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16 The acquisition of elongated, sabre-like canines in multiple vertebrate clades during the last 

17 265 million years represents a remarkable example for convergent evolution. Due to striking 

18 superficial similarities in the cranial skeleton, the same or similar skull and jaw functions 

19 have been inferred for sabre-toothed species and interpreted as an adaptation to subdue 

20 large-bodied prey. However, although some sabre-tooth lineages have been classified into 

21 different ecomorphs (dirk-tooths and scimitar-tooths) the functional diversity within and 

22 between groups and the evolutionary paths leading to these specialisations are unknown. 

23 Here, we use a suite of biomechanical simulations to analyse key functional parameters 

24 (mandibular gape angle, bending strength, bite force) to compare the functional performance 

25 of different groups and to quantify evolutionary rates across sabre-tooth vertebrates. Our 

26 results demonstrate a remarkably high functional diversity between sabre-tooth lineages and 

27 that cranial function and prey killing strategies evolved within clades. Moreover, different 

28 biomechanical adaptations in coexisting sabre-tooth species further suggest that this 

29 functional diversity was at least partially driven by niche-partitioning. 

30 Key words: Convergent evolution, functional morphology, computational analysis, Smilodon, 

31 ecology 

32
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33 1. Introduction

34 The sabre-toothed cat Smilodon fatalis from the Pleistocene of North America represents one of the 

35 most iconic and instantly recognisable vertebrate fossils [1]. Its distinct morphology characterised by 

36 the eponymous, elongated canine teeth, has received considerable academic and public attention [2-

37 4]. However, sabre-toothed species were much more diverse and widespread in the fossil record than 

38 the prominence of this single well-known species would suggest. Although only loosely defined and 

39 not equally distributed across different species, sabre-tooth morphologies, such as elongate and 

40 mediolaterally flattened canines, an often anteroposteriorly compressed braincase, and a reduced 

41 coronoid process, have evolved several times convergently: in metatherians (thylacosmilines), in 

42 eutherians (independently in creodonts, nimravids, barbourofelids, and machairodontine felids), and 

43 outside of Mammalia in Permian gorgonopsians [5,6] (figure 1). 

44 Through time, sabre-toothed carnivores showed a near-global distribution across North 

45 America, Europe, Africa and Asia and dominated many terrestrial ecosystems during the Permian 

46 and the Cenozoic [1,7]. This repeated occurrence of sabre-toothed morphologies in different, and 

47 often unrelated, groups separated by up to 200 million years has been explained with independent 

48 adaptations for subduing large-bodied prey [5,8 although see 9]. Furthermore, the presence of sabre-

49 toothed characters has been hypothesised to provide distinct functional advantages [10], which are 

50 thought to represent functional optimisation and trend towards increasingly specialized 

51 feeding/hunting adaptations in each lineage [11]. 

52 Several characters have been discussed as performance indicators in sabre-toothed taxa, 

53 including the evolution of a large jaw gape, decreased or increased bite forces and improved stability 

54 of the craniodental complex [4,12-14]. However, functional studies of sabre-toothed predators have 

55 often focused on single well-known or well-preserved species within each lineage, and these have 

56 usually been the most derived taxa impeding inferences about evolutionary trajectories [4,5,13]. This 

57 traditional focus on derived taxa has further led to the assumption of functional and evolutionary 

58 convergence across sabre-toothed forms. However, caution is warranted over simplified 
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59 morphological comparisons, as morphological convergence can be a poor indicator for functional 

60 convergence [15,16]. Nevertheless, similar ecomorphologies, prey selection, hunting and killing 

61 behaviour have been suggested for all sabre-tooths, although some functional differences between 

62 scimitar-toothed and dirk-toothed taxa have been recognised [5,6,14,17,18].

63 Here, we investigate the evolution of sabre-toothed morphologies across different clades and 

64 over the last 265 million years from a biomechanical perspective. We test the hypothesis that 

65 functional trends were decoupled and divergent from morphologically convergent trajectories. 

66 Specifically, we obtain biomechanical performance measures (jaw gape, mandibular stability, bite 

67 force), which have been demonstrated to correlate with known biologically and ecologically 

68 meaningful properties [19-21]. Using a combination of biomechanical modelling and phylogenetic 

69 comparative methods, we find that most of the sabre-tooth clades evolved towards different functional 

70 specialisations acquired via variable evolutionary pathways. 

71

72 2. Material and methods

73 (a) Specimen selection

74 A total of 66 species were sampled from the literature and analysed (see supplementary material) 

75 (figures 1, S1a). Only taxa which preserved the complete craniomandibular skeleton were selected, 

76 as well as a few incomplete taxa, which could be reconstructed with minimal interpretation. This 

77 allowed for over 50% of established species and over 70% of established genera to be sampled in 

78 each group. Two-dimensional outlines of each specimen were generated using Adobe Illustrator CC 

79 (Adobe Inc.) (figure S1b) and muscle attachment sites of the masseter and the temporalis muscle 

80 groups were mapped onto the cranial outlines (the pterygoideus group was not considered due to its 

81 largely mediolateral line of action and negligible contribution to gape angle and bite force) for the 

82 mammalian taxa. For the gorgonopsian taxa, the m. adductor mandibulae externus (m. AME) 

83 complex, the pterygoideus muscles and the pseudotemporalis muscles were each considered as a 

84 single functional unit.
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85

86 (b) Gape analysis

87 For the gape analysis, the images of the cranial outlines were imported into Blender 

88 (www.blender.org, version 2.79) to generate simplified skull and jaw models (figure S1c) using a 

89 box-modelling approach [22]. The outlines were extruded in the third dimension by a consistent 

90 width of 2 mm (we refer to these simplified three-dimensional models as extruded models following 

91 [23]).

92 The gape analysis (figures 2, S1d) followed the methodology detailed in [24]. The skull and 

93 mandible models were joined at the jaw joint and the mandible was allowed full rotation around the 

94 mediolateral axis (y-axis) to simulate sagittal opening and closing. Adductor muscles were 

95 represented by cylinders connecting the attachment sites projected onto the extruded models. An 

96 opening motion with a step size of 0.5 degrees was imposed on the lower jaw, during which the 

97 muscle cylinders were stretched. For each step, the ratio between the resting length and the 

98 extended length of the muscle cylinders was calculated until any of the muscle cylinders reached 

99 the critical extension limit of 170%. This extension limit was based on experimentally derived 

100 values for mammalian adductor muscles above which tetanic tension of muscles is no longer 

101 possible [24]. Although it cannot be ruled out that the non-mammalian taxa in this study had a 

102 different muscle architecture, the same extension limit was assumed for consistency. 

103 To test whether the extruded models could faithfully reproduce realistic results, the 

104 methodology was validated using three-dimensional models of fossil sabre-tooths (Smilodon fatalis, 

105 Homotherium serum, Yoshi garevskii, Inostrancevia alexandri) and extant felids (Panthera leo, 

106 Hyena hyena), which covered the range of observed cranial morphologies (see supplementary 

107 material). To further account for uncertainties regarding the exact muscle attachment, five different 

108 variations in muscle arrangement were tested for each model and the average gape angle was 

109 calculated. To evaluate how much the extruded models underestimate gape angles, a correction 
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110 factor was calculated (see supplementary material, figures S2-4). The obtained correction factor of 

111 2.0 was then applied to the results from the extruded models. 

112

113 (c) Finite element analysis

114 To assess the biomechanical performance of the studied taxa, finite element analyses (FEA) were 

115 performed (S1e). In comparison with full 3D models, the extruded models may not capture the full 

116 biological signal. However, it has been demonstrated that meaningful, shape-related biomechanical 

117 performance measures can be obtained from extruded models [23,25-28]. Sensitivity tests were 

118 performed by comparing FEA results obtained from corresponding extruded and full 3D models for 

119 selected taxa (see supplementary material, figures S5, S6). Only the mandible morphology was 

120 considered for FEA, as it can be more accurately replicated in this simplified context. Furthermore, 

121 the mandible provides a more reliable signal for feeding performance compared to the skull, which 

122 underlies constraints due to compromising functions [21].

123 For FEA, the extruded models of the lower jaws were exported from Blender as .STL files 

124 and imported into HyperMesh (Altair, version 11) for solid meshing and the setting of boundary 

125 conditions. Mesh size was kept uniform to generate a quasi-ideal mesh following [29] (table S1), 

126 which allowed the calculation of average stress values. All models were assigned isotropic material 

127 properties for bone (E = 13.7 GPa, ʋ = 0.3) and teeth (E = 38.6 GPa, ʋ = 0.4) [18]. Only the crowns 

128 of the canine teeth were considered in each model, representing the functional unit during initial 

129 prey contact.

130 Two functional scenarios were tested: (i) A non-masticatory bending test to investigate 

131 mandibular stability under generalized loading conditions [21]. A single ventrally directed nodal 

132 force was applied to the tip of the canine tooth. Load forces were scaled following the quasi-

133 homothetic transformation approach of [30] which ensures correct force/surface area scaling for 

134 extruded models as used here. Models were further constrained from movement in x-, y- and z-

135 direction at the jaw joint (three nodes). (ii) A second set of analyses were performed with all 
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136 mandibles scaled to the same size and adductor muscle forces applied. Adductor muscle forces were 

137 calculated from the size of the attachment area visible in lateral view multiplied by the specific 

138 tension (0.3N/mm2) [31]. All models were further constrained from movement at the tip of the 

139 canine tooth (one node in x- and y-direction, but not z-direction to simulate penetration of the prey 

140 by the canine). 

141 All models were imported into Abaqus (Simulia, version 6.141) for analysis and post-

142 processing. Biomechanical performance was assessed by per element average von Mises stress 

143 (with top 1% of magnitudes values excluded to account for artefacts resulting from point loads) and 

144 reaction forces measured at the tip of the canine tooth. Tests for statistical significance of the 

145 individual performance metrics were performed in PAST 3.22 [32] (tables S2-4).

146

147 (d) Geometric morphometric analysis

148 To quantify the morphological variation of the analysed taxa, a two-dimensional, landmark-based 

149 geometric morphometrics (GMM) approach was used (figure S1f). A set of fixed landmarks and 

150 semi-landmarks were used to describe the morphology of the skull (8 fixed, 55 semi-landmarks) 

151 and the mandible (6 fixed, 25 semi-landmarks) (figure S7), digitised with tpsDig2 [33]. Landmark 

152 coordinates were subsequently superimposed using a Procrustes Analysis and then subjected to a 

153 Principal Component Analysis (PCA) in PAST 3.22 [32]. PCA scores were used to create 

154 morphospace plots (figures S8-10) and to generate performance heatmaps (figure S1i) using the R 

155 package MBA (https://cran.r-project.org/web/packages/MBA/index.html). Phylomorphospaces 

156 were created using the phylogenetic relationships depicted in figure 1.

157

158 (e) Phylogeny and evolutionary rates

159 Time-scaled phylogenetic trees with branch lengths were required to investigate the tempo and 

160 mode of biomechanical evolution (figure S1h). Tree topologies are composite phylogenies, based 

161 on [34,35] for sabre-toothed mammals and [36] for gorgonopsians. The individual sabre-toothed 
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162 mammal topologies were combined into a single composite tree for the rates analyses. We use the 

163 ‘equal’ [37] and the fossilized birth–death (FBD) [38,39] time-scaling approaches to test for 

164 consistency. Temporal data were based on first appearance dates (FADs) and last appearance dates 

165 (LADs), representing the bounds of geological intervals that taxa occurred within. Dating 

166 uncertainty was incorporated when time-scaling trees by running 100 iterations and, for each 

167 iteration, drawing a single occurrence date for each taxon from a uniform distribution between their 

168 FAD and LAD. Traitgrams (phenograms) (figure S11) were generated for each biomechanical 

169 character for each subgroup using a randomly selected time-calibrated tree for each group, and 

170 maximum-likelihood ancestral state estimation in phytools [40].

171 Rates of biomechanical evolution were analysed using a Bayesian approach with the 

172 variable-rates model in BayesTraits v. 2.0.2 [41]. For the 100 time-scaled iterations of the 

173 gorgonopsian tree and the full sabre-toothed mammal tree, rate heterogeneity in each log10 

174 transformed character was tested using a reversible jump Markov Chain Monte Carlo algorithm 

175 (rjMCMC). Each tree was run for 200 million iterations, parameters were sampled every 16,000 

176 iterations and the first 40 million iterations were discarded as burn-in. The smallest effective sample 

177 size (ESS) was used to assess run convergence. To detect shifts in evolutionary rates, the variable-

178 rates model rescales branches where variance of trait evolution differs from that expected in a 

179 homogeneous (Brownian motion) model. The resulting ‘rate scalars’ represent the amount of 

180 evolutionary acceleration or deceleration relative to the background rate along each branch [41,42]. 

181 Stepping-stone sampling, with 100 stones each run for 1000 iterations, was used to calculate the 

182 marginal likelihood of the models (heterogeneous versus homogeneous rates) [43]. Model fit was 

183 compared using Bayes Factors and the Variable Rates Post Processor was used to extract the final 

184 parameter values [42]. We summarised rates results for each character by calculating consensus 

185 trees from all time-scaled trees that favoured a heterogeneous rates model - giving the mean rate 

186 scalars for each branch across gorgonopsians and sabre-toothed mammal phylogeny. Results were 

187 consistent in both the ‘equal’ (figure 4) and FBD dated trees (figure S12).
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188

189 3. Results

190 (a) Maximum jaw gape

191 The biomechanical analyses demonstrate that gape angles vary considerably between species and 

192 groups (figure 2a, S9b). Although there appears to be a trend for the increase (barbourofelids, 

193 smilodontines, homotherines) or decrease (nimravids, metailurines) of gape angles through time 

194 none of these relationships are statistically significant (table S2). All species across the different 

195 lineages show gape angles between 52 and 111 degrees, but diversification patterns differ 

196 considerably between groups. Gorgonopsians and nimravids show an “early high disparity” pattern 

197 and the widest range of gape values, indicating an early and fast diversification. All other groups 

198 exhibit a constant to “late high disparity” trend (figure S12a). Effective gape angles (= clearance 

199 between upper and lower canines and a proxy for prey size [9]), are considerably lower than the 

200 maximum gape angles in all groups (figure 2a) but again no statistically significant relationship 

201 through time was recovered (table S2). A comparison between actual and effective gape shows a 

202 (statistically significant) moderate correlation in homotherines (R2 = 0.78, p = 6.22E-5) and 

203 nimravids (R2 = 0.65, p = 0.0009) but a more decoupled relationship in the other groups (R2 = 0.38-

204 0.63) (table S2, figure S13a). 

205  The performance heatmap for the gape angle shows an equal complexity in the evolutionary 

206 dynamics. Some (but not all) derived taxa in each group occupy regions of higher performance 

207 compared to basal forms (for example in gorgonopsians, barbourofelids, and smilodontines). 

208 However, this is not a uniform trend and exceptions are present in each group (figure 3b, S14b, 15b) 

209 with derived taxa moving towards low-performance regions. For effective gape angles (figure 3c), 

210 there is movement between areas of similar performance or towards areas of lower performance 

211 than for the basal taxa in each group (figures 3c, S14c, 15c) 

212 Evolutionary rates in jaw gape are heterogeneous for gorgonopsians in the majority of trees 

213 analysed (97%). Rapid rates are concentrated in derived rubidgeines, particularly the robustly 
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214 skulled and large-bodied Leontosaurus, Dinogorgon, Rubidgea and Clelandina (figure 4a). 

215 Clelandina evolved the largest gape angle of all gorgonopsians, whilst Dinogorgon and 

216 Leontosaurus rank amongst the smallest gapes. Similarly, divergent gape angles in closely related 

217 taxa are seen in the Inostrancevia (large gape) + Sauroctonus (small gape) clade – which also 

218 exhibit moderately fast rates. In mammalian sabre-toothed taxa, there is mixed evidence for 

219 heterogeneous rates, with only 58% of analytical iterations recovering positive evidence for rate 

220 variation (figure 4b). In these trees, rapid rates are seen in smilodontines (Megantereon, Smilodon), 

221 derived barbourofelids and nimravids (Pogonodon, Hoplophoneus, Eusmilus).

222  

223 (b) Bending strength

224 Bending strength of the mandible was found to significantly increase with time in barbourofelids 

225 and metailurines (figure 2b, S16). While nimravids and homotherines also show an increase in 

226 bending strength, this trend is not supported statistically. Similarly, the apparent decrease in 

227 gorgonopsians and smilodontines is not statistically significant (figure 2b, table S2). Bending 

228 strength follows a distinct “early high disparity” pattern in nimravids and (to a lesser degree) in 

229 gorgonopsians and also smilodontines. All other groups show a “late high disparity” trend (Fig. 

230 S9b). Overall, bending strength is not correlated with actual gape (R2 < 0.2) and effective gape (R2 

231 < 0.47) (table S3, figure S13b, d).

232 Similar to gape angle, the evolutionary trends across the performance heatmap show 

233 complex movement towards different performance areas (figure 3d, S14d, S15d). As recovered 

234 above, only in barbourofelids and metailurines there is a clear trend of derived taxa moving towards 

235 high-performance areas.

236 Rates of evolution in bending strength are generally homogeneous for gorgonopsians, with 

237 only 20% of iterations showing heterogeneity. In contrast, mammalian sabre-toothed taxa show 

238 several bursts of fast evolution in bending strength in 97% of trees. Fast rates are seen in 

239 smilodontines and on internal branches uniting metailurines and smilodontines (figure 4c). This 
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240 reflects both great disparity in smilodontines (e.g. Smilodon populator versus Smilodon fatalis) and 

241 the larger difference between generally high bending resistances in smilodontines compared to low 

242 bending strengths in basal metailurines (figure S11b). Elsewhere, rapid rates are seen in sister taxa 

243 that have divergent bending strengths, notably Homotherium serum and Homotherium 

244 venezuelensis, and the nimravids Eusmilus and Hoplophoneus cerebralis (figure 4c).

245

246 (c) Bite force

247 Barbourofelids and metailurines show a statistically significant trend of decreasing bite forces 

248 through time Other groups appear to have a constant (nimravids, homotherines) or increased 

249 (gorgonopsians, smilodontines) bite force through time, but these trends are not statistically 

250 supported (figures 2c, S17, table S2). Gorgonopsians explore a wider range of relative bite forces 

251 (ca. 15-35%), while the mammalian sabre-tooths are restricted to lower relative bite forces (ca. 10-

252 25%). No or only weak and statistically not significant correlations were found between bite force 

253 and actual gape (R2 < 0.04) and bite force and effective gape (R2 < 0.3), whereas a moderate 

254 correlation between bending strength and bite force is observed in barbourofelids (R2 = 0.77, p = 

255 0.03) and metailurines (R2 = 0.54, p = 0.026) (table S3, figure S13c, e, f).

256 The evolutionary pathways across the performance space show that selected derived taxa in 

257 some groups (gorgonopsians, smilodontines) move towards areas of higher performance compared 

258 to the basal taxa. However, this trend is not consistent for all derived taxa in these groups. In 

259 contrast, barbourofelids and metailurines move towards low-performance areas (figures 3e, S14e, 

260 S15e).

261  In gorgonopsians, again only 11% of iterations show evidence for rate variation, suggesting 

262 that a homogeneous rate (Brownian motion) model is favoured. Accelerated rates of bite force 

263 evolution were widely distributed in mammalian sabre-toothed taxa (figure 4d) and a heterogeneous 

264 rates model is favoured for 94% of analysed trees. Fastest rates are seen in nimravids, particularly 

265 Eusmilus and Hoplophoneus. Other high rate instances involve taxa that evolved contrasting bite 
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266 forces compared to their closest relatives. This is seen in homotherines, where Amphimachairodus 

267 evolved relatively large bite forces, in metailurines, where Dinofelis shows notably smaller bite 

268 forces than more basal taxa, and in smilodontines, where Megantereon has increased bite force 

269 relative to others.

270

271 4. Discussion

272 The acquisition of hypertrophied canine teeth and cranial sabre-tooth characteristics across different 

273 vertebrate lineages represents a remarkable example of convergent evolution [11]. Despite the close 

274 morphological similarities exhibited by individual groups/species, some more general 

275 differentiations have been discussed for derived sabre-tooth felids [44,45]: scimitar-toothed cats 

276 (i.e. homotherines) with relatively shorter, broad and coarsely-serrated canines and dirk-toothed cats 

277 (i.e. smilodontines) with elongate and finely or unserrated canines, each representing a distinct 

278 ecomorphology with different cranial functions, as well as differences in their postcranial anatomy 

279 [46]. Our new analyses demonstrate that morphofunctional differences and evolutionary dynamics 

280 of synapsid sabre-tooths are far more complex. Rather than a clear dichotomous split into two 

281 ecomorphologies, we observe a spectrum of functional adaptations. Derived from the combination 

282 of the analysed functional parameters (actual and effective gape angle, bending strength, bite force), 

283 there are no two clades showing the same distribution of parameters and evolutionary rates (figures 

284 2-4, S14, S15). This confirms assumptions from previous studies on tooth morphology, bite-depth 

285 and postcranial specialisations that sabre-tooth function and prey killing strategies evolved along 

286 functionally diverse pathways [9,14,18,47]. Discoveries of mosaic-taxa, such a Xenosmilus 

287 hodsonae, combining scimitar- and dirk-toothed characteristics, had already hinted at the existence 

288 of wider morphofunctional diversity [48]. However, it should be noted that only about a fraction of 

289 the functional trends through time have been recovered as statistically significant (table S2). 

290 This is likely an effect of the divergent functional performances of derived taxa in each group 

291 (figure S11) as well as due to the lack of stratigraphic resolution resulting in the same/similar first 
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292 appearance dates (in particular for gorgonopsians). In all groups, an increase of functional diversity 

293 due to the exploration of different functionspace regions (figure S11) can be observed in the derived 

294 taxa which likely dilutes overall trends but lends further proof to the wide diversity of functional 

295 adaptations. Consequently, we find no proof for linear functional optimisation of groups as a whole.

296 Generally, the analyses reveal the emergence of individual species and morphologies with 

297 high performances through time but with broad functional diversity and widely distributed high 

298 rates leading to functional divergence in each group. For example, an adoption of increased jaw 

299 gape and mandibular bending strength is found in most groups, as would be expected following the 

300 cranial modifications (i.e. rotation of the braincase, reduction of coronoid process, mental process). 

301 While actual gape angles show a range of ca. 60 degrees (reaching up to 111 degrees in Smilodon 

302 fatalis), effective gape is restricted to a maximum of ca. 70 degrees, with most species ranging 

303 between 45 and 65 degrees. This is a similar clearance observed in modern felids [5] and appears to 

304 be the most effective gape necessary for prey capture casting further doubt on the idea of all sabre-

305 tooths being large prey specialists [9]. The significant correlation between actual and effective gape 

306 in nearly all groups (table S3) suggests that canine length and jaw gape are equally important 

307 factors and that canine penetration is more important than maximising prey size [9]. 

308 Interestingly, within gorgonopsians, the majority of taxa shows actual gape angles below 80 

309 degrees and effective gape angles below 60 degrees suggesting a possible specialisation towards 

310 smaller rather than larger prey, possibly as a strategy to conserve energy expenditure [49]. It is, 

311 therefore, possible that the sabre-like canines in gorgonopsians were used to inflict more severe 

312 wounds in smaller/similar-sized prey or had an additional function independent of feeding [50,51]. 

313 Positioned considerably outside of mammalian synapsids, gorgonopsians were not constrained in 

314 their cranial function by a generalised mammalian/carnivoran morphology. In fact, re-modelling of 

315 the skull and jaw (e.g. rotation of the facial skeleton, compaction of the braincase, reduction in jaw 

316 adductor space, reduction of the coronoid process, increased attachment for post-cranial 

317 musculature) is largely absent in gorgonopsians [5]. Furthermore, the gorgonopsian bite technique 
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318 is significantly dissimilar to that of eutherians: Gorgonopsians used a kinetic-inertial jaw-closing 

319 system (analogue to modern crocodilians) relying predominantly on the pterygoideus and 

320 temporalis muscle groups to deliver powerful and fast jaw closure [6]. However, the taxa included 

321 in our analyses do not account for the entire diversity in gorgonopsian morphology but include 

322 mostly larger taxa (e.g. Russian species as well as the morphologically advanced Rubidgeinae [52]). 

323 Gorgonopsians only show evolutionary bursts in gape evolution within derived rubidgeines, but bite 

324 force and bending strength evolved following a homogeneous rates model. This result may, in part, 

325 be due to a low sample size for this group and failure to detect rate variation. 

326 While there appears to be a trend towards increased relative bite forces in gorgonopsians and 

327 smilodontines, only the decrease of relative bite force through time in barbourofelids and 

328 metailurines is statistically supported. This seemingly counterintuitive trend in barbourofelids may 

329 be explained with the increasing specialisation and evolution of a novel prey killing strategy in 

330 derived taxa. With a shift from a killing bite (similar to modern felids) powered by the jaw muscles, 

331 to a canine-shear bite harnessing the neck musculature [45, 47, 53] bite-force becomes less 

332 important. At the same time, the emphasis on large jaw gape and canine clearance requires a 

333 reorganisation of the jaw adductor musculature changing the mechanical advantage and therefore 

334 constraining the ability to produce high bite forces [4,5,13]. 

335 The canine-shear bite has also been accepted as the main killing mode in Smilodon fatalis 

336 and other smilodontines [3,13]. However, while derived smilodontines have among the highest 

337 actual gape angles, bite forces are not decreasing through time as in barbourofelids. This may be 

338 because relative bite forces are within a similar range in derived smilodontines (ca. 15-20 degrees) 

339 to those in derived barbourofelids (ca. 12-17 degrees). A canine-shear bite is therefore likely to be 

340 the main killing style in both groups. However, the lower bending strength of the mandible in 

341 derived smilodontines would have, in contrast to barbourofelids with their prominently developed 

342 mental processes, required more powerful forelimbs to restrain prey [8,10,47]. Metailurines parallel 

343 barbourofelids closely in increasing mandibular bending strength and decreasing relative bite forces 
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344 through time. However, metailurines do not show the extent of cranial and mandibular 

345 modifications indicative of a canine-shear bite. It is, therefore, possible, that these trends reflect an 

346 adaptation to small prey in derived metailurines. In contrast, homotherines would have engaged in a 

347 different killing technique as indicated by moderate values and no significant changes through time 

348 of all functional parameters. Homotherines likely employed a predatory behaviour between a 

349 clamp-and-hold bite (analogue to modern pantherines) and a canine-shear bite as suggested by 

350 previous morphological and biomechanical analyses [18,48]. Nimravids generally show high jaw 

351 gapes (i.e. majority of taxa with actual gape angles over 90 degrees) and bending strength values 

352 with little change through time. This could represent an intermediate killing strategy for nimravids 

353 (as previously hypothesised based on the analysis of mandibular force profiles) [10] with a 

354 specialisation towards large-bodied prey [47] for which large gape angles and bending strength 

355 would be necessary.

356 The evolutionary pathways across the performance heatmaps (figure 3) further support the 

357 hypothesis that the different sabre-tooth species and groups pursued different hunting/killing 

358 strategies. However, they also show that there is no single consistent trend towards functional 

359 optimisation as hypothesised in the past [11]. All analysed groups span a wide range between basal 

360 and derived members across the heatmaps/morphospace. With the exception of metailurines, which 

361 are restricted to small areas of the mandibular, cranial and combined morphospaces, all groups can 

362 be found expanding into different regions of the morphospace (figures 3a, S14a, S15a). 

363 Anatomically, this represents an adoption of “typical sabre-tooth” morphologies (i.e. 

364 anteroposteriorly short but dorsoventrally high skulls, a reduced coronoid process, an expanded 

365 mental process) towards one end and the retention of “cat-like” morphologies (i.e. relatively shorter 

366 canines, low braincase, high coronoid process) on the other end (figures 3a, S14a, S15a). Again, 

367 gorgonopsians form the exception in occupying mostly distinct areas in the morphospace, with only 

368 occasional intrusions into the areas occupied by the mammalian taxa (figures 3a, S15a). This 
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369 pattern further supports the assumption that felid sabre-tooths were highly specialised but 

370 morphofunctionally constrained, possibly due to a high degree of functional integration [35].

371 It is further noteworthy that metailurines, homotherines and smilodontines show different or 

372 even opposing functional performances and that divergent functional morphologies are linked to 

373 rapid evolutionary shifts in some derived taxa in each group (figure 4). These three groups had 

374 considerable spatial and temporal overlap with several sabre-tooth species sharing the same 

375 ecosystem with each other and other mammalian carnivores [54,55]. Fast rates and different 

376 functional performances, therefore, suggest selective pressures, considerable specialisation and 

377 niche-partitioning to avoid intra- and interclade competition. Our results parallel previous findings 

378 that mandible shape in sabre-toothed cats evolved at a higher rate than in modern conical toothed 

379 cats [34]. This demonstrates that although a large degree of morphological convergence is present 

380 in these groups, functional characteristics are much more variable and diverse. 
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530 Figure captions

531  Figure 1: Sabre-toothed vertebrates in their phylogenetic context. Taxa are represented by skull 

532 outlines with the mandible opened at the maximum gape angle. Composite phylogenetic tree based 

533 on [34-36]. 

534

535 Figure 2: Biomechanical performance for different sabre-toothed clades through time: (a) actual 

536 (solid lines) and effective (dotted lines) gape angle; (b) average bending strength of the mandible 

537 tested in non-masticatory scenario; (c) relative bite force (bite efficiency) based on ratio between 

538 absolute bite forces and muscle forces.

539

540 Figure 3: Morphospace and performance space occupation of studied sabre-tooth species (crania 

541 and mandibles combined): (a) morphospace with convex hulls for different groups obtained from 

542 the Procrustes coordinates of the landmark analysis; (b) performance heatmap with actual gape 

543 angle values plotted onto morphospace; (c) performance heatmap with effective gape angle values 

544 plotted onto morphospace; (d) performance heatmap with bending strength values plotted onto 

545 morphospace; (e) performance heatmap with bite force values plotted onto morphospace. 

546 Phylogenetic relationships as in fig. 1 superimposed on heatmaps.

547

548 Figure 4: Rates of biomechanical evolution in sabre-toothed vertebrates: (a) rates of evolution in 

549 gorgonopsian gape angle summarised from 97 heterogeneous rate trees; (b) evolutionary rates in 

550 sabre-toothed mammal gape angle showing the consensus tree from 58 heterogeneous rate trees; (c) 

551 rates of evolution in sabre-toothed mammal bending strength summarised from 97 heterogeneous 

552 rate trees; (d) evolutionary rates in sabre-toothed mammal bite force illustrating consensus results 

553 from 94 heterogeneous rate trees. Rates of evolution in gorgonopsian bending strength and bite 

554 force were homogeneous. In each plot, phylogenetic branches and tip labels are coloured according 

555 to evolutionary rates, grading from slow to fast as denoted by the keys. The branch lengths are 

556 scaled to time and based on the average lengths from the time-scaled input trees. Results were 

557 consistent in both the ‘equal’ and FBD dated trees (figure S12).
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Figure 1: Sabre-toothed vertebrates in their phylogenetic context. Taxa are represented by skull outlines 
with the mandible opened at the maximum gape angle. Composite phylogenetic tree based on [34-36]. 
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Figure 2: Biomechanical performance for different sabre-toothed clades through time: (a) actual (solid lines) 
and effective (dotted lines) gape angle; (b) average bending strength of the mandible tested in non-

masticatory scenario; (c) relative bite force (bite efficiency) based on ratio between absolute bite forces and 
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Figure 3: Morphospace and performance space occupation of studied sabre-tooth species (crania and 
mandibles combined): (a) morphospace with convex hulls for different groups obtained from the Procrustes 
coordinates of the landmark analysis; (b) performance heatmap with actual gape angle values plotted onto 
morphospace; (c) performance heatmap with effective gape angle values plotted onto morphospace; (d) 
performance heatmap with bending strength values plotted onto morphospace; (e) performance heatmap 
with bite force values plotted onto morphospace. Phylogenetic relationships as in fig. 1 superimposed on 

heatmaps. 

211x279mm (300 x 300 DPI) 

Page 26 of 26

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



 

Figure 4: Rates of biomechanical evolution in sabre-toothed vertebrates: (a) rates of evolution in 
gorgonopsian gape angle summarised from 97 heterogeneous rate trees; (b) evolutionary rates in sabre-
toothed mammal gape angle showing the consensus tree from 58 heterogeneous rate trees; (c) rates of 
evolution in sabre-toothed mammal bending strength summarised from 97 heterogeneous rate trees; (d) 

evolutionary rates in sabre-toothed mammal bite force illustrating consensus results from 94 heterogeneous 
rate trees. Rates of evolution in gorgonopsian bending strength and bite force were homogeneous. In each 

plot, phylogenetic branches and tip labels are coloured according to evolutionary rates, grading from slow to 
fast as denoted by the keys. The branch lengths are scaled to time and based on the average lengths from 
the time-scaled input trees. Results were consistent in both the ‘equal’ and FBD dated trees (figure S12). 
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