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ABSTRACT

Two- and three- grid global extrapolation procedures are considered
for the special and general initial value problems of arbitrary order
q. Extrapolation formulas are developed for consistent numerical
methods of arbitrary order p .

The global extrapolations of a number of existing numerical

methods are considered and tested on three problems from the

literature.






1. THE SPECIAL INITIAL VALUE PROBLEM
1.1 Introduction

Consider the special initial value problem of order q given by
(1) y(q) (t) = f (t,y) ; y(r) (to) =z ,r = 0,l.,q"

and suppose that the solution is sought at time t=T <o,
The interval of integration will be divided, first of all, into

N sub-intervals each of width h so that Nh=T-t,, giving a discret-
ization or grid G; consisting of the N+1 points t _, =t,+nh
(n=0,1,...,N). The theoretical solution of (1) at t=t , is clearly
Y(tn,l) and the notation y,; will be used to denote the solution of

an approximating method at the same point t,+; of t ;, of G, (n=0.1,...,N)

The application of a convergent numerical method M to find the
solution yields, at the point T=t, of G; the magnified error function

(Lapidus and Seinfeld [5; p.242], Henrici [3; p.80]) or the global error
(Verwer and de Vries [10]) in the form

(2) exy = C,q %y (b+a) (T)+ c h**y (b+a+2) (T)+ c

p+q+2 p+q+4

where p>1 is the order of the numerical method and C,q is its error

constant. The term in h” in (2) gives the time component of the principal
part of the local truncation error when M is associated with the solution

of a time-dependent partial differential equation.
1.2 Global extrapolation using two discretizations

Suppose now that the interval of integration is divided into 2N sub-
intervals each of width 1h giving a discretization G, consisting of the
2N+1 points t,, = t, + 5 ih (i= 0, L..., 2N ) Clearly the points t ,
(r=0,2,4,....,2N) of G, are coincident with the points t , =t,+nh

(n=1,2,...,N)of G, . The notation y; , will be used to denote the

hp+4y(p+4)y (p+a+4) (T)-I—

b



solution of the method M at the points tj, (i=0,1,...,2N) of the grid G;
The application of M to find the solution at the point T=tw,

of G, generates the global error

hP+2 y (p+q+2) (T)

h?'y O (T 4L

(3)  en, =27, hPyPY(T)+27 % ¢

+27 ¢

p+q+2
p+q+4
which, like €, is 0(h)’ so that yy, and y,, are both approximations
of order p to y(T).

Consider, now, the approximation
4 y(E) =0y, t (I_Q)YN,I
and the associated global error
(5) el = OE)N +(1_a)8N.l'
It is easy to show that the term in h” in (5) vanishes when the parameter
a takes the value
(©) a=2°/(2"=1) with 1-a=1/(1-2").

The global extrapolation carried out using the two discretizations

Giand G; has thus produced an approximation y(E) defined by (4), which

is of order p+2 provided o takes the value given by (6).
1.3 Numerical results
The global extrapolation procedure described in §1.2 was tested on the

following problem

Problem 1.  This problem is given by

=]

)=1,

y,=—22 +y) - 3y, ; y,(0)=0.

Vi =Y, A



The problem has a singularity in y,; therefore, a fully implicit method
must be used to obtain the solution. Noting that the problem has the

vector form y_(t) = f(t,zl the solution was obtained using the first

order backward Euler method

y(t+h) = ¢f (t+h,y (t+h) ) = y(t) |

the Newton-Raphson method for an algebraic system (of order 2) being

employed to compute X(t+h).

The problem has theoretical solution

v, (t) = (1+t2) E , v,(t) = —t(1+t2)_%

and the maximum error moduli at time t = 0.25 are given in Table 1.
It may be seen from Table 1 that the errors relating to one grid are
decreasing by a factor of 2 (approximately) as h is successively halved,
while the errors following global extrapolation of the solution are

decreasing by a factor of 4 (approximately).
1.4 Global extrapolation using three discretizations

Suppose, finally, that the interval of integration is divided into 3N

subintervals each of width +h giving a discretization Gz consisting of

the 3N+1 points t, =t, +1 jh (j=0,1,.,3N). It is clear that the

iR

points t, (s=0,3,6,..3N) of G, are coincident with the points

t (n = O,l,...,N) of the original grid G,. The notation y;, will be

n,l
used to denote the solution of the numerical method M at the points

t;; (j =0L..3N) of Gj.



The application of M to find the solution at the point T =ty
of Gj gives a third approximation to y(T) and generates the global
error
(M) ey =37e, WY (T)+37 e, L,y (T

—-p—4 (p+q+4)
+3777C, gy (My+... ,

Which, like &y, and &,, is 0(h"), so that the third approximation
to y(T), given by y 5y 5, is also of order p.
Considering the approximation

(®) y(E) = 0¥y t By + (l_a_B)YN,l
and the resulting global error

E)

) e = O€3n; + BSZN,Z + (l_a_ﬁ)gm-

where o and Pare parameters, it may be shown that the terms in h? and
h*? in (9) vanish when
(10) o =37 (54307 —2p ) p=—2r J5430 —2r)
with, consequently, 1-a—p =5 /(5+3p+3 —~ 2"*5).

This global extrapolation, which uses the three discretizations
G, G, and Gj, has produced an approximation y(E) defined by (8) which

is of order p+4 provided a and B take the values in (10).

1.5 Numerical results using the three-grid extrapolation.
Problem 2 (Stiefel and Bettis [7]). This is the "almost periodic" problem
given by
Z'(t) + z(t) = 0.001e" ; z0) =1 ,2z(0) = 09995 , z(t) e C.
The analytic solution of this problem is given by
u(t) = cost + 0.0005tsint,u € IR,
v(t) =sin t - 0.0005tcost,v € IR,
z(t) =u(t) + iv(t)



and represents the motion of the point z(t) on a perturbation of a

circular orbit. The distance of this point from the centre of the orbit

1

at time t is given by y(t) = ~{u2(t)+v2(t)}5 and the error modulus |E(vy)|
of the computed value of y was determined at t = 40 r for the
three-discretization extrapolations of the fourth order method based
on the (2,2) padé approximant of Twizell and Khaliq [8], the fourth
order method of Cash [1] and the sixth order method of Cash [I1].

The computed results were found using the time steps h=

w3

T
s o
6

b

ENGP

T T . . ) .
5 and — (on the first discretization G;); the results for the two

fourth order methods are given in Table 2 and for Cash's sixth order
method in Table 3. The solution at the first time step for every num-
erical experiment was computed using the second order Taylor series

approximation.
It is not the purpose of the present paper to compare the relative

merits of the methods developed in [1,8]. The aim of the paper is to

show that global extrapolation, as detailed above, increases the order

of the method being used. It is clear from the two tables that this

aim has been achieved for all three methods tested on Problem 2.

Problem 3 (Van Dooren [9]). This is the nonlinear Duffing equation
y"(t) + y(t) + y’(t) = F cos Qt;y(0) =A,y(0)=0

with F = 0.002, Q=1.01 and A = 0.200426728067 (Chawla and Rao [2]).

This problem was solved using the second order P-stable method
based on the (1,1) padé approximant [8] and the more accurate second
order method based on the (1,2) padé approximant [8] which, using the
notation of Lambert and Watson [4], has periodicity interval H> € (0,7.2).

The global extrapolation procedure using three discretizations
was also carried out, increasing the orders of each of the two

numerical methods to six.



The step size h was given the values =n/5,7/10,n/20, and =/40 and

the solution computed at timet=40n. Van Dooren [9] gives the solution

of Problem 3 in the form
4

(16) y(t)= Za2i+1 cos|(2i +1)Qat],
i=0

where
a; =0.200179477536 , a3 =0.000246946143 ,

as = 0.000000304014, a4 =0.000000000374, as=0.0,
noting that the order of (16) is nine, with a precision of the coefficients
of 1077,

The errors using the two numerical methods with one and three
grids are given in Tabel 4 where, for comparison purposes, the results of
chawla and Rao [2] relating to their sixth order method M¢(0) are reproduced,

It is seen from Table 4 that the order of the two methods based on
the (1,1) and (1,2) padé approximants [8] are duly increased by the global
extrapolation procedure of §1.4. The results using the (1,1) method with
three discretizations are inferior to those of Chawla and Rao [2], while
those using the (1,2) method with three discretizations are better than

those in [2]. particularly for the value h = =/5.

2. THE GENERAL INITIAL VALUE PROBLEM

Consider now the general initial value problem of order q given by

(11) y9(t)= f(t, y(t),y'(t),y"(t),...,y(q’l)(t)) :
y(r)(t0)= z,,r=0,1,..,q-1

and suppose, again, that the solution is sought at time t=T <oo.



As in §1, the interval of integration will be divided into subintervals
in three ways giving rise to the same three grids G,,G,,G;.
The application of a convergent numerical method M to find two

approximations yy, and y,,, yields the global errors

(12) NS Cp+th+qy(p+q)(T)+ Cp+q+lh(p+q+l)y(p+q+1)(T)_|_ Cp+q+2hp+q+2y(p+q+2)(T)+
and
(13) E€onn = 27F Cp+thy(p+q)("[‘)+ 2 -p-l Cp+q+lhp+q+ly(p+q+1)(T)

+ 2‘P—2 Cp+q+2hp+q+2y(p+q+2) (T) +

respectively, where, as in §1, p is the order of M.

Considering, now, the approximation y(E) of (4) and the associated

global error given by (5), it is easy to show that the term in h”in (5)
vanishes when the parameter a takes the value given by (6). The global
extrapolation procedure involving the two discretizations G; and G;
described in §1.2 for the special initial value problem (1), is therefore
valid for the general initial value problem (11) but, this time, the order
of the extrapolation is only p+1.

The application of M on the third grid G; generates the approximation

Y, and the associated global error function

(14) Ens = 37 cp+thy(p+q)(T)+ 37 "¢ hp+q+Ty(p+q+1)(T)

p+q+l1

+37%¢ hPrar2y®rar )y

p+q+2
Considering the approximation y(E) of (8) and the associated global

error given by (9), it may be shown that the terms in and h” h*"' and in (9)

vanish when the parameters a and B take the values
(15) o« =3""/(1+3"=2"?) and B = —277/(1+3"" —277)

so that 1—(1—[3=1/(1+3p“—2p+2). The three-discretization extrapolation



of the general initial value problem (11) is thus only of order p+2,
compared with p+4 for the special problem (1).

Putting p =q =1 and using the two grids G; and G, gives the second
order global extrapolation procedure for parabolic equations outlined by
Verwer and de Vries [10], while using all three grids G;, G, and G3; with
p = q =1 gives the third order algorithm of those authors. Putting p =2
and q = 1 gives the values of the parameters a and B associated with the
stable, two- or three-discretization global extrapolations of the well-
known Crank-Nicolson method.

It may also be seen that, putting p=q=N=1 in the above analysis,
and using G, and G, gives the parameter o for the Lj-stable second order
local extrapolation method of Lawson and Morris [6] which was based on
the well-known fully implicit first order method for parabolic equations.
The local extrapolation of the well-known Crank-Nicolson method for para-
bolic equations is also described by the above procedure (using G, and G,)

with q=N=1 and p = 2; this local extrapolation has a stability restriction.



Table 1. Maximum error moduli for Problem 1 using the first order

fully implicit method.

Grids 1 2
Order 1 2
h=1/16 0.56E-2 0.25E-3
h=1/32 0.29E-2 0.62E-4
h=1/64 0.15E-2 0.15E-4
h=1/128 0.76E-3 0.38E-5

Table 2.  Error moduli for problem 2 using two fourth order methods [1, 8]

Method (2,2)padé [8] Cash[1]

Girds 1 3 1 3
Order 4 8 4 8
h=n/4 0.43E-2 0.21E-5 0.46E-2 0.25E-5
h=n/5 0.13E-2 0.32E-6 0.14E-2 0.38E-6
h=n/6 0.53E-3 0.63E-7 0.56E-3 0.76E-7
h=n/9 0.88E-4 -0.85E-9 0.94E-4 0.13E-8
h=n/12 0.27E-4 0.79E-10 | 0.28E-4 0.52E-10
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Table 3. Error moduli for Problem 2 using the sixth order
method of Cash [1]
Grids 1 3
Order 6 10
h=n/4 0.24E-4 0.11E-8
h=n/5 0.49E-5 0.14E-9
h=n/6 0.14E-5 0.26E-10
h=n/9 0.11E-6 0.62E-12
h=n/12 0.18E-7 0.46E-13
Table 4. Error moduli for problem 3
Method (1,1)padé [8] (1,1)padé [8] Chawla and
Rao [2]
Girds 1 3 1 3 1
Order 2 6 2 6 6
h=n/5 0.36E-1 0.20E-1 0.87E-1 0.77E-4 0.14E-2
h=n/10 0.14 0.28E-1 0.23E-1 0.12E-5 0.22E-4
h=n/20 0.35E-1 0.41E-5 | 0.58E-2 0.19E-7 0.34E-6
h=n/40 0.87E-1 0.54E-7 | 0.15E-2 0.52E-8 0.54E-8
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