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ARTICLE

Collider bias undermines our understanding
of COVID-19 disease risk and severity
Gareth J. Griffith 1,2,4, Tim T. Morris 1,2,4, Matthew J. Tudball 1,2,4, Annie Herbert1,2,4, Giulia Mancano1,2,4,

Lindsey Pike1,2, Gemma C. Sharp 1,2, Jonathan Sterne2, Tom M. Palmer 1,2, George Davey Smith 1,2,

Kate Tilling 1,2, Luisa Zuccolo1,2, Neil M. Davies 1,2,3 & Gibran Hemani 1,2,4✉

Numerous observational studies have attempted to identify risk factors for infection with

SARS-CoV-2 and COVID-19 disease outcomes. Studies have used datasets sampled from

patients admitted to hospital, people tested for active infection, or people who volunteered to

participate. Here, we highlight the challenge of interpreting observational evidence from such

non-representative samples. Collider bias can induce associations between two or more

variables which affect the likelihood of an individual being sampled, distorting associations

between these variables in the sample. Analysing UK Biobank data, compared to the wider

cohort the participants tested for COVID-19 were highly selected for a range of genetic,

behavioural, cardiovascular, demographic, and anthropometric traits. We discuss the

mechanisms inducing these problems, and approaches that could help mitigate them. While

collider bias should be explored in existing studies, the optimal way to mitigate the problem is

to use appropriate sampling strategies at the study design stage.
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Health care providers, researchers and private companies,
amongst others, are generating data on the COVID-19
disease status of millions of people to understand the risk

factors relevant to SARS-CoV-2 in the general population
(defined in Box 1). Numerous studies have reported risk factors
associated with COVID-19 infection and subsequent disease
severity, such as age, sex, occupation, smoking and ACE-inhibitor
use1–10. But to make reliable inference about the causes of
infection and disease severity, it is important that the biases which
induce spurious associations in observational data are understood
and assessed. Bias due to confounding remains well-understood
and attempts to address it are typically made (bar rare exceptions
e.g. ref. 11). But the problem of collider bias (sometimes referred
to as selection bias, sampling bias, ascertainment bias, Berkson’s
paradox) has major implications for many published studies of
COVID-19 and is seldom addressed.

A collider is most simply defined as a variable that is influenced
by two other variables, for example when a risk factor and an
outcome both affect the likelihood of being sampled (they “col-
lide” in a Directed Acyclic Graph, Fig. 1a). Colliders become an
issue when they are conditioned upon in analysis, as this can
distort the association between the two variables influencing the
collider. Importantly, it is possible to distort the association
between two variables that do not directly influence the collider
(Fig. 1b). If the factors that influence sample selection themselves
influence the variables of interest, the relationship between these
variables of interest can become distorted. This is sometimes
referred to as M-bias due to the shape of the Direct Acyclic
Graph12.

Collider bias can arise when researchers restrict analyses on a
collider variable13–15. Within the context of COVID-19 studies,
this may relate to restricting analyses to those people who have
experienced an event such as hospitalization with COVID-19,
been tested for active infection or who have volunteered their
participation in a large scale study (Fig. 2a). Among hospitalized
patients, the relationships between any variables that relate to
hospitalization will be distorted compared to among the general
population. The magnitude of this distortion can be large,
inducing associations that do not exist in the general population
or attenuating, inflating or reversing the sign of existing asso-
ciations16. As such, associations based on ascertained COVID-19
datasets may not reflect patterns in the population of interest (i.e.

lack of external validity). Furthermore, when attempting to draw
causal inferences from ascertained datasets, such effects may not
even be valid within the dataset itself (i.e. lack of internal validity)
(Box 1). This is because associations induced by collider bias are
properties of the sample, rather than the individuals that com-
prise it, so the associations estimated using the sample will not be
a reliable indication of the individual level causal effects. Collider
bias, therefore, causes associations to fail to generalise beyond the
sample and for causal inferences to be inaccurate even within the
sample. It is this second characteristic which distinguishes collider
bias within the more general concept of selection bias. Selection
bias can occur when there are effect modifiers that are distributed
differently in the sample than in the population, thus causing
effects to differ between the two. However, while this limits the
generalisability of causal effects on the population, those effects
are valid within the sample17.

As illustration, consider the hypothesis that being a health
worker is a risk factor for severe COVID-19 disease. Under the
assumption of a higher viral load due to their occupational
exposure, healthcare workers will on average experience more
severe COVID-19 symptoms compared to the general population.
The target population within which we wish to test this
hypothesis is adults in any occupation (or unemployed); the
exposure is being a health worker the outcome is COVID-19
symptom severity. The only way we can reliably estimate
COVID-19 status and severity is by considering individuals who
have a confirmed positive polymerase chain reaction (PCR) test
for COVID-19. However, restrictions on the availability of testing
especially in the early stages of the pandemic mean that the
available study sample is necessarily restricted to those indivi-
duals who have been tested for active COVID-19 infection. If we
take the UK as an example (until late April 2020), let us assume a
simplified scenario where all tests were performed either on
frontline health workers (as critical vectors for disease among
high-risk individuals), or members of the general public who had
symptoms severe enough to require hospitalisation (as high-risk
individuals). In this testing framework, our sample of participants
will have been selected for both the hypothesised risk factor
(being a healthcare worker) and the outcome of interest (severe
symptoms). Our sample will therefore contain all health workers
who are tested regardless of their symptom severity, while only
non-health workers with severe symptoms will be included. In

Box 1 | Collider bias in the context of aetiological and prediction studies

The term “risk factor” has been used synonymously for both causal factors and predictors in the literature79,80. An aetiological study seeks to identify
causes of the outcome of interest (“causal factors”), whereas a predictive study aims to develop scores that predict the outcome from a range of
variables (“predictors”) which need not be causal. While the term ‘risk factor’ can be ambiguous and refer to either a hypothesised causal determinant
or a predictor of the disease, we use it throughout this paper for the sake of brevity as causal inference and prediction analyses both share a
vulnerability to the detrimental impacts of collider bias in the COVID-19 context—where typically the selected samples are being used to develop
models relevant to the general population. But for clarity we outline below how collider bias differentially impacts causal inference and prediction.
Risk factors measured in observational studies may associate with outcomes of interest (e.g. hospitalised with COVID-19), for many reasons. For
example, the factor may affect the outcome (true causal interpretation), statistical evidence of association may be purely due to chance, the outcome
may affect the factor (reverse causation), there may be a third factor that causes both the exposure and the outcome (confounding), or the exposure
and outcome (or causes of the exposure and/or outcome) may influence the likelihood of being selected into the study (collider bias).
Aetiological studies are in principle only concerned with the causal effect and aim to avoid all forms of bias. By contrast, some forms of bias such as
confounding or reverse causation can actually improve the performance of a prediction study. As long as the causal structure by which the study sample
is drawn from the target population is the same as in the population in which predictions will be made, it can be of benefit to leverage these distinct
association mechanisms to improve prediction accuracy81,82.
Similarly, under certain circumstances, collider bias can improve prediction performance if the training sample and the sample to be predicted have the
same patterns of sample selection. For example, if the factors causing having a test for COVID-19 are the same/similar across the UK, a predictive
model for the result being positive that was developed in London will perform well in the North East of England if those samples are both non-randomly
selected in the same way. However, collider bias is a problem for the generalisability of both causal inference and prediction in the target population
when the training sample is non-randomly selected, because it induces artefactual associations that are idiosyncratic to that dataset. If the intention is
to predict COVID-19 status, rather than COVID-19 status conditional on being tested, the prediction will underperform.
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this section of the population, health workers will therefore
generally appear to have relatively low severity compared to
others tested, inducing a negative association in our sample,
which does not reflect the true relationship in the target popu-
lation (Fig. 2b). It is clear that naive analysis using this selected
sample will generate unreliable causal inference, and unreliable
predictors to be applied to the general population.

In this paper, we discuss why collider bias should be of par-
ticular concern to observational studies of COVID-19 infection
and disease risk, and show how sample selection can lead to
dramatic biases. We then go on to describe the approaches that
are available to explore and mitigate this problem.

Results and discussion
Why observational COVID-19 research is particularly suscep-
tible to collider bias. Though unquestionably valuable, observa-
tional datasets can be something of a black box because the
associations estimated within them can be due to many different
mechanisms. Consider the scenario in which we want to estimate
the causal effect of a risk factor that is generalizable to a wider
population such as the UK (the “target population”). Since we
rarely observe the full target population, we must estimate this
effect within a sample of individuals drawn from this population.
If the sample is a true random selection from the population, then
we say it is representative. Often, however, samples are chosen
out of convenience or because the risk factor or outcome is only
measured in certain groups (e.g. COVID-19 disease status is only
observed for individuals who have received a test). Furthermore,
individuals invited to participate in a sample may refuse or
subsequently drop out. If characteristics related to sample inclu-
sion also relate to the risk factor and outcome of interest, then
this introduces the possibility of collider bias in our analysis.

Collider bias does not only occur at the point of sampling. It
can also be introduced by statistical modelling choices. For
example, whether it is appropriate to adjust for covariates in
observational associations depends on where the covariates sit on

the causal pathway and their role in the data generating
process18–21. If we assume that a given covariate influences both
the hypothesised risk factor and the outcome (a confounder), it is
appropriate to condition on that covariate to remove bias induced
by the confounding structure. However, if the covariate is a
consequence of either or both the exposure and the outcome (a
collider), rather than a common cause (a confounder), then
conditioning on the covariate can induce, rather than reduce,
bias22–24. That is, collider bias can also be introduced when
making statistical adjustments for variables that lie on the causal
pathway between risk factor and outcome. A priori knowledge of
the underlying causal structure of variables and whether they
function as a common cause or common consequence of risk
factor and outcome in the data generating process can be hard to
infer. Therefore, it is appropriate to treat collider bias with a
similar level of caution to confounding bias. We address ways of
doing so later in this paper (“Methods for detecting and
minimising the effects of collider bias”).

There are multiple ways in which data are being collected on
COVID-19 that can introduce unintentional conditioning in the
selected sample. The characteristics of participants recruited are
related to a range of factors including policy decisions, cost
limitations, technological access, and testing methods. It is also
widely acknowledged that the true prevalence of the disease in the
population remains unknown25. Here we describe the forms of
data collection for COVID-19 before detailing the circumstances
surrounding COVID-19 that make its analysis susceptible to
collider bias.

COVID-19 sampling strategies and case/control definitions.
Sampling conditional on voluntary participation (Case definition:
probable COVID-19, Control definition: voluntary participant not
reporting COVID-19 symptoms, Fig. 2a): Probable COVID-19
status can be determined through studies that require voluntary
participation. These may include, for example, surveys conducted
by existing cohort and longitudinal studies26,27, data linkage to
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Fig. 1 Illustrative example of collider bias. a A directed acyclic graph (DAG) illustrating a scenario in which collider bias would distort the estimate of the
causal effect of the risk factor on the outcome. Directed arrows indicate causal effects and dotted lines indicate induced associations. Note that the risk
factor and the outcome can be associated with sample selection indirectly (e.g. through unmeasured confounding variables), as shown in b. The type of
collider bias induced in graph (b) is sometimes referred to as M-bias. To illustrate the example in a, consider academic ability and sporting ability to each
influence selection into a prestigious school. As shown in c, these traits are negligibly correlated in the general population (blue dotted line), but because
they are selected for enrolment they become strongly correlated when analysing only the selected individuals (red dotted line).
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administrative records available in some cohort studies such as
the UK Biobank28, or mobile phone-based app programmes29,30.
Participation in scientific studies has been shown to be strongly
non-random (e.g. participants are disproportionately likely to be
highly educated, health conscious, and non-smokers), so the
volunteers in these samples are likely to differ substantially from
the target population31–33. See Box 2 and Fig. 3 for a vignette on
how one study30 explored collider bias in this context.

Sample selection pressures for COVID-19 studies. We can
stratify the sampling strategies above into three primary sampling
frames. The first of these frames is sampling based on voluntary
participation, which is inherently non-random due to the factors
that influence participation. The second of these is sampling
frames using COVID-19 testing results. With few notable
exceptions (e.g. refs. 3,34), population testing for COVID-19 is not
generally performed in random samples. The third of these
frames is sampling based on hospitalised patients, with or without
COVID-19. This is again, necessarily non-random as it condi-
tions on hospital admission.

Box 3 and Fig. 3 illustrate the breadth of factors that can induce
sample selection pressure. While some of the factors that impact
the sampling processes may be common across all modes of
sampling listed above, some will be mode specific. These factors

will likely differ in how they operate across national and
healthcare system contexts. Here we list a series of possible
selection pressures and how they impact different COVID-19
sampling frames. We also describe case identification/definition
and detail how they may bias inference if left unexplored.

Symptom severity: This will conceivably bias all three major
sampling frames, although is most simply understood in context
of testing. Several countries adopted the strategy of offering tests
predominantly to patients experiencing symptoms severe enough
to require medical attention, e.g. hospitalisation, as was the case
in the UK until the end of April 2020. Many true positive cases in
the population will therefore remain undetected and will be less
likely to form part of the sample if enrolment is dependent upon
test status. High rates of asymptomatic virus carriers or cases with
the atypical presentation will further compound this issue.

Symptom recognition: This will also bias all three sampling
frames as entry into all samples is conditional on symptom
recognition. Related to but distinct from symptom severity,
COVID-19 testing will vary based upon symptom recognition35.
If an individual fails to recognise the correct symptoms or deems
their symptoms to be nonsevere, they may simply be instructed to
self-isolate and not receive a COVID-19 test. Individuals will
assess their symptom severity differently; those with health-
related anxiety may be more likely to over-report symptoms,
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Fig. 2 Collider bias induced by conditioning on a collider in three scenarios relating to COVID-19 analysis. These are simplified Directed Acyclic
Diagrams where only the main variables of interest have been represented for sake of illustrating collider bias scenarios. All assume no unspecified
confounding or other biases. Rectangles represent observed variables and solid directed arrows represent causal effects. The dashed line represents an
induced association when conditioning on the collider, which in these scenarios are variables that indicate whether an individual is selected into the sample.
a When some hypothesised risk factor (e.g. age) and outcome (e.g. COVID-19 infection) each associate with sample selection (e.g. voluntary data
collection via mobile phone apps), the hypothesised risk factor and outcome will be associated within the sample. The presence and direction of these
biases are model dependent; where causes are supra-multiplicative they will be positively associated in the sample; where they are sub-multiplicative they
will be negatively correlated, and where they are exactly multiplicative they will remain unassociated. We extend this scenario in b where the association
between the hypothesised risk factor and the collider does not need to be causal. c When inferring the influence of some hypothesised risk factor on
mortality, in an unselected sample the risk factor for infection is a causal factor for death (mediated by COVID-19 infection). However, if analysed only
amongst individuals who are known to have COVID-19 (i.e. we condition on the COVID-19 infection variable) then the risk factor for infection will appear to
be associated with any other variable that influences both infection and progression. In many circumstances, this can lead to a risk factor for disease onset
that appears to be protective for disease progression. Each of these scenarios represents those described in the main text.
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while those with less information on the pandemic or access to
health advice may be under-represented. This will functionally act
as a differential rate of false-negatives across individuals based on
symptom recognition, which could be consequential in giving the
high estimates of asymptomatic cases and transmission36.
Changing symptom guidelines is likely to compound this
problem, which could induce systematic relationships between
symptom presentation and testing35,37. Here, groups with lower
awareness (for example, due to inadequate public messaging or
language barriers) may have higher thresholds for getting tested,
and therefore those who test positive will appear to have greater
risk of severe COVID-19 outcomes.

Occupation: Exposure to COVID-19 is patterned with respect
to occupation. In many countries, frontline healthcare workers
are far more likely to be tested for COVID-19 than the general
population5,38 due to their proximity to the virus and the
potential consequences of infection-related transmission39. As
such, they will be heavily over-represented in samples conditional
on test status. Other key workers may be at high risk of infection
due to large numbers of contacts relative to non-key workers, and
may therefore be over-represented in samples conditional on
positive test status or COVID-related death. Any factors related
to these occupations (e.g. ethnicity, socio-economic position, age
and baseline health) will therefore also be associated with sample
selection. Figure 2b illustrates an example where the hypothesised

risk factor (smoking) does not need to influence sample selection
(hospitalised patients) causally, it could simply be associated due
to confounding between the risk factor and sample selection
(being a healthcare worker).

Ethnicity: Ethnic minorities are also more likely to be
infected with COVID-1940. Adverse COVID-19 outcomes are
considerably worse for individuals of some ethnic minorities41.
This could conceivably bias estimated associations within
sampling frames based within hospitalised patients, as in many
countries, ethnic minority groups are over-represented as
ethnic inequalities in health are pervasive and well-
documented. Furthermore, ethnic minority groups are more
likely to be key workers, who are more likely to be exposed to
COVID-1942. Cultural environment (including systemic
racism) and language barriers may negatively affect entry into
studies, both based on testing and voluntary participation43.
Ethnic minority groups may be more difficult to recruit into
studies, even within a given area44, and may affect the
representativeness of the sample. Ethnic minorities were less
likely to report being tested in our analysis of the UK Biobank
data, where one of the strongest factors associated with being
tested was the first genetic principal component, which is a
marker for ancestry (Box 3). Thus, this could present as above,
with ethnic minorities’ presentation to medical care being
conditional on more severe symptoms.

Box 2 | The potential association between ACE inhibitors and COVID-19: why sampling bias matters

One research question that has gained attention is whether blood pressure-lowering drugs, such as ACE inhibitors (ACE-i) and angiotensin-receptor
blockers (ARBs), which act on the Renin–Angiotensin–Aldosterone System (RAAS) system, make patients more susceptible to COVID-19 infection83–87.
Relationships between ACE-i/ARBs and COVID-19 are to be investigated in clinical trials88,89, but in the meantime have been rapidly investigated
through observational studies90–92. One such recent analysis used data from a UK COVID-19 symptom tracker app93, which was released in March just
before the UK Lockdown policy was implemented to increase social distancing. The app allows members of the public to contribute to research through
self-reporting data including demographics, conditions, medications, symptoms and COVID-19 test results. The researchers observed that people
reporting ACE-i use were twice as likely to self-report COVID-19 infection based on symptoms, even after adjusting for differences in age, BMI, sex,
diabetes, and heart disease30. This association was attenuated from an odds ratio greater than four from an earlier freeze of the data, which comprised
a smaller (and likely more selected) sample. When estimating the association only amongst individuals tested for COVID-19 infection the direction of
the effect reversed, and ACE-i use appeared mildly protective. The simplest explanation for such volatility in estimates is that sample selection differed
across the sample subsets.
The researchers diligently investigated the role of collider bias by performing parameter search sensitivity analyses (see below), finding that non-
random sampling was sufficient to explain the association. If taking ACE-i and having COVID-19 symptoms would lead to being either less or more likely
to sign up to the app or contribute data, this could induce an association between these factors (Fig. 2a). Since ACE-is are prescribed to those with
diabetes, heart disease, or hypertension, ACE-i users are likely to be considered high-risk for COVID-1994. They are therefore potentially more
sensitised to their current health status and may be more likely to use the app95,96. People who are COVID-19 symptomatic may also be more likely to
remember to contribute data than asymptomatic people. Taken together, this could result in a false or inflated association between taking ACE-i and
COVID-19. However, in reality, deciding in which direction ACE-i and COVID-19 symptoms would influence participation is complicated. For example,
people with severe COVID-19 symptoms who are hospitalised could be too ill to contribute data.
Careful consideration is required for each set of exposures and outcomes that are studied. Amongst those participants who were actually tested in the
COVID-19 symptom tracker app study, there was no evidence for an association between ACE-i use and COVID-19 positive status30. In this analysis
there are joint selection pressures of factors underlying a) being tested and b) app participation.
Should ACE-i use truly increase risk of COVID-19 infection, it could imply that observational results for disease progression studies are influenced by
collider bias. For example, it has been reported that ACE-i/ARB use may be protective against severe symptoms, conditional on already being
infected97,98, which is consistent with index event bias as illustrated in Fig. 2c.
It is important to consider the plausibility of the different selection pathways, both statistically (for example, through methods such as bounds and
parameter searches) and biologically. Such considerations will ensure that data interpretation is at least robust to known biases of unknown magnitude,
and that policy decisions are based on the best interpretation of the scientific evidence. Indeed, in consideration of the benefits that ACE-i/ARBs have
on the cardio-respiratory system, current guidelines have continued to recommend the use of these drugs until there is sufficiently reliable scientific
evidence against this99,100.
Sampling conditional on being tested for active COVID-19 infection (Case definition: positive test for COVID-19, Control definition: negative test for COVID-19,
Fig. 2b): PCR antigen tests are used to confirm a suspected (currently active) COVID-19 infection. Studies that aim to determine the risk factors for
confirmed current COVID-19 infection therefore rely on participants having received a COVID-19 antigen test (hereafter for simplicity: COVID-19 test
or test). Unless a random sample or the entire population are tested, these studies are liable to provide a biased estimate of active COVID-19 infection
prevalence in the general population. The resource for testing is limited, so different countries have been using different (pragmatic) strategies for
prioritising testing, including on the basis of characteristics such as occupation, symptom presentation and perceived risk. See Box 3 for an investigation
into whether testing is non-random with respect to a range of measurable potential risk factors, using the recently released COVID-19 test data in the
UK-Biobank.
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Frailty: Defined here as greater susceptibility to adverse
COVID-19 outcomes, frailty is more likely to be present in
certain groups of the population, such as older adults in long-
term care or assisted living facilities, those with pre-existing
medical conditions, obese groups, and smokers. These factors are
likely to strongly predict hospitalisation. At the same time,
COVID-19 infection and severity likely have an influence on
hospitalisation8–10,45, meaning investigating these factors within
hospitalised patients may induce collider bias. In addition, groups
may be treated differently in terms of reporting on COVID-19 in
different countries46. For example, in the UK early reports of
deaths “due to COVID-19” may have been conflated with deaths
“while infected with COVID-19”47. Individuals at high risk are
more likely to be tested in general, but specific demographics at
high risk such as those in long-term care or assisted living
facilities have been less likely to be sampled by many studies46.
Frailty also predicts hospitalisation differentially across different
groups, for instance, an older individual with very severe COVID-
19 symptoms in an assisted living facility may not be taken to
hospital where a younger individual would48.

Place of residence and social connectedness: A number of more
distal or indirect influences on sample selection likely exist.
People with better access to healthcare services may be more
likely to be tested than those with poorer access. Those in areas
with a greater number of medical services or better public
transport may find it easier to access services for testing, while
those in areas with less access to medical services may be more
likely to be tested49. People living in areas with stronger spatial or
social ties to existing outbreaks may also be more likely to be
tested due to increased medical vigilance in those areas. Family
and community support networks are also likely to influence
access to medical care, for instance, those with caring responsi-
bilities and weak support networks may be less able to seek
medical attention50. Connectedness is perhaps most likely to bias
testing sampling frames, as testing is conditional on awareness
and access. However, it may also bias all three major sampling
frames through a similar mechanism to symptom recognition.

Internet access and technological engagement: This will
primarily bias voluntary recruitment via apps, although may also
be associated with increased awareness and bias testing via the
symptom recognition pathway. Sample recruitment via internet
applications is known to under-represent certain groups32,51.
Furthermore, this varies by sampling design, where voluntary or
“pull-in” data collection methods have been shown to produce
more engaged but less representative samples than advertisement
based or “push out” methods33. These more engaged groups
likely have greater access to electronic methods of data collection,
and greater engagement in social media campaigns that are
designed to recruit participants. As such, younger people are
more likely to be over-represented in app-based voluntary
participation studies29.

Medical and scientific interest: Studies recruiting voluntary
samples may be biased as they are likely to contain a
disproportionate amount of people who have a strong medical
or scientific interest. It is likely that these people will themselves
have greater health awareness, healthier behaviour, be more
educated, and have higher incomes31,52.

Many of the factors for being tested or being included in
datasets described here are borne out in the analysis of the UK
Biobank test data (Box 3). The key message is that when sample
recruitment is non-random, there is an incredibly broad range of
ways in which that non-randomness can undermine study results.

Methods for detecting and minimising the effects of collider
bias. In this section, we describe methods to either address col-
lider bias or evaluate the sensitivity of results to collider bias. As
with confounding bias, it is generally not possible to prove that
any of the methods has overcome collider bias. Therefore, sen-
sitivity analyses are crucial in examining the robustness of con-
clusions to plausible selection mechanisms18,19.

A simple, descriptive technique to evaluate the likelihood and
extent of collider bias induced by sample selection is to compare
means, variances and distributions of variables in the sample with
those in the target population (or a representative sample of the
target population)16. This provides information about the profile
of individuals selected into the sample from the target population
of interest, such as whether they tend to be older or more likely to
have comorbidities. It is particularly valuable to report these
comparisons for key variables in the analysis, such as the
hypothesised risk factor and outcome, and other variables related
to these. With respect to the analysis of COVID-19 disease risk,
one major obstacle to this endeavour is that in most cases the
actual prevalence of infection in the general population is
unknown. While it is encouraging if the sample estimates match
their population-level equivalents, it is important to recognise
that this does not definitively prove the absence of collider bias53.
This is because factors influencing selection could be unmeasured
in the study, or factors interact to influence the selection and go
undetected when comparing marginal distributions.

Each method’s applicability crucially depends on the data that
are available on non-participants. These methods can broadly be
split into two categories based on the available data: nested and
non-nested samples. A nested sample refers to the situation when
key variables are only measured within a subset of an otherwise
representative “super sample”, thus forcing analysis to be
restricted to this sub-sample. An example close to this definition
is the sub-sample of individuals who have received a COVID-19
test nested within the UK Biobank cohort (though, it is clear that
the UK Biobank cohort is itself non-randomly sampled16). For
nested samples researchers can take advantage of the data
available in the representative super-sample. A non-nested
sample refers to the situation when data are only available in
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an unrepresentative sample. An example of this is samples of
hospitalized individuals, in which no data are available on non-
hospitalized individuals. It is typically more challenging to
address collider bias in non-nested samples. A guided analysis
illustrating both types of sensitivity analyses using UK Biobank
data on COVID-19 testing is presented in Supplementary Note 1.

Nested samples: Inverse probability weighting is a powerful and
flexible approach to adjust for collider bias in nested samples54,55.
The causal effect of the risk factor on the outcome is estimated
using weighted regression, such that participants who are
overrepresented in the sub-sample are down-weighted and
participants who are underrepresented are up-weighted. In
practice, we construct these weights by estimating the likelihood
of different individuals being selected into the sample from the
representative super-sample based on their measured covari-
ates56. For example, we could use data from the full UK Biobank
sample to estimate the likelihood of individuals receiving a test
for COVID-19 and use these weights in analyses that have to be
restricted to the sub-sample of tested individuals (e.g. identifying
risk factors for testing positive). Seaman and White provide a
detailed overview of the practical considerations and assumptions
for inverse probability weighting, such as correct specification of
the “sample selection model” (a statistical model of the relation-
ship between measured covariates and selection into the sample,
used to construct these weights), variable selection and

approaches for handling unstable weights (i.e. weights which
are zero or near-zero).

An additional assumption for inverse probability weighting is
that each individual in the target population must have a non-
zero probability of being selected into the sample. Neither this
assumption, nor the assumption that the selection model has
been correctly specified, are testable using the observed data
alone. A conceptually related approach, using propensity score
matching, is sometimes used to avoid index event bias57,58. There
also exist sensitivity analyses for misspecification of probability
weights. For example, Zhao et al. develop a sensitivity analysis for
the degree to which estimated probability weights differ from the
true unobserved weights59. This approach is particularly useful
when we can estimate probability weights including some, but not
necessarily all, of the relevant predictors of sample inclusion. For
example, we could estimate weights for the likelihood of receiving
a COVID-19 test among UK Biobank participants, however, we
are missing key predictors such as symptom presentation and
measures of healthcare-seeking behaviour.

Non-nested samples: When we only have data on the study
sample (e.g. only data on participants who were tested for
COVID-19) it is not possible to estimate the selection model
directly since non-selected (untested) individuals are unobserved.
Instead, it is important to apply sensitivity analyses to assess the
plausibility that sample selection induces collider bias.

Box 3 | Factors influencing being tested in UK Biobank

In April 2020, General Practices across the UK released primary care data on COVID-19 testing for linkage to the participants in the UK Biobank
project101,102 and results from analyses are already appearing103. Of the 486,967 participants, 1410 currently have data on COVID-19 testing. While it
may be tempting to look for factors that influence whether an individual tests positive, it is crucial to evaluate the potential that those tested are not a
random sample of the UK-Biobank participants (who are themselves not a random sample of the UK population).
We examined 2556 different characteristics for association with whether or not a UK Biobank participant had been tested for COVID-19. There was
very large enrichment for associations (Fig. 3), with 811 of the phenotypes (32%) giving rise to a false discovery rate < 0.05. These associations
involved a wide range of traits, including measures of frailty, medications used, genetic principal components, air pollution, socio-economic status,
hypertension and other cardiovascular traits, anthropometric measures, psychological measures, behavioural traits, and nutritional measures. A full list
of all traits assessed and their associations with whether a participant had COVID-19 test data is available in Source Data File. The first genetic principal
component, which relates to global ancestral groups, was one of the strongest associations with being tested, which may have implications for
interpreting ethnicity differences in COVID-19 test results103.
We cannot know the actual COVID-19 prevalence amongst all participants, but if it is different from the prevalence amongst those tested, then every
one of the traits listed above could be associated with COVID-19 in the dataset solely due to collider bias, or at least the magnitude of those
associations could be biased as a result. The fact that the UK Biobank data are already a non-random sample of the UK population further complicates
the matter16.
Ideally, inverse-probability weighted regressions would be performed to minimise any such bias, as illustrated in the Supplementary Note. However,
because we cannot know whether participants outside of the tested group had COVID-19 (i.e. the ‘sampling fractions’), such weights cannot be
calculated without strong assumptions that are currently untestable59. Inverse probability weighting also depends on the selection model being
correctly specified, including that all characteristics predicting selection (that are related to variables in the analysis model) have been included, and in
the right functional form. As with unmeasured confounding, there is always the possibility of having unmeasured selection factors.
Sampling conditional on having a positive test for active COVID-19 infection (Case definition: severe COVID-19 symptoms, Control definition: positive COVID-19
test with mild symptoms, Fig. 2b): Studies that aim to determine the risk factors for severity of confirmed current COVID-19 infection therefore rely on
participants having received a COVID-19 test, and that the result of the test was positive. As above, testing is unlikely to be random, and conditioning on
the positive result will also mean bias can be induced by all factors causing infection, as well as those causing increased likelihood of testing.
Sampling conditional on hospitalisation (Case definition: hospitalised patients with COVID-19 infection, Control definition: hospitalised patients without COVID-19
infection): An important source of data collection is from existing patients or hospital records. Several studies have emerged which make causal
inference from such selected samples8,9,45. COVID-19 infection influences hospitalisation, as do a large number of other health conditions. By analysing
only hospitalised samples, anything that influences hospitalisation will become negatively associated with COVID-19 infection (in the marginal case of
no interactions).
Sampling conditional on hospitalisation and having a positive test for active COVID-19 infection (Case definition: COVID-19 death, Control definition: non-fatal
COVID-19 related hospitalisation, Fig. 2c): Many studies have started analysing the influences on disease progression once individuals are infected, or
infected and then admitted to hospital (i.e. the factors that influence survival). Such datasets necessarily condition upon a positive test. Figure 2c
illustrates how this so-called “index event bias” is a special case of collider bias16,104,105. If we accept that COVID-19 increases mortality, and there are
risk factors for infection of COVID-19, then in a representative sample of the target population, any cause of infection would also exert a causal
influence on mortality, mediated by infection. However, once we condition on being infected, all factors for infection become correlated with each other.
If some of those factors influence both infection and progression, then the association between a factor for infection and death in the selected sample
will be biased. This could lead to factors that increase risk of infection falsely appearing to be protective for severe progression1,106. An example of this
relevant to COVID-19 is discussed in Box 2.
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Bounds and parameter searches: It is possible to infer the extent
of collider bias given knowledge of the likely size and direction of
influences of risk factor and outcome on sample selection
(whether these are direct, or via other factors)19,60,61. However,
this approach depends on the size and direction being correct,
and there being no other factors influencing selection. It is
therefore important to explore different possible sample selection
mechanisms and examine their impact on study conclusions.
We created a simple web application guided by these assumptions
to allow researchers to explore simple patterns of selection
that would be required to induce an observational association:
http://apps.mrcieu.ac.uk/ascrtain/. In Fig. 4 we use a recent
report of a protective association of smoking on COVID-19
infection45 to explore the magnitude of collider bias that can be
induced due to selected sampling, under the null hypothesis of no
causal effect.

Several other approaches have also been implemented into
convenient online web apps (“Appendix”). For example, Smith
and VanderWeele proposed a sensitivity analysis which allows
researchers to bound their estimates by specifying sensitivity
parameters representing the strength of sample selection (in
terms of relative risk ratios). They also provide an “E-value”,
which is the smallest magnitude of these parameters that would
explain away an observed association62. Aronow and Lee
proposed a sensitivity analysis for sample averages based on
inverse probability weighting in non-nested samples where the
weights cannot be estimated but are assumed to be bounded
between two researcher-specified values63. This work has been
generalised to regression models, also allowing relevant external
information on the target population (e.g. summary statistics
from the census) to be incorporated64. These sensitivity analysis
approaches allow researchers to explore whether there are
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and outcome (Y) are both binary and each influence probability of being selected into the sample (S) e.g. PðS ¼ 1jA;YÞ ¼ β0 þ βA þ βY þ βAY where β0 is
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required to induce an apparent risk effect with magnitude OR > 2 (blue region) or an apparent protective effect with magnitude OR < 0.5 (red region) under
the null hypothesis of no causal effect61. To create a simplified scenario similar to that in Miyara et al. we use a general population prevalence of smoking of
0.27 and a sample prevalence of 0.05, thus fixing βA at 0.22. Because the prevalence of COVID-19 is not known in the general population, we allow the
sample to be over- or under-representative (y-axis). We also allow modest interaction effects. Calculating over this parameter space, 40% of all possible
combinations lead to an artefactual 2-fold protective or risk association operating through this simple model of bias alone. It is important to disclose this
level of uncertainty when publishing observational estimates.
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credible collider structures that could explain away observational
associations. However, they do not represent an exhaustive set of
models that could give rise to bias, nor do they necessarily prove
whether collider bias influences the results. If the risk factor for
selection is itself the result of further upstream causes then it is
important that the impact of these upstream selection effects are
considered (i.e. not only how the risk factor influences selection
but also how the causes of the risk factor and/or the causes of the
outcome influence selection e.g. Fig. 2b). While these upstream
causes may individually have a small effect on selection, it is
possible that lots of factors with individually small effects could
jointly have a large selection effect and introduce collider bias65.

Negative control analyses: If there are factors measured in
the selected sample that are known to have no influence on the
outcome, then testing these factors for association with
the outcome within the selected sample can serve as a negative
control66,67. By virtue, negative control associations should be
null, and they are therefore useful as a tool to provide evidence in
support of selection. If we observe associations with larger
magnitudes than expected then this indicates that the sample is
selected on both the negative control and the outcome of
interest68,69.

Correlation analyses: Conceptually similar to the negative
controls approach above, when a sample is selected, all the
features that influenced selection become correlated within the
sample (except for the highly unlikely case that causes are
perfectly multiplicative). Testing for correlations amongst
hypothesised risk factors where it is expected that there should
be no relationship can indicate the presence and magnitude of
sampling selection, and therefore the likelihood of collider bias
distorting the primary analysis70.

Implications. The majority of scientific evidence informing pol-
icy and clinical decision making during the COVID-19 pandemic
has come from observational studies71. We have illustrated how
these observational studies are particularly susceptible to non-
random sampling. Randomised clinical trials will provide
experimental evidence for treatment, but experimental studies of
infection will not be possible for ethical reasons. The impact of
collider bias on inferences from observational studies could be
considerable, not only for disease transmission modelling72,73,
but also for causal inference7 and prediction modelling2.

While many approaches exist that attempt to ameliorate the
problem of collider bias, they rely on unprovable assumptions. It
is difficult to know the extent of sample selection, and even if that
were known it cannot be proven that it has been fully accounted
for by any method. Representative population surveys34 or
sampling strategies that avoid the problems of collider bias74 are
urgently required to provide reliable evidence. Results from
samples that are likely not representative of the target population
should be treated with caution by scientists and policy makers.

Methods
Factors influencing testing in the UK Biobank. UK-Biobank phenotypes were
processed using the PHESANT pipeline75 and filtered to include only quantitative
traits or case-control traits that had at least 10,000 cases. In addition, sex, genotype
chip and the first 40 genetic principal components were included for analysis (2556
traits in total). A detailed description of how all the variables were formatted in this
analysis has been provided in Mitchell and colleagues76. A “tested” variable was
generated that indicated whether an individual had been tested for COVID-19 or
not within UK Biobank, and logistic regression was performed for each of the 2556
traits against the “tested” variable. Code is available here: https://github.com/
explodecomputer/covid_ascertainment. This research was conducted using the UK
Biobank Resource applications 8786 and 15,825, and complied with all relevant
ethical regulations.

Sensitivity analysis of the effect of smoking on COVID-19 infection. Given
knowledge of an observational association estimate between exposure A and

outcome Y, here our objective is to estimate the extent to which A and Y must
relate to sample selection in order to induce the reported observational association.
Assume that the probability of being present in the sample, P(S= 1) is a function of
A and Y:

P S ¼ 1jA;Yð Þ ¼ β0 þ βAAþ βYY þ βAYAY

Where β0 is the baseline probability of any individual to be a part of our sample, βA
is the differential probability of being sampled for individuals in the exposed group
(A= 1), βY is the differential probability of being sampled for cases (Y=1), and βAY
is the differential probability of being sampled for cases in the exposed group (A=
1,Y= 1). Given this, we may derive the expected odds ratio in the selected sample
under the null hypothesis of no association in the unselected sample61:

E dORS¼1

h i

¼ β0 β0 þ βA þ βY þ βAY
� �

β0 þ βA
� �

β0 þ βY
� �

To create a simplified scenario similar to that in Miyara et al. we use a general
population prevalence of smoking of 0.27 and a sample prevalence of 0.05, thus
fixing βA at 0.22. We then explore the values of β0, βY and βAY that would lead to

E dORS¼1

h i

>2 or E dORS¼1

h i

<0:5 ... Analyses were performed using the AscRtain R

package.

Additional methods. A reproducible guided analysis for performing several of the
adjustment and sensitivity methods described in this paper is provided in the
Supplementary Note. The Supplementary Note is also available as a living docu-
ment here: https://mrcieu.github.io/ukbb-covid-collider/

Exploring bounds and spaces that could explain an observational association
can be achieved using a range of packages and apps:

● AscRtain app: http://apps.mrcieu.ac.uk/ascrtain/
● CollideR app15: https://watzilei.com/shiny/collider/
● Selection bias app62: https://selection-bias.herokuapp.com/
● Bias app61: https://remlapmot.shinyapps.io/bias-app/
● Lavaan R package77: http://lavaan.ugent.be/
● Dagitty R package78: http://www.dagitty.net/
● simMixedDAG: https://github.com/IyarLin/simMixedDAG

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analysed was provided by the UK Biobank and can be accessed via https://www.
ukbiobank.ac.uk/. A detailed description of how the phenotype data analysed here was
accessed and formatted is provided here: https://doi.org/10.5523/bris.
pnoat8cxo0u52p6ynfaekeigi. Association results for each of 2556 variables in the UK
Biobank cohort, testing for their influence on being tested for COVID-19. Source data are
provided with this paper.

Code availability
All code is available in the following github repositories:

https://github.com/MRCIEU/ukbb-covid-collider
https://github.com/explodecomputer/covid_ascertainment
https://github.com/explodecomputer/ascrtain
https://github.com/MRCIEU/PHESANT
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