens between 28 and 90 days was 

considerably high as is shown in Table 4. This is consistent with literature that the strength development of 

pozzolans is slow in the first 28 days, as their SiO2 has to wait for Ca(OH)2, the product of initial hydration of 

cement, with which it then reacts in the secondary hydration to form the further strength giving C-S-H [1]. 

 

Table 3. Standard Deviation (σ) of Cube Compressive Strengths 

 (N/mm2) 

 
0% 

7 days 
2.0 

28 days 
2.1 

56 days 
2.8 

90 days 
2.1 

5% 2.2 1.5 2.3 2.0 

10% 1.8 3.0 1.7 1.9 

15% 2.1 1.6 1.9 2.2 

20% 2.3 1.3 1.4 1.9 

25% 1.4 1.7 2.3 1.3 

30% 1.1 1.2 2.8 1.8 

 

 
Fig. 4. Compressive strengths of AHS replaced specimens (N/mm2). 



 

 

Table 4. Percentage Increase in Compressive Strength of AHS Replaced Specimens 

0% 5% 10% 15% 20% 25% 30% 

14.7 28.1 21.1 21.8 18.0 15.5 9.8 

 

5.5. Tensile Strength 

Table 5 shows the standard deviation of the splitting tensile strength data collected. The tensile strength of 

concrete has been reported to be approximately 10% of its compressive strength [29]. This fact was 

consistent throughout all replacements as can be seen in Fig. 5, with the tensile strengths of all replacements 

not falling far below those of the control. Tensile strengths are not very critical with structural concrete due 

to its weakness in tension, and for this reason steel bars, which are strong in tension are used to reinforce its 

tensile zone [28].  

 
Table 5. Standard deviation (σ) of cube splitting tensile strengths (N/mm2) 

0% 
5% 

0.5 
0.6 

10% 1.1 

15% 0.9 

20% 0.4 

25% 1.3 

30% 0.7 

 

 
Fig. 5. Splitting tensile strengths of AHS replaced specimens at 90 days (N/mm2). 

 

5.6. Water Absorption 

As discussed, Neville & Brooks [29] claimed that permeability is the most important aspect of durability 

and service life of structures. The work of pozzolans in reducing permeability through the filling up of pores 

using the secondary C-S-H gel was also discussed by Bapat [1]. Table 6 and Table 7 show the standard 

deviations and coefficients of water absorption of the 5% AHS replaced specimens (found to have achieved 

the highest compressive strength from the compressive strength tests) respectively against those of the 

control specimens.  

 
Table 6. Standard Deviation (σ) of Cube Water Absorption 

Specimens   [Cw.s (g/m2.s)] 

Control 0.043 

5% AHS 0.089 

 
Table 7. Coefficients of water absorption of 5% AHS replacement [Cw.s (g/m2.s)] 

Specimens Cw.s (g/m2.s) 

Control 0.5788 
5% AHS 0.4402 

Difference 0.1386 



 

 

The results show that AHS was able to reduce the coefficient of water absorption by 0.1386 Cw.s (g/m2.s) 

or 24% from that of the control specimens, spelling lower permeability, and therefore could improve 

durability [29]. The ability of AHS to reduce water absorption can be related to the discussion before, 

whereby the hydration products of AHS precipitate in the small spaces between cement particles, blocking 

pores, thereby resulting in a refined pore structure, with a reduced number of pores [1]. It was also 

discussed that by pozzolanic activity, SiO2 in pozzolans reacts with water and Ca(OH)2 in the secondary 

hydration to form C-S-H, that inhibits bleeding by filling capillary channels and voids which were occupied by 

water and water-soluble lime, resulting in a denser concrete with low permeability [1]. 

5.7. Sulfate Tests 

Table 8 shows the Standard deviation of prism elongation data, whereas Figure 6 shows the average 

percentage elongation of AHS specimens at the 5% replacement after 270 days of immersion in the Na2SO4, 

MgSO4 and mixed sulfate solutions. Consistent with literature, AHS specimens showed less elongation in the 

Na2SO4 solution. Bapat [1] posited that the pozzolanic reaction helps in resisting the Na2SO4 attack as they 

refine pores, dilute C3A and remove Ca(OH)2 by converting it into Calcium Silicate Hydrate (C-S-H), which is 

cementitious, thereby reducing the quantities of gypsum formed. Shetty [8], in agreement with Bapat [1] 

argued that the precipitation of Ca(OH)2 between the grains of pozzolans, the consumption of Ca(OH)2 and 

aluminate hydrate (CxAHy) by the pozzolanic reaction to form C-S-H, thereby reducing permeability; and the 

filler effect by unreacted particles of pozzolans limit gypsum and the secondary formation of ettringite in 

Na2SO4 environments. 

 
Table 8. Standard Deviation (σ) of Prism Elongation Measurements 

Specimens Na2SO4 MgSO4 Na2SO4 + Mg SO4 

Control 0.0019 0.0068 0.0014 

5% AHS 0.0092 0.0026 0.0091 

 

 
Fig. 6. Percentage elongations in sulfate solutions at 9 months for 5% AHS-replaced specimens.  

 

Consistent with literature, the control specimens showed a marginally better performance than the AHS 

specimens in the MgSO4 solution, even though according to Mehta [30], the loss of strength and adhesion 

rather than expansion and cracking should be the main manifestation of MgSO4 attack. As discussed, the 

reaction between MgSO4 and Ca(OH)2 produces the insoluble brucite, which blocks capillary pores, forming a 

sulfate impermeable layer [22]. However, since pozzolans contain less Ca(OH)2 and more C-S-H, MgSO4 

readily reacts with the secondary C-S-H gel to form Magnesium Silicate Hydrate (M-S-H) gel once the 

combined layer of gypsum and brucite has peeled off, explaining the perceived superiority of the control 

specimens over pozzolans in solutions that contained MgSO4 for Moon et al’s [22] work. The performance of 



 

 

AHS in the mixed sulfate solution was consistent with literature. Pozzolanic specimens immersed in the 

mixed sulfate solution by Moon et al. [22] were either similar or inferior to those that were immersed in the 

Na2SO4 solution, spelling the predominance of the more aggressive MgSO4 attack over Na2SO4 attack, 

especially when the pH of pore water solution is low in the hydrated cement [1].  

Table 9 shows the standard deviation of the Strength Deterioration Factors (SDFs) of the 5% AHS replaced 

specimens, whereas Fig. 7 shows the average SDFs of the specimens. AHS’s behaviour was consistent with 

literature in the Na2SO4, MgSO4 and the mixed sulfate solutions, whereby SDFs were lower in both the 

Na2SO4 and mixed sulfate solutions, but slightly higher in the MgSO4 solution. Moon et al. [22] observed 

higher SDFs for Silica Fume (SF) specimens immersed in the MgSO4 solution. As discussed, the loss of 

strength is associated with decalcification of cement hydrates, mainly C-S-H [1]. Bapat [1] and Moon et al. 

[22] attributed the low performances of pozzolans in the MgSO4 solution to the formation of insoluble 

brucite [Mg(OH)2], which destabilises and destroys the C-S-H gel to form the non-cementitious M-S-H, which 

causes softening of the cement matrix. The alteration of C-S-H to M-S-H was termed as the major process 

and probably the final stage of MgSO4 attack by Al-Amoudi et al. [47] and Bapat [1]. MgSO4 attack on the 

secondary C-S-H to form M-S-H gel explains the similarity in behaviour of the control and pozzolanic 

specimens in solutions that contain MgSO4 [22]. The strength deterioration in the MgSO4 solution was 

consistent with literature that MgSO4 attack is manifested through the loss of strength [1]. 

As also discussed, ettringite and gypsum are the compounds that cause expansion and cracking of 

hardened concrete in Na2SO4 environments, with ettringite being associated with expansion and gypsum 

with the loss of stiffness, adhesion and strength [48]. It was also discussed that pozzolanic reactions refine 

pores, dilute C3A and remove Ca(OH)2 by converting it into a cementitious material, thereby reducing the 

quantities of gypsum formed. The secondary C-S-H densifies the pore structure and transition zone, and as a 

result reduces the permeability and diffusion of sulfate ions into hardened concrete, thereby limiting 

gypsum and secondary formation of ettringite [1]. This is reinforced by the fact that the permeability of AHS 

specimens reported in Table 7 above was lower than that of the control specimens, and may have therefore 

hindered the ingress of sulfate ions in the Na2SO4 solution. 

 

Table 9. Standard Deviation (σ) of Cube Strength Deterioration Factors (SDFs) 

Specimens Na2SO4 MgSO4 Na2SO4 + Mg SO4 

Control 0.7 1.3 1.1 

5% AHS 0.3 1.5 1.2 

 

 

Fig. 7. Strength Deterioration Factors (SDFs) of specimens immersed in sulfate solutions. 



 

 

Consistent with the results of this study, Bapat [1] in agreement with Mehta [30] posited that the reaction 

between Na2SO4 and C-S-H is negligible and as such, Na2SO4 attack is manifested and evaluated through 

expansion due to the presence of gypsum and ettringite. The findings agree with Moon et al. [22] who 

reported higher SDFs for the control specimens in the Na2SO4 solution compared with those of SF replaced 

specimens. 

 
Fig. 8. Surface deterioration of specimens immersed in sulfate solutions at 270 days. 

 

Fig. 8 shows the extent of surface deterioration of the control and 5% AHS specimens immersed in the 

three sulfate solutions at 270 days. From the results, no surface deterioration was observed on all specimens 

that were immersed in the Na2SO4 solution, whereas extensive surface deterioration which included cracking, 

mass loss and some disintegration were observed on specimens that were immersed in the MgSO4 solution. 

For the mixed sulfate solution, visible wider cracks, mass loss, spalling and some disintegration were 

observed on the control specimens, whereas for the AHS specimens, a mass loss and some disintegration 

was observed. Moon et al. [22] attributed the good performance of the control specimens in the MgSO4 

solution to the pore blocking effect by the formation of the less permeable brucite. Consistent with literature, 

the most severe effects of sulfate attack were observed in solutions that contained MgSO4 [1]. Also consistent 

with literature, the inferiority of specimens that were immersed in the mixed sulfate solution to those that 

were immersed in the Na2SO4 solution spelled the predominance of the more aggressive MgSO4 attack over 

the Na2SO4 attack, which is also highly soluble in water at room temperature (200C) compared to Na2SO4 [1] 

and [22]. For Moon et al’s [22] work, sulfate ions diffused more rapidly in the mixed sulfate solution 

compared with the individual sulfate solutions, and reacted with the Ca(OH)2 to form gypsum of softening 

sulfate attack. Moon et al [22] further posited that the presence of brucite and gypsum for specimens that 

were immersed in the MgSO4 solution was the cause of surface deterioration. Unlike Moon et al [22] who 

reported that the control specimens showed visible cracks and spalling in the Na2SO4 solution, little surface 

deterioration was observed on the control specimens in the Na2SO4 solution.  

6. Inference 

The standard deviations calculated for the densities, compressive and tensile strengths, water absorption, 

sulfate elongation and strength deterioration tests show a small spread of data from the means, and as a 

result signify a good repeatability, and consequently a high level of confidence in the results obtained. The 

fact that AHS improved workability of the concrete tested, reduced its density, did not undermine its 



 

 

compressive and tensile strengths, and that it showed a trend of increasing compressive strength over time, 

reduced water absorption and gave advantage in sulfate solutions consistent with the properties of 

pozzolans points towards a conclusion that it could possess pozzolanic properties, and that there is a great 

potential of introducing it in concrete with benefits of improving its properties in both fresh and hardened 

states. Using AHS in concrete could also work towards sustainability by reducing the amount of cement 

consumed and lowering the overall cost of concrete, thereby allowing for the construction of low cost 

buildings. The findings challenge Sanguansub’s [25] claims that AHS may not have any cementation other 

than suction, and that their good conditions are just but a result of the rapid repairs by ants. Moreover, the 

chemical composition of AHS in Table 1 shows that it possesses the required chemical composition as is 

recommended by the American Society for Testing and Materials [26] and British Standards Institution [27] 

for natural pozzolans.  

7. Conclusion 

This work investigated the pozzolanic properties of Anthill Soil (AHS) in concrete. Cement was 

supplemented in concrete with AHS by weight from 0% to 30% replacements using 5% steps at the point of 

need. Durability was investigated using water absorption and sulfate tests. Results of the chemical analysis 

by X-Ray Diffraction (XRD) showed that AHS contained the required chemical composition for pozzolans, 

and the compressive strengths achieved were for those classes that are listed as being durable and suitable 

for structural applications. The behaviour of AHS in workability, density, and gain in compressive strength 

over time, sulfate tests and water absorption were also consistent with the characteristics of pozzolans. This 

evidence, coupled with evidence of the abundance of AHS in warm climates points towards the conclusion 

that AHS may qualify to be added to the pozzolanic family of materials, to improve the properties of concrete, 

reduce on the harmful effects of cement production processes to the environment and lower the overall cost 

of concrete to facilitate low cost buildings.  
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