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Abstract

Background: The association patterns of attention deficit hyperactivity disorder (ADHD)

and autism spectrum disorder (ASD) with educational attainment (EA) are complex; chil-

dren with ADHD and ASD are at risk of poor academic outcomes, and parental EA has

been associated with risk of ADHD/ASD in the offspring. Little is known on the causal

links between ADHD, ASD, EA and the potential contribution of cognitive ability.

Methods: Using the latest genome-wide association studies (GWAS) summary data on

ADHD, ASD and EA, we applied two-sample Mendelian randomization (MR) to assess

the effects of genetic liability to ADHD and ASD on EA. Reverse direction analyses were

additionally performed. Multivariable MR was performed to estimate any effects inde-

pendent of cognitive ability.

Results: Genetic liability to ADHD had a negative effect on EA, independently of cognitive abil-

ity (MVMRIVW: -1.7months of education per doubling of genetic liability to ADHD; 95% CI: -2.8

to -0.7), whereas genetic liability to ASD a positive effect (MVMRIVW: 30 days per doubling of

the genetic liability to ASD; 95% CI: 2 to 53). Reverse direction analyses suggested that genetic

liability to higher EA had an effect on lower risk of ADHD, independently of cognitive ability

(MVMRIVWOR: 0.33 per SD increase; 95% CI: 0.26 to 0.43) and increased risk of ASD (MRIVWOR:

1.51 per SD increase; 95% CI: 1.29 to 1.77), which was partly explained by cognitive ability

(MVMRIVWOR per SD increase: 1.24; 95%CI: 0.96 to 1.60).

Conclusions: Genetic liability to ADHD and ASD is likely to affect educational attainment,

independently of underlying cognitive ability.
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Introduction

Attention deficit hyperactivity disorder (ADHD) and au-

tism spectrum disorder (ASD) are neurodevelopmental

conditions that typically first manifest early in childhood

and often persist into adulthood.1,2 Both conditions are as-

sociated with one of the strongest predictors of adult life

outcomes and life satisfaction: educational attainment.3,4

Observational research evidence suggests that children

with ADHD show lower academic performance compared

with their typically developing peers,5–7 and the condition

has been associated with increased risk of high school

dropout.8 In the case of ASD, rates of transition to post-

secondary education are much lower than in the general

population, and only a small proportion of individuals

with ASD who move on to higher education will gradu-

ate.9,10 Several factors have been found to predict educa-

tional attainment in children with ADHD or ASD, with

one of the strongest being cognitive ability.11,12

The pattern of association of ADHD and ASD with edu-

cational outcomes is further complicated by parental educa-

tional attainment. Specifically, higher parental educational

attainment has been found to be associated with increased

risk of ASD in the offspring, whereas lower parental educa-

tional attainment with increased risk of ADHD.13,14

Observational evidence has been recently corroborated

by studies using whole-genome approaches (linkage dis-

equilibrium score regression,15 multi-trait analysis of

GWAS- MTAG16) as well as aggregates of common risk

variants [i.e. polygenic risk scores (PRS), suggesting strong

negative genetic correlations and polygenic associations of

educational attainment with ADHD and positive genetic

correlations and polygenic associations with ASD].17–19

Despite increasing evidence suggesting polygenic and ob-

servational associations, little is known on whether there

are causal links. Observational evidence can be hampered

by measured or unmeasured confounding,20 and whole-ge-

nome approaches and PRS do not account for the potential

influence of pleiotropic genetic variants.21 A useful method

for overcoming these limitations is Mendelian randomiza-

tion (MR).22 MR can be implemented as an instrumental

variable analysis, using common genetic variants as proxies

for environmental exposures and allowing the assessment of

causal relations among the exposures with the outcome of

interest.23 MR studies suggest bidirectional effects between

genetic liability to ADHD and cognitive ability (Figure 1A)

and effects of genetic liability to higher cognitive ability on

ASD (Figure 1B).24 Education and cognitive ability causally

influence each other according to MR findings

Key Messages

• There is increasing evidence suggesting that children with attention deficit hyperactivity disorder (ADHD) are at risk

of lower school performance and poor academic outcomes, and that adolescents with autism spectrum disorder

(ASD) are less likely to transition to higher education compared with their typically developing peers.

• Additionally, cohort- and registry-based studies suggest an association between parental educational attainment and

risk of ADHD and ASD in the offspring.

• The observational evidence seems to be in line with studies using whole-genome association findings. Specifically,

genetic liability to ADHD shows negative genetic correlations and associations with educational attainment, whereas

ASD presents positive associations.

• However, there is an absence of evidence from Mendelian randomization (MR) approaches on whether the

associations are causal in nature, and on the possible contribution of cognitive ability.

• The present study uses a range of MR methods to assess whether there is a bidirectional causal link between genetic

liability to ADHD, ASD and educational attainment and the possible role of cognitive ability.

• We found evidence of effects of genetic liability to ADHD on educational attainment, and evidence of effects of

genetic liability to higher educational attainment on risk of ADHD which was independent of cognitive ability. Genetic

liability to higher educational attainment was found to causally influence ASD in a positive direction although most

of the effect was due to cognitive ability.

• The present study adds to the existing literature on ADHD, ASD and educational attainment by highlighting two main points:

(i) the influence of genetic liability to ADHD and ASD on educational attainment, independently of cognitive ability; and (ii) the

distinct contribution of genetic liability to higher educational attainment and cognitive ability on risk of ADHD and ASD.
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(Figure 1C).25,26 Based on this, several possibilities linking

ADHD, ASD and educational attainment could be pro-

posed—some of them visualized in Figure 1.

We used genome-wide association study (GWAS) sum-

mary statistics and MR to investigate the causal links be-

tween genetic liability to ADHD, ASD and educational

attainment (Figure 1). In MR settings, binary exposures

(e.g. ADHD, ASD) are often approximated by continuous

latent liabilities, assuming that they are normally distrib-

uted in the population.27,28 Under liability-threshold mod-

els of inheritance, an individual’s liability will be

phenotypically expressed after the threshold has been

exceeded, depending on the synergy of genetic variation,

environmental factors and chance.29–32 This seems to be

supported for ADHD and ASD, as high polygenic risk to

the conditions has been associated with sub-threshold phe-

notypic expressions (traits) in the general population.33,34

We performed two-sample MR to assess whether genetic

liability to ADHD and ASD (reflecting individual and po-

tentially parental effects) are causally linked to educational

attainment (Figure 1A and B), as well as whether genetic li-

ability to higher educational attainment (reflecting poten-

tially parental and dynastic effects) is causally linked to

risk of ADHD and ASD (Figure 1C). We used an extension

of MR, multivariable MR (MVMR), to assess whether any

identified effects were independent of cognitive ability.

Figure 1. Possible causal pathways linking attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), cognitive ability and edu-

cational attainment. Arrows between the exposures of interest were oriented based on previous Mendelian randomization (MR) evidence on the links

of genetic liability to higher cognitive ability with ADHD, ASD and educational attainment.24–26 Specifically, pathway A has been based on evidence

suggesting bidirectional causal links between genetic liability to ADHD and cognitive ability.24 Pathway B has been based on findings suggesting a

causal effect of genetic liability to higher cognitive ability on ASD (but not vice versa24). Finally, pathway C has been based on evidence indicating bi-

directional causal links between genetic liability to higher educational attainment and cognitive ability.25,26 All three pathways illustrate that the

effects of the exposures of interest on the outcome are likely to be obscured by cognitive ability. Present figures are not formal or sufficient directed

acyclic graphs (DAGs), and they do not cover all the causal pathways that might exist between the phenotypes
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Methods

The study was conducted using publicly available GWAS

summary data. Ethics declarations for each dataset used in

the present study can be found in the original

publications.17,18,24,36

Univariable two-sample Mendelian randomization

MR allows the estimation of causal links between an expo-

sure and an outcome by utsing common genetic variants as

instruments for the exposure of interest. The robustness of

the method relies on assumptions that the genetic instru-

ments should satisfy the following: (i) there must be a ro-

bust association between the implicated genetic variants

and the exposure; (ii) the variants should not be associated

with any confounders of the associations between the ex-

posure and the outcome; and (iii) the variants should oper-

ate on the outcome entirely via the exposure.35 In this

context, we applied two-sample MR in which the effects of

the genetic instruments on the exposure and on the out-

come are extracted from separate GWASs that have been

conducted in independent samples from the same underly-

ing population.23

Genetic instruments

We used the latest publicly available GWAS summary sta-

tistics on ADHD,17 ASD,18 cognitive ability24 and educa-

tional attainment.36 Detailed information on the GWAS

used can be found in the original publications.

In each GWAS dataset, we extracted all variants with a

P-value <¼ 5 x 10-8. The identified variants were clumped

using an r2 <0.01, within a 10 000 kb window, based on

the 1000 Genomes European phase 3 reference panel. This

resulted in 11 single nucleotide polymorphisms (SNPs) for

ADHD, two SNPs for ASD, 481 SNPs for educational at-

tainment and 212 SNPs for cognitive ability.

In order to increase the power of the ASD analyses, we

relaxed the P-value threshold to 5 x 10-7. After clumping,

we identified 10 independent (r2 <0.01) SNPs. A similar

threshold (P <¼ 5 x 10-6) for instrument definition has

been used in previous studies.37,38 However, we acknowl-

edged the possibility that relaxing the inclusion threshold

might lead to weak instrument bias in our estimates.39,40

In order to alleviate this, we performed robust adjusted

profile score MR (MR raps), a method which provides an

effect estimate robust to weak instrument bias.40 Details

on the effect sizes, standard errors and P-values of the

instruments can be found in Supplementary Table S1

(available as Supplementary data at IJE online).

For each analysis, instruments were extracted from the

outcome GWASs. LD link online suite [LDlink: An

Interactive Web Tool for Exploring Linkage

Disequilibrium in Population Groups (nih.gov)]41 was

used to identify linkage disequilibrium (LD) proxies when

SNPs were not present in the outcome GWAS (r2 >0.9).

Finally, the alleles of the outcome variants were harmo-

nized on the exposure so that the effect estimates of both

exposure and outcome variants were expressed per effect

allele increase. As the effect allele frequencies for the

ADHD and ASD GWASs were not provided, when the har-

monization of the exposure-outcome alleles was not possi-

ble, variants were excluded from the analyses as being

palindromic. Detailed information on the harmonized

datasets used in the present MR analyses can be found in

Supplementary Table S2 (available as Supplementary data

at IJE online). The full process followed and the final num-

ber of instruments used for each analysis are visualized in

Supplementary Figure S1 (available as Supplementary data

at IJE online). Two-sample MR analyses were performed

using the TwoSampleMR R package.42

Inverse variance weighted MR

The primary MR method used in this study was the inverse

variance weighted (IVW) regression. It is a weighted gener-

alized linear regression of the SNP-outcome coefficients on

the SNP-exposure coefficients with a constrained to zero

intercept term, giving an overall effect estimate of the ex-

posure on the outcome.43

Instrument strength

We assessed the strength of the instruments by calculating

their F-statistic. As a rule of thumb, if the F>10, then the

IVW is unlikely to suffer from weak instrument bias.39

Sensitivity analyses

We tested for the presence of horizontal pleiotropy and

assessed the robustness of the causal effect estimates using

a series of sensitivity analyses, including: MR-Egger regres-

sion,43 weighted median,44 weighted mode,45 MR Raps40

and Steiger filtering.46 Detailed information on each sensi-

tivity analysis conducted in the present study can be found

in Supplementary Methods S1 (Supplementary data are

available at IJE online).

Multivariable Mendelian randomization

Where multiple exposures are suspected to have effects on

an outcome, and the exposures are genetically and

2014 International Journal of Epidemiology, 2021, Vol. 50, No. 6

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/50/6/2011/6294527 by guest on 15 February 2022

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab107#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab107#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab107#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab107#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab107#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab107#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab107#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab107#supplementary-data


phenotypically correlated, univariable MR can yield biased

effect estimates.47 Multivariable MR (MVMR) is an exten-

sion of MR, in which multiple exposures are entered

within the same model, and their direct effects on the out-

come can be estimated.47 We used MVMR to estimate the

direct effects of ADHD, ASD and cognitive ability on edu-

cational attainment, and the direct effects of genetic liabil-

ity to higher educational attainment and cognitive ability

on risk of ADHD and ASD.

For each MVMR analysis, 212 genome-wide significant and

independent (r2 <0.01, 10 000 kb-window) instruments for

cognitive ability were added to the models. The full list of pri-

mary exposure instruments and cognitive ability instruments

was clumped (r2 ¼ 0.01), to ensure the absence of LD among

the included SNPs, and then harmonized. The process followed

and the number of instruments used in the MVMR analyses are

visualized in Figure S2, available as Supplementary data at IJE

online. We performed an inverse variance weighted (IVW) re-

gression of the SNP-outcome coefficients on the SNP-exposure

coefficients, entering the two exposures in the regression model

simultaneously. Details on the effect sizes, standard errors and

P-values of the cognitive ability instruments used can be found

in Supplementary Table S1. We estimated the heterogeneity of

the effect estimates of the instruments included using a modified

version of the Q statistic as well as strength of the instruments

of each exposure conditional on the other using a conditional F

statistic.48 Evidence of heterogeneity indicates the possibility of

biased effect estimates.47 Additionally, as a sensitivity analysis,

in cases where Steiger filtering suggested that SNPs explained

more variation in the outcome than in the exposure, we re-

peated MVMR analyses by removing these SNPs. Finally, we

estimated robust to weak instruments direct effects. This ap-

proach is based on the minimization of Q statistics.48 We calcu-

lated confidence intervals using non-parametric bootstrap with

1000 iterations. Overlapping confidence intervals between the

IVW MVMR, and the robust to weak instruments MVMR,

provide support for the findings and strengthen their

interpretation.

Details on the MVMR method and analytical process, as

well as estimation of F and Q statistics, and robust to weak

instruments MVMR, have been described elsewhere.47,48

MVMR analyses were performed using R, version 3.5. Q and

conditional F statistics, as well as robust to weak instruments

MVMR analyses, were conducted and estimated using the

MVMR package [https://github.com/WSpiller/MVMR].

Interpretation of the effect estimates

In the present study two of our exposures were binary; genetic

liability to ASD and to ADHD. GWAS summary statistics for

these exposures were estimated using logistic regression, and ef-

fect sizes represent log odds ratios.17,18 Therefore, the resulting

MR estimates represent the change in the outcome per unit

change in genetic liability to ADHD/ASD on the log odds scale.

A unit increase in the log odds of the exposure corresponds to a

2.72-fold multiplicative increase in the odds of the exposure.

For rare exposures, the odds are equal to the probability and,

therefore, the MR estimate then represents the average change

in the outcome per 2.72-fold increase in the prevalence of the

exposure, in the case of the present study genetic liability to

ADHD/ASD.49 It may aid interpretation of the estimates to

think about the change in the outcome per doubling (2-fold in-

crease) the prevalence of the exposure (i.e. genetic liability to

ADHD/ASD).49 Thus, as recommended by Burgess and

Labrecque, 2018,49 in the analyses investigating the effects of

genetic liability to ADHD and ASD on educational attainment,

we firstly multiplied the estimates by the standard deviation

(SD) of educational attainment (years of education SD ¼ 4.2)36

to convert them to months/days (where appropriate) of educa-

tion, and then multiplied by ln2 to express the effect of a dou-

bling of genetic liability to ADHD, ASD. In the analyses

investigating the effects of genetic liability to higher educational

attainment on risk of ADHD and ASD, MR estimates and

95% confidence intervals (CI) are expressed per one-SD in-

crease in educational attainment on the odds of developing

ADHD and ASD.

Results

Total effect of genetic liability to ADHD on

educational attainment

For the univariable MR, the F statistic of the ADHD

instruments ranged from 30 to 51. The IVW effect estimate

suggested that a doubling in the genetic liability to ADHD

decreases years of education by around 3 months (MRIVW:

�3.6 months per doubling of genetic liability to ADHD;

95% CI: -5.2 to -2.1; Pval ¼ 5 x 10�6) (Table 1).

The effect estimates were directionally consistent across the

sensitivity analyses performed. There was limited evidence of

horizontal pleiotropy in the analyses, as suggested by the MR-

Egger intercept (intercept¼ -0.008; Pval¼ 0.41). Steiger filter-

ing suggested that the direction of the effect was correct for all

the ADHD instruments. Supplementary Table S3

(Supplementary data are available at IJE online) shows the ef-

fect estimates, standard errors and P-values derived from the

primary and sensitivity analyses.

Direct effect of genetic liability to ADHD on

educational attainment, independent of cognitive

ability

For the MVMR, the direct effect of genetic liability to

ADHD on educational attainment (i.e. not via cognitive
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ability) was approximately 50% smaller than the total ef-

fect (MVMRIVW: -1.7months per doubling of genetic liability to

ADHD; 95% CI: -2.8 to -0.7; Pval¼ 4 x 10-4) (Table 1). There

was evidence of heterogeneity among the effect estimates of the

instruments as indicated by the Q statistic (Q¼ 693; Pval¼ 1 x

10-61). Supplementary Table S4 (available as Supplementary

data at IJE online) contains the direct effect estimates of genetic

liability to ADHD and cognitive ability on educational attain-

ment, and the robust to weak instruments direct effect estimates

and corresponding confidence intervals, as well as the condi-

tional F statistics of the instruments.

Total effect of genetic liability to ASD on

educational attainment

For the univariable MR, the F statistic of the ASD instru-

ments ranged from 26 to 36. There was little evidence of

an effect of genetic liability to ASD on educational attain-

ment (MRIVW: 3 days, per doubling of genetic liability to

ASD; 95% CI: -2.1 months to 2.4 months; Pval ¼ 0.9)

(Table 1). The confidence intervals across primary and sen-

sitivity analyses were largely overlapping. There was little

evidence of directional horizontal pleiotropy (MR-Egger

intercept ¼ -0.009; Pval ¼ 0.42) (Table 2). Steiger filtering

suggested that the effect direction was correct for all the

ASD SNPs. Supplementary Table S5 (available as

Supplementary data at IJE online) contains detailed infor-

mation on the effect estimates, standard errors and P-val-

ues across primary and sensitivity analyses.

Direct effect of genetic liability to ASD on educational

attainment, independent of cognitive ability

When including cognitive ability in the MVMR models,

there was some evidence suggesting that a doubling in the

genetic liability to ASD had a small positive direct effect on

educational attainment, approximately 29 days

(MVMRIVW: 1 month per doubling of genetic liability to

ASD; 95% CI: 3 days to 1.7 months; Pval ¼ 0.03)

(Table 1). There was strong evidence of heterogeneity

among the effect estimates of the instruments as suggested

by the Q statistic (Q¼ 2380; Pval <1 x 10-10). The direct

effect estimates of genetic liability to ASD and cognitive

ability on educational attainment and the robust to weak

instruments direct effect estimates and corresponding con-

fidence intervals, , the conditional F statistics of the

Table 1. The total and direct (not mediated via cognitive ability) effect estimates of genetic liability to attention deficit hyperactiv-

ity disorder (ADHD) and autism spectrum disorder (ASD) on educational attainment

Exposure: genetic liability to ADHD (log-odds). Outcome: educational attainment (SD)

Type of effect Beta SE 95% CI P-value

Total effect �0.103 0.023 �0.15, �0.06 5 x 10�6

Direct effect �0.049 0.014 �0.08, �0.02 0.0004

Exposure: genetic liability to ASD (log-odds). Outcome: educational attainment (SD)

Type of effect Beta SE 95% CI P-value

Total effect 0.004 0.031 �0.06, 0.07 0.9

Direct effect 0.028 0.013 0.002, 0.05 0.03

Table 2. The total and direct (not mediated through cognitive ability) effect estimates of genetic liability to higher educational at-

tainment on risk of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) diagnosis

Exposure: genetic liability to higher educational attainment (SD). Outcome: ADHD

Type of effect Odds ratio SE 95% CI P-value

Total effect 0.30 0.079 0.26, 0.36 6x10�51

Direct effect 0.33 0.126 0.26, 0.43 6x10�17

Exposure: genetic liability to higher educational attainment (SD). Outcome: ASD

Type of effect Odds ratio SE 95% CI P-value

Total effect 1.51 0.082 1.29, 1.77 5 x 10�7

Direct effect 1.24 0.13 0.96, 1.60 0.09
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instruments, can be found in Supplementary Table S6

(available as Supplementary data at IJE online).

Total effect of genetic liability to higher

educational attainment on risk of ADHD

In the univariable MR, the F statistic of the educational at-

tainment instruments ranged from 30 to 240. There was

evidence suggesting that one-SD increase in genetic liability

to higher educational attainment (i.e. � 4.2 years of

schooling) was associated with approximately 70% lower

risk of ADHD (IVWOR: 0.30; 95% CI: 0.26 to 0.36; Pval

¼ 6 x 10-51) (Table 2). There was limited evidence of un-

balanced horizontal pleiotropy (MR-Egger intercept:

�0.003; Pval ¼ 0.47). Both MR-Egger and SIMEX-ad-

justed MR-Egger estimates, accounting for these pleiotro-

pic effects, were directionally in agreement with the IVW,

and the confidence intervals across the methods were

largely overlapping (Supplementary Table S7a, available as

Supplementary data at IJE online). Steiger filtering identi-

fied 81 instruments explaining more variation in ADHD

than in educational attainment. Removing those attenu-

ated the identified effect estimate, which was still sugges-

tive of a strong effect of genetic liability to higher

educational attainment on risk of ADHD (Supplementary

Table S7b).

Direct effect of genetic liability to higher

educational attainment on risk of ADHD,

independent of cognitive ability

In the MVMR, the estimated effect of genetic liability to

higher educational attainment on risk of ADHD, indepen-

dent of cognitive ability, was largely comparable to the to-

tal effect (IVWOR: 0.33; 95% CI: 0.26 to 0.43; Pval ¼ 6 x

10-17) (Table 2). There was evidence of heterogeneity

among the effect estimates of the instruments as indicated

by the Q statistic (Q¼ 843; Pval ¼ 2 x 10-22). A direct ef-

fect was identified even after removing the instruments

identified through Steiger filtering (Supplementary Table

S8, available as Supplementary data at IJE online).

Supplementary Table S8 contains the direct effect estimates

of genetic liability to higher EA and cognitive ability on

risk of ADHD, and the robust to weak instruments direct

effect estimates and corresponding confidence intervals, ,

the conditional F-statistics of the instruments.

Total effect of genetic liability to higher

educational attainment on risk of ASD

In the univariable MR, the F statistic of the educational at-

tainment instruments ranged from 30 to 240. There was

evidence suggesting that genetic liability to higher educa-

tional attainment was associated with increased risk of

ASD (IVWOR: 1.51 per SD increase; 95% CI: 1.29 to 1.77;

Pval ¼ 4 x 10-7) (Table 2). The estimated effect was direc-

tionally consistent across the sensitivity analyses

(Supplementary Table S9a, available as Supplementary

data at IJE online) and there was limited evidence to indi-

cate the presence of unbalanced horizontal pleiotropy

(MR-Egger intercept: -0.007; Pval ¼ 0.11). Steiger filtering

suggested that 62 SNPs associated with educational attain-

ment explained more variation in ASD and these were re-

moved. The exclusion of these SNPs, despite attenuating

the primary analysis effect estimate, was suggestive of an

effect of genetic liability to higher educational attainment

on ASD (Supplementary Table S9b).

Direct effect of genetic liability to higher

educational attainment on risk of ASD,

independent of cognitive ability

In the MVMR, the direct effect of genetic liability to higher

educational attainment on risk of ASD, not mediated

through cognitive ability, was smaller than the total effect

(IVWOR: 1.24 per SD increase; 95% CI: 0.96 to 1.6; Pval

¼ 0.09) (Table 2). There was evidence of heterogeneity

among the effect estimates of each instrument included as

indicated by the Q statistic (Q¼ 910; Pval ¼ 2 x 10-27).

After removing SNPs identified through Steiger filtering

which explain more variation in the outcome, the effect es-

timate attenuated further, providing limited evidence of a

direct effect of genetic liability to higher educational at-

tainment on risk of ASD (Supplementary Table S10, avail-

able as Supplementary data at IJE online). Supplementary

Table S10 contains the direct effect estimates of genetic lia-

bility to higher educational attainment and cognitive abil-

ity on risk of ASD, as estimated by MVMR analysis, and

the robust to weak instruments direct effect estimates and

corresponding confidence intervals, as well as the condi-

tional F statistic of the instruments. The relationships sug-

gested by the results of the present MR and MVMR

analyses are visualized in Figure 2.

Discussion

This is the first study to investigate the bidirectional associ-

ations between genetic liability to ADHD, ASD and educa-

tional attainment and explore the possible role of cognitive

ability in the identified effects using two-sample MR.

Despite the genetic and phenotypic overlap of ADHD and

ASD, we found distinct associations of ADHD and ASD

genetic liability with educational attainment.
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Bidirectional associations between genetic

liability to ADHD and educational attainment

We found evidence consistent with a negative effect of ge-

netic liability to ADHD on educational attainment, which

was only partly attributed to the effects of cognitive ability.

This implies that it is ADHD genetic liability itself, not just

cognitive ability, which causally influences lower educa-

tional attainment. This is in line with a large body of obser-

vational evidence suggesting that beyond cognitive ability,

ADHD traits and disorder are associated with poor aca-

demic outcomes.50,51 In addition, there is increasing evi-

dence using large cohort and registry data suggesting

beneficial effects of ADHD medication on academic per-

formance and outcomes.52,53 Therefore, our results en-

courage future research into early interventions to

ameliorate ADHD phenotypic expressions, in order to im-

prove the academic outcomes of children with ADHD.

We also found that genetic liability to higher educational at-

tainment, over and above cognitive ability, was associated with

lower risk of ADHD. This could be explained in the context of

educational attainment being associated with several socioeco-

nomic position and lifestyle indicators.54,55 Therefore, our find-

ing supports existing observational evidence suggesting that

parental socioeconomic position is associated with risk of

ADHD in the offspring.13,56 This association could be mediated

by optimal lifestyle and general health factors during pregnancy,

which are known also to be associated with ADHD,57,58 as

well as better prenatal care and access to health care services.

Another possible explanation could be dynastic effects

(i.e. the phenotypic expression of the parental genotype

affects the phenotype of the offspring).59 This implies that

parents with higher educational attainment might place

more emphasis on their child’s academic performance, have

more access to educational resources and learning stimuli

and cultivate more learning behaviours. In fact, parental re-

source capital (including income, education and educational

material at home), and parental self-efficacy beliefs to help

their child, have been found to be important predictors of

offspring academic performance.60,61 Parental emphasis on

broader learning behaviours might lead to milder expres-

sion, masking or compensation of the ADHD symptomatol-

ogy in their children, resulting therefore in ADHD being

missed from diagnosis. Academic performance and educa-

tional attainment reflect a range of abilities beyond cogni-

tive ability, such as social behaviour,62 behavioural

discipline63 and imitation,64 thus it could be hypothesized

that children with genetic liability to higher educational at-

tainment might mask ADHD symptomatology.

Figure 2 Relationships between genetic liability to attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and educational

attainment, suggested by the results of the Mendelian randomization (MR) and multivariable Mendelian randomization (MVMR) analyses in the pre-

sent study. Bold arrows indicate the direct, independent of cognitive ability, effects identified, whereas light arrows indicate the total effects
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Bidirectional associations between genetic

liability to ASD and educational attainment

In the case of ASD, we found little evidence suggesting a

positive effect of genetic liability to ASD on educational at-

tainment. The effect was identified only after the direct, in-

dependent of cognitive ability, effects were estimated. In

order for this finding to be interpreted, the observational

associations of ASD with educational attainment and cog-

nitive ability need to be considered. Observational evi-

dence suggests that academic performance in ASD is highly

variable and dependent on several factors including cogni-

tive ability, learning disabilities and executive functioning,

as well as family socioeconomic indicators.65–69 In this

context, the present finding suggests that over and beyond

cognitive factors, phenotypic characteristics of ASD might

have small but beneficial effects on educational attainment.

Such phenotypic characteristics could include hyper-sys-

temizing and attention to detail.70

We also identified a positive total effect of genetic liability

to higher educational attainment on risk of ASD, which

MVMR analyses revealed was attributed, at least partially, to

the effects of cognitive ability. This is in line with a recent

study using the polygenic transmission disequilibrium test

(pTDT) in families of children with ASD, suggesting that pa-

rental polygenic risk for higher educational attainment is asso-

ciated with autism risk in the proband, and these probands

tend to inherit more alleles associated with higher cognitive

ability compared with their siblings without ASD.71

Before reaching conclusions, it is worth considering the ex-

tent to which the identified bidirectional relationships, between

genetic liability to ASD and educational attainment, reflect se-

lection bias. Evidence from the USA, as well as the UK, seem to

suggest an association between parental socioeconomic position

indicators and autism diagnosis in the offspring, possibly due to

better access to health care.72–76 This could possibly indicate se-

lection bias due to socioeconomic position/factors in the ASD

GWAS sample. Although recent evidence from Swedish registry

data suggests that the associations between ASD, educational

attainment and cognitive ability are unlikely to be influenced by

selection bias,14 future research including samples across coun-

tries and socioeconomic strata is necessary.

Overall, in both ADHD and ASD findings, alternative

explanations including diagnostic masking and selection

bias cannot be rejected. Little is currently known on the

sociodemographic, socioeconomic and educational factors

that might influence ADHD and ASD diagnosis.

Specifically, availability and access to health care services,

family income and educational background, even per-

ceived societal stigma, might be defining factors of which

children will end up having a diagnosis and therefore being

included in current GWASs.

Strengths and limitations

Our study benefited from using the latest and largest pub-

licly available GWAS data on all the phenotypes of inter-

est. We performed thorough sensitivity analyses to assess

the effect of pleiotropic variants used as instruments for

each phenotype. We were also able to model the effects of

each exposure along with cognitive ability, so that direct

and indirect effects were quantified.

One of the limitations of the study is the use of instru-

ments for ASD below the genome-wide significance thresh-

old (Pval <5 x 10-7). This might have made the ASD

analyses prone to weak instrument bias, biasing the esti-

mated effect towards the null. However, F statistic and

MR Raps analyses do not support this interpretation.

Second, there was sample overlap between the educational

attainment and cognitive ability GWASs, as both studies

included participants from UK Biobank (overlapping par-

ticipants n¼195 653). This overlap represented approxi-

mately 27% of the educational attainment GWAS

participants. Overlap between the exposure and outcome

GWASs (as in the case of MVMR analyses of ADHD/ASD

and cognitive ability on educational attainment) can lead

to bias towards the observational estimate.77 Therefore,

for a potentially more robust estimate of the effect of cog-

nitive ability on educational attainment, we orient the

readers elsewhere.25,26 Third, high levels of heterogeneity

were identified in our analyses, and this could potentially

suggest the influence of pleiotropic variants in our effect

estimates. However, causal effect estimates were largely

consistent, and confidence intervals overlapped across sev-

eral sensitivity analyses conducted in the present study. In

the case of MVMR, results should be interpreted with cau-

tion, as there was evidence of potentially weak instruments

and increased heterogeneity. However, direct effect esti-

mates were consistent when we applied robust to weak

instruments MVMR methods.

It is worth considering that ADHD and ASD are highly

heterogeneous phenotypes, and different phenotypic

dimensions have been found to have distinct genetic under-

pinnings.78,79 The GWASs used in the present study in-

cluded individuals within the broad range of ADHD and

ASD diagnoses, and it is therefore not possible to decipher

whether the effects identified in the present study are

driven by different phenotypic sub-clusters within ADHD

and ASD.

Future directions

The present findings highlight the importance of further re-

search into the underlying genetic components and pheno-

typic characteristics that might be driving the links
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between genetic liability to ADHD, ASD, cognitive ability

and educational attainment.

Specifically, educational attainment variants are highly

pleiotropic, presenting strong genetic overlaps with mental

health as well as socioeconomic traits.80,81 In the context

of the present analyses it was not possible to disentangle

whether the identified effects were driven by genetic var-

iants specific to educational attainment. Approaches such

as genomic structural equation modelling (genomic SEM),

allowing the identification of sets of genetic variants that

explain variation unique to educational attainment and

variation that is shared with other traits,82 are expected to

offer valuable insights into the identified causal links be-

tween educational attainment, ADHD and ASD.

In addition, novel MR approaches are expected to offer

valuable insights into whether the identified causal links

are a result of dynastic effects or assortative mating. In the

case of the present study, these are possibilities that could

not be excluded. However, investigating these possibilities

would be possible through within-families MR, a novel ap-

proach leveraging genetic information on sibling pairs and

family trios to assess the influence of dynastic effects and

assortative mating in the causal effect estimates.59,83

Furthermore, the availability of large birth cohorts

across countries (e.g. ALSPAC,84 MoBa85) offers the op-

portunity to investigate which specific phenotypic expres-

sions of genetic liability to ADHD and ASD are associated

with educational attainment. There is increasing observa-

tional evidence suggesting associations between specific

ADHD and ASD traits with academic performance. For in-

stance, inattention (rather than hyperactivity) has been

found to be an important predictor of academic out-

comes,51,86 whereas less is known in the case of ASD-re-

lated traits.

Conclusions

Despite the genetic and phenotypic overlap of two neuro-

developmental conditions, ADHD and ASD, we found dis-

tinct effects of ADHD and ASD genetic liability on

educational attainment. Further research in necessary in

order to elucidate whether the identified causal patterns re-

flect parentally transmitted effects, diagnostic masking or

selection bias, and to dissect the broad phenotypes of

ADHD, ASD and educational attainment by focusing on

investigating causal relationships within the several sub-

dimensions.
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