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Summary 

Trust and betrayal are central to our social world, and adaptive responses are crucial to our 

economic and social well-being [1]. We learn about others´ trustworthiness through trial-and-

error during repeated interactions [2]. Rodent research has established a crucial role for the 

basolateral amygdala (BLA) in social experiential learning [3], by respectively reinforcing 

and suppressing behavior during positive and negative interactions with conspecifics [4]. The 

human BLA has undergone a reorganization with massive expansion relative to other 

amygdala nuclei [5], and there is no translational research on its role in experiential learning. 

The human amygdala is traditionally researched as a single structure [6], neglecting the sub-

nuclei’s structural und functional differences [7], which might explain inconsistent findings in 

research on social interactions [8, 9]. Here we study whether the human BLA is necessary for 

social and non-social experiential learning, by testing a group of five humans with selective 

bilateral damage to the BLA. We compared their learning behavior in a repeated trust game, 

and a non-social control task, to healthy, matched controls. Crucially, BLA-damaged subjects, 

unlike control subjects, completely failed to adapt their investments when interacting with a 

trustworthy and an untrustworthy partner. In the non-social task, BLA-damaged subjects 

learned from positive outcomes, but differed from the controls by not learning from negative 

outcomes. Our data extend findings in rodent research by showing that the human BLA is 

essential for social experiential learning and provide confirmatory evidence of divergent 

mechanisms for differentially-valenced outcomes in non-social learning. 
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Results and Discussion 

To directly examine the role of the human basolateral amygdala (BLA) in social and non-

social experiential learning, we investigated behavioral adaptation in 5 humans with selective 

bilateral calcifications of the BLA, and an intact and functional central-medial amygdala 

(CMA), and 17 healthy matched control subjects during a repeated trust game and a non-

social control task (the Raffle task). In the repeated trust game two players make sequential 

decisions over multiple rounds of monetary transfers on whether to trust each other (Figure 1) 

[10]. Subjects interacted in turn with a generous trustee, who acted in a trustworthy way, and 

a selfish trustee, who acted in an untrustworthy way, for 52 rounds. A change in the subject’s 

investments reflects the extent to which she learned about the trustee’s trustworthiness [2]. In 

a cross-species study with BLA-damaged humans and BLA-silenced rats, we recently 

demonstrated that rodent amygdala models of defensive behavior directly translate to humans 

[11]. Correspondingly, if the human BLA, like the rodent BLA [3, 4], is vital to social 

learning from experience, then BLA-damaged subjects should not be able to learn about the 

trustee´s trustworthiness, and therefore should show no adaptive behavioral updating in the 

repeated trust game. In contrast, in non-social experiential learning, on the basis of rodent 

research [12], the involvement of the BLA might diverge for positive and negative outcomes. 

We used the Raffle task to explore whether human BLA involvement in experiential learning 

is specific to social context [13]. In this task subjects bought tickets for two different raffle 

boxes during 52 rounds. Outcomes and outcome probabilities exactly matched those used in 

the repeated trust game. Subjects had to learn from which raffle box they could win (the 

positive box) and from which they could lose money (the negative box), and adjust their ticket 

buying behavior accordingly. 
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Figure 1. Repeated trust game design with original avatar pictures 

Step 1: both players receive an endowment of 10 monetary units (MU) at the beginning of 

each round. Step 2: the subject makes an investment (between 1 – 10 MU), which gets tripled 

and send to the trustee (player b or c). Step 3: the trustee then makes a variable back-transfer. 

One trustee displayed generous behavior (back-transfers equal or higher than investments), 

the other displayed selfish behavior (back-transfers equal or lower than investments) [29].  
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In the repeated trust game, healthy control subjects learned that the two trustees were 

different and adapted their behavior accordingly (Figure 2A). They transferred significantly 

more money to the generous trustee than to the selfish trustee (Wilcoxon signed rank test z = 

3.29, P = 0.001, n = 17), with average transfers of 7.51 MU (SE = 0.14) to the generous 

trustee and 4.14 MU (SE = 0.14) to the selfish trustee. The BLA-damaged subjects, on the 

other hand, did not learn to distinguish between the two trustees (Wilcoxon signed rank test z 

= 0.13, P = 0.89, n = 5), with average transfers of 5.33 MU (SE = 0.28) to the generous trustee 

and 5.15 MU (SE = 0.27) to the selfish trustee. The crucial difference between the transfers to 

the generous and selfish trustee was also significantly higher (3.37 vs 0.18 MU) in control 

subjects compared to BLA-damaged subjects (Mann-Whitney U-test, P = 0.019, n = 22). 

These comparisons are also significant when using a linear mixed model with random 

intercept per subject (Model 1 (M1) in Table S1). 

Figure 2A (and Figure S1 with added individual data points) shows that the healthy 

subjects gradually learned that the generous trustee was more trustworthy than the selfish 

trustee, while the BLA-damaged subjects fluctuated around 5 MU without noticeable change 

in the two trustees. To test for differences in learning, we estimated a linear mixed model with 

random intercept per subject (Model 2 (M2) in Table S1). The matched controls clearly 

learned about the trustee´s trustworthiness, as they adjusted their investment behavior in an 

adaptive manner (trustee type x round number: b = -0.201, p < 0.001). They steadily increased 

investments in the generous trustee (b = 0.074, p < 0.001), and steadily decreased investments 

in the selfish trustee (b = -0.126, p < 0.001). These slopes differed from those of the BLA-

damaged group (group x trustee type x round number: b = 0.16, p = 0.001). BLA-damaged 

subjects did not increase or decrease their investment behavior in the two trustees (bgenerous = 

0.044, p = 0.155; bselfish = 0.002, p = 0.940; trustee type x round number: b = -0.042, p = 

0.341), pointing to absent social experiential learning. This resulted in the control subjects 
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earning more money than BLA-damaged subjects (Mann-Whitney U-test, P = 0.034, n = 22, 

Figure 2B). 

We measured the subjects’ self-reported trust in the trustees, reflecting their 

perception of the trustees’ trustworthiness. During the last two rounds of the task we 

prompted the subjects after their investments, and before they saw any back-transfer 

feedback, to indicate on a VAS scale (ranging from 0 to 100) how much they trusted the 

trustee in this round. Generous trustees (mcontrols = 77 (SE = 7), mBLA-damage = 63 (SE = 16)) 

were rated as significantly more trustworthy than selfish trustees (mcontrols = 24 (SE = 7), 

mBLA-damage = 35 (SE = 18)), Wilcoxon signed rank test: z = 2.841, p = 0.005, n = 22. The 

groups did not differ in their ratings (Mann-Whitney U-test: p = 0.967, n = 22), and the 

difference in the ratings of the trustees did not differ between the two groups (Mann-Whitney 

U-test: p = 0.319, n = 22). This suggests that the BLA-damaged subjects have potentially 

formed an explicit memory of the trustworthiness of the trustees. However, the variability of 

their ratings was high, and they were also not associated with their investments in that round 

(b = 0.00, p = 0.837). In the healthy subjects, the association between their ratings and 

investments differed significantly from the BLA-damaged subjects (trustworthiness rating x 

group interaction: b = -6.38, p = 0.011, Table S2), such that their ratings were positively 

associated with the investments in that round (b = 0.07, p < 0.001). Thus, while the ratings 

point towards explicit memory formation in the BLA-damaged subjects, they were unable to 

use this memory to adjust their investment behavior. While this interpretation requires 

caution, it fits with the function of the rodent BLA, which is not part of the declarative 

memory system [14, 15], but rather is involved in non-declarative, emotionally significant 

memory formation [16, 17]. 
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Figure 2. Learning in the repeated trust game and the raffle task 

(A) Investments in the repeated trust game. Rounds are split into consecutive trustee 

interactions (N = 26 per trustee), plot is divided by group. Group data is smoothed with local 

regression (LOESS), shading represents 95% confidence intervals. (B) Total earnings (in MU) 

in repeated trust game, split by group. Dots represent individual subjects (Ncontrol group = 17, 

NBla-damaged group = 5). (C) Bought tickets in the Raffle task. Rounds are split into consecutive 

box raffles (N = 26 per box), plot is divided by group. Group data are smoothed with local 

regression (LOESS), shading represents 95% confidence intervals. Individual data relating to 

panel A can be found in Figure S1. Analyses details can be found in Table S1 (for repeated 

trust game) and S3 (for Raffle task). 
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In the Raffle task, BLA-damaged subjects learned about the outcomes of the positive 

box and increased the amount of bought tickets, whereas healthy control subjects learned 

about the outcomes of both boxes and adapted their ticket buying behavior accordingly (see 

Figure 2C). To test the groups’ learning behavior for the two boxes, we estimated a linear 

mixed model with random intercept per subject (Table S3). BLA-damaged subjects (N = 5) 

increased the amount of bought tickets for the positive box from an average of 5.6 (SE = 1.36) 

to 9.8 (SE = 0.2), b = 0.08, p < .001, but did not decrease the amount of bought tickets for the 

negative box (mround 1 = 4.6 (SE = 1.4), mround 52 = 7.6 (SE = 1.69)), b = 0.02, p = .066 over the 

rounds (box x round number interaction: b = 0.06, p = .004). This differed from the control 

subjects’ learning behavior for the two boxes (group x box x round number interaction: b = -

0.07, p < .001). Control subjects (N = 18) adjusted their buying behavior both for the positive 

and the negative box over the rounds (box x round number interaction: b = 0.13, p < .001): 

they increased the amount of bought tickets for the positive box from an average of 6.94 (SE 

= 0.61) to 9.72 (SE = 0.14), b = 0.04, p < .001, and decreased the amount of bought tickets for 

the negative box from an average of 7.72 (SE = 0.53) to 2.17 (SE = 0.2), b = -0.09, p < .001 

over the rounds. Thus, in the Raffle, BLA-damaged subjects were able to learn from positive 

outcomes but had impaired learning from negative outcomes where they could lose money.  

During forced-choice control questions after the Raffle task, BLA-damaged subjects 

were able to discriminate between different reward magnitudes. They were as accurate as 

control subjects in choosing the box with which they earned more money during the task 

(Fisher’s exact test: p = .217, N = 23), as well as the box which would earn them a higher 

reward when the reward options in the two boxes partly overlapped (Fisher’s exact test: p > 

.99, N = 23), and when they did not overlap (Fisher’s exact test: p = .539, N = 23). 

Using the Raffle task, combined with control questions, we show that the experiential 

learning impairments in BLA-damaged subjects are specific to the social context. 

Furthermore, these learning impairments evidently are not due to problems in discrimination 
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of reward magnitude, which is in line with spared reward discrimination abilities in BLA-

lesioned rats [4]. The BLA-damaged subjects’ inability to learn from negative outcomes in the 

Raffle task suggests different positive and negative non-social experiential learning 

mechanisms and related underlying neurocircuitry. In this respect our data are consistent with 

the theory of LeDoux and Daw [12], which holds that rodent instrumental responses in a 

positive non-social context can be learned directly through stimulus-response associations 

[18], rather than relying on BLA-dependent response–outcome associations [19]. Negative 

non-social experiential learning, in contrast, relies on BLA-dependent response-outcome 

associations in rodents [20]. In sum, we show that in humans experiential learning in a social 

context is fully dependent on the BLA, while in a non-social context only negative 

experiential learning is dependent on the BLA. The latter finding supports the model of 

Ledoux and Daw [12], and is consistent with impairments in Pavlovian threat conditioning in 

BLA-lesioned subjects [21]. 
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Figure 3. Bilateral and focal calcifications to the BLA 

(A) Lesion-overlap image in MNI space plotted within the amygdala sub-regions defined as 

voxels with sub-region probability >50% (see Methods). (B) Coronal slices from each 

individual’s raw T2-weighted MRI scan and age at time of scanning. (C) Bar-graph 

representing bilateral anatomical overlap with excess probability (P(lesion)/P(map)) values of 

the lesion volumes, whereby values >1 indicate a reliable match of volume and anatomical 

location of: BLA = Basolateral Amygdala, SFA = Superficial Amygdala, CMA = Central-

Medial Amygdala complex, EC = Entorhinal Cortex, Hip = Hippocampus, Sub = Subiculum. 

UWD <X> (Urbach-Wiethe disease) represent the BLA-damaged subjects’ identifiers. 
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Our results cannot be attributed to impairments in IQ (see Table 1), working memory [22], or 

emotion perception [23], as BLA-damaged subjects perform similar to and in some instances 

even better than healthy control subjects in these areas. Additionally, all subjects were 

instructed by a local native speaker who ensured that everyone fully understood the task. 

Lastly, previously we showed generous investments in BLA-damaged subjects during a one-

shot trust game [24], where three BLA-damaged subjects invested 100% more than matched 

healthy controls. This generosity was not driven by increased trust in others, but arguably by 

altruistic motives, because the BLA-damaged subjects had similarly low expectations about 

their partners´ back-transfers as the control subjects. In the present task we did not observe 

such generosity, defensibly because different behavioral mechanisms are present in the 

repeated trust game. That is, the repeated trust game we use not only requests continuous 

adjustments in response to feedback, but even before feedback there are reputational concerns 

that strongly influence decisions about investments. 

In line with rodent models [3, 7], we demonstrate that the human BLA is necessary for 

experiential learning in a social context, that is, continuously adjusting behavior to distinct 

feedback from selfish and generous partners. In rodents the BLA–OMPFC (orbital medial 

prefrontal cortex) network seems to underlie learning that stimuli are associated with distinct 

outcomes, and subsequent behavioral updating [25]. Our data suggest that the function and 

neural connectivity of the human BLA in this learning depends on an interaction between 

context (social or non-social) and valence (positive or negative) of the outcomes. These 

findings translate to rodent models of BLA function in social reinforcement learning [3] and 

in learning from non-social positive and negative outcomes [12]. 

Our study furthermore highlights the importance of studying the functionality of 

human amygdala sub-nuclei separately, which is the typical approach in rodent research. 

Since amygdala sub-nuclei have different functionality and connectivity within the brain [26], 
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behavioral outcomes from human subjects with damage to the whole amygdala [27] may be 

less informative for cross-species translation. Given the antagonistic properties of the BLA 

and CMA in decision-making in rodents, effects of damage on one sub-region might even be 

abolished by lesions to both sub-regions [7, 28]. We cannot exclude the possibility that 

selective CMA lesions in humans would result in similar behavioral patterns. There is no 

possibility to test this, as there are no humans with selective CMA lesions, as far as we know. 

Crucially however, our findings in the BLA-damaged subjects reported here and earlier [11, 

21, 24] continuously translate to rodent models of the BLA. On that basis, we expect that the 

trust learning deficit in our BLA-damaged subjects depends on their selective BLA damage 

(see Figure 3), and, also given our findings in the non-social Raffle task, that the different role 

for the rodent CMA in learning [7] might also apply to humans. 

The BLA-damaged subjects’ impairments in Pavlovian fear learning [21] are 

consistent with their impairments in experiential learning from negative outcomes in the 

Raffle task. In contrast, and most essentially, our findings with the repeated trust game show 

that the human BLA is necessary for all social experiential learning, that is, for both learning 

from negative and positive social outcomes. The extent to which the human BLA is involved 

in other aspects of reward processing [25] that are important for social decision-making 

remains to be established. In the interim, our study is the first that addresses the gap in cross-

species translational research on the role of the human BLA in social experiential learning. 

We have established that the human BLA plays a crucial role in social learning, and 

specifically in deciding who can and cannot be trusted after repeated social-economic 

interactions, and in adjusting investment behavior accordingly. This parallels results and 

predictions from rodent research, which emphasize the role of the BLA in social learning [3, 

7], but the relevance of these findings for humans was hitherto unresolved. 
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Tables with titles and legends  

Table 1. Age and IQ from the Wechsler Abbreviated Scale of Intelligence (WASI) for 

the BLA-lesioned subjects and healthy controls. 

VIQ, verbal IQ; PIQ, performance IQ; FSIQ, full-scale IQ; SD, standard deviation; UWD, 

Urbach-Wiethe disease. 

 

BLA-damaged subjects 

   

Controls 

 

UWD 

1 

UWD 

2 

UWD 

3 

UWD 

8 

UWD 

9 

Mean SD 

 

Mean SD 

Age 30 37 41 37 45 38.00 5.57 

 

36.41 6.86 

VIQ 97 84 93 89 87 90.00 5.10 

 

89.71 3.77 

PIQ 99 87 85 95 89 91.00 5.83 

 

88.65 4.73 

FSIQ 98 84 87 91 86 89.20 5.54 

 

87.76 3.03 
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STAR Methods 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Jack van Honk (j.vanhonk@uu.nl). This study did not generate new unique 

reagents. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

We tested 5 female subjects with focal, bilateral damage to the BLA, due to a genetic disease 

(Urbach-Wiethe disease) where parts of the brain calcify over time [30]. Previous research in 

this population showed that the calcifications are bilateral and focal to the BLA, while the 

CMA remains functional [23]. The control group, consisting of 17 healthy subjects, were 

matched for age, gender, socio-economic status, cultural-ethnic status, religion, and IQ 

(measured with the Wechsler Abbreviated Scale of Intelligence (WASI) [31]), see Table 1. 

All subjects were recruited from the same rural Namaqualand area in South Africa, and all 

had similar socio-economic backgrounds. None of the subjects had any history of secondary 

psychopathology. Testing took place in the rural Namaqualand area with a local experimenter 

who spoke the same Afrikaans language as the subjects. Subjects provided informed consent 

before the beginning of the test session. The Health Sciences Faculty Human Research Ethics 

Committee of the University of Cape Town, South Africa, approved the study (HREC # 

639/2016).  

 

METHOD DETAILS 

Repeated Trust Game 

The Repeated Trust Game was adapted from Fett and colleagues [29]. Subjects played 52 

rounds in the role of the investor, with two randomly alternating trustees. Subjects did not 

receive any priors about the trustees and had to learn through trial-and-error how to best 
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adjust their investments (i.e. high investments with generous trustee, low investments with 

selfish trustee). All players were depicted with a neutral avatar picture (see Figure 1) and a 

neutral name (player B/ C), which were randomly assigned to the trustees. At the beginning of 

every round both players received an endowment of 10 monetary units (=MU). The investor 

had to invest at least 1 MU. Investments were tripled and transferred to the trustee. Trustees 

could make a variable back-transfer. In the first four rounds of the task back-transfers of the 

trustees were 100% of the subject´s investment, so that there were no immediate ceiling or 

floor effects on the investment and a learning curve could be measured easily. After the 

fourth-round back-transfers for the generous trustee were either 100%, 150%, or 200% of the 

investment (with an equal probability of every option occurring). When the subject increased 

their investment relative to the previous round with the generous trustee, the probability of 

receiving a back-transfer of 200% of the investment increased with 10% (and thus the other 

two options decreased with 5% each). Back-transfer options for the selfish trustee were either 

100%, 75%, or 50% of the investment. When the subject decreased their investment relative 

to the previous round with the selfish trustee, the probability of receiving a back-transfer of 

50% of the investment increased with 10%. Because of the semi-random nature of the back-

transfer options, it is possible that some subjects received ambivalent back-transfers of 100% 

of their investments in consecutive rounds, making it difficult to discern the trustees and thus 

to learn about their trustworthiness. Analyses of the back-transfer options in rounds 5 - 16 

[43] did not reveal a group difference in the amount of ambivalent back-transfer options. In 

the last two rounds of the task, subjects were prompted to indicate the trustworthiness (with a 

slider on a scale from 0 – 100) of the trustee they were playing with in that round. This 

prompt appeared after the investment and before the back-transfer decision. Analyses of the 

association between the investments and the ratings in these two rounds are described in 

Table S2.  Points earned throughout the task were exchanged to South African Rand. The task 

was played in z-tree (version 3.42 [32]). The experimenter explained the task verbally in 
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Afrikaans until subjects understood the task. In addition, subjects played 10 practice rounds in 

z-tree, while the experimenter was present to familiarize themselves with the software and the 

task. During the practice rounds the experimenter gave additional explanations of the task. 

Raffle Task 

This task was designed to match exactly the outcomes, the outcome probabilities, as well as 

the adjustment of the outcome probabilities of the repeated trust game. The task was 

programmed in z-tree (version 3.42). In this task subjects played a raffle for 52 rounds. In the 

raffle, subjects could buy raffle tickets for two different boxes, delineated by different colors 

(blue and green) and patterns (horizontal stripes, no stripes), in consecutive rounds (order of 

box presentation was random and was restricted to two consecutive presentations per box). 

Subjects did not have any priors about the boxes. At the beginning of a round, one of the two 

closed raffle boxes was presented, indicating for which box subjects would buy raffle tickets 

in that round. Then in step 1, subjects indicated how many raffle tickets (between 1 and 10) 

they want to buy for the box. In step 2, the box was opened and the amount of money the 

subject won was presented. Earnings were paid out at the end of the task. Subjects played 5 

practice rounds with different raffle boxes. After the task, subjects were presented with three 

forced-choice control questions. In the first question the two closed boxes from the Raffle task 

were shown side by side and subjects had to choose the one with which they earned more 

money during the task. In the other questions two new boxes were shown with each 

containing three possible outcomes. In question two these outcomes represented the outcome 

probabilities of the Raffle task (box 1: 5, 7, 10 MU; box 2: 10, 15, 20 MU), and in question 

three the possible outcomes were non-overlapping (box 1: 12, 15, 18 MU; box 2: 8, 6, 4 MU). 

Subjects were instructed to choose one of the two presented boxes, and informed that one of 

the possible outcomes from the chosen box would be paid out at the end of the task. All 

instructions and in-game text were displayed in the native language of the subjects 

(Afrikaans). 
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Lesion methods 

MRI-scans were acquired with a Siemens Magnetom Skyra 3-Tesla scanner at the Cape 

Universities Brain Imaging Centre (CUBIC) in Cape Town, South Africa. For lesion analysis, 

we obtained whole brain T2-weighted images using an iPAT acceleration-factor of 3, voxel-

size 0.9x0.9x1mm, TR = 3200 ms, and TE = 410 ms. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Behavioral analysis 

We analyzed investment behavior both with parametric and with non-parametric two-tailed 

tests with alpha set to 0.05. For the parametric tests we computed linear mixed models with 

the lme4 package (version 1.1-15 [33]) in R (version 3.4.3 [34]), which included a random 

intercept per subject. Effects were calculated with a treatment contrast and p-values were 

computed via Wald-statistics approximation. The results table in the supplements was 

produced with the SjPlot package (version 2.4.1 [35]), and the graphs with the ggplot2 

package (version 2.2.1 [36]). For the non-parametric tests, we used the Mann-Whitney U test 

for between-subject comparisons, the Wilcoxon-signed rank test for within-subject 

comparisons, and Kendall´s tau for the correlation between final rounds investment and 

trustworthiness rating.  

Lesion analysis 

To estimate extent and anatomical location of the lesions, T2-weighted scans were normalized 

to MNI-space using unified segmentation, which is optimized for normalization of lesioned 

brains [37]. Lesion volumes were defined using the 3D volume-of-interest featured 

implemented in MRIcron [38]. Based on MR-images the precise borders between amygdalae 

and neighboring structures, or between the sub-regions of the amygdala, cannot be established 

[39, 40]. To determine the precise location of the lesions in our BLA-damaged subjects, we 

therefore assigned the lesion volumes to cytoarchitectonic probability maps according to the 
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method described by Eickhoff and colleagues [41]. In this method, which is implemented in 

the SPM8 anatomy toolbox [42], a volume of interest is superimposed onto a 

cytoarchitectonic probability map of the medial-temporal lobe [39]. This map is based on 

microscopic analyses of ten post-mortem human brains and follows a generally accepted 

division of the human amygdala in three sub-regions. The first is the central-medial amygdala 

(CMA), which consists of the central and medial nuclei. The second is the basolateral 

amygdala (BLA), which includes the lateral, basolateral, basomedial, and paralaminar nuclei, 

and the third is the superficial (or corticoid) amygdala (SFA), which includes the anterior 

amygdaloid area, amygdalopyrifom transition area, amygdaloid-hippocampal area, and the 

cortical nucleus [39]. This method assigns to any given voxel a value representing the 

probability that it belongs to an underlying structure. These structures are derived from an 

overlap analysis of ten post-mortem brains and are therefore divided in ten separate 

probability classes ranging from 10% to 100% probability. 

 To estimate how well the lesion volumes fit to the underlying structure, P(excess) 

values are computed using the following equation:             
         

      
 whereby P(lesion) 

represents the average cytoarchitectonic probability of the voxels that are shared by the lesion 

and the cytoarchitectonic probability map, and P(map) represents the average probability of 

the whole structure’s cytoarchitectonic map. These values thus represent how much the 

average probability of the overlapping voxels exceed the overall probability distribution of 

that particular structure, and thus indicate whether the lesion overlaps with relatively high or 

low probability classes of that structure. In other words, P(excess) represents how ‘central’ the 

location of the lesion is relative to that structure’s cytoarchitectonic map, whereby P(excess) > 

1 indicates a more central, and P(excess) < 1 a more peripheral location [41] 

As depicted in Figure 3A and C, calcified brain-tissue of the BLA-damaged subjects is 

localized in the BLA and the CMA seems unaffected. In a quantitative analysis these results 
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are confirmed. Figure 3C shows P(excess) values for the individual lesions and these lesions 

are, bilaterally, most central to the BLA as P(excess) values exceed 1 for each individual and 

hemisphere. Since this method is purely based on probability distributions, it is impossible to 

fully exclude the possibility that structures other than the BLA are affected by the 

calcifications. The fact that the lesion-volumes largely overlap with high probability classes in 

the bilateral BLA, and that P(excess) values greatly exceed the value of 1, can however be 

seen as strong support for our claim that these subjects have bilateral damage limited to the 

BLA. In subject UWD9 the calcifications might extend into neighboring structures, namely 

the right superficial amygdala (SFA) and bilateral entorhinal cortex (all main results reported 

above remain significant when excluding subject UWD9). We can however safely conclude 

that the CMA is unaffected by the bilateral calcifications found in all of these BLA-damaged 

subjects. 

 

DATA AND CODE AVAILABILITY 

Behavioral data and analyses scripts are deposited here: osf.io/hwc5q [43]. Data relating to 

lesion analyses will only be made available upon request from the lead contact due to the de-

anonymized nature of the data. 
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