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Abstract

We analyze ownership of public goods in a repeated game focusing on common own-

ership. Under common ownership an owner’s access to the public good cannot be

restricted by other owners. We find that under common ownership both the value

of the relationship and the gain from deviation are high. Common ownership can

provide the best incentives for cooperation when the value of the public good cannot

be increased much by maintenance investments or the maintenance costs are suffi -

ciently convex. We argue that these conditions are satisfied in Ostrom’s field studies

of irrigation systems and common lands.

JEL classification: D23, H41, L14, L33

Keywords: public goods, common pool resources, property right theory, relational

contracts, common ownership, joint ownership



1 Introduction

Ostrom (1990) challenged Hardin’s (1968) argument that common pool resources

(CPRs), such as grazing areas, forests and irrigation systems, are subject to overap-

propriation of the resource and underprovision of its maintenance. She demonstrated

with field studies how common ownership has in many cases outperformed both private

and public ownership —but in other cases privatization or government ownership has

been successful. She referred to repeated games in explaining how common ownership

can overcome overappropriation and underprovision problems.1 However, she did not

address whether and when common ownership outperforms other ownership structures

in a repeated game. This is the question we address in this paper. We find that, con-

sistent with the stylized facts, common ownership can provide the best incentives for

cooperation when the value of the CPR cannot be increased much by maintenance

investments. Furthermore, we show that the rationale for common ownership can

also arise from suffi ciently convex maintenance costs.

Irrigation systems in Nepal are an example of long-standing, successful common

ownership arrangements (Ostrom and Gardner 1993). Communally owned irrigation

systems cover 62% of the irrigated land and have outperformed systems managed

by the national government agency. These irrigation systems typically rely on low-

tech construction techniques such as nonpermanent headworks from mud, trees and

stones and unlined canals. Continual maintenance is therefore required. Every

spring before the monsoon season the headworks and the canals are repaired. During

the monsoon rains the canals are patrolled daily, small leaks are repaired and the

community is alerted for any major damage, such as a landslide (Martin and Yoder

1988). Considerable investments are therefore required in maintaining the irrigation

systems. Our focus is on finding when common ownership provides the best incentives

for such repeated maintenance investments. Maintenance is a public good because it

is not possible to exclude any user from the improvement to the irrigation system.

Given our focus on maintenance (rather than appropriation of the resource), we can

apply a public good model (Ostrom 1990, p. 32).

Property rights theory of Grossman and Hart (1986) and Hart and Moore (1990)

— and its extension to public goods by Besley and Ghatak (2001) — is the natural

framework for analyzing the optimal ownership structure.2 We consider two agents

1See also Ostrom, Gardner and Walker (1994).
2Property rights, particularly in the context of natural resources, have also been analyzed by
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who make repeated maintenance investments in the public good but differ in their val-

uation of it. The valuation difference can arise e.g. from the size of the landholding to

be irrigated. In the main model we focus on two shared ownership structures, common

ownership and joint ownership, and examine single ownership —such as privatization

or government ownership —in an extension.

In field studies, failing to contribute to the maintenance of a CPR is typically pun-

ished by a fine paid to the community. Fines are also included in Ostrom’s design

principles which characterize successful communally owned CPRs (Ostrom 1990, p.

90). We therefore introduce fines in the repeated game and allow for renegotiation

back to the Pareto frontier after deviation. High fines relax the incentive compatibility

constraint for maintenance investments but the fines themselves have to be incentive

compatible. The maximal fines depend on the value of the relationship governed by

the relational contract as compared to punishment payoffs. If an agent were not to

pay the fine after deviation, the other agent would choose punishment investment for

one period. We consider different strengths of punishment to be feasible. Strong pun-

ishment implies that punishment investment is close to zero, while mild punishment

investment is close to Nash investment of the static game. It is reasonable to as-

sume that punishment by investment is relatively mild for a fragile, low-tech irrigation

system which the community’s livelihood depends on.

Let us initially consider the mildest punishment and compare Nash investments

of the static game under different ownership structures. Under common ownership,

according to Ostrom and Hess (2010), an owner’s access to the public good cannot be

restricted by other owners (but access can be denied for non-owners). Therefore in

the static game there is nothing to bargain about ex post and each agent receives his

full individual valuation of the public good. Under other ownership structures the

agents share the joint surplus in bargaining. Under joint ownership they split the

surplus 50:50 as they have to reach a unanimous decision. Under single ownership

they bargain over the non-owning agent’s contribution to the public good. For the

investment incentives in the static game, this implies that under common ownership

each agent maintains the public good according to his own valuation, ignoring the

benefit to the other agent. Common ownership is then dominated by ownership by

the high-valuation agent in the static game. This is because the low-valuation agent’s

incentives are improved when the owner has to share his higher valuation in bargaining

Libecap (1989). However, his focus is on the formation of property rights.
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while under common ownership he only obtains his own low valuation.3

For the repeated game with the mildest punishment investments, this implies that

the value of the relationship is higher under common ownership thus reducing the

incentive to underinvest in maintenance (since higher fines are incentive compatible).

However, also the gain from deviation is higher under common ownership. If the high-

valuation agent underinvests, he obtains the maximal deviation payoff under common

ownership as he gets his full valuation of the ineffi ciently maintained public good, while

under other ownership structures he has to share his high valuation in bargaining.4

Optimal ownership structure is then a tradeoff between increasing the value of the

relationship and reducing the gain from deviation.

For common ownership to provide the best incentives for cooperation, the invest-

ment costs have to be suffi ciently convex so that also the marginal cost is convex. This

implies that the investment is inelastic to surplus share. Then, the mildest punish-

ment investment is not significantly lower than the first-best investment, implying that

the value of the relationship is low and only low fines are incentive compatible. Co-

operation incentives can then be improved by an ownership structure that maximizes

the value of the relationship. The choice is between common ownership and owner-

ship by the low-valuation agent, another ownership structure that performs poorly in

a static game. Ownership by the low-valuation agent provides the best incentives if

his valuation of the public good is not too low compared to the high-valuation agent,

while common ownership performs better if the valuations are not too homogeneous.

Alternatively, if the marginal cost is concave — and the investment is elastic to

surplus share —even the mildest punishment investment is much lower than the first-

best investment and the value of the relationship is high under any ownership structure.

Then, fines can be high under any ownership structure and minimizing the gain from

deviation provides the best cooperation incentives. Then, either joint ownership or

ownership by the high-valuation agent is optimal. The above discussion focuses on

mild punishment. However, if punishment by investment is strong enough, the value

of relationship is high even when the investment is inelastic to surplus share. Also then

joint ownership or ownership by the high-valuation agent provides the best incentives

for cooperation.

We argue that the communally owned irrigation systems in Nepal and the Philip-

3High-valuation agent’s incentives do not change as he obtains his full high valuation for his own
investment both under common ownership and when he is the single owner.

4For the low-valuation agent there is the opposite effect but it is of a smaller magnitude.
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pines can be characterized by convex marginal cost. The marginal cost of maintenance

investments arises from the time and effort taken away from cultivating privately owned

fields. With a decreasing returns to scale Cobb-Douglas production function, the mar-

ginal product of private cultivation is decreasing and convex. As the marginal cost

of increasing maintenance investment equals the marginal product of reducing private

cultivation, convexity of marginal cost arises from convex marginal product. Further-

more, if we shift the curvature to the value of the investment, our result is consistent

with a stylized fact of common ownership: the value of the CPR cannot be increased

much by investment (Netting 1976; Ostrom 1990, p. 63). Communal grazing lands in

the Swiss Alps are an example of such common ownership. Additionally, valuations of

the CPR are not too homogeneous, as the value of the CPR to a community member

depends on their private holdings of cultivated land or the number of livestock and

there is heterogeneity in private wealth.

Our contribution is to show that common ownership can provide the best incen-

tives for cooperation when the agents make repeated investments in maintaining the

public good. Our work is related to the extensive literature on governance of CPRs.

Hardin (1968) argues that an unregulated CPR would be overused and eventually ex-

hausted. To solve this tragedy of the commons, he proposes that the CPRs should be

either privatized or kept as public property. Ostrom (1990) challenges this view by

demonstrating how in numerous field studies local communities overcome the potential

tragedy by creating rules to govern shared resources sustainably. From these rules

she identifies design principles that characterize successful communally owned CPRs.

Furthermore, while Ostrom uses insights from repeated games to explain how com-

mon ownership can overcome potential overuse and underprovision of maintenance, she

does not address whether and when common ownership outperforms other ownership

structures in a repeated game.

There is an extensive literature analyzing formal models of CPRs in a dynamic

game, e.g. Benhabib and Radner (1992) and Copeland and Taylor (2009). Benhabib

and Radner (1992) show that the potential overappropriation of the CPR can be

overcome in a dynamic game if the discount factor and the stock of the CPR are

high enough. In Copeland and Taylor (2009) effi cient appropriation of the CPR

depends also on the strength of property rights. However, this literature takes it as

given that the resource is commonly owned while we examine the optimal ownership

structure. Furthermore, we focus on the provision of CPRs by introducing maintenance
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investments. Also Leonard and Libecap (2019) analyze provision but focus on one-off

construction of infrastructure and the effect of different property rights regimes in a

static framework.

Our paper is closely related to Besley and Ghatak (2001) who examine optimal

ownership of public goods in a static game. As our focus is on maintenance, a public

good model is applicable to CPR provision as well. Besley and Ghatak (2001) build

on Grossman and Hart (1986) and Hart and Moore (1990) to analyze government

versus private ownership of public goods. They find that the party with the highest

valuation for the public good should be the owner. This is in contrast to private

goods where ownership is optimally concentrated in the hands of the agent with an

important investment. We analyze Besley and Ghatak (2001) in a repeated game and

furthermore introduce the concept of common ownership.

Our paper also contributes to the relational contracts literature.5 Baker, Gibbons

and Murphy (2002) and Halonen (2002) examine ownership of private goods when the

agents make repeated specific investments. They show that ownership structure plays

an important role in whether the holdup problem can be overcome in a repeated game

—similar to our analysis of public goods.6 The structure of our model is similar to

Halonen (2002) where both parties invest and the investments are observable —and

different from Baker, Gibbons and Murphy (2002) where the agent makes multiple

investments that are unobservable to the principal. Our assumptions fit CPRs as

typically the whole community gathers to maintain the CPR in specific days and

attendance is observable.

Ramey and Watson (1997) and Halac (2015) analyze the effect of an up-front

specific investment on a relational employment contract while we examine repeated

investments. Finally, in Harstad, Lancia and Russo (2017) countries make repeated

technology investments that affect the sustainability of a relational environmental

treaty. It depends on the properties of the technology whether overinvestment or

underinvestment reduces the gain from freeriding in emissions. In our model it is

the ownership structure that is chosen to reduce incentives to freeride in maintenance

investments and the optimal ownership structure depends on the maintenance tech-

nology.

Rosenkranz and Schmitz (2003) and Niedermayer (2013) also analyze common

5See Malcomson (2013) for an excellent survey on relational incentive contracts.
6We will compare the public and private goods cases in detail in Section 4.
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ownership and joint ownership although they use different terminology and do not

consider repeated game.7 The R&D context of Rosenkranz and Schmitz (2003) dif-

fers from ours by including two sequential projects and the possibility of know-how

disclosure. In their model common ownership provides good investment incentives

while joint ownership induces know-how disclosure. In Niedermayer (2013) one agent

invests in platform (public good) and both agents invest in applications (private goods)

complementary to the platform. In his framework common ownership provides good

incentives to invest in applications at the cost of a lower investment in the platform.

In our model both agents invest (only) in the public good.

The rest of the paper is organized as follows. Section 2 presents the static game

and Section 3 analyzes the repeated game. Section 4 extends the analysis to single

ownership and Section 5 shows that our results are robust to introducing asymmetric

costs. Section 6 applies our results to well-known field studies of CPRs and Section

7 concludes.

2 Static game

There are two agents, ` and h. Ex ante each agent makes an investment, denoted

by y` and yh, in a public good, e.g. maintaining an irrigation system.8 Ex post

the agents produce the public good. The agents value the public good differently:

the low-valuation agent’s utility is θ`(y` + yh) and the high-valuation agent’s utility is

θh(y`+ yh) where θ` < θh.
9 The valuation difference can arise e.g. from the size of the

landholding to be irrigated. Investment costs are given by c (yi) = (yi)
γ for i ∈ {`, h}

where γ > 1. The investments are observable to the agents but not verifiable to a

third party.

Joint surplus equals S = (θ` + θh) (y` + yh)− c (y`)− c (yh) . The first-best invest-
7Our joint and common ownership are equivalent to joint ownership with and without bilateral

veto power in Rosenkranz and Schmitz (2003) and to standardized and open source platform in
Niedermayer (2013).

8In the main model the investment can be in either physical or human capital. In Section 4 the
nature of the investment will matter.

9Assuming that investments are additive is reasonable in CPR context as maintenance typically
does not require complementary skills. Maintenance duties are generally assigned to households who
can send any able-bodied adult to contribute to maintenance activities.
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ments are then given by the following first-order conditions.

(θ` + θh) = c′ (y∗i ) for i ∈ {`, h} (1)

We denote y∗ ≡ y∗h = y∗` .

Contracts are incomplete and, consequently, ex ante contracts can only be written

on the ownership of the project. Following the property rights theory of Grossman

and Hart (1986) and Hart and Moore (1990), we define ownership in terms of residual

control rights over the project. If agent i is the single owner of the project, he has the

authority to exclude agent j from working on the project if they do not reach an agree-

ment in bargaining. We defer analysis of single ownership to Section 4 and concentrate

on two types of shared ownership, common ownership and joint ownership, in the main

model. Joint ownership has often been analyzed in the Grossman-Hart-Moore prop-

erty rights framework.10 Under joint ownership both owners have a veto power and

therefore the project cannot go ahead if they do not reach a unanimous agreement.

Therefore the disagreement payoffs equal zero under joint ownership. Common own-

ership is a less familiar concept in the Grossman-Hart-Moore property rights theory.11

Under common ownership, according to Ostrom and Hess (2010), an owner’s access

to the project cannot be restricted by other owners although access can be denied for

non-owners. Therefore each agent’s utility is θi(y` + yh) for i ∈ {`, h} even if they
disagree.

The timing is the following:

Stage 1. ` and h contract on the ownership of the project. We analyze joint

ownership and common ownership.

Stage 2. ` and h invest in project-specific capital.

Stage 3. ` and h bargain over the completion of the project, make transfers and

produce the public good.

The public good model is appropriate for analyzing CPRs as we focus on mainte-

nance rather than appropriation of the resource (Ostrom 1990, p. 32). Maintenance

is a public good because no user can be excluded from the improvement to the CPR.

10For example in Besley and Ghatak (2001), Halonen (2002), Cai (2003) and Rosenkranz and
Schmitz (2003).
11Rosenkranz and Schmitz (2003) call a similar arrangment joint ownership with no veto right.

Niedermayer (2003) examines an open source platform where no one can be excluded from the public
good. Open source and common ownership are equivalent in a 2-agent setup.
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Under joint ownership the disagreement payoffs are zero as each agent has veto

power. Therefore the agents split the ex post surplus 50:50 in Nash bargaining

resulting in the following payoffs

uJi =
1

2
(θ` + θh) (yh + y`)− c (yi) for i ∈ {`, h} (2)

where superscript J denotes joint ownership. Under joint ownership the investment

incentives are
1

2
(θ` + θh) = c′

(
yJi
)

i ∈ {`, h} . (3)

We denote yJ ≡ yJh = yJ` . The familiar holdup problem arises because the agents

share the value of investment in bargaining but pay the full marginal cost.

Under common ownership neither consumption of the public good nor participation

in its production can be restricted for the owners. Therefore there is nothing to bargain

about ex post. Consequently, the payoffs are

uCi = θi(y` + yh)− c (yi) i ∈ {`, h} . (4)

Common ownership is denoted by superscript C. Optimal investments under common

ownership, denoted by yCi , are given by

θi = c′
(
yCi
)

i ∈ {`, h} . (5)

Each agent chooses investment according to his own valuation, ignoring the benefit of

the public good to the other agent.

According to (3) and (5), agent i’s investment depends on his surplus share σi,

where σi ∈
{
θi,

1
2
(θ` + θh)

}
. The investment is increasing in the surplus share so that

yC` < yJ < yCh < y∗. Solving for the explicit form of the investment, yi = (σi/γ)
1/(γ−1),

we can show that the investment is inelastic to surplus share if and only if γ > 2.12

This elasticity will play a key role in our analysis.

Proposition 1 compares the joint surplus under common ownership and joint own-

ership. At stage 1 the agents contract on the joint surplus maximizing ownership

structure and make any necessary lump sum transfers to achieve it.

12The elasticity of agent i’s investment to surplus share is given by (∂yi/∂σi) (σi/yi) = 1/ (γ − 1).
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Proposition 1 In the static game joint ownership dominates common ownership if
and only if γ > 1.5.

All the proofs are in the Appendix.

Under joint ownership both agents have equal, intermediate incentives while un-

der common ownership the high-valuation agent has strong incentives and the low-

valuation agent has weak incentives. Now if the cost function is suffi ciently convex

— so that the investments are not very elastic to surplus share — two intermediate

investments are more cost-effective than one high and one low investment and joint

ownership is optimal.

3 Repeated game

In the repeated game the agents first contract on the ownership structure. Then,

stages 2 and 3 are played in periods t ∈ {1, 2, ...,∞} , that is, in each period the agents
first invest and then make transfers and produce the public good. In a subgame-

perfect equilibrium (SPE) of the repeated game, the agents may be able to sustain

higher levels of investments than in the static game. While there can be multiple SPE

in the repeated game, our focus is on the Pareto-optimal SPE where the agents choose

the highest sustainable investments.13

We denote the highest sustainable investment by ηy∗, where η is an endogenous

parameter such that η ∈
[
η, 1
]
and η > (1/2)1/(γ−1) .14 If δ → 1, the first-best in-

vestments can be sustained in SPE and thus η = 1. For lower values of δ the target

investment has to be reduced and η < 1. It depends on the ownership structure how

much the target investment has to be reduced. Our aim is to characterize the owner-

ship structure that maximizes the joint surplus, that is, supports the highest ηy∗ in

SPE.

In the repeated game the agents promise to invest ηy∗, agent h promises to pay

agent ` a transfer T ∗ and agent ` promises to accept it.15 The agents continue to invest

ηy∗ and to agree to T ∗ as long as the other agent keeps his promises. The strategies

are the following.

13In CPR context it is reasonable to assume that the community can coordinate on a Pareto-optimal
SPE in their meetings.
14Note that ηy∗ = yJ if η = (1/2)1/(γ−1) .
15T ∗ is not restricted to be positive.

9



Phase 1: Agent h : invest ηy∗ and pay T ∗ to agent `. Agent ` : invest ηy∗ and

accept T ∗ from agent h. If agent i deviates, start Phase 2.

Phase 2:

Agent j 6= i : If agent i pays fine F ω
i for ω ∈ {C, J} at the beginning of the period,

go back to Phase 1. Otherwise, invest pωj and start Phase 2 in the next period.

Agent i : Pay F ω
i to agent j and go back to Phase 1.

If any player deviates in Phase 2, re-start Phase 2 against that player.

After any deviation the agents can renegotiate back to the Pareto frontier. If agent

i deviates, he can restore cooperation by paying a fine F ω
i to agent j at the beginning of

the following period.16 This is a natural way to model renegotiation as in CPR context

failing to participate in maintenance activities is typically punished by a fine paid to the

community. If deviator i does not pay the fine, agent j chooses punishment investment

pωj in that period. We allow for different strengths of punishment by investment to be

feasible so that ρyωj is the lowerbound for p
ω
j , where ρ ∈ [0, 1] .17 ρ is an exogenous

parameter that depends on the type of the public good. If ρ = 0, zero punishment

investment is feasible as in e.g. a research joint venture where it implies delaying the

project. The mildest punishment, ρ = 1, implies that punishment investment equals

Nash investment of the static game. It is reasonable to assume that ρ is relatively

large for a CPR such as a fragile low-tech irrigation system which the community’s

livelihood depends on.18

The incentive compatibility constraints (ICs) for each agent to invest ηy∗ are

u∗i ≥ (1− δ)Dω
i + δ [− (1− δ)F ω

i + u∗i ] for i ∈ {`, h} , ω ∈ {C, J} (6)

where δ ∈ [0, 1) is the common discount factor. We have multiplied the payoffs by

(1− δ) to express them as per-period averages. Dω
i is agent i’s one-shot deviation

payoffunder ownership structure ω and u∗i is agent i’s payoffunder cooperation, where

u∗h = 2θhηy
∗ − c (ηy∗)− T ∗ and u∗` = 2θ`ηy∗ − c (ηy∗) + T ∗.

16This approach draws from the private goods case of Blonski and Spagnolo (2007).
17See also Harstad, Lancia and Russo (2017), where in an environmental context punishment

investments in compliance technology are not minimal.
18Alternatively, ρyωj could be the lowest expected punishment investment. Suppose that in state

s1, with probability ρ, the public good is fragile and lack of maintenance would result in a very large
cost to both agents. Therefore agent j would not invest less than yωj in maintenance. In state s2,
with probability (1− ρ) , yj = 0 is feasible.

10



Summing up (6) and rearranging, we obtain the aggregate IC

δ (F ω
h + F ω

` ) ≥ (Dω
h +Dω

` )− S∗ (η) ≡ Gω (7)

where S∗ (η) is the joint surplus when both agents invest ηy∗. We denote the aggregate

one-shot gain from deviation by Gω. Gω measures how tempting deviation is to the

agents and how this immedate temptation depends on the ownership structure.19 If the

discounted aggregate fines outweigh the aggregate gain from deviation, the agents can

find a suitable T ∗ that satisfies both agents’ICs. We will first examine the deviation

payoffs, Dω
` +Dω

h , and then determine the fines, F
ω
h + F ω

` .

The agents can deviate by investing less than ηy∗ or they can invest ηy∗ but then

deviate by not agreeing to transfer T ∗. Both forms of deviation are observable to

the other agent.20 We will show that deviation in investment dominates deviation

in transfer. If agent i deviates in investment, agent j observes it before the transfer

stage and will not agree to T ∗ but will engage in bargaining. Agent i therefore chooses

deviation investment equal to yωi to maximize his bargaining payoff.
21 His deviation

payoff under joint ownership is then

DJ
i =

1

2
(θ` + θh)

(
ηy∗ + yJ

)
− c

(
yJ
)
for i ∈ {`, h} , (8)

while under common ownership

DC
i = θi

(
ηy∗ + yCi

)
− c

(
yCi
)
for i ∈ {`, h} . (9)

Alternatively, agent i can first invest ηy∗ and then deviate by not agreeing to T ∗.

Also then the payoffs are determined by bargaining and are equal to (8) and (9) where

yJ and yCi are replaced by ηy∗. Agent i must be strictly better off by adjusting

his investment to yωi to maximize his bargaining payoff than by choosing ηy
∗ and,

consequently, deviation in investment dominates deviation in transfer T ∗.

19See Halonen (2002).
20Observability of investment is an important difference to much of the literature on relational

contracts, e.g. Baker, Gibbons and Murphy (2002). Our assumption fits CPRs where typically
the whole community gathers to maintain the CPR on specific days and attendance of community
members is observable. Furthermore, the work is often organized so that the work teams can monitor
the progress of other teams who have been given a task of a similar size (Ostrom 1990, p. 85).
21We continue to apply Nash bargaining payoffs also in the repeated game. These payoffs can

arise e.g. when each party can make a take-it-or-leave-it offer with probability 1
2 , as in Halac (2012)

and (2015). See Miller and Watson (2013) for a richer analysis of bargaining in repeated games.
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Next we turn our attention to the fines. Suppose agent i has deviated in invest-

ment. The IC for agent i to pay the fine F ω
i is

− (1− δ)F ω
i + u∗i ≥ (1− δ)P ω

i + δ [− (1− δ)F ω
i + u∗i ] for i ∈ {`, h} , ω ∈ {C, J} .

(10)

If agent i pays F ω
i , cooperation is restored immediately. Otherwise, he earns pun-

ishment payoff P ω
i in that period and, using the one-shot deviation principle, the

restoration of cooperation is postponed by one period. The punishment payoff under

joint ownership is given by

P J
i =

1

2
(θ` + θh)

(
pJj + yJ

)
− c

(
yJ
)
for i, j ∈ {`, h} , i 6= j, (11)

and under common ownership

PC
i = θi

(
pCj + yCi

)
− c

(
yCi
)
for i, j ∈ {`, h} , i 6= j. (12)

From (10) we can solve for the maximal fine that agent i would be willing to pay.22

F ω
i =

u∗i − P ω
i

(1− δ) for i ∈ {`, h} , ω ∈ {C, J} (13)

The aggregate fines are then

F ω
h + F ω

` =
S∗ (η)− (P ω

h + P ω
` )

(1− δ) =
V ω

(1− δ) . (14)

We define V ω ≡ (S∗ (η)− P ω
` − P ω

h ) as the value of the relationship governed by a

relational contract as compared to punishment payoffs.23 The higher is the value of the

relationship, the larger fines are incentive compatible and therefore the less incentive

there is to underinvest. The maximal fine transfers all the surplus from renegotiation

22We analyze maximal fines while there is a lowerbound ρyωj for the punishment investment. High
fine hurts only the deviator and benefits the other agent. Low punishment investment hurts both
agents and may risk the fragile public good. Furthermore, in the context of CPRs, graduated sanctions
have been used to deal with the issue of overappropriation (Ostrom, 1990, p. 94-100). Evidence
suggests that sanctions for underprovision typically take the form of a fine that is equivalent to the
daily wage of a labourer. See Berg (2008) for evidence from Nepal.
23We adopt Halac’s (2012) terminology but define the value of the relationship as the difference be-

tween trade governed by relational contract and punishment payoffs. In Halac (2012) the comparison
is to outside opportunities. While separation is an applicable punishment in business relationships,
it is almost nonexisting in the stable communities that manage CPRs.

12



to the non-defecting party. Therefore the maximal aggregate fines are equal to the

discounted value of the relationship.

The final IC is for executing the punishment investment.

(1− δ) P̂ ω
i +δ

[
(1− δ)F ω

j + u∗i
]
≥ (1− δ)uωi +δ [− (1− δ)F ω

i + u∗i ] for i ∈ {`, h} , ω ∈ {C, J}
(15)

where P̂ ω
i is the punisher’s payoff and u

ω
i is agent i’s payoff if he deviates from pun-

ishment (equal to his payoff in the static game). Note that the punisher’s payoff P̂ ω
i

includes yi = pωi , while in the punishment payoff P
ω
i it is the other agent that chooses

punishment investment and yj = pωj is substituted in. If agent i chooses the pun-

ishment investment pωi in this period, cooperation is restored in the following period

by agent j paying F ω
j to agent i. If agent i chooses to deviate from punishment, he

would choose yωi and, by the one-shot deviation principle, cooperation is restored in

the following period by him paying F ω
i to agent j. (15) simplifies to

δ (F ω
h + F ω

` ) ≥ uωi − P̂ ω
i for i ∈ {`, h} , ω ∈ {C, J} . (16)

The consequence to agent i of deviating from the punishment investment is that not

only he has to pay F ω
i to agent j in the next period, but he also loses F

ω
j agent j

would have paid him. That is why the aggregate fines appear in agent i’s IC. The

IC is satisfied if the discounted aggregate fines outweigh agent i’s one-shot gain from

deviating from the punishment investment.

Note that the left-hand-sides of (7) and (16) are equal. Therefore, if uωi −P̂ ω
i ≤ Gω,

(16) is satisfied whenever (7) holds. However, if

uωi − P̂ ω
i > Gω, (17)

it is more tempting to deviate from the punishment investment than it is to deviate

from ηy∗. In that case there are values of δ for which (7) is satisfied but (16) is not.

Then it is optimal to increase the punishment investment to relax (16) since the closer

the punishment investment is to the Nash investment, the smaller is the gain from

deviating from it. Denote by ρωyωi the lowest punishment investment that is incentive

compatible given (7) is satisfied. Optimal punishment investment that is both feasible

and incentive compatible is then given by pωi = max
{
ρ, ρω

}
yωi .
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Lemma 1 Suppose η → 1. There exist values of δ for which optimal punishment

investment is strictly greater than its lowest feasible level, ρyωi , if and only if ρ < ρω

and γ > γ̂ω where γ̂ω ∈ (2, 3) for ω ∈ {C, J}.

Lemma 1 shows that (17) can be satisfied and thus for some values of δ it can be

optimal to increase the punishment investment from its lowest feasible level. First,

when ρ is small, the gain from deviating from the punishment investment, the left-

hand-side of (17), is large. Second, the gain from deviating from the target investment,

Gω, is small when the difference between y∗ and Nash investment of the static game is

small. This is the case when the investment is quite inelastic to surplus share (γ > γ̂ω).

If the investment is elastic to surplus share (γ < 2), (17) cannot be satisfied and even

zero punishment investment is incentive compatible given (7) holds.

Furthermore, IC for punishment investment is not a binding constraint when ρ is

not too small. Lemma 2 examines this case.

Lemma 2 Suppose ρ ≥ ρω. Both agents investing ηy∗ is SPE under ownership struc-

ture ω if and only if δ ≥ Gω

Gω+V ω
.

If ρ ≥ ρω, (16) holds as long as (7) is satisfied. We can then substitute the maximal

fines from (14) in the critical IC (7) and both agents investing ηy∗ is SPE if and only

if

δ ≥ Gω

Gω + V ω
≡ δω (η) . (18)

The following Lemma shows that, given ρ ≥ ρω, characterizing the optimal owner-

ship structure boils down to minimizing δω (η).

Lemma 3 (i) Suppose δω1(η) < δω2(η) for all η ∈
[
η, 1
]
and ∂δωi(η)/∂η > 0 for

i = 1, 2. Then joint surplus under ω1 is (weakly) greater than under ω2 for any δ > 0.

(ii) Suppose δω1(η) < δω2(η) if and only if η > η̃ where η̃ ∈ (η, 1) and ∂δωi(η)/∂η >
0 for i = 1, 2. Then joint surplus under ω1 is (weakly) greater than under ω2 if and

only if δ > δω1(η̃).

According to Lemma 3(i), the ownership structure that minimizes δω (η)maximizes

the joint surplus. First, if δ ≥ δω1(1), the first best investments are sustainable under

ω1 and the joint surplus is greater than under ω2, strictly greater if δ < δω2(1). Second,

if δ < δω1(1), the target investment has to be lowered. Denote by ηωiy∗ the highest
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investment that is incentive compatible under ωi, that is, δ = δωi(ηωi). Strictly higher

investments are sustainable under ω1 than under ω2 since δ = δω1(ηω1) = δω2(ηω2) <

δω2(ηω1) and ∂δωi(η)/∂η > 0. Lemma 3(ii) extends the result to the case where the

ranking of the critical discount factors depends on η.

Characterizing the optimal ownership structure is then, according to (18), equiv-

alent to minimizing the gain from deviation relative to the value of the relationship.

It is useful to first examine the gain from deviation and the value of the relationship

separately.

Lemma 4 (i) GJ < GC ,

(ii) V J ≤ V C if γ > 1.5 and ρ ≥ max
{
ρ̂, ρC , ρJ

}
where ρ̂ ∈ (0, 1) ,

(iii) V J > V C if γ < 1.5 or max
{
ρC , ρJ

}
≤ ρ < ρ̂.

There are two sources to the gain from deviation. The first part comes from

the ability to expropriate from the other agent’s investment. Under joint ownership,

according to (8) , the agent can expropriate half of the joint value of the other agent’s

investment while under common ownership, according to (9) , he can expropriate his

full individual value. However, adding these up amounts to (θ` + θh) ηy
∗ under both

ownership structures. Therefore the difference in the gain from deviation comes from

the second source, the payoff earned from the agent’s own second-best investment, as

can be seen from the following equation (which is derived in (44) in the Appendix).

GC −GJ =
(
DC
` +DC

h

)
−
(
DJ
` +DJ

h

)
=

[
θhy

C
h − c

(
yCh
)]
+
[
θ`y

C
` − c

(
yC`
)]
− 2

[
1

2
(θ` + θh) y

J − c
(
yJ
)]
(19)

When θ` = θh, the ownership structures are equivalent (see (3) and (5)) and GC = GJ .

Using the envelope theorem, we can show that

∂
(
GC −GJ

)
∂θh

= yCh − yJ > 0 (20)

and therefore GC > GJ for any θ` < θh. The gain from deviation is higher under

common ownership because agent h gets his full valuation from his contribution to

the public good while under joint ownership he has to share his high valuation in

bargaining. There is the opposite effect for agent ` but it is of a smaller magnitude.24

24 This is because agent i’s payoff from his own investment is convex in the surplus share. Agent
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The difference in the value of the relationship is given by

V C − V J =
(
P J
` + P J

h

)
−
(
PC
` + PC

h

)
= 2

[
1

2
(θ` + θh)

(
yJ + ρyJ

)
− c

(
yJ
)]

−
[
θh
(
yCh + ρyC`

)
− c

(
yCh
)]
−
[
θ`
(
yC` + ρyCh

)
− c

(
yC`
)]
.

If the punishment investment is zero (ρ = 0), each agent’s punishment payoff arises

only from his own investment. By (19) above this payoff is lower under joint owner-

ship implying that the value of the relationship is higher under joint ownership. If

punishment investment equals Nash investment of the static game (ρ = 1), aggregate

punishment payoffs equal the joint surplus in the static game. Then, according to

Proposition 1 common ownership maximizes the value of the relationship if γ > 1.5;

this holds also for suffi ciently high ρ. While for γ < 1.5 joint ownership maximizes

value of the relationship for all values of ρ.

According to Lemma 4, joint ownership provides both the maximal value of the

relationship and the minimal gain from deviation if either γ < 1.5 or ρ < ρ̂. Then,

unambiguously, δJ (η) < δC (η) . For higher values of γ and ρ there is a trade-off:

common ownership maximizes the value of the relationship but also maximizes the

gain from deviation.

Proposition 2 characterizes the joint surplus maximizing ownership structure.

Proposition 2 (i) Joint surplus is (weakly) greater under common ownership than
under joint ownership if γ > 2, ρ > max

{
ρ̃, ρC , ρJ

}
and δ > δC (η̂) where ρ̃ ∈ (ρ̂, 1)

and η̂ ∈
(
η, 1
)
.

(ii) Joint surplus is (weakly) greater under joint ownership than under common

ownership if γ < 2, max ρC , ρJ < ρ < ρ̃ or δ < δC (η̂).

The first-best investments can be sustained for a lower δ under common ownership

when γ > 2 and ρ is suffi ciently large. In this parameter range both the value of the

relationship and the gain from deviation are larger under common ownership. How-

ever, the value of the relationship is relatively low even under common ownership. If

punishment is mild (ρ = 1), the value of the relationship equals the reduction in sur-

plus when the agents choose Nash investments rather than the first-best investments.

i’s payoff from his own investment is σiyi (σi) − c (yi (σi)) = σi (σi/γ)
1/(γ−1) − (σi/γ)γ/(γ−1) =

(γ − 1) (σi/γ)γ/(γ−1). It is straigtforward to verify that this payoff is convex in σi.
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This reduction is small when γ > 2 because investment is inelastic to the surplus

share. Furthermore, the value of the relationship remains low when ρ is relatively

high. Low value of the relationship limits the effectiveness of fines in disciplining be-

havior. Therefore maximizing the value of the relationship provides the best incentives

for cooperation —and common ownership is optimal.

If δ is not high enough for the first-best investments to be supported in SPE, the

agents can lower the target investment and still achieve higher joint surplus than in the

static game. Strictly higher investments can be supported under common ownership

than under joint ownership as long as γ > 2 and ρ is high. However, if δ is suffi ciently

low so that the target investment has to be reduced below η̂y∗, common ownership no

longer generates the highest joint surplus. Joint ownership becomes optimal because

lower target investment reduces the gain from deviation relatively more under joint

ownership. The absolute reduction in the gain is equal (by (19) GC − GJ does not

depend on η) while the relative reduction is greater under joint ownership because

GJ < GC .

Joint ownership is optimal also when γ < 2. The value of the relationship is then

high under any ownership structure even when punishment is mild because there is a

large difference between the first-best and Nash investment as investment is elastic to

surplus share. Alternatively, the value of the relationship is large when punishment

by investment is strong (ρ < ρ̃). Then minimizing the gain from deviation —and joint

ownership —maximizes the joint surplus.

Finally, note that γ has a different role in the static and in the repeated game.

In the static game joint ownership is optimal for high γ while in the repeated game

low γ favours joint ownership. The parameter ranges interestingly overlap and joint

ownership provides the best incentives in both static and repeated games if 1.5 < γ <

2.

3.1 Nonlinear value of investment

Our model puts all the curvature in the cost function as that gives a clear intuition of

the results. We now consider the possibility that also the value of the public good is

nonlinear: θi [(y`)
γv + (yh)

γv ] , where γv ≤ 1. The investment costs are c (yi) = (yi)
γc ,

where γc ≥ 1 and γc
γv

> 1. It is straightforward to show that this formulation is
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isomorphic to our main model when γc
γv
= γ .25

In this formulation γc
γv
> 2 has to hold for common ownership to be optimal —in

addition to suffi ciently high ρ and δ. Note that γv < 0.5 is a suffi cient condition for

γ > 2 since γc ≥ 1. This is consistent with a stylized fact of common ownership:

the value of the CPR cannot be increased much by investment (Netting 1976; Ostrom

1990, p. 63). The use of Alpine hillsides for communal grazing lands in Switzerland

is an example of such common ownership.

γc > 2 is another suffi cient condition for γc
γv

> 2 since γv ≤ 1. γc > 2 implies

that the cost function is suffi ciently convex so that also the marginal cost is convex.

In Section 6 we argue that convex the marginal costs can explain communally owned

irrigation systems in Nepal and the Philippines. Marginal cost of maintenance arises

from time and effort taken away from cultivating privately owned fields and increasing

maintenance activities increasingly lowers the private yield.

Conversely, concavity of marginal cost (γc < 2) and relatively high γv (γv > 0.5)

are necessary conditions for γc
γv
< 2 and can give rise to joint ownership. Horizontal

research joint venture is a leading example of joint ownership of a public good.26

Concavity of marginal cost can arise from learning effects which are milder than in

learning-by-doing models. The marginal cost is still increasing but at a decreasing

rate. Additionally, the investment has to have a relatively large effect on the value of

the public good. Both conditions are reasonable for R&D activities.

4 Single ownership

In the main model we have compared shared ownership structures. We now turn

our attention to an ownership structure where either agent ` or h is the single owner.

Single ownership can be equivalent to either private or government ownership. This

is where we build on Besley and Ghatak (2001) (BG) and their analysis of the role

of ownership in public good provision. In their development context, private NGO

has a higher valuation for the public good than government. In other applications the

25In this alternative formulation, under common ownership we have yCi =
(
θi
γ

) 1
γv(γ−1) and joint

surplus equals SC = (θ` + θh)

[(
θ`
γ

) 1
γ−1

+
(
θh
γ

) 1
γ−1
]
−
(
θ`
γ

) γ
γ−1 −

(
θh
γ

) γ
γ−1

as in the main model.

Furthermore, the value of the investment,
(
yCi
)γv , is elastic to the surplus share if and only if

γc/γv = γ < 2 as in the main model.
26In a horizontal research joint venture innovation becomes a public good for the partners.
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government may well be the high-valuation agent.27 We differ from BG by introducing

a repeated game and the concept of common ownership.

4.1 Static game

Our static model of single ownership is a simplified version of BG. We start by defining

the disagreement payoffs. If bargaining breaks down, the non-owning agent leaves

the project and the owner completes it without his contribution. However, some

of his investment may have spilled over to the project. Denote by µ the degree of

spillover, where µ ∈ [0, 1).28 Then agent k’s disagreement payoff under ownership

by i is θk (yi + µyj) , where k, i, j ∈ {`, h} and i 6= j. The owning agent’s investment

contributes fully to the project while only the spillover from the non-owning agent’s

investment remains in the project. Note that the non-owning agent is not excluded

from the consumption of the public good although he does not participate in its

production.29

Given these disagreement payoffs, the Nash bargaining payoffs under ownership by

agent i are

uii = θi (yi + µyj) +
1

2
(θ` + θh) [(yi + yj)− (yi + µyj)]− c (yi)

=
1

2
(θ` + θh) (yi + yj) +

1

2
(θi − θj) (yi + µyj)− c (yi) , (21)

uij =
1

2
(θ` + θh) (yi + yj) +

1

2
(θj − θi) (yi + µyj)− c (yj) . (22)

27Note that here —and in BG —privatization means involvement of a private party as the owner in
public good provision. Privatization can also mean transforming a public good into a private good.
This type of privatization will be discussed later in this section.
28Now, unlike in the main model, it matters whether the investment is in physical or human capital.

Investment in physical capital remains in the project if the investing agent leaves and therefore µ = 1.
Investment in human capital is embedded in the agent. If the agent leaves, so does the human capital
unless some of it has spilled over to the project, therefore µ ∈ [0, 1). Project-specific human capital
includes e.g. engineering skills that are specific to the project and relationships in the community.
29In the public goods context Nash bargaining has a credibility issue regarding ex post disagreement

payoffs that we share with BG. If bargaining breaks down, the owner would benefit from giving access
to the other agent so that also his investment contributes to the public good. The theory of contracts
as reference points (Hart and Moore 2008; Hart 2009) provides a possible avenue to explain this ex
post ineffi ciency arising due to the souring of the relationship.
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Therefore the investment incentives in the static game are

1

2
(θ` + θh) +

1

2
(θi − θj) = c′

(
yii
)
, (23)

1

2
(θ` + θh) +

1

2
(θj − θi)µ = c′

(
yij
)
, (24)

where superscript i denotes ownership by agent i.

Comparing h- and `-ownership amounts to comparing the second terms in (23) and

(24). The second term is positive for the high-valuation agent and negative for the low-

valuation agent. Higher investment by either agent increases both agents’disagreement

payoffs since they can consume the public good even under disagreement. Agent h’s

disagreement payoff increases more given his higher valuation of the public good.

In other words, higher investment by either agent improves h’s bargaining position

relative to `, explaining why the second term is positive for agent h and negative for

agent `.

The positive effect on agent h’s incentives can be increased if his investment con-

tributes fully to the disagreement payoff, that is, if he owns the public good. While the

negative effect on agent `’s incentives can be weakened if only part of his investment

spills over to the project, that is, if he does not own the public good. Accordingly,

ownership by the high-valuation agent improves both agents’incentives. This is the

main result of BG.

Comparing the incentives also to common ownership and joint ownership, (3) and

(5), it follows that

yC` = y`` < yh` ≤ yJ < y∗, (25)

yJ ≤ y`h < yCh = yhh < y∗. (26)

Accordingly, h-ownership dominates also common ownership and therefore a re-

peated game is needed to provide a rationale for common ownership. Finally, com-

paring joint ownership and h-ownership, there is a tradeoff as `’s investment is higher

under joint ownership but h’s investment is higher under h-ownership.30

30It is easy to show that joint ownership is optimal in the static game if and only if γ > 1.5 and
µ ≥ µ̃, where 0 < µ̃ < 1, and h-ownership is optimal otherwise.
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4.2 Repeated game

As in Section 3, in the repeated game we focus on characterizing the ownership struc-

ture that minimizes the critical discount factor. In this Section, we focus our analysis

on the critical discount factor above which the agents can support the first best in-

vestments.

As previously, we start by analyzing the gain from deviation and the value of the

relationship.

Lemma 5 (i) max
{
GJ , Gh

}
< GC < G`,

(ii) max
{
V J , V h

}
< V C < V ` if γ > 1.5 and ρ = 1.

Lemma 5 shows that there are broadly two classes of ownership structures. First,

the ownership structures that can be optimal in the static game —joint ownership and

h-ownership —minimize the gain from deviation. Second, the ownership structures

that are dominated in the static game —common ownership and `-ownership —maxi-

mize the value of the relationship if γ and ρ are large. In line with the previous results,

we will show that common ownership or `-ownership provides the best incentives for

cooperation when γ > 2 and ρ is suffi ciently high while γ < 2 and low values of ρ

favour joint ownership or h-ownership.

Proposition 3 characterizes the ownership structure that provides the best incen-

tives to cooperate in terms of minimizing the critical discount factor above which the

first best investments are sustainable in SPE.

Proposition 3 Suppose ρ ≥ ρω for ω ∈ {C, J, h, `} . The best incentives for coopera-
tion are provided by

(i) joint ownership if (a) γ < 2 or ρ < ρ̃ and (b) µ→ 1,

(ii) ownership by agent h if γ < 2, ρ→ 1 and µ→ 0,

(iii) common ownership if γ > 2, ρ > ρ′ and θ`
θh
→ 0,

(iv) ownership by agent ` if γ > 2, ρ→ 1, θ`
θh
→ 1 and µ→ 0.

Proposition 3 shows that even when we include single ownership in the analysis,

joint ownership continues to provide the best cooperation incentives for similar para-

meter values as in Proposition 2 as long as µ→ 1, while h-ownership provides stronger
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incentives if µ→ 0. Figure 1(a) presents simulation results which show that this result

holds also for intermediate values of µ.31

This is the parameter range where the gain effect is important (γ < 2). Ownership

by agent h provides the best cooperation incentives for small µ because the gain from

deviation is minimized. Agent h’s deviation payoff under h-ownership is

Dh
h =

1

2
(θh + θ`)

(
yhh + y∗

)
+
1

2
(θh − θ`)

(
yhh + µy∗

)
− c

(
yhh
)
. (27)

When agent `’s first-best investment is largely embedded in himself (µ→ 0), h’s ability

to extract from it is limited.32 While for high values of µ the gain from deviation under

joint ownership (which does not depend on µ) is lower than the gain from deviation

under h-ownership (which is increasing in µ) and joint ownership provides the best

cooperation incentives.

The additional requirement for joint ownership is that the investments are largely

sunk in the project (large µ). This matches well with R&D since innovation can

typically be commercialized without the presence of the other party of the horizontal

31Figure 1(a) is drawn for ρ = 1. Furthermore, θ`θh is suffi ciently small so that common ownership
is optimal for all µ if γ > 2..
32Note that for agent ` there is the opposite effect, ∂Dh

` /∂µ < 0, but it is of a smaller magnitude
so that ∂Gh/∂µ > 0 as verified by (58) .
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research joint venture.

Common ownership provides the best cooperation incentives for similar parameter

values as in Proposition 2 as long as θ`
θh
→ 0, while ownership by agent ` performs

better if θ`
θh
→ 1. Simulations presented in Figure 1(b) confirm also this result for

intermediate values of θ`
θh
.33

Here the effects are more subtle as the best ownership structure does not simply

maximize the value of the relationship although γ > 2 (V ` > V C and G` > GC

for all parameter values). Ownership by the low-valuation agent provides the best

cooperation incentives only if θ` is not too low compared to θh. The difference

between agent `’s deviation payoffs, taking into account that y`` = yC` , is equal to

D`
` −DC

` =
1

2
(θh − θ`) (1− µ) y∗ > 0.

Agent ` can extract more from h’s first-best investment under `-ownership since in

bargaining θhy∗ is shared while under common ownership ` just gets his own low valu-

ation, θ`y∗. For a similar reason `’s deviation payoff is more responsive to a change in

θ` under common ownership, ∂
(
D`
` −DC

`

)
/∂θ` < 0, and therefore higher θ` increases

`’s deviation payoff —and the aggregate gain from deviation —more under common

ownership favouring `-ownership. That is why cooperation incentives are strongest

under `-ownership for large θ`
θh
.

Common ownership provides the best incentives when the (marginal) effect on the

value of the relationship is dominant. The difference between agent `’s punishment

payoffs is equal to

P `
` − PC

` =
1

2
[(θh + θ`) + (θ` − θh)µ] ρy`h − θ`ρyCh .

As above, ∂
(
P `
` − PC

`

)
/∂θ` < 0 since the change in θ` is shared in bargaining under `-

ownership while it has the full effect on `’s payoffunder common ownership. Therefore

lower θ` decreases `’s punishment payoffmore under common ownership than under `-

ownership.34 Consequently, the value of the relationship increases more under common

33Figure 1(b) is drawn for ρ = 1. Furthermore, µ = 0 so that h-ownership is optimal for all θ`θh if
γ < 2. Simulation results also show that µ → 0 is not a necessary condition for ` -ownership to be
optimal (Proposition 3(iv)).

34Note also that ∂2
(
P `` − PC`

)
/∂ (θ`)

2
> 0 and ∂2

(
D`
` −DC

`

)
/∂ (θ`)

2
< 0 which explains why the

marginal effect on the value of the relationship is dominant for low θ` and the marginal gain effect is
dominant for high θ`.
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ownership when θ`
θh
is small and common ownership provides the best cooperation

incentives.

The additional requirement for common ownership is that the valuations are not

too homogeneous (small θ`
θh
). This condition requires further discussion. In the empir-

ical literature there is no consensus on the role of heterogeneity in the management

of CPRs (see e.g. Poteete and Ostrom 2004; Ruttan 2006, 2008). Different types

of heterogeneity can have different effects. For example, economic heterogeneity can

have a positive effect35 while sociocultural heterogeneity is likely to have a negative

effect. In our model the valuation difference arises from economic heterogeneity, e.g.

heterogeneity in the private holdings of cultivated land to be irrigated or in the num-

ber of livestock requiring grazing. There is typically heterogeneity in private wealth

in communities managing CPRs. For example, Netting (1981, p. 27) documents het-

erogeneity in the number of cows owned in Swiss villages.36 Heterogeneity favours

common ownership in our model because it improves the incentives to cooperate un-

der common ownership as compared to `-ownership. Ownership by the low-valuation

agent provides the best cooperation incentives only if his valuation is not too low

compared to the high-valuation agent, while common ownership performs better if

valuations are not too homogeneous. In Section 5 we examine heterogeneity in invest-

ment costs and show that homogeneous costs favour common ownership confirming

the view that different types of heterogeneity have different effects.

We have analyzed single ownership of public goods which can be equivalent to

privatization. However, privatization can also take the form of transforming a public

good into a private good. For example, land can remain as a public good (under

common or government ownership) or it can be parceled to be a private good. In

Switzerland it is the more productive arable lands in the mountain valleys that are

privately owned (Netting 1976). This is consistent with Halonen (2002) where single

ownership provides the best cooperation incentives for private goods when γ < 2.

We conclude this section with a comparison of our results to the private goods case

analyzed by Halonen (2002). With private goods the worst ownership structure of

the static game (joint ownership) provides the best cooperation incentives for γ > 2

because it maximizes the value of the relationship. While the optimal ownership

35See also Baland and Platteau (2003) for theoretical analysis where the effect of economic hetero-
geneity depends on the model setup.
36As the general practise is to distribute the benefits from the CPR in direct proportion to private

holdings, wealthier individuals indeed have a higher valuation for the CPR (McKean 1992).
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structure of the static game (single ownership) provides the best incentives when γ < 2

because it minimizes the gain from deviation. With public goods the results no longer

depend on the tradeoffbetween the best and the worst ownership structure of the static

game. First, common ownership can provide the best cooperation incentives for γ > 2

even when `-ownership is the worst ownership structure in the static game. Second,

joint ownership can minimize the gain from deviation even when it is not optimal in

the static game. Furthermore, with private goods the results of the static game hold

also in the repeated game for γ < 2 —as the gain from deviation is minimized. With

public goods also the optimal ownership structure of the static game depends on γ and

therefore —as discussed in Section 3 —there is overlap only for 1.5 < γ < 2. Despite

these differences, the critical value for γ remains the same.

5 Asymmetric costs

In the main model, the agents only differ in their valuations. In this Section, we allow

the agents to differ also in terms of their investment costs.37 Suppose the costs are

given by ci (yi) = 1
ς
i
(yi)

γ for i = `, h.

Simulation results show that Proposition 3 is robust to cost asymmetry. Common

ownership or `-ownership continue to provide the best cooperation incentives for γ > 2

and joint ownership or h-ownership for γ < 2. Cost asymmetry, however, shifts the

boundary of common ownership vs. `-ownership and joint ownership vs. h-ownership.

Figure 2 shows the boundary for identical costs by a solid line and agent h’s cost

advantage (ςh > ς`) by a broken line.38

37We focus our analysis on the case of ρ = 1.
38Both figures are drawn for the same parameter values as figures 1(a) and 1(b) and moderate

ςh/ς`.
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Figure 2(a) shows that for γ < 2 the boundary shifts in favour of h-ownership. As

discussed in Section 4, this boundary depends on which ownership structure minimizes

the gain from deviation. The gain from deviation increases under both ownership

structures when ςh increases because agent h’s first best investment increases and

deviation becomes more tempting for agent `. Agent `’s deviation payoffincreases more

under joint ownership because agent h’s higher valuation is shared in bargaining, while

under h-ownership agent ` cannot obtain any of the owner’s high valuation. Therefore

the gain minimizing ownership structure shifts in favour of h-ownership.

Figure 2(b) shows that for γ > 2, the boundary shifts in favour of `-ownership.

As shown in Section 4, `-ownership provides the best cooperation incentives when the

marginal effect on the gain from deviation is dominant, which is the case when θ` is

not much lower than θh. A higher θ` increases agent `’s deviation payoff —and the

aggregate gain from deviation —more under common ownership since `’s valuation

for h’s first best investment, θ`y∗h, is not shared in bargaining. Therefore θ` closer

to θh favours `-ownership. When we introduce cost asymmetry, higher ςh makes this

effect even stronger because it increases y∗h. Therefore the boundary shifts in favour

of `-ownership.39

39Even when agent h’s cost advantage is significant, common ownership can still provide the best
incentives for cooperation as long as the valuation difference is significant.
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In sum, the above analysis shows that shared ownership is less likely when h has a

cost advantage.

6 Common pool resources

In this Section we re-examine well documented field studies in Ostrom (1990) in the

light of our analysis. We have selected CPRs which require maintenance investments:

irrigation systems and common lands. Maintenance is provided communally in these

cases and the communities have been successful in mobilizing a significant amount of

labor regularly. For example, in the Zanjera irrigation communities in the Philippines,

compliance rate was 94% (Ostrom 1990, p. 86).

Nonattendance in maintenance activities is punished by fines paid to the commu-

nity (Netting 1972; McKean 1982; Ostrom 1990, p. 86) unless an acceptable excuse is

provided. For example, in the villages of Japan studied by McKean (1982) the only

acceptable excuses were illness, family tragedy or the absence of able-bodied adults.

We examined fines in the repeated game.

We have shown that common ownership provides the best incentives for cooperation

if γ > 2, punishment by investment is mild, the discount factor is suffi ciently high

and the valuations of the CPR are not too homogeneous. We now argue that these

conditions are satisfied in Ostrom’s field studies.40 Let us start the discussion by

examining whether γ > 2. It is helpful to frame the discussion around the isomorphic

version of the model where both the value of the public good and the investment

costs can be nonlinear. As presented in Section 3.1, the value of the public good is

θi [(yl)
γv + (yh)

γv ], where γv ≤ 1, and the investment costs are c (yi) = (yi)
γc , where

γc ≥ 1. Then γ =
γc
γv
. As explained in Section 3.1, there are two suffi cient conditions

for γ > 2. First, γv < 0.5 implies that γ > 2 since γc ≥ 1. Second, γc > 2 is

a suffi cient condition for γ > 2 since γv ≤ 1. Next we will relate these suffi cient

conditions to Ostrom’s field studies.

Most of the Alpine pasture in Switzerland has been under common ownership for

centuries while arable land in the mountain valleys is typically privately owned.41 Net-

ting (1976) identifies stylized facts of Alpine land ownership (see also Ostrom 1990,

p. 63). He observes that while the yield of privately owned arable land can be

40Heterogeneity of valuations was already discussed in Section 4.2.
41In Valais, Switzerland, 95% of Alpine pasture has been under common ownership (Netting 1976).

Also in Italy most of the Alpine pasture has been commonly owned (Casari 2007).
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increased by "irrigation, manuring, erosion control, crop rotation, and careful horti-

culture" (Netting 1976, p. 143), the possibility of improving the commonly owned

Alpine grazing lands is low due to altitude, limited growing season and thin soils.42

This stylized fact of common ownership is consistent with our model where the value

of the CPR cannot be increased much by investment when γv is low. Extensive com-

mon lands have existed for centuries also in Japan (McKean 1982; Ostrom 1990, p.

65). Also there the maintenance investments, including the annual burning of the

grasslands, have a limited impact on the yield.

According to our results, the rationale for common ownership can arise also from

suffi ciently convex maintenance costs. Then, in contrast to the above stylized fact,

common ownership can provide the best cooperation incentives even when it is possi-

ble to increase the value of the CPR significantly by investment. Communally owned

irrigation systems in Nepal and the Philippines are examples of such CPRs. The irriga-

tion systems are very valuable to the local communities as their livelihood depends on

irrigation. Furthermore, their value can be increased significantly by investments.43

However, common ownership can be explained by the maintenance costs. For ex-

ample, in one of the Zanjera irrigation communities in the Philippines, hundreds of

people are involved in constructing and maintaining a 100-meter-long dam that spans

the Bacarra-Vintar River. Maintenance is costly for the community members: in

1980 the average contribution was 37 days of work per person (Coward and Siy 1983;

Ostrom 1990, p. 83).44 The marginal cost of maintenance investment arises from the

time and effort taken away from cultivating privately owned fields. We argue that this

marginal cost is convex (γc > 2). Cobb-Douglas production function (with decreasing

returns to scale) is often used for agricultural production. With this function, the

marginal product of private cultivation is decreasing and convex.45 Since the marginal

cost of increasing maintenance investment equals the marginal product of reducing

private cultivation, convexity of marginal product implies that the marginal cost is

convex. Therefore common ownership of these irrigation systems is consistent with

42Maintenance of the grazing lands includes distributing manure, renewing avalanche-damaged
corrals and clearing access paths and roads.
43For more details see e.g. Ostrom (1990, p. 82-88) for the Philippines and Yoder (1994) for Nepal.
44Another example comes from the Chhatis Mauja irrigation system in Nepal where in 1981 over

60,520 man-days were devoted from at least 3,000 farmers on desilting the main canal and other
arduous tasks (Pradhan 1984; Ostrom 1990, p. 229).
45Suppose the production function is given by q = lαxβ where q is production of private fields,

l is labor input and x is other inputs. Then marginal product of labor is MPl = αlα−1 xβ and
∂2MPl/∂l

2 = α(α− 1)(α− 2)lα−3xβ > 0 since α < 1.
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our model.46

The second condition for common ownership in our model is that punishment by

investment is mild (ρ is suffi ciently high). We argue that this is reasonable for common

property arrangements which typically involve subsistence communities dependent on

the CPR. For example, in the above Zanjera irrigation communities dams are con-

structed using poor quality materials such as bamboo poles, banana leaves, sand and

rock (Ostrom 1990, p. 83). Continual maintenance is therefore crucial for the survival

of the community.47

The final condition for common ownership is suffi ciently high discount factor. Os-

trom herself argued that the discount factor is high (the discount rate is low) in these

communities. "These individuals live side by side and farm the same plots year after

year. They expect their children and their grandchildren to inherit their land. In other

words, their discount rates are low." (Ostrom 1990, p. 88)

Our analysis differs from Ostrom (1990) who examined numerous field studies of

successful and unsuccessful CPRs and identified design principles that characterize the

successful ones. These design principles —such as well-defined boundaries, graduated

sanctions and low-cost conflict-resolution mechanisms48 —are largely endogenous. By

contrast, our interest is in finding the characteristics of exogenous maintenance tech-

nology for which common ownership provides the best cooperation incentives. We

show that the often cited examples of successful CPRs —irrigation systems in Nepal

and the Philippines and common lands in Switzerland and Japan —do not only share

similar design principles but can also be characterized by the same exogenous fac-

tor: high γc
γv
arising from either suffi ciently convex cost function or value relatively

unresponsive to maintenance investments.

46Ostrom and Gardner (1993) examine the interaction of maintenance and appropriation in a
communally owned irrigation system. They find that costly maintenance is helpful for reaching
equitable access to water.
47In the case of the common lands in Japan, timely maintenance investments, such as the annual

burning of the grasslands in early spring, are essential in improving the yield of the natural products
which are very important in the daily life of the local community (McKean 1982, p. 70).
48Other design principles are congruence between appropriation and provision rules and local con-

ditions, collective-choice arrangements, monitoring, minimal recognition of rights to organize and
nested enterprises (Ostrom 1990, p. 90).
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7 Conclusions

In this paper we have analyzed ownership of public goods, in particular common

ownership. From the static point of view, common ownership gives poor incentives

to maintain the public good. However, building on the literature which has used

insights from repeated games to understand successful management of CPRs (Ostrom

1990; Ostrom, Gardner and Walker 1994), we show that a repeated game can provide

a rationale for common ownership.

We find that common ownership can provide the best incentives for cooperation

when investment is inelastic to surplus share. Mild punishment investment is then not

significantly lower than the first-best investment, implying that the value of the rela-

tionship is low and fines are quite ineffective in disciplining maintenance investments.

Cooperation incentives can then be improved by choosing an ownership structure

that maximizes the value of the relationship. Common ownership provides the best

incentive for cooperation if additionally valuations for the public good are not too

homogeneous.

Inelasticity of maintenance investment can arise when the value of the public good

is relatively unresponsive to investment, consistent with an important stylized fact

derived from communally owned Alpine grazing lands in Switzerland (Netting 1976;

Ostrom 1990, p. 63). We show that inelastic maintenance investment can also result

from suffi ciently convex maintenance costs, as in the irrigation systems in Nepal and

the Philippines where time and effort taken away from private cultivation increasingly

lowers the private yield. Our analysis shows that many successful CPRs do not only

share similar (endogenous) design principles identified by Ostrom (1990) but also the

same exogenous characteristics.

Our analysis of public goods applies to provision and maintenance of CPRs. An

important direction for future work is to extend the analysis to the possibility of

overuse of the CPR. Also, future work could explore the difference between local and

global CPRs — resources that go beyond national jurisdictions (e.g. earth’s oceans

and global climate). Global CPRs do not only differ from local CPRs in terms of

characteristics but also pose different challenges.49

49See Stern (2011) for a useful discussion of the differences between global and local CPRs and
the applicability of Ostrom’s design principles to global CPRs. The design principles were largely
informed by local CPRs.
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A Appendix

Firstly, the explicit forms of the investments derived in (1) , (3) and (5) are

y∗ =

(
θ` + θh
γ

) 1
γ−1

, (28)

yJ =

(
θ` + θh
2γ

) 1
γ−1

, (29)

yC` =

(
θ`
γ

) 1
γ−1

, (30)

yCh =

(
θh
γ

) 1
γ−1

. (31)

Proof of Proposition 1.
Denote by Sω joint surplus under ownership structure ω ∈ {J,C} . SJ > SC if and

only if

2 (θ` + θh) y
J − 2c

(
yJ
)
> (θ` + θh)

(
yC` + yCh

)
− c

(
yC`
)
− c

(
yCh
)
. (32)

Substituting θh = αθ`, where α > 1, and (29)− (31) in (32) we obtain

2 (α + 1) θ`

(
(α + 1) θ`

2γ

) 1
γ−1

− 2
(
(α + 1) θ`

2γ

) γ
γ−1

>

(α + 1) θ`

[(
αθ`
γ

) 1
γ−1

+

(
θ`
γ

) 1
γ−1
]
−
(
αθ`
γ

) γ
γ−1

−
(
θ`
γ

) γ
γ−1

which is equivalent to

2 (α + 1)

(
α + 1

2γ

) 1
γ−1

− 2
(
α + 1

2γ

) γ
γ−1

>

31



(α + 1)

[(
α

γ

) 1
γ−1

+

(
1

γ

) 1
γ−1
]
−
(
α

γ

) γ
γ−1

−
(
1

γ

) γ
γ−1

. (33)

Multiplying by γ
1

γ−1 and rearranging, (33) is equivalent to ψs (α, γ) > χs (α, γ) where

ψs (α, γ) =
2γ − 1
γ

(
1

2

) 1
γ−1

(α + 1)
γ
γ−1 − (α + 1)α

1
γ−1 +

1

γ
α

γ
γ−1 ,

χs (α, γ) = (α + 1)−
1

γ
.

Note that ψs (1, γ) = χs (1, γ) =
2γ−1
γ
and ∂ψs(α,γ)

∂α
|α=1 = ∂χs(α,γ)

∂α
|α=1 = 1 given

∂ψs (α, γ)

∂α
=
2γ − 1
γ − 1

(
1

2

) 1
γ−1

(α + 1)
1

γ−1 − α
1

γ−1 − 1

γ − 1α
2−γ
γ−1 . (34)

In the Online Appendix we establish that ∂2ψs (α, γ) /∂α
2 > 0 for any α > 1 if and

only if γ > 1.5. Since ψs (α, γ) and χs (α, γ) are tangent at α = 1 and χs (α, γ) is

linear and increasing in α, ψs (α, γ) > χs (α, γ) for any α > 1 if and only if γ > 1.5.

Consequently, SJ > SC if and only if γ > 1.5. Q.E.D.

Proof of Lemma 1.
Examine first joint ownership. We aim to show when uJi − P̂ J

i > GJ .

uJi − P̂ J
i =

[
1

2
(θ` + θh) 2y

J − c
(
yJ
)]
−
[
1

2
(θ` + θh) (1 + ρ) yJ − c

(
ρyJ
)]

=

[
1

2
(θ` + θh) y

J − c
(
yJ
)]
−
[
1

2
(θ` + θh) ρy

J − c
(
ρyJ
)]
≥ 0 (35)

From (35), uJi − P̂ J
i > 0 if ρ = 0, u

J
i − P̂ J

i = 0 if ρ = 1 and
∂(uJi −P̂Ji )

∂ρ
< 0 for ρ ∈ [0, 1) .

GJ =
(
DJ
h +DJ

`

)
− S∗ (η) = 2

[
1

2
(θ` + θh)

(
yJ + ηy∗

)
− c

(
yJ
)]
− [2 (θ` + θh) ηy

∗ − 2c (ηy∗)]

= 2

[
1

2
(θ` + θh) y

J − c
(
yJ
)]
− 2

[
1

2
(θ` + θh) ηy

∗ − c (ηy∗)
]
> 0 (36)

GJ > 0 for any ηy∗ > yJ since yJ maximizes the first term in square brackets.

Suppose ρ = 1. GJ > uJi − P̂ J
i since u

J
i − P̂ J

i = 0 if ρ = 1.
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Suppose ρ = 0. From (35) and (36) GJ ≥ uJi − P̂ J
i if and only if[

1

2
(θ` + θh) y

J − c
(
yJ
)]
− 2

[
1

2
(θ` + θh) ηy

∗ − c (ηy∗)
]
≥ 0 (37)

Substituting yJ and y∗ from (28) and (29) in (37), we obtain

1

2

(
θ` + θh
γ

) γ
γ−1
[
(γ − 1)

(
1

2

) 1
γ−1

− 2 (γη − 2ηγ)
]
≥ 0. (38)

In the Online Appendix we prove that (38) is satisfied for η → 1 if and only if γ ≤ γ̂J

where γ̂J ∈ (2, 3) .
Therefore, if γ ≤ γ̂J , uJi −P̂ J

i ≤ GJ for all ρ ∈ [0, 1] since uJi −P̂ J
i ≤ GJ for both ρ =

0 and ρ = 1,
∂(uJi −P̂Ji )

∂ρ
< 0 and ∂GJ

∂ρ
= 0. Therefore IC for punishment investment (16)

is satisfied whenever IC for target investment ηy∗ (7) holds. Accordingly, the optimal

punishment investment equals the lowest feasible punishment investment, pJi = ρyJ .

If γ > γ̂J , there exists ρJ ∈ (0, 1) such that uJi − P̂ J
i ≤ GJ if and only if ρ ≥ ρJ .

This follows since uJi − P̂ J
i > GJ if ρ = 0, uJi − P̂ J

i < GJ if ρ = 1,
∂(uJi −P̂Ji )

∂ρ
< 0 and

∂GJ

∂ρ
= 0. Therefore, if pJi = ρyJ and ρ < ρJ , there are values of δ for which (7) is

satisfied but (16) is not. Then it is optimal to increase pJi so that u
J
i − P̂ J

i = GJ . That

is, optimal punishment investment equals pJi = ρJyJ > ρyJ if and only if γ > γ̂J and

ρ < ρJ proving the statement in Lemma 1 for joint ownership.

Under common ownership the ICs for punishment investments are

δ
(
FC
` + FC

h

)
≥ uCi − P̂C

i for i ∈ {`, h} . (39)

Examine the right-hand-side of (39).

uCi − P̂C
i =

[
θi
(
yCi + yCj

)
− c

(
yCi
)]
−
[
θi
(
ρyCi + yCj

)
− c

(
ρyCi

)]
=

[
θiy

C
i − c

(
yCi
)]
−
[
θiρy

C
i − c

(
ρyCi

)]
=

(
θi
γ

) γ
γ−1

[(γ − 1)− (γρ− ργ)] ≥ 0 (40)

It follows from (40) that uCh − P̂C
h > uC` − P̂C

` and therefore the IC for agent `’s

punishment investment is slack.

As above, we derive GC .
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GC =
(
DC
h +DC

`

)
− S∗ (η)

=
[
θhy

C
h − c

(
yCh
)]
− [θhηy∗ − c (ηy∗)] +

[
θ`y

C
` − c

(
yC`
)]
− [θ`ηy∗ − c (ηy∗)] > 0. (41)

GC > 0 for any ηy∗ > yCh since y
C
h maximizes the first term in square brackets and yC`

maximizes the third term in square brackets.

uCh − P̂C
h ≤ GC is equivalent to

[
θhρy

C
h − c

(
ρyCh

)]
+
[
θ`y

C
` − c

(
yC`
)]
− [(θ` + θh) ηy

∗ − 2c (ηy∗)] ≥ 0 (42)

Substitute ρ = 0 in (42).

(
θ`
γ

) γ
γ−1 [

(γ − 1)− (1 + α)
γ
γ−1 (γη − 2ηγ)

]
≥ 0 (43)

In the Online Appendix we prove that (43) is satisfied if and only if γ ≤ γ̂C where

γ̂C ∈ (2, 3) .
As above, if γ ≤ γ̂C , uCh − P̂C

h ≤ GC for all ρ ∈ [0, 1] since uCh − P̂C
h ≤ GC for both

ρ = 0 and ρ = 1,
∂(uCh−P̂Ch )

∂ρ
< 0 and ∂GC

∂ρ
= 0. Accordingly, pCi = ρyCi for i ∈ {`, h}.

If γ > γ̂C , there exists ρC such that uCh − P̂C
h ≤ GC if and only if ρ ≥ ρC . This

follows since uCh − P̂C
h > GC if ρ = 0, uCh − P̂C

h < GC if ρ = 1,
∂(uCh−P̂Ch )

∂ρ
< 0 and

∂GC

∂ρ
= 0. Therefore pCh = ρCyCh > ρyCh .

Q.E.D.

Proof of Lemma 3.
(i) If δ ≥ δω2(1), investing y∗ is SPE under both ownership structures. If δω1(1) ≤

δ < δω2(1), investing y∗ is SPE only under ω1.

If δ < δω1(1), investing y∗ is not a SPE under either ownership structure. Define ηωi

such that δ = δωi(ηωi). Accordingly, ηωiy∗ is the highest investment sustainable in a

SPE under ωi. Therefore, δ = δω1(ηω1) = δω2(ηω2) < δω2(ηω1). Since ∂δωi(η)/∂η > 0,

this implies that ηω1 > ηω2 and strictly higher investments are sustainable in SPE

under ω1 than under ω2.

In sum, the joint surplus under ω1 is (weakly) greater than under ω2 for any δ > 0.

(ii) As in (i), investing y∗ is a SPE under ω1 if δ ≥ δω1(1) and the joint surplus

under ω1 is (weakly) greater than under ω2.

Now we have δω1(η̃) = δω2(η̃), δ = δω1(ηω1) = δω2(ηω2) < δω2(ηω1) if and only if
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η > η̃ and δ = δω2(ηω2) = δω1(ηω1) < δω1(ηω2) if and only if η < η̃. Consequently, the

joint surplus is maximized under ω1 if and only if δ > δω1(η̃).

Q.E.D.

Proof of Lemma 4.
(i) From (36) and (41) we obtain

GC −GJ =
[
θhy

C
h − c

(
yCh
)]
+
[
θ`y

C
` − c

(
yC`
)]
− 2

[
1

2
(θ` + θh) y

J − c
(
yJ
)]
. (44)

(20) in Section 4 proves that GC > GJ for any θh > θ`.

(ii) Since ρ ≥ max
{
ρC , ρJ

}
, pωi = ρyωi for i ∈ {h, `} and ω ∈ {C, J} .

V C = S∗ (η)−
[
θh
(
yCh + ρyC`

)
− c

(
yCh
)]
−
[
θ`
(
yC` + ρyCh

)
− c

(
yC`
)]
,

V J = S∗ (η)− 2
[
1

2
(θh + θ`)

(
yJ + ρyJ

)
− c

(
yJ
)]
.

If ρ = 1, V C = S∗ (η) − SC and V J = S∗ (η) − SJ . According to Proposition 1,

SC < SJ if and only if γ > 1.5. Therefore if ρ = 1 V C > V J if and only if γ > 1.5.

Furthermore, if ρ = 0

V J −V C =
[
θhy

C
h − c

(
yCh
)]
+
[
θ`y

C
` − c

(
yC`
)]
− 2

[
1

2
(θh + θ`) y

J − c
(
yJ
)]
> 0. (45)

(45) is equivalent to (19) and therefore positive.

Suppose γ > 1.5. Since V J > V C if ρ = 0 , V J < V C if ρ = 1 and V J and V C are

linear in ρ, there exists ρ̂ ∈ (0, 1) such that V J ≤ V C if and only if ρ ≥ ρ̂.

Suppose γ < 1.5. Since V J > V C for both ρ = 0 and ρ = 1 and V J and V C are

linear in ρ, it follows that V J > V C for all ρ ∈ [0, 1].
In sum, V J ≤ V C if γ > 1.5 and ρ ≥ max

{
ρ̂, ρC , ρJ

}
. V J > V C if γ < 1.5 or

max
{
ρC , ρJ

}
< ρ < ρ̂.

Q.E.D.
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Proof of Proposition 2.
Step 1. Derive δJ and δC .

To derive the explicit form of δJ we first substitute (28) and (29) in (36) obtaining

GJ = 2

[
1

2
(θ` + θh)

(
θ` + θh
2γ

) 1
γ−1

−
(
θ` + θh
2γ

) γ
γ−1
]

−2
[
1

2
(θ` + θh) η

(
θ` + θh
γ

) 1
γ−1

− ηγ
(
θ` + θh
γ

) γ
γ−1
]

=

(
θ` + θh
γ

) γ
γ−1
[
(γ − 1)

(
1

2

) 1
γ−1

− (ηγ − 2ηγ)
]
> 0. (46)

(46) is positive by (36).

GJ + V J =
(
DJ
` +DJ

h

)
−
(
P J
` + P J

h

)
equals

GJ + V J = 2

[
1

2
(θ` + θh)

(
yJ + ηy∗

)
− c

(
yJ
)]
− 2

[
1

2
(θh + θ`)

(
yJ + ρyJ

)
− c

(
yJ
)]

= (θ` + θh)
(
ηy∗ − ρyJ

)
= (θ` + θh)

[
η

(
θ` + θh
γ

) 1
γ−1

− ρ
(
θ` + θh
2γ

) 1
γ−1
]

=

(
1

γ

) 1
γ−1

(θ` + θh)
γ
γ−1

[
η − ρ

(
1

2

) 1
γ−1
]
. (47)

Using (46) and (47) we obtain

δJ =
GJ

GJ + V J
=
(γ − 1)

(
1
2

) 1
γ−1 − (ηγ − 2ηγ)

γ
[
η − ρ

(
1
2

) 1
γ−1
] . (48)
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Similarly, GC from (41) and GC + V C =
(
DC
` +DC

h

)
−
(
PC
` + PC

h

)
equal

GC =

[
θh

(
θh
γ

) 1
γ−1

−
(
θh
γ

) γ
γ−1
]
+

[
θ`

(
θ`
γ

) 1
γ−1

−
(
θ`
γ

) γ
γ−1
]

−
[
(θ` + θh) η

(
θ` + θh
γ

) 1
γ−1

− 2ηγ
(
θ` + θh
γ

) γ
γ−1
]

=

(
θ`
γ

) γ
γ−1 [

(γ − 1)α
γ
γ−1 + (γ − 1)− (ηγ − 2ηγ) (α + 1)

γ
γ−1

]
, (49)

GC + V C =
[
θh
(
yCh + ηy∗

)
− c

(
yCh
)]
+
[
θ`
(
yC` + ηy∗

)
− c

(
yC`
)]

−
[
θh
(
yCh + ρyC`

)
− c

(
yCh
)]
−
[
θ`
(
yC` + ρyCh

)
− c

(
yC`
)]

= θh
(
ηy∗ − ρyC`

)
+ θ`

(
ηy∗ − ρyCh

)
= (θ`)

γ
γ−1

(
1

γ

) 1
γ−1 [(

η (α + 1)
1

γ−1 − ρ (α)
1

γ−1

)
+ α

(
(ηα+ 1)

1
γ−1 − ρ

)]
.(50)

We have substituted in θh = αθ`. Using (49) and (50) we obtain

δC =
(γ − 1) + (γ − 1)α

γ
γ−1 − (ηγ − 2ηγ) (α + 1)

γ
γ−1

γ
[(
η (α + 1)

1
γ−1 − ρ (α)

1
γ−1

)
+ α

(
η (α + 1)

1
γ−1 − ρ

)] . (51)

Step 2. Proof that for η = ρ = 1 δC < δJ if and only if γ > 2

In the Online Appendix we establish that for ρ = 1 δC < δJ ⇔ χr (α, γ, η) <

ψr (α, γ, η) where

χr (α, γ, η) = (γ − 1)
[
η −

(
1

2

) 1
γ−1
]
+ α

[
(γ − 1)

(
1

2

) 1
γ−1

− (ηγ − 2ηγ)
]
, (52)

ψr (α, γ, η) = (2η
γ − η)

(
1

2

) 1
γ−1

(α + 1)
γ
γ−1 − (γ − 1)α

γ
γ−1

[
η −

(
1

2

) 1
γ−1
]

−α
1

γ−1

[
(γ − 1)

(
1

2

) 1
γ−1

− (ηγ − 2ηγ)
]
. (53)
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Therefore, if η = 1 we have

χr (α, γ, 1) = (γ − 1)
[
1−

(
1

2

) 1
γ−1
]
+ α

[
(γ − 1)

(
1

2

) 1
γ−1

− (γ − 2)
]
,

ψr (α, γ, 1) =

(
1

2

) 1
γ−1

(α + 1)
γ
γ−1 − (γ − 1)α

γ
γ−1

[
1−

(
1

2

) 1
γ−1
]

−α
1

γ−1

[
(γ − 1)

(
1

2

) 1
γ−1

− (γ − 2)
]
.

Differentiating with respect to α gives

∂χr (α, γ, 1)

∂α
=

[
(γ − 1)

(
1

2

) 1
γ−1

− (γ − 2)
]
> 0, (54)

∂ψr (α, γ, 1)

∂α
=

γ

γ − 1

(
1

2

) 1
γ−1

(α + 1)
1

γ−1 − γα
1

γ−1

[
1−

(
1

2

) 1
γ−1
]

− 1

γ − 1α
2−γ
γ−1

[
(γ − 1)

(
1

2

) 1
γ−1

− (γ − 2)
]
. (55)

Note that χr (1, γ, 1) = ψr (1, γ, 1) = 1 and
∂χr(α,γ,1)

∂α
|α=1 = ∂ψr(α,γ,1)

∂α
|α=1 =

[
(γ − 1)

(
1
2

) 1
γ−1 − (γ − 2)

]
.

Note also that (54) is positive by (46). In the Online Appendix we establish that

∂2ψr (α, γ, 1) /∂α
2 > 0 for any α > 1 if and only if γ > 2. Since χr (α, γ, 1)

and ψr (α, γ, 1) are tangent at α = 1 and χr (α, γ, 1) is linear and increasing in α,

ψr (α, γ, 1) > χr (α, γ, 1) for any α > 1 if and only if γ > 2. Consequently, for

η = ρ = 1 δC < δJ if and only if γ > 2.

Step 3. Proof that for ρ = 1 δC ≤ δJ if and only if γ > 2 and η ≥ η̂.

Step 2 establishes that χr (α, γ, 1) < ψr (α, γ, 1) if and only if γ > 2. It is also

straightforward to show that χr
(
α, γ,

(
1
2

) 1
γ−1
)
= ψr

(
α, γ,

(
1
2

) 1
γ−1
)
since ηγ − 2ηγ =

(γ − 1)
(
1
2

) 1
γ−1 and 2ηγ − η = 0 if η=

(
1
2

) 1
γ−1 . Note that ηy∗ = yJ if η =

(
1
2

) 1
γ−1 .

Rearrange terms in (52) and (53) so that χ̂r (α, γ, η) is linear in η and ψ̂r (α, γ, η)

is nonlinear in η.

χ̂r (α, γ, η) = (γ − 1)
(
1

2

) 1
γ−1 [

α + α
1

γ−1 − α
γ
γ−1 − 1

]
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+η

[
(γ − 1)

(
1 + α

γ
γ−1

)
− γ

(
α + α

1
γ−1

)
+

(
1

2

) 1
γ−1

(α + 1)
γ
γ−1

]

ψ̂r (α, γ, η) = 2η
γ

[
(α + 1)

γ
γ−1

(
1

2

) 1
γ−1

− α
1

γ−1 + α

]

In the Online Appendix we show that ∂χ̂r
∂η

> 0 if γ > 2, ∂ψ̂r
∂η

> 0 and ∂2ψ̂r
∂η2

> 0.

Suppose γ > 2. We have proved that χ̂r
(
α, γ,

(
1
2

) 1
γ−1
)
= ψ̂r

(
α, γ,

(
1
2

) 1
γ−1
)
and

according to Step 2 χ̂r (α, γ, 1) < ψ̂r (α, γ, 1). Since χ̂r (α, γ, η) is increasing and linear

in η and ψ̂r (α, γ, η) is increasing and convex in η, there exists η̂ ∈
((

1
2

) 1
γ−1 , 1

)
such

that χ̂r (α, γ, η) ≤ ψ̂r (α, γ, η) if and only if η ≥ η̂. Accordingly, δC ≤ δJ if γ > 2,

η ≥ η̂ and ρ = 1.

Suppose γ < 2. Since ψ̂r (α, γ, η) is increasing and convex in η and χ̂r (α, γ, η)

is linear in η, it must be that χ̂r (α, γ, η) is increasing in η also for γ < 2 since

χ̂r

(
α, γ,

(
1
2

) 1
γ−1
)
= ψ̂r

(
α, γ,

(
1
2

) 1
γ−1
)
and χ̂r (α, γ, 1) > ψ̂r (α, γ, 1). Therefore χ̂r (α, γ, η) >

ψ̂r (α, γ, η) for all η >
(
1
2

) 1
γ−1 . Accordingly, δC > δJ if γ < 2 and ρ = 1.

Step 4. Proof that (i) δC < δJ if γ > 2 , η ≥ η̂ and ρ ≥ max
{
ρ̃, ρC , ρJ

}
and (ii)

δJ < δC if γ < 2, η < η̂ or max
{
ρC , ρJ

}
≤ ρ < ρ̃.

Since ρ ≥ max
{
ρC , ρJ

}
, pωi = ρyωi for i ∈ {h, `} and ω ∈ {C, J} .

δC ≤ δJ is equivalent to

V C ≥ GC

GJ
V J . (56)

GC

GJ
> 1 by Lemma 4(i) and does not depend on ρ.

Suppose γ > 2 and η ≥ η̂. According to the proof of Lemma 4(ii) V C = V J if

ρ = ρ̂ . Thus (56) is not satisfied if ρ = ρ̂. By step 2 of this proof (56) is satisfied if

ρ = 1 given γ > 2 and η ≥ η̂. Since V C and V J are linear in ρ, there exists ρ̃ ∈ (ρ̂, 1)
such that δC ≤ δJ if and only if ρ ≥ ρ̃ given γ > 2 , η ≥ η̂ and ρ ≥ max

{
ρC , ρJ

}
.

Suppose γ < 1.5. According to the proof of Lemma 4(ii) V J > V C for all ρ ∈ [0, 1] .
Therefore (56) cannot be satisfied.

Finally, suppose 1.5 < γ < 2. According to the proof of Lemma 4(ii) V C > V J if

and only if ρ > ρ̂. However, even at ρ = 1 δJ ≤ δC according to step 2 of this proof.

Therefore (56) cannot be satisfied. Therefore δJ ≤ δC if γ < 2.

In sum, (i) δC ≤ δJ if and only if γ > 2 , η ≥ η̂ and ρ ≥ max
{
ρ̃, ρC , ρJ

}
, (ii)

δC > δJ if γ < 2 , η < η̂ or max
{
ρC , ρJ

}
≤ ρ < ρ̃.

By Lemma 3(ii), (i) implies that the joint surplus is (weakly) greater under com-
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mon ownership than under joint ownership if and only if γ > 2 , δ ≥ δ(η̂) and

ρ ≥ max
{
ρ̃, ρC , ρJ

}
. Consequently, the joint surplus is greater under joint ownership

than under common ownership if γ < 2 , δ < δ(η̂) or max
{
ρC , ρJ

}
≤ ρ < ρ̃.

Q.E.D.

Proof of Lemma 5.
(i) The gain from deviation under ownership by agent i is equal to

Gi =

[
1

2
(θ` + θh)

(
yii + y∗

)
+
1

2
(θi − θj)

(
yii + µy∗

)
− c

(
yii
)]
+

[
1

2
(θ` + θh)

(
y∗ + yij

)
+
1

2
(θj − θi)

(
y∗ + µyij

)
− c

(
yij
)]
− [2 (θ` + θh) y

∗ − 2c (y∗)]

=
[
θiy

i
i − c

(
yii
)]
− [θiy∗ − c (y∗)]

+

[
1

2
(θ` + θh) y

i
j +

1

2
(θj − θi)µyij − c

(
yij
)]

(57)

−
[
1

2
(θ` + θh) y

∗ +
1

2
(θj − θi)µy∗ − c (y∗)

]
Using the envelope theorem and taking into account that ∂y∗/∂µ = 0, we obtain

∂Gh

∂µ
=
1

2
(θ` − θh)

(
yh` − y∗

)
> 0 (58)

∂G`

∂µ
=
1

2
(θh − θ`)

(
y`h − y∗

)
< 0. (59)

Note that common ownership is formally equivalent to single ownership when µ = 1.50

Therefore Gh = G` = GC for µ = 1, and (58) and (59) prove that Gh < GC < G` for

any µ < 1. According to Lemma 4 GJ < GC . Therefore max
{
GJ , Gh

}
< GC < G`.

(ii) According to Proposition 1 SC < SJ if and only if γ > 1.5. Therefore V C > V J

if ρ = 1 and γ > 1.5. (25) and (26) prove that V h < V C < V ` if ρ = 1 and µ < 1

proving the statement in the Lemma.

Q.E.D.

50In both cases both agents’ investments fully contribute to the value of the project even under
disagreement — either because the access of common owners cannot be restricted or because the
non-owner’s investment is fully sunk in the project.
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Proof of Proposition 3.
(i) According to (21) − (24), common ownership is formally equivalent to single

ownership if µ = 1. Therefore δC = δh = δ` if µ = 1. According to the proof of

Proposition 2 (assuming η = 1), δJ < δC if γ < 2 or ρ < ρ̃ . Therefore for µ = 1

δJ < δC = δh = δ` if γ < 2 or ρ < ρ̃ . By continuity the same holds for µ→ 1.

(ii) In the Online Appendix we prove that δh < δJ < δ` if γ < 2, ρ = 1 and µ = 0.

According to Proposition 2, δJ < δC if γ < 2. Therefore δh < min
{
δC , δJ , δ`

}
if γ < 2,

ρ = 1 and µ = 0. By continuity the same holds for ρ→ 1 and µ→ 0.

(iii) In the Online Appendix we prove that δC < min
{
δJ , δh, δ`

}
if γ > 2, ρ > ρ′

and θ`
θh
→ 0.

(iv) In the Online Appendix we prove that δ` < δJ < δh if γ > 2, ρ = 1 and µ = 0.

In the Online Appendix we also prove that δ` < δC if γ > 2, ρ = 1, θ`
θh
→ 1 and µ→ 0.

Therefore δ` < min
{
δJ , δC , δh

}
if γ > 2, ρ = 1, θ`

θh
→ 1 and µ→ 0. By continuity the

same holds for ρ→ 1.

Q.E.D.
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