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ABSTRACT 

Two- and three- grid global extrapolation procedures are considered  

fo he special and general initial  value problems of arbitrary order  r  t

q. Extrapolation formulas are developed for consistent numerical  

methods of arbitrary order p . 

The global extrapolations of a number of existing numerical  

methods are considered and tested on three problems from the  

l i terature. 
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1. THE SPECIAL INITIAL VALUE PROBLEM 

1.1  Introduction 

Consider the special initial value problem of order q given by 

(1)  ( ) ( ) ( ) ( ) ( ) 1
r0

rq q,...,1,0r,zty;yt,fty −===

and suppose that the solution is sought at t ime  .Tt ∞<=

The interval of integration will  be divided, first  of all ,  into 

N sub-intervals each of width h so that ,tTNh 0−=  giving a discret- 

ization or grid G  nsisting of the N+1 points co nhtt 01,,n +=1  

(n = 0 ,1, .  .  .  ,N). The theoretical solution of (1) at 1,ntt =  is clearly 

 and the notation y( )1,nty n , 1 will be used to denote the solution of 

an approximating method at the same point t  of  of ( ).N,....,1,0nG1 =1,nt  n + 1

The application of a convergent numerical method M to find the  

 the magnified error function  solution yields, at the point  of  G1,NtT = 1

(Lapidus and Seinfeld [5; p.242], Henrici [3; p.80]) or the global  error   

 (Verwer and de Vries [10]) in the form 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ....,TyyhcTyhcTyhCε2 4qp4p4p
4qp

2qp2p
2qp

qpp
qpN,1 +++= ++++

++
+++

++
+

+  

where  is the order  of the numerical method and C  is i ts error  1p ≥ p + q

constant.  The term in hp in (2) gives the time component of the principal  

part of the local truncation error when M is associated with the solution 

of a time-dependent partial differential equation. 

1.2 Global extrapolation using two discretizations 

Suppose now that the interval of integration is divided into 2N sub- 

intervals each of width h2
1  giving a discretization G  consisting of the 2

2N+1 po in t s  ( .N2,...,1,0iihtt 2
1

0i,2 = )+=  Clear ly  the  po in t s   2,rt

( r=0,2,4,….,2N) of  G  are  coincident  with the points  nhtt 01,n +=  2

(n = 1 ,2,. . . ,N) of G  . The notation y  will be used to denote the 1 i ,2
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solution of  the method M at the points t  (i  = 0,1 ,  .  .  .  ,2N) of the grid Gi , 2 2

The appl icat ion of  M to f ind the solut ion at  the point   2,N2tT =

of G  generates the global error 2

 
( ) ( ) ( ) (( ) )Tyhc2Tyhc2ε    3 2qp2p

2qp
2pqpp

qp
p

2N,2
+++

++
−−+

+
− +=  

                                                          ,...)T(yhc2 4)q(p4p
4qp

4p ++ +++
++

−−

which, l ike  is   so that   and   are both approximations p0(h)N,1ε 1,Ny 2,N2y

of order p to y(T). 

        Consider, now, the approximation 
(4)    N,12N,2

(E) α)y1(αyy −+=

and the associated global error 
( ) ( ) .εα1αεε N.12N,2
E −+=(5)    

pIt  is easy to show that the term in h  in (5) vanishes when the parameter 

a takes the value  with ( )122α pp −= ( )p211α1 −=− . (6)      

The global extrapolation  carried out using the two discretizations 
( )EyG and G  has thus produced an approximation  defined by (4),  which 1 2

is of order p+2 provided  takes the value given by (6).  α

 

1.3 Numerical results 

 

The global extrapolation procedure described in §1.2 was tested on the 

following problem 

Problem 1. This problem is given by 

 

     ;  ( ) ,10y1 =2
'
1 yy =  

( ) .00y;;y3y
t

yy 2
5
1

3
1

2'
2 =−+−=    
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The  p rob lem has  a  s ingu la r i ty  in  ; the re fo re ,  a  fu l ly  impl ic i t  me thod  '
2y

must  be  used  to  ob ta in  the  so lu t ion . Not ing  tha t  the  problem has  the  

 the  so lu t ion was ob ta ined us ing the f i r s t    ( ) ( ),yt,fty ' =vec to r  fo rm 
order backward Euler method 

 

( ) ( )( ) ( ) ,tyhtyh,tfhty =++−+ l      

 

the Newton-Raphson method for an algebraic system (of order 2) being 

( )hty +employed to compute .  

The problem has theoretical solution 

( ) ( ) ( ) ( ) 2
3

2
2

2
1

2
2 t1tty,t1ty −−

+−=+=    

a n d  t h e  m a x i m u m  e r r o r  m o d u l i  a t  t i m e  t  =  0 . 2 5  a r e  g i v e n  i n  T a b l e  1 .  

I t  m a y  b e  s e e n  f r o m  T a b l e  1  t h a t  t h e  e r r o r s  r e l a t i n g  t o  o n e  g r i d  a r e  

d e c r e a s i n g  b y  a  f a c t o r  o f  2  ( a p p r o x i ma t e l y )  a s  h  i s  s u c c e s s i v e l y  h a l v e d ,  

w h i l e  t h e  e r r o r s  f o l l o w i n g  g l o b a l  e x t r a p o l a t i o n  o f  t h e  s o l u t i o n  a r e  

d e c r e a s i n g  b y  a  f a c t o r  o f  4  ( a p p r o x i m a t e l y ) .  

 

1.4 Global extrapolation using three discretizations 

 

S u p p o s e ,  f i n a l l y ,  t h a t  t h e  i n t e r v a l  o f  i n t e g r a t i o n  i s  d i v i d e d  i n t o  3 N   

s u b i n t e r v a l s  e a c h  o f  w i d t h  h3
1  g i v i n g  a  d i s c r e t i z a t i o n  G  c o n s i s t i n g  o f    3 I t  i s  c l e a r  t h a t  t h e   ( ).0,1,...,3Njjhtt 3
1

0j,3 =+=t h e  3 N + 1  p o i n t s   

p o i n t s   o f  G  a r e  c o i n c i d e n t  w i t h  t h e  p o i n t s  ( )...3N,6,3,0st 3,s = 3

( )N.,,..1,0nt 1,n =  o f  t h e  o r i g i n a l  g r i d  .  T h e  n o t a t i o n   w i l l  b e  3,jy1G

used  to  denote  the  so lu t ion  of  the  numer ica l  method  M a t  the  poin ts  

( )N3,...,1,0jt j,3 =  o f  .3G
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      T h e  a p p l i c a t i o n  o f  M  t o  f i n d  t h e  s o l u t i o n  a t  t h e  p o i n t   3N,3tT =

of G  gives  third approximation to y(T) and generates the global 'a3

error 
( ) ( ) ( ) ( )Tyc3Tyhc3ε 2qp

2qp
2pqpp

qp
p

3N,3
++

++
−−+

+
− +=(7)       

            ,...)T(yc3 4)q(p
4qp

4p ++ ++
++

−−

 
pWhich, l ike  and  is 0(h ),  so that the third approximation 1,Nε 2,N2ε

to y(T), given by ,  is also of order p. 3,N3y

Considering the approximation 
( ) ( ) N,12N,23N,3
E yβα1βyαyy −−++=  (8)   

and  the  resu l t ing  g loba l  e r ror  
( ) ( ) .εβα1βεαεε N,12N,23N,3
E −−++=  (9)   

where  and are parametersα β  i t  may be shown that the terms in hp and ,

2ph +  in (9) vanish when 

( ) ( )5p3p5p5p3p3p 2352β,2353α ++++++ −+−=−+=  (10) 

with, consequently, ( ).2355βα1 5p3p ++ −+=−−  

This global extrapolation, which uses the three discretizations 
( )EyG , G1 2  and G , has produced an approximation  defined by (8) which 3

is of order p+4 provided  and  take the values in (10). βα

 

1.5 Numerical results using the three-grid extrapolation. 

Problem 2  (Stiefel and Bettis [7]). This is the "almost periodic" problem 

given by 

z"(t) + z(t) = 0.001eit ; z(0) = 1 , z (0) = 0.9995i , z(t) ∈ . ' IC

The analytic solution of this problem is given by 

       u(t) = cos t + 0.0005t sin t , u ∈  RI ,  

       v(t) = sin  - 0.0005t cos t , v t ∈  RI , 

       z(t) = u(t) + iv(t) 
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and  r ep re sen t s  t he  mo t ion  o f  t he  po in t  z ( t )  on  a  pe r t u rba t i on  o f  a  

c i r c u l a r  o r b i t .  The  d i s t ance  o f  t h i s  po in t  f r om the  cen t r e  o f  t he  o rb i t  

2
1

2 v2(t)} (t){u +a t  t i me  t  i s  g i v e n  b y  ( t )  =  γ a n d  t h e  e r r o r  mod u l u s  | E ( γ ) |  

o f  t he  compu ted  va lue  o f  γ  w a s  d e t e r mi n e d  a t  t  =  4 0  fo r  t he  π

t h r ee -d i s c r e t i z a t i on  ex t r apo l a t i ons  o f  t he  fou r th  o rde r  me thod  ba sed   

on  t he  (2 ,2 )  padé  app rox iman t  o f  Twize l l  and  Kha l i q  [8 ] ,  t he  fou r th  

o rde r  me thod  o f  Cash  [ l ]  and  t he  s i x th  o rde r  me thod  o f  Cash  [ l ] .  

,
6

,
5

,
4

h πππ
=      The  compu ted  r e su l t s  we re  found  u s ing  t he  t ime  s t eps   

) ; t h e  r e s u l t s  f o r  t h e  t w o  
12
π

9
π  ( o n  t h e  f i r s t  d i s c r e t i z a t i o n  G a n d  1

f ou r th  o rde r  me thods  a r e  g iven  i n  Tab l e  2  and  fo r  Cash ' s  s i x th  o rde r  

me thod  i n  Tab l e  3 . T h e  s o l u t i o n  a t  t h e  f i r s t  t i me  s t e p  f o r  e v e r y  n u m-  

er ica l  exper iment  was  computed  us ing  the  second order  Taylor  se r ies   

app rox ima t ion .  
      I t  i s  n o t  t h e  p u r p o s e  o f  t h e  p r e s e n t  p a p e r  t o  c o mpa r e  t h e  r e l a t i v e  

me r i t s  o f  t he  me thods  deve loped  i n  [1 ,8 ] .  The  a im o f  t he  pape r  i s  t o  

show tha t  g loba l  ex t rapo la t ion ,  a s  de ta i l ed  above ,  inc reases  the  o r de r  

o f  t he  me thod  be ing  u sed .  I t  i s  c l e a r  f r o m t h e  t wo  t a b l e s  t h a t  t h i s  

aim has been achieved for all  three methods tested on Problem 2. 

Problem 3 (Van Dooren [9]) . This  is  the  nonl inear  Duffing e qua t i on  
3y " ( t )  +  y ( t )  +  y ( t )  =  F  c o s  t  ;  y ( 0 )  =  A  ,  y ' ( 0 )  =  0  Ω

with F = 0.002, Ω =1.01 and A = 0.200426728067 (Chawla and Rao [2 ] ) .  

      This  problem was  so lved  us ing  the  second order  P-s tab le  me t hod  

based  on  the  (1 ,1)  padé  approximant  [8]  and  the  more  accura te  s econd  

order  method  based  on  the  (1 ,2 )  padé  approx imant  [8 ]  which ,  us ing  t he   

no ta t ion  o f  Lamber t  and  Watson  [4 ] ,  has  pe r iod ic i ty  in te rva l  H 2   (0 ,7 .2 ) .  ∈

      The  g loba l  ex t rapola t ion  procedure  us ing  three  d i s c r e t i z a t i o n s  

was  a l so  ca r r i ed  ou t ,  i nc r ea s ing  t he  o rde r s  o f  e ach  o f  t he  two  

numer i ca l  me thods  t o  s i x .
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      The  s t ep  s i z e  h  was  g iven  t he  va lue s   and   and  ,20π,10π,5π 40π

 Van Dooren  [9]  g ives  the  so lu t ion  the  so lu t ion  computed  a t  t ime .π40t =

of Problem 3 in the form 

 

(16)  ( ) ( )[ ],t1i2cosaty
4

0i
1i2∑

=
+ Ω+=

 

where 

  a  = 0.200179477536 ,      a  = 0.000246946143 ,  1 3

a  = 0.000000304014 ,      a = 0.000000000374 ,  a  = 0.0 ,  5 4  5

noting that the order of (16) is nine, with a precision of the coefficients  

of .  1210−

The errors using the two numerical methods with one and three 

grids are given in Tabel 4 where, for comparison purposes, the results of 

chawla and Rao [2] relating to their sixth order method M (0) are reproduced, 6

       It  is seen from Table 4 that the order of the two methods based on  

the (1,1) and (1,2) padé approximants [8] are duly increased by the global    

extrapolation procedure of §1.4. The results using the (1,1) method with 

three discretizations are inferior to those of Chawla and Rao [2],  while 

those using the (1,2) method with three discretizations are better than 

those in [2].  particularly for the value h = /5 .  π

 

2. THE GENERAL INITIAL VALUE PROBLEM 

Consider now the general initial value problem of order q given by 
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ;ty,...,ty,ty,tyt,fty 1q'''q −=(11)   

( ) ( ) 1q,...,1,0r,zty r0
r −==     

and suppose, again, that the solution is sought at t ime  .Tt ∞<=
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       As in §1, the interval of integration will be divided into s ub i n t e r va l s  

i n  t h r e e  w a y s  g i v i n g  r i s e  t o  t h e  s a me  t h r e e  g r i d s   .G,G,G 321

     The application of a convergent numerical method M to find t wo  

a p p r o x i ma t i o n s   and   y i e l d s  t h e  g l o b a l  e r r o r s  1,Ny 2,N2y

( ) ( ) ( ) ( ) ( ) ( ) ( )+++= ++++
++

++++
++

++
+ TyhcTyhcTyhcε 2qp2qp

2qp
1qp1qp

1qp
qpqp

qpN,1  (12)   

and 
( ) ( ) ( ) ( )Tyhc2Tyhc2ε 1qp1qp

1qp
1pqpp

qp
p

2,N2
++++

++
−−+

+
− +=  (13)       

         ....)T(yhc2 2)q(p2qp
2qp

2p ++ ++++
++

−−

respec t ive ly ,  where ,  as  in  §1 ,  p  i s  the  order  of  M.  
( )Ey         Considering, now, the approximation  of (4) and the a s s o c i a t e d  

global error given by (5),  i t  is  easy to show that the term in in ( 5 )  ph

vanishes when the parameter  takes the value given by (6). T h e  g l o b a l  α

extrapolation procedure involving the two discretizations G  and G1 2 

described in §1.2 for the special initial value problem (1),  is t he r e fo r e  

valid for the general initial value problem (11) but,  this t ime, the o r de r  

o f  t h e  e x t r a p o l a t i o n  i s  o n l y  p + 1 .  

       The application of M on the third grid G  generates the approximation 3

33N,y  and the associated global error function 

( ) ( ) ( ) ( )Tyhc3Tyhc3ε 1qp1qp
1qp

1pqpp
qp

p
3N,3

++++
++

−−+
+

− +=    (14)      

              ...(T)yhc3 2)q(p2qp
2qp

2p ++ ++++
++

−−

( )Ey      Considering the approximation  of (8) and the associated global 

error given by (9), it may be shown that the terms in and hp  and in (9) 1ph +

vanish when the parameters α  and  take the values β

 

(15)  and ( )2p1p1p 2313α +++ −+= ( )2p1p2p 2312β +++ −+−=  

 

( )2p1p 2311βα1 ++ −+=−−s o  t h a t   .  The  t h r e e - discretization extrapolation  
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of the general initial value problem (11) is thus only of order p+2,  

compared with p+4 for the special problem (1).  

Putting p =q =1 and using the two grids G  and G  gives the second 1 2

order global extrapolation procedure for parabolic equations outlined by 

Verwer and de Vries [10], while using all three grids G1, G  and G  with  2 3

p = q = 1 gives the third order algorithm of those authors. Putting p = 2 

and q = 1 gives the values of the parameters  and β  associated with the α

stable, two- or three-discretization global extrapolations of the well-

known Crank-Nicolson method. 

It may also be seen that, putting p=q=N=1 in the above analysis,   

and using  and G , gives the parameter  for the L -stable second order 1G α2 0

local extrapolation method of Lawson and Morris [6] which was based on   

the well-known fully implicit  first  order method for parabolic equations.  

The local extrapolation of the well-known Crank-Nicolson method for para- 

bolic equations is also described by the above procedure (using  and ) 1G 2G

with q=N=1 and p = 2; this local extrapolation has a stability restriction.
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Table 1. Maximum error  modul i  for  Problem 1 using the f i rs t  order  

               fu l ly  impl ic i t  method .  

 

 

 
Grids 1 2 

 
Order 1 2 

 
h=1/16 0.56E-2 0.25E-3 

 
h=1/32 0.29E-2 0.62E-4 

 
h=1/64 0.15E-2 0.15E-4 

 
h=1/128 0.76E-3 0.38E-5 

 

 

 

 

 

 

Table 2. Error moduli for problem 2 using two fourth order methods [1, 8] 

 

 

 

 

 

Method (2,2)padé [8] Cash[1] 

Girds 1 3 1 3 

Order 4 8 4 8 

h=π/4 0.43E-2 0.21E-5 0.46E-2  0.25E-5 

h=π/5 0.13E-2 0.32E-6 0.14E-2  0.38E-6 

h=π/6 0.53E-3 0.63E-7 0.56E-3  0.76E-7 

h=π/9 0.88E-4 -0.85E-9 0.94E-4  0.13E-8 

h=π/12 0.27E-4     0.79E-10 0.28E-4     0.52E-10 
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Table 3. Error  moduli  for  Problem 2 using the s ixth order   

         method of Cash [1] 

 

 

  Grids 1 3 
  Order 6 10 
  h=π/4 0.24E-4 0.11E-8 
 h=π/5 0.49E-5 0.14E-9 
 h=π/6 0.14E-5  0.26E-10 
 h=π/9 0.11E-6  0.62E-12 
 h=π/12 0.18E-7  0.46E-13 
 

 

 

 

Table 4. Error moduli  for  problem 3 

 

 

 

Method (1,1)padé [8] (1,1)padé [8] Chawla and 
Rao [2] 

Girds 1 3 1 3 1 

Order 2 6 2 6 6 

h=π/5 0.36E-1 0.20E-1 0.87E-1 0.77E-4 0.14E-2 

h=π/10         0.14 0.28E-1 0.23E-1 0.12E-5 0.22E-4 

h=π/20 0.35E-1 0.41E-5 0.58E-2 0.19E-7 0.34E-6 

h=π/40 0.87E-1 0.54E-7 0.15E-2 0.52E-8 0.54E-8 
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