

Lautenschlager, S., Figueirido, B., Cashmore, D., Bendel, E-M., & Stubbs, T. L. (2020). Morphological convergence obscures functional diversity in sabre-toothed carnivores. *Proceedings of the Royal Society of London B: Biological Sciences*, *287*(1935). https://doi.org/10.1098/rspb.2020.1818

Peer reviewed version

Link to published version (if available): 10.1098/rspb.2020.1818

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via The Royal Society at https://doi.org/10.1098/rspb.2020.1818. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

PROCEEDINGS OF THE ROYAL SOCIETY B

BIOLOGICAL SCIENCES

Morphological convergence obscures functional diversity in sabre-toothed carnivores

L	
Journal:	Proceedings B
Manuscript ID	RSPB-2020-1818.R1
Article Type:	Research
Date Submitted by the Author:	03-Sep-2020
Complete List of Authors:	Lautenschlager, Stephan; University of Birmingham, Figueirido, Borja; Universidad de Málaga Cashmore, Daniel; University of Birmingham Bendel, Eva-Maria; Museum für Naturkunde - Leibniz-Institut für Evolutions- und Biodiversitätsforschung; Humboldt-Universität zu Berlin Stubbs, Thomas; University of Bristol, School of Earth Sciences
Subject:	Palaeontology < BIOLOGY, Evolution < BIOLOGY
Keywords:	Convergent evolution, functional morphology, computational analysis, Smilodon, ecology
Proceedings B category:	Palaeobiology

Author-supplied statements

Relevant information will appear here if provided.

Ethics

Does your article include research that required ethical approval or permits?: This article does not present research with ethical considerations

Statement (if applicable): CUST_IF_YES_ETHICS :No data available.

Data

It is a condition of publication that data, code and materials supporting your paper are made publicly available. Does your paper present new data?: Yes

Statement (if applicable):

All data files are available via the following link: https://beardatashare.bham.ac.uk/getlink/fiR7wvK357hbPrQ9FVg6eR1Q/ Upon acceptance the files will be moved to a permanent repository (e.g. Dryad, Zenodo; depending on journal integration policy).

Conflict of interest

I/We declare we have no competing interests

Statement (if applicable): CUST_STATE_CONFLICT :No data available.

Authors' contributions

This paper has multiple authors and our individual contributions were as below

Statement (if applicable):

S.L conceived the study and designed the analyses. S.L., D.D.C and T.L.S. conducted the analyses and designed the figures. B.F and E.-M.B. contributed to the datasets. All authors contributed to the writing of the manuscript

1 Morphological convergence obscures functional diversity in sabre-toothed

- 2 carnivores
- 3

4 Stephan Lautenschlager¹, Borja Figueirido², Daniel D. Cashmore¹, Eva-Maria Bendel^{3,4}, Thomas L.

- 5 Stubbs⁵
- 6
- 7 ¹School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston,
- 8 Birmingham B15 2TT, UK
- 9 ²Universidad de Málaga, Departamento de Ecología y Geología, Facultad de Ciencias, 29071-
- 10 Málaga, Spain.
- ¹¹ ³Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung,
- 12 Invalidenstraße 43 10115 Berlin, Germany
- ⁴Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
- ⁵School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, U.K.
- 15

16 The acquisition of elongated, sabre-like canines in multiple vertebrate clades during the last 17 265 million years represents a remarkable example for convergent evolution. Due to striking superficial similarities in the cranial skeleton, the same or similar skull and jaw functions 18 19 have been inferred for sabre-toothed species and interpreted as an adaptation to subdue 20 large-bodied prey. However, although some sabre-tooth lineages have been classified into 21 different ecomorphs (dirk-tooths and scimitar-tooths) the functional diversity within and 22 between groups and the evolutionary paths leading to these specialisations are unknown. Here, we use a suite of biomechanical simulations to analyse key functional parameters 23 24 (mandibular gape angle, bending strength, bite force) to compare the functional performance 25 of different groups and to quantify evolutionary rates across sabre-tooth vertebrates. Our 26 results demonstrate a remarkably high functional diversity between sabre-tooth lineages and 27 that cranial function and prey killing strategies evolved within clades. Moreover, different 28 biomechanical adaptations in coexisting sabre-tooth species further suggest that this 29 functional diversity was at least partially driven by niche-partitioning. Key words: Convergent evolution, functional morphology, computational analysis, Smilodon, 30

- 31 ecology
- 32

33 **1. Introduction**

The sabre-toothed cat Smilodon fatalis from the Pleistocene of North America represents one of the 34 35 most iconic and instantly recognisable vertebrate fossils [1]. Its distinct morphology characterised by 36 the eponymous, elongated canine teeth, has received considerable academic and public attention [2-37 4]. However, sabre-toothed species were much more diverse and widespread in the fossil record than 38 the prominence of this single well-known species would suggest. Although only loosely defined and 39 not equally distributed across different species, sabre-tooth morphologies, such as elongate and 40 mediolaterally flattened canines, an often anteroposteriorly compressed braincase, and a reduced 41 coronoid process, have evolved several times convergently: in metatherians (thylacosmilines), in 42 eutherians (independently in creodonts, nimravids, barbourofelids, and machairodontine felids), and 43 outside of Mammalia in Permian gorgonopsians [5,6] (figure 1).

Through time, sabre-toothed carnivores showed a near-global distribution across North 44 America, Europe, Africa and Asia and dominated many terrestrial ecosystems during the Permian 45 46 and the Cenozoic [1,7]. This repeated occurrence of sabre-toothed morphologies in different, and 47 often unrelated, groups separated by up to 200 million years has been explained with independent 48 adaptations for subduing large-bodied prey [5,8 although see 9]. Furthermore, the presence of sabre-49 toothed characters has been hypothesised to provide distinct functional advantages [10], which are 50 thought to represent functional optimisation and trend towards increasingly specialized 51 feeding/hunting adaptations in each lineage [11].

52 Several characters have been discussed as performance indicators in sabre-toothed taxa, 53 including the evolution of a large jaw gape, decreased or increased bite forces and improved stability 54 of the craniodental complex [4,12-14]. However, functional studies of sabre-toothed predators have 55 often focused on single well-known or well-preserved species within each lineage, and these have 56 usually been the most derived taxa impeding inferences about evolutionary trajectories [4,5,13]. This 57 traditional focus on derived taxa has further led to the assumption of functional and evolutionary 58 convergence across sabre-toothed forms. However, caution is warranted over simplified 59 morphological comparisons, as morphological convergence can be a poor indicator for functional 60 convergence [15,16]. Nevertheless, similar ecomorphologies, prey selection, hunting and killing 61 behaviour have been suggested for all sabre-tooths, although some functional differences between 62 scimitar-toothed and dirk-toothed taxa have been recognised [5,6,14,17,18].

63 Here, we investigate the evolution of sabre-toothed morphologies across different clades and 64 over the last 265 million years from a biomechanical perspective. We test the hypothesis that 65 functional trends were decoupled and divergent from morphologically convergent trajectories. Specifically, we obtain biomechanical performance measures (jaw gape, mandibular stability, bite 66 67 force), which have been demonstrated to correlate with known biologically and ecologically 68 meaningful properties [19-21]. Using a combination of biomechanical modelling and phylogenetic 69 comparative methods, we find that most of the sabre-tooth clades evolved towards different functional specialisations acquired via variable evolutionary pathways. 70

71

72 **2. Material and methods**

73 (a) Specimen selection

74 A total of 66 species were sampled from the literature and analysed (see supplementary material) 75 (figures 1, S1a). Only taxa which preserved the complete craniomandibular skeleton were selected, 76 as well as a few incomplete taxa, which could be reconstructed with minimal interpretation. This 77 allowed for over 50% of established species and over 70% of established genera to be sampled in 78 each group. Two-dimensional outlines of each specimen were generated using Adobe Illustrator CC 79 (Adobe Inc.) (figure S1b) and muscle attachment sites of the masseter and the temporalis muscle 80 groups were mapped onto the cranial outlines (the pterygoideus group was not considered due to its 81 largely mediolateral line of action and negligible contribution to gape angle and bite force) for the 82 mammalian taxa. For the gorgonopsian taxa, the m. adductor mandibulae externus (m. AME) 83 complex, the pterygoideus muscles and the pseudotemporalis muscles were each considered as a 84 single functional unit.

85

86 **(b)** Gape analysis

For the gape analysis, the images of the cranial outlines were imported into Blender
(www.blender.org, version 2.79) to generate simplified skull and jaw models (figure S1*c*) using a
box-modelling approach [22]. The outlines were extruded in the third dimension by a consistent
width of 2 mm (we refer to these simplified three-dimensional models as extruded models following

91 [23]).

92 The gape analysis (figures 2, S1d) followed the methodology detailed in [24]. The skull and 93 mandible models were joined at the jaw joint and the mandible was allowed full rotation around the 94 mediolateral axis (y-axis) to simulate sagittal opening and closing. Adductor muscles were 95 represented by cylinders connecting the attachment sites projected onto the extruded models. An 96 opening motion with a step size of 0.5 degrees was imposed on the lower jaw, during which the 97 muscle cylinders were stretched. For each step, the ratio between the resting length and the 98 extended length of the muscle cylinders was calculated until any of the muscle cylinders reached 99 the critical extension limit of 170%. This extension limit was based on experimentally derived 100 values for mammalian adductor muscles above which tetanic tension of muscles is no longer 101 possible [24]. Although it cannot be ruled out that the non-mammalian taxa in this study had a 102 different muscle architecture, the same extension limit was assumed for consistency.

103To test whether the extruded models could faithfully reproduce realistic results, the104methodology was validated using three-dimensional models of fossil sabre-tooths (*Smilodon fatalis*,105*Homotherium serum, Yoshi garevskii, Inostrancevia alexandri*) and extant felids (*Panthera leo*,106*Hyena hyena*), which covered the range of observed cranial morphologies (see supplementary107material). To further account for uncertainties regarding the exact muscle attachment, five different108variations in muscle arrangement were tested for each model and the average gape angle was109calculated. To evaluate how much the extruded models underestimate gape angles, a correction

factor was calculated (see supplementary material, figures S2-4). The obtained correction factor of2.0 was then applied to the results from the extruded models.

112

113 (c) Finite element analysis

114 To assess the biomechanical performance of the studied taxa, finite element analyses (FEA) were 115 performed (S1e). In comparison with full 3D models, the extruded models may not capture the full 116 biological signal. However, it has been demonstrated that meaningful, shape-related biomechanical 117 performance measures can be obtained from extruded models [23,25-28]. Sensitivity tests were 118 performed by comparing FEA results obtained from corresponding extruded and full 3D models for 119 selected taxa (see supplementary material, figures S5, S6). Only the mandible morphology was 120 considered for FEA, as it can be more accurately replicated in this simplified context. Furthermore, 121 the mandible provides a more reliable signal for feeding performance compared to the skull, which 122 underlies constraints due to compromising functions [21].

For FEA, the extruded models of the lower jaws were exported from Blender as .STL files and imported into HyperMesh (Altair, version 11) for solid meshing and the setting of boundary conditions. Mesh size was kept uniform to generate a quasi-ideal mesh following [29] (table S1), which allowed the calculation of average stress values. All models were assigned isotropic material properties for bone (E = 13.7 GPa, v = 0.3) and teeth (E = 38.6 GPa, v = 0.4) [18]. Only the crowns of the canine teeth were considered in each model, representing the functional unit during initial prey contact.

Two functional scenarios were tested: (i) A non-masticatory bending test to investigate mandibular stability under generalized loading conditions [21]. A single ventrally directed nodal force was applied to the tip of the canine tooth. Load forces were scaled following the quasihomothetic transformation approach of [30] which ensures correct force/surface area scaling for extruded models as used here. Models were further constrained from movement in x-, y- and zdirection at the jaw joint (three nodes). (ii) A second set of analyses were performed with all

136	mandibles scaled to the same size and adductor muscle forces applied. Adductor muscle forces were
137	calculated from the size of the attachment area visible in lateral view multiplied by the specific
138	tension (0.3N/mm ²) [31]. All models were further constrained from movement at the tip of the
139	canine tooth (one node in x- and y-direction, but not z-direction to simulate penetration of the prey
140	by the canine).

All models were imported into Abaqus (Simulia, version 6.141) for analysis and postprocessing. Biomechanical performance was assessed by per element average von Mises stress (with top 1% of magnitudes values excluded to account for artefacts resulting from point loads) and reaction forces measured at the tip of the canine tooth. Tests for statistical significance of the individual performance metrics were performed in PAST 3.22 [32] (tables S2-4).

146

147 (d) Geometric morphometric analysis

148 To quantify the morphological variation of the analysed taxa, a two-dimensional, landmark-based 149 geometric morphometrics (GMM) approach was used (figure S1f). A set of fixed landmarks and 150 semi-landmarks were used to describe the morphology of the skull (8 fixed, 55 semi-landmarks) 151 and the mandible (6 fixed, 25 semi-landmarks) (figure S7), digitised with tpsDig2 [33]. Landmark 152 coordinates were subsequently superimposed using a Procrustes Analysis and then subjected to a 153 Principal Component Analysis (PCA) in PAST 3.22 [32]. PCA scores were used to create 154 morphospace plots (figures S8-10) and to generate performance heatmaps (figure S1*i*) using the R package MBA (https://cran.r-project.org/web/packages/MBA/index.html). Phylomorphospaces 155 156 were created using the phylogenetic relationships depicted in figure 1. 157

158 (e) Phylogeny and evolutionary rates

Time-scaled phylogenetic trees with branch lengths were required to investigate the tempo and
mode of biomechanical evolution (figure S1*h*). Tree topologies are composite phylogenies, based

161 on [34,35] for sabre-toothed mammals and [36] for gorgonopsians. The individual sabre-toothed

162	mammal topologies were combined into a single composite tree for the rates analyses. We use the
163	'equal' [37] and the fossilized birth-death (FBD) [38,39] time-scaling approaches to test for
164	consistency. Temporal data were based on first appearance dates (FADs) and last appearance dates
165	(LADs), representing the bounds of geological intervals that taxa occurred within. Dating
166	uncertainty was incorporated when time-scaling trees by running 100 iterations and, for each
167	iteration, drawing a single occurrence date for each taxon from a uniform distribution between their
168	FAD and LAD. Traitgrams (phenograms) (figure S11) were generated for each biomechanical
169	character for each subgroup using a randomly selected time-calibrated tree for each group, and
170	maximum-likelihood ancestral state estimation in phytools [40].
171	Rates of biomechanical evolution were analysed using a Bayesian approach with the
172	variable-rates model in BayesTraits v. 2.0.2 [41]. For the 100 time-scaled iterations of the
173	gorgonopsian tree and the full sabre-toothed mammal tree, rate heterogeneity in each log_{10}
174	transformed character was tested using a reversible jump Markov Chain Monte Carlo algorithm
175	(rjMCMC). Each tree was run for 200 million iterations, parameters were sampled every 16,000
176	iterations and the first 40 million iterations were discarded as burn-in. The smallest effective sample
177	size (ESS) was used to assess run convergence. To detect shifts in evolutionary rates, the variable-
178	rates model rescales branches where variance of trait evolution differs from that expected in a
179	homogeneous (Brownian motion) model. The resulting 'rate scalars' represent the amount of
180	evolutionary acceleration or deceleration relative to the background rate along each branch [41,42].
181	Stepping-stone sampling, with 100 stones each run for 1000 iterations, was used to calculate the
182	marginal likelihood of the models (heterogeneous versus homogeneous rates) [43]. Model fit was
183	compared using Bayes Factors and the Variable Rates Post Processor was used to extract the final
184	parameter values [42]. We summarised rates results for each character by calculating consensus
185	trees from all time-scaled trees that favoured a heterogeneous rates model - giving the mean rate
186	scalars for each branch across gorgonopsians and sabre-toothed mammal phylogeny. Results were
187	consistent in both the 'equal' (figure 4) and FBD dated trees (figure S12).

188	
189	3. Results
190	(a) Maximum jaw gape
191	The biomechanical analyses demonstrate that gape angles vary considerably between species and
192	groups (figure 2 <i>a</i> , S9 <i>b</i>). Although there appears to be a trend for the increase (barbourofelids,
193	smilodontines, homotherines) or decrease (nimravids, metailurines) of gape angles through time
194	none of these relationships are statistically significant (table S2). All species across the different
195	lineages show gape angles between 52 and 111 degrees, but diversification patterns differ
196	considerably between groups. Gorgonopsians and nimravids show an "early high disparity" pattern
197	and the widest range of gape values, indicating an early and fast diversification. All other groups
198	exhibit a constant to "late high disparity" trend (figure S12 <i>a</i>). Effective gape angles (= clearance
199	between upper and lower canines and a proxy for prey size [9]), are considerably lower than the
200	maximum gape angles in all groups (figure 2 <i>a</i>) but again no statistically significant relationship
201	through time was recovered (table S2). A comparison between actual and effective gape shows a
202	(statistically significant) moderate correlation in homotherines ($R^2 = 0.78$, $p = 6.22E^{-5}$) and
203	nimravids ($R^2 = 0.65$, $p = 0.0009$) but a more decoupled relationship in the other groups ($R^2 = 0.38$ -
204	0.63) (table S2, figure S13 <i>a</i>).
205	The performance heatmap for the gape angle shows an equal complexity in the evolutionary
206	dynamics. Some (but not all) derived taxa in each group occupy regions of higher performance
207	compared to basal forms (for example in gorgonopsians, barbourofelids, and smilodontines).
208	However, this is not a uniform trend and exceptions are present in each group (figure 3b, S14b, 15b)
209	with derived taxa moving towards low-performance regions. For effective gape angles (figure 3c),
210	there is movement between areas of similar performance or towards areas of lower performance
211	than for the basal taxa in each group (figures 3c, S14c, 15c)
212	Evolutionary rates in jaw gape are heterogeneous for gorgonopsians in the majority of trees

analysed (97%). Rapid rates are concentrated in derived rubidgeines, particularly the robustly

214	skulled and large-bodied Leontosaurus, Dinogorgon, Rubidgea and Clelandina (figure 4a).
215	Clelandina evolved the largest gape angle of all gorgonopsians, whilst Dinogorgon and
216	Leontosaurus rank amongst the smallest gapes. Similarly, divergent gape angles in closely related
217	taxa are seen in the Inostrancevia (large gape) + Sauroctonus (small gape) clade – which also
218	exhibit moderately fast rates. In mammalian sabre-toothed taxa, there is mixed evidence for
219	heterogeneous rates, with only 58% of analytical iterations recovering positive evidence for rate
220	variation (figure 4b). In these trees, rapid rates are seen in smilodontines (Megantereon, Smilodon),
221	derived barbourofelids and nimravids (Pogonodon, Hoplophoneus, Eusmilus).
222	
223	(b) Bending strength
224	Bending strength of the mandible was found to significantly increase with time in barbourofelids
225	and metailurines (figure 2b, S16). While nimravids and homotherines also show an increase in
226	bending strength, this trend is not supported statistically. Similarly, the apparent decrease in
227	gorgonopsians and smilodontines is not statistically significant (figure 2b, table S2). Bending
228	strength follows a distinct "early high disparity" pattern in nimravids and (to a lesser degree) in
229	gorgonopsians and also smilodontines. All other groups show a "late high disparity" trend (Fig.
230	S9 <i>b</i>). Overall, bending strength is not correlated with actual gape ($R^2 < 0.2$) and effective gape (R^2
231	< 0.47) (table S3, figure S13 <i>b</i> , <i>d</i>).
232	Similar to gape angle, the evolutionary trends across the performance heatmap show
233	complex movement towards different performance areas (figure 3d, S14d, S15d). As recovered
234	above, only in barbourofelids and metailurines there is a clear trend of derived taxa moving towards
235	high-performance areas.
236	Rates of evolution in bending strength are generally homogeneous for gorgonopsians, with
237	only 20% of iterations showing heterogeneity. In contrast, mammalian sabre-toothed taxa show
238	several bursts of fast evolution in bending strength in 97% of trees. Fast rates are seen in

239 smilodontines and on internal branches uniting metailurines and smilodontines (figure 4c). This

240	reflects both great disparity in smilodontines (e.g. Smilodon populator versus Smilodon fatalis) and
241	the larger difference between generally high bending resistances in smilodontines compared to low
242	bending strengths in basal metailurines (figure S11b). Elsewhere, rapid rates are seen in sister taxa
243	that have divergent bending strengths, notably Homotherium serum and Homotherium
244	venezuelensis, and the nimravids Eusmilus and Hoplophoneus cerebralis (figure 4c).
245	
246	(c) Bite force
247	Barbourofelids and metailurines show a statistically significant trend of decreasing bite forces
248	through time Other groups appear to have a constant (nimravids, homotherines) or increased
249	(gorgonopsians, smilodontines) bite force through time, but these trends are not statistically
250	supported (figures 2 <i>c</i> , S17, table S2). Gorgonopsians explore a wider range of relative bite forces
251	(ca. 15-35%), while the mammalian sabre-tooths are restricted to lower relative bite forces (ca. 10-
252	25%). No or only weak and statistically not significant correlations were found between bite force
253	and actual gape ($R^2 < 0.04$) and bite force and effective gape ($R^2 < 0.3$), whereas a moderate
254	correlation between bending strength and bite force is observed in barbourofelids ($R^2 = 0.77$, $p =$
255	0.03) and metailurines ($R^2 = 0.54$, $p = 0.026$) (table S3, figure S13 <i>c</i> , <i>e</i> , <i>f</i>).
256	The evolutionary pathways across the performance space show that selected derived taxa in
257	some groups (gorgonopsians, smilodontines) move towards areas of higher performance compared
258	to the basal taxa. However, this trend is not consistent for all derived taxa in these groups. In
259	contrast, barbourofelids and metailurines move towards low-performance areas (figures 3e, S14e,
260	<u>S15e).</u>
261	In gorgonopsians, again only 11% of iterations show evidence for rate variation, suggesting
262	that a homogeneous rate (Brownian motion) model is favoured. Accelerated rates of bite force
263	evolution were widely distributed in mammalian sabre-toothed taxa (figure $4d$) and a heterogeneous
264	rates model is favoured for 94% of analysed trees. Fastest rates are seen in nimravids, particularly
265	Eusmilus and Hoplophoneus. Other high rate instances involve taxa that evolved contrasting bite

forces compared to their closest relatives. This is seen in homotherines, where *Amphimachairodus* evolved relatively large bite forces, in metailurines, where *Dinofelis* shows notably smaller bite forces than more basal taxa, and in smilodontines, where *Megantereon* has increased bite force relative to others.

270

271 **4. Discussion**

272 The acquisition of hypertrophied canine teeth and cranial sabre-tooth characteristics across different 273 vertebrate lineages represents a remarkable example of convergent evolution [11]. Despite the close 274 morphological similarities exhibited by individual groups/species, some more general 275 differentiations have been discussed for derived sabre-tooth felids [44,45]: scimitar-toothed cats 276 (i.e. homotherines) with relatively shorter, broad and coarsely-serrated canines and dirk-toothed cats (i.e. smilodontines) with elongate and finely or unserrated canines, each representing a distinct 277 278 ecomorphology with different cranial functions, as well as differences in their postcranial anatomy 279 [46]. Our new analyses demonstrate that morphofunctional differences and evolutionary dynamics 280 of synapsid sabre-tooths are far more complex. Rather than a clear dichotomous split into two 281 ecomorphologies, we observe a spectrum of functional adaptations. Derived from the combination 282 of the analysed functional parameters (actual and effective gape angle, bending strength, bite force), 283 there are no two clades showing the same distribution of parameters and evolutionary rates (figures 284 2-4, S14, S15). This confirms assumptions from previous studies on tooth morphology, bite-depth 285 and postcranial specialisations that sabre-tooth function and prey killing strategies evolved along functionally diverse pathways [9,14,18,47]. Discoveries of mosaic-taxa, such a Xenosmilus 286 287 hodsonae, combining scimitar- and dirk-toothed characteristics, had already hinted at the existence 288 of wider morphofunctional diversity [48]. However, it should be noted that only about a fraction of 289 the functional trends through time have been recovered as statistically significant (table S2). This is likely an effect of the divergent functional performances of derived taxa in each group 290

291 (figure S11) as well as due to the lack of stratigraphic resolution resulting in the same/similar first

292	appearance dates (in particular for gorgonopsians). In all groups, an increase of functional diversity
293	due to the exploration of different functionspace regions (figure S11) can be observed in the derived
294	taxa which likely dilutes overall trends but lends further proof to the wide diversity of functional
295	adaptations. Consequently, we find no proof for linear functional optimisation of groups as a whole.
296	Generally, the analyses reveal the emergence of individual species and morphologies with
297	high performances through time but with broad functional diversity and widely distributed high
298	rates leading to functional divergence in each group. For example, an adoption of increased jaw
299	gape and mandibular bending strength is found in most groups, as would be expected following the
300	cranial modifications (i.e. rotation of the braincase, reduction of coronoid process, mental process).
301	While actual gape angles show a range of ca. 60 degrees (reaching up to 111 degrees in Smilodon
302	fatalis), effective gape is restricted to a maximum of ca. 70 degrees, with most species ranging
303	between 45 and 65 degrees. This is a similar clearance observed in modern felids [5] and appears to
304	be the most effective gape necessary for prey capture casting further doubt on the idea of all sabre-
305	tooths being large prey specialists [9]. The significant correlation between actual and effective gape
306	in nearly all groups (table S3) suggests that canine length and jaw gape are equally important
307	factors and that canine penetration is more important than maximising prey size [9].
308	Interestingly, within gorgonopsians, the majority of taxa shows actual gape angles below 80
309	degrees and effective gape angles below 60 degrees suggesting a possible specialisation towards
310	smaller rather than larger prey, possibly as a strategy to conserve energy expenditure [49]. It is,
311	therefore, possible that the sabre-like canines in gorgonopsians were used to inflict more severe
312	wounds in smaller/similar-sized prey or had an additional function independent of feeding [50,51].
313	Positioned considerably outside of mammalian synapsids, gorgonopsians were not constrained in
314	their cranial function by a generalised mammalian/carnivoran morphology. In fact, re-modelling of
315	the skull and jaw (e.g. rotation of the facial skeleton, compaction of the braincase, reduction in jaw
316	adductor space, reduction of the coronoid process, increased attachment for post-cranial
317	musculature) is largely absent in gorgonopsians [5]. Furthermore, the gorgonopsian bite technique

- 318 is significantly dissimilar to that of eutherians: Gorgonopsians used a kinetic-inertial jaw-closing
- 319 system (analogue to modern crocodilians) relying predominantly on the pterygoideus and
- 320 temporalis muscle groups to deliver powerful and fast jaw closure [6]. However, the taxa included
- 321 in our analyses do not account for the entire diversity in gorgonopsian morphology but include
- 322 mostly larger taxa (e.g. Russian species as well as the morphologically advanced Rubidgeinae [52]).
- 323 Gorgonopsians only show evolutionary bursts in gape evolution within derived rubidgeines, but bite
- 324 force and bending strength evolved following a homogeneous rates model. This result may, in part,
- 325 be due to a low sample size for this group and failure to detect rate variation.
- 326 While there appears to be a trend towards increased relative bite forces in gorgonopsians and
- 327 smilodontines, only the decrease of relative bite force through time in barbourofelids and
- 328 metailurines is statistically supported. This seemingly counterintuitive trend in barbourofelids may
- 329 be explained with the increasing specialisation and evolution of a novel prey killing strategy in
- derived taxa. With a shift from a killing bite (similar to modern felids) powered by the jaw muscles,
- to a canine-shear bite harnessing the neck musculature [45, 47, 53] bite-force becomes less
- important. At the same time, the emphasis on large jaw gape and canine clearance requires a
- 333 reorganisation of the jaw adductor musculature changing the mechanical advantage and therefore
- 334 constraining the ability to produce high bite forces [4,5,13].
- 335 The canine-shear bite has also been accepted as the main killing mode in *Smilodon fatalis*
- and other smilodontines [3,13]. However, while derived smilodontines have among the highest
- 337 actual gape angles, bite forces are not decreasing through time as in barbourofelids. This may be
- 338 because relative bite forces are within a similar range in derived smilodontines (ca. 15-20 degrees)
- to those in derived barbourofelids (ca. 12-17 degrees). A canine-shear bite is therefore likely to be
- 340 the main killing style in both groups. However, the lower bending strength of the mandible in
- 341 derived smilodontines would have, in contrast to barbourofelids with their prominently developed
- 342 mental processes, required more powerful forelimbs to restrain prey [8,10,47]. Metailurines parallel
- 343 barbourofelids closely in increasing mandibular bending strength and decreasing relative bite forces

344	through time. However, metailurines do not show the extent of cranial and mandibular
345	modifications indicative of a canine-shear bite. It is, therefore, possible, that these trends reflect an
346	adaptation to small prey in derived metailurines. In contrast, homotherines would have engaged in a
347	different killing technique as indicated by moderate values and no significant changes through time
348	of all functional parameters. Homotherines likely employed a predatory behaviour between a
349	clamp-and-hold bite (analogue to modern pantherines) and a canine-shear bite as suggested by
350	previous morphological and biomechanical analyses [18,48]. Nimravids generally show high jaw
351	gapes (i.e. majority of taxa with actual gape angles over 90 degrees) and bending strength values
352	with little change through time. This could represent an intermediate killing strategy for nimravids
353	(as previously hypothesised based on the analysis of mandibular force profiles) [10] with a
354	specialisation towards large-bodied prey [47] for which large gape angles and bending strength
355	would be necessary.
356	The evolutionary pathways across the performance heatmaps (figure 3) further support the
357	hypothesis that the different sabre-tooth species and groups pursued different hunting/killing
358	strategies. However, they also show that there is no single consistent trend towards functional
359	optimisation as hypothesised in the past [11]. All analysed groups span a wide range between basal
360	and derived members across the heatmaps/morphospace. With the exception of metailurines, which
361	are restricted to small areas of the mandibular, cranial and combined morphospaces, all groups can
362	be found expanding into different regions of the morphospace (figures 3a, S14a, S15a).
363	Anatomically, this represents an adoption of "typical sabre-tooth" morphologies (i.e.
264	anteroposteriorly short but dorsoventrally high skulls, a reduced coronoid process, an expanded
364	
365	mental process) towards one end and the retention of "cat-like" morphologies (i.e. relatively shorter
366	canines, low braincase, high coronoid process) on the other end (figures 3a, S14a, S15a). Again,
367	gorgonopsians form the exception in occupying mostly distinct areas in the morphospace, with only
368	occasional intrusions into the areas occupied by the mammalian taxa (figures 3a, S15a). This

369	pattern further supports the assumption that felid sabre-tooths were highly specialised but
370	morphofunctionally constrained, possibly due to a high degree of functional integration [35].
371	It is further noteworthy that metailurines, homotherines and smilodontines show different or
372	even opposing functional performances and that divergent functional morphologies are linked to
373	rapid evolutionary shifts in some derived taxa in each group (figure 4). These three groups had
374	considerable spatial and temporal overlap with several sabre-tooth species sharing the same
375	ecosystem with each other and other mammalian carnivores [54,55]. Fast rates and different
376	functional performances, therefore, suggest selective pressures, considerable specialisation and
377	niche-partitioning to avoid intra- and interclade competition. Our results parallel previous findings
378	that mandible shape in sabre-toothed cats evolved at a higher rate than in modern conical toothed
379	cats [34]. This demonstrates that although a large degree of morphological convergence is present
380	in these groups, functional characteristics are much more variable and diverse.

381	References	
382	1. Werdelin, L., McDonald, H. G., & Shaw, C. A. Smilodon: The Iconic Sabretooth. (JHU	
383	Press, 2018).	
384	2. Warren, J. C. Remarks on Felis Smylodon. Proceedings of the Boston Society of Natural	
385	History. IV, 256–258 (1853).	
386	3. Akersten, W.A. Canine function in <i>Smilodon</i> (Mammalia; Felidae; Machairodontinae).	
387	Contributions to Science of the Natural History Museum Los Angeles. 356, 1–22 (1985).	
388	4. McHenry, C.R., Wroe, S., Clausen, P.D., Moreno, K. & Cunningham, E. Supermodeled	
389	sabrecat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer	
390	simulation. Proceedings of the National Academy for Science. 104, 16010–16015 (2007).	
391	5. Emerson, S. B. & Radinsky, L. B. Functional analysis of sabretooth cranial morphology.	
392	<i>Paleobiology</i> . 6 , 295–312 (1980).	
393	6. Van Valkenburgh, B. & Jenkins, I. Evolutionary patterns in the history of Permo-Triassic	
394	and Cenozoic synapsid predators. Paleontological Society Papers. 8, 267–288 (2002).	
395	7. Christiansen, P. Phylogeny of the sabretoothed felids (Carnivora: Felidae:	
396	Machairodontinae). Cladistics, 29, 543-559 (2013).	
397	8. Meachen-Samuels, J. A. & Van Valkenburgh, B. Radiographs reveal exceptional forelimb	
398	strength in the sabretooth cat, Smilodon fatalis. PLoS One, 5, e11412 (2010).	
399	9. Andersson, K., Norman, D. & Werdelin, L. Sabretoothed carnivores and the killing of	
400	large prey. PLoS One, 6, e24971 (2011).	
401	10. Therrien, F. Feeding behaviour and bite force of sabretoothed predators. Zoological Journal	!
402	of the Linnean Society, 145, 393-426 (2005).	
403	11. Van Valkenburgh, B. Déjà vu: the evolution of feeding morphologies in the Carnivora.	
404	Integrative and Comparative Biology, 47, 147-163 (2007).	
405	12. Antón, M., & Galobart, À. Neck function and predatory behavior in the scimitar toothed cat	
406	Homotherium latidens (Owen). Journal of Vertebrate Paleontology, 19, 771-784 (1999).	

- 407 13. Christiansen, P. Comparative bite forces and canine bending strength in feline and
 408 sabretooth felids: implications for predatory ecology. *Zoological Journal of the Linnean*409 *Society*, 151, 423-437 (2007).
- 410 14. Slater, G. J., & Van Valkenburgh, B. Long in the tooth: evolution of sabretooth cat cranial
 411 shape. *Paleobiology*, 34, 403-419 (2008).
- 412 15. Losos, J. B. Convergence, adaptation, and constraint. *Evolution*, **65**, 1827-1840 (2011)
- 413 16. Lautenschlager, S., Brassey, C. A., Button, D. J., & Barrett, P. M. Decoupled form and
 414 function in disparate herbivorous dinosaur clades. *Scientific Reports*, 6, 26495 (2016).
- 415 17. Figueirido, B., MacLeod, N., Krieger, J., De Renzi, M., Pérez-Claros, J. A., & Palmqvist, P.
 416 Constraint and adaptation in the evolution of carnivoran skull shape. *Paleobiology*, **37**, 490417 518 (2011).
- 418 18. Figueirido, B., Lautenschlager, S., Pérez-Ramos, A., & Van Valkenburgh, B. Distinct
 419 Predatory Behaviors in Scimitar-and Dirk-Toothed Sabretooth Cats. *Current Biology*, 28,
 420 3260-3266 (2018).
- 421 19. Pierce, S. E., Angielczyk, K. D., & Rayfield, E. J. Patterns of morphospace occupation and
 422 mechanical performance in extant crocodilian skulls: a combined geometric morphometric
 423 and finite element modeling approach. *Journal of Morphology*, 269, 840-864 (2008).
- 424 20. Polly, P. D., Stayton, C. T., Dumont, E. R., Pierce, S. E., Rayfield, E. J., & Angielczyk, K.
 425 D. Combining geometric morphometrics and finite element analysis with evolutionary
- 426 modeling: towards a synthesis. *Journal of Vertebrate Paleontology*, **36**, e1111225 (2016).
- 427 21. Tseng, Z. J., & Flynn, J. J. Structure-function covariation with nonfeeding ecological
 428 variables influences evolution of feeding specialization in Carnivora. *Science Advances*, 4,
 429 eaao5441 (2018).
- 22. Rahman, I. A., & Lautenschlager, S. Applications of three-dimensional box modeling to
 paleontological functional analysis. *The Paleontological Society Papers*, 22, 119-132
 (2016).

433	23. Morales-García, N. M., Burgess, T. D., Hill, J. J., Gill, P. G. & Rayfield, E. J. The use of
434	extruded finite-element models as a novel alternative to tomography-based models: a case
435	study using early mammal jaws. Journal of the Royal Society Interface, 16, 20190674
436	(2019).
437	24. Lautenschlager, S. Estimating cranial musculoskeletal constraints in theropod dinosaurs.
438	Royal Society Open Science, 2, 150495 (2015).
439	25. Fletcher, T. M., Janis, C. M., & Rayfield, E. J. Finite element analysis of ungulate jaws: can
440	mode of digestive physiology be determined. Palaeontologia Electronica, 13, 1-15 (2010).
441	26. Young, M. T., Brusatte, S. L., Ruta, M. & de Andrade, M. B. The evolution of
442	Metriorhynchoidea (Mesoeucrocodylia, Thalattosuchia): an integrated approach using
443	geometric morphometrics, analysis of disparity, and biomechanics. Zoological Journal of
444	the Linnean Society, 158 , 801-859 (2010).
445	27. Neenan, J. M., Ruta, M., Clack, J. A. & Rayfield, E. J. Feeding biomechanics in
446	Acanthostega and across the fish-tetrapod transition. Proceedings of the Royal Society B:
447	<i>Biological Sciences</i> , 281 , 20132689 (2014).
448	28. Serrano-Fochs, S., De Esteban-Trivigno, S., Marcé-Nogué, J., Fortuny, J., Fariña, R.A
449	Finite Element Analysis of the Cingulata Jaw: An Ecomorphological Approach to
450	Armadillo's Diets. PLoS One 10, e0120653 (2015).
451	29. Marcé Nogué, J., de Esteban-Trivigno, S., Escrig Pérez, C. & Gil Espert, L. Accounting for
452	differences in element size and homogeneity when comparing Finite Element models:
453	Armadillos as a case study. Palaeontologia Electronica, 19, 1-22 (2016).
454	30. Marcé-Nogué, J., DeMiguel, D., Fortuny, J., de Esteban-Trivigno, S., Gil, L. Quasi-
455	homothetic transformation for comparing the mechanical performance of planar models in
456	biological research. Palaeontologia Electronica, 16, 1-15 (2013).

457	31. Thomason, J. J., Russell, A. P., & Morgeli, M. Forces of biting, body size, and masticatory
458	muscle tension in the opossum Didelphis virginiana. Canadian Journal of Zoology, 68, 318-
459	324 (1990).
460	32. Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package
461	for education and data analysis. Palaeontologia Electronica, 4, 1-9 (2001).
462	33. Rohlf, F.J. TpsDig 2. (Department of Ecology and Evolution. State University of New York,
463	Stony Brook, NY, 2010)
464	34. Piras, P., Silvestro, D., Carotenuto, F., Castiglione, S., Kotsakis, A., Maiorino, L.,
465	Melchionna, M., Mondanaro, A., Sansalone, G., Serio, C. & Vero, V. A. Evolution of the
466	sabretooth mandible: A deadly ecomorphological specialization.
467	35. Piras, P., Maiorino, L., Teresi, L., Meloro, C., Lucci, F., Kotsakis, T., & Raia, P. Bite of the
468	cats: relationships between functional integration and mechanical performance as revealed
469	by mandible geometry. Systematic Biology, 62, 878-900 (2013).
470	36. Bendel, E. M., Kammerer, C. F., Kardjilov, N., Fernandez, V. & Fröbisch, J. Cranial
471	anatomy of the gorgonopsian Cynariops robustus based on CT-reconstruction. PloS one, 13,
472	e0207367 (2018).
473	37. Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. Superiority, Competition, and
474	Opportunism in the Evolutionary Radiation of Dinosaurs. Science, 321 , 1485-91488 (2008).
475	38. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A., & Ronquist, F. Total-evidence dating
476	under the fossilized birth-death process. Systematic Biology, 65, 228-249 (2015).
477	39. Matzke, N. J., & Wright, A. Inferring node dates from tip dates in fossil Canidae: the
478	importance of tree priors. Biology Letters, 12, 20160328 (2016).
479	40. Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other
480	things). Methods in Ecology and Evolution 3, 217-223 (2012).
481	41. Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479,
482	393-396 (2011).

483	42. Baker, J., Meade, A., Pagel, M. & Venditti, C. Positive phenotypic selection inferred from
484	phylogenies. Biological Journal of the Linnean Society. 118, 95-115 (2016).
485	43. Xie, W., Lewis, P. O., Fan, Y., Kuo, L., & Chen, M. H. Improving marginal likelihood
486	estimation for Bayesian phylogenetic model selection. Systematic Biology, 60, 150-160
487	(2011).
488	44. Kurten, B. Pleistocene mammals of Europe. (Routledge Press, 1968).
489	45. Martin, L. D. Functional morphology and the evolution of cats. Transactions of the
490	Nebraska Academy of Sciences, 8, 141-154 (1980).
491	46. Anyonge, W. Locomotor behaviour in Plio-Pleistocene sabre-tooth cats: a biomechanical
492	analysis. Journal of Zoology, 238, 395-413 (1996).
493	47. Meachen-Samuels, J. A. Morphological convergence of the prey-killing arsenal of
494	sabretooth predators. Paleobiology, 38, 1-14 (2012).
495	48. Martin, L. D., Babiarz, J. P., Naples, V. L. & Hearst, J. Three ways to be a sabre-toothed cat.
496	Naturwissenschaften, 87, 41-44 (2000).
497	49. Carbone, C. Teacher, A., & Rowcliffe, J. M. The costs of carnivory. PLoS Biology, 5, 1-6
498	(2007).
499	50. Benoit, J., Manger, P. R., Fernandez, V. & Rubidge, B. S. Cranial bosses of Choerosaurus
500	dejageri (Therapsida, Therocephalia): earliest evidence of cranial display structures in
501	eutheriodonts. PloS One, 11, e22 (2016).
502	51. Kammerer, C. F. Systematics of the Rubidgeinae (Therapsida: Gorgonopsia). PeerJ, 4,
503	e1608 (2016).
504	52. Kammerer, C. F. & Masyutin, V. Gorgonopsian therapsids (Nochnitsa gen. nov. and
505	Viatkogorgon) from the Permian Kotelnich locality of Russia. PeerJ. 6, e4954 (2018).
506	53. Martin, L. D., Schultz, C. B. & Schultz, M. R. Sabre-toothed cats from the Plio-Pleistocene
507	of Nebraska. Transactions of the Nebraska Academy of Sciences, 16, 153-163 (1988).

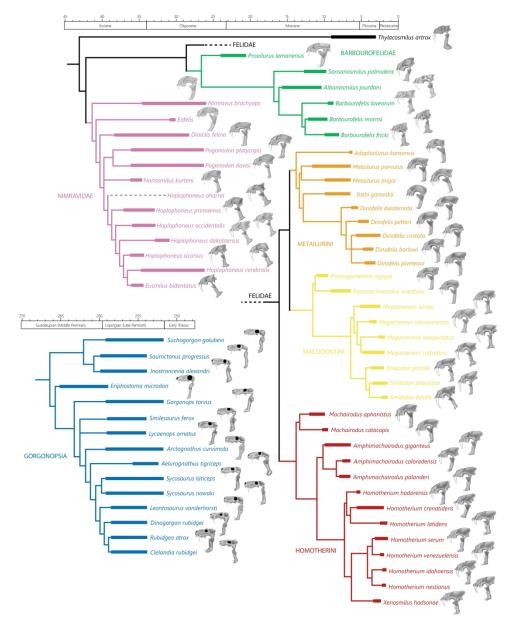
- 508 54. Hunt Jr, R. M. Biogeography of the order Carnivora. Carnivore behavior, ecology, and
- *evolution*, *2*, 485-541 (1996).
- 510 55. Van Valkenburgh, B. Major patterns in the history of carnivorous mammals. *Annual Review*
- 511 *of Earth and Planetary Sciences*, **27**, 463-493 (1999).
- 512
- 513
- 514 **Data accessibility.** All data files are available via the following link:
- 515 https://beardatashare.bham.ac.uk/getlink/fiR7wvK357hbPrQ9FVg6eR1Q/Upon acceptance the
- 516 files will be moved to a permanent repository (e.g. Dryad).
- 517 Authors' contributions. S.L conceived the study and designed the analyses. S.L., D.D.C and
- 518 T.L.S. conducted the analyses and designed the figures. B.F and E.-M.B. contributed to the datasets.
- 519 All authors contributed to the writing of the manuscript.
- 520 **Competing interests.** We declare we have no competing interests.
- 521 Funding. T.L.S. was funded by ERC grant 788203 (INNOVATION). B.F. was funded by the
- 522 Spanish Ministry of Science and Competitiveness (Grants CGL2015-68300P; CGL2017-92166-
- 523 EXP).
- 524 Acknowledgements. The authors are very grateful to Armin Elsler (University of Bristol) for
- sharing R code that aids the processing and plotting of outputs from BayesTraits. Part of this work
- 526 was carried out using the computational facilities of the Advanced Computing Research Centre,
- 527 University of Bristol. Jordi Marcé-Nogue and Robert Brocklehurst are thanked for constructive
- 528 suggestions improving the manuscript.

529

530 Figure captions

Figure 1: Sabre-toothed vertebrates in their phylogenetic context. Taxa are represented by skull
outlines with the mandible opened at the maximum gape angle. Composite phylogenetic tree based
on [34-36].

534


Figure 2: Biomechanical performance for different sabre-toothed clades through time: (*a*) actual (solid lines) and effective (dotted lines) gape angle; (*b*) average bending strength of the mandible tested in non-masticatory scenario; (*c*) relative bite force (bite efficiency) based on ratio between absolute bite forces and muscle forces.

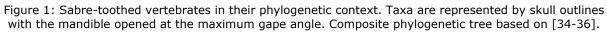

539

Figure 3: Morphospace and performance space occupation of studied sabre-tooth species (crania and mandibles combined): (*a*) morphospace with convex hulls for different groups obtained from the Procrustes coordinates of the landmark analysis; (*b*) performance heatmap with actual gape angle values plotted onto morphospace; (*c*) performance heatmap with effective gape angle values plotted onto morphospace; (*d*) performance heatmap with bending strength values plotted onto morphospace; (*e*) performance heatmap with bite force values plotted onto morphospace. Phylogenetic relationships as in fig. 1 superimposed on heatmaps.

547

548 Figure 4: Rates of biomechanical evolution in sabre-toothed vertebrates: (a) rates of evolution in 549 gorgonopsian gape angle summarised from 97 heterogeneous rate trees; (b) evolutionary rates in 550 sabre-toothed mammal gape angle showing the consensus tree from 58 heterogeneous rate trees; (c) 551 rates of evolution in sabre-toothed mammal bending strength summarised from 97 heterogeneous 552 rate trees; (d) evolutionary rates in sabre-toothed mammal bite force illustrating consensus results 553 from 94 heterogeneous rate trees. Rates of evolution in gorgonopsian bending strength and bite 554 force were homogeneous. In each plot, phylogenetic branches and tip labels are coloured according 555 to evolutionary rates, grading from slow to fast as denoted by the keys. The branch lengths are scaled to time and based on the average lengths from the time-scaled input trees. Results were 556 consistent in both the 'equal' and FBD dated trees (figure S12). 557

209x262mm (300 x 300 DPI)

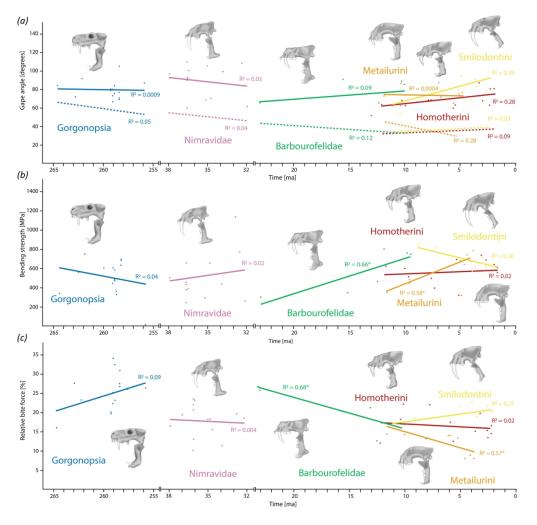


Figure 2: Biomechanical performance for different sabre-toothed clades through time: (a) actual (solid lines) and effective (dotted lines) gape angle; (b) average bending strength of the mandible tested in nonmasticatory scenario; (c) relative bite force (bite efficiency) based on ratio between absolute bite forces and muscle forces.

212x208mm (300 x 300 DPI)

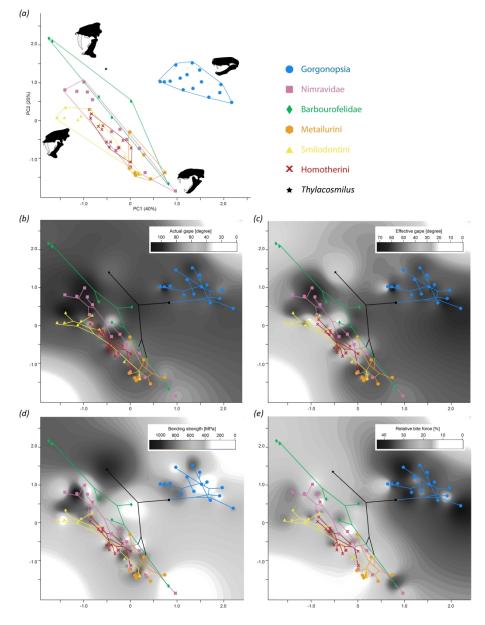


Figure 3: Morphospace and performance space occupation of studied sabre-tooth species (crania and mandibles combined): (a) morphospace with convex hulls for different groups obtained from the Procrustes coordinates of the landmark analysis; (b) performance heatmap with actual gape angle values plotted onto morphospace; (c) performance heatmap with effective gape angle values plotted onto morphospace; (d) performance heatmap with bending strength values plotted onto morphospace; (e) performance heatmap with bite force values plotted onto morphospace. Phylogenetic relationships as in fig. 1 superimposed on heatmaps.

211x279mm (300 x 300 DPI)

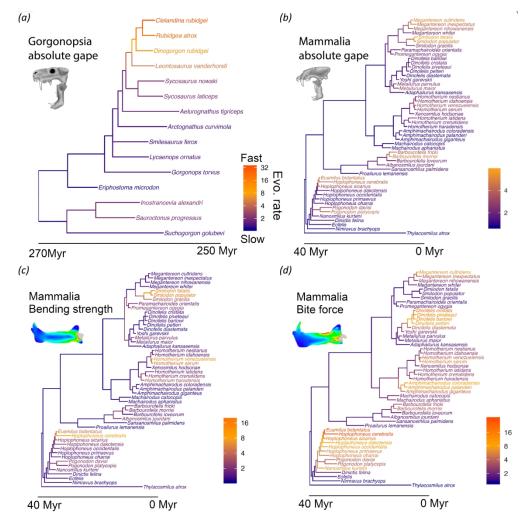


Figure 4: Rates of biomechanical evolution in sabre-toothed vertebrates: (a) rates of evolution in gorgonopsian gape angle summarised from 97 heterogeneous rate trees; (b) evolutionary rates in sabre-toothed mammal gape angle showing the consensus tree from 58 heterogeneous rate trees; (c) rates of evolution in sabre-toothed mammal bending strength summarised from 97 heterogeneous rate trees; (d) evolutionary rates in sabre-toothed mammal bite force illustrating consensus results from 94 heterogeneous rate trees. Rates of evolution in gorgonopsian bending strength and bite force were homogeneous. In each plot, phylogenetic branches and tip labels are coloured according to evolutionary rates, grading from slow to fast as denoted by the keys. The branch lengths are scaled to time and based on the average lengths from the time-scaled input trees. Results were consistent in both the 'equal' and FBD dated trees (figure S12).

209x209mm (300 x 300 DPI)