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Rigour and proof

Abstract

This paper puts forward a new account of rigorous mathematical
proof and its epistemology. One novel feature is a focus on how the skill
of reading and writing valid proofs is learnt, as a way of understanding
what validity itself amounts to. The account is used to address two
current questions in the literature: that of how mathematicians are so
good at resolving disputes about validity, and that of whether rigorous
proofs are necessarily formalizable.

1 Introduction

What’s going on in mathematical proofs? How do they establish the truth
of their conclusions? By proof here I mean the kind of proof mathematicians
actually write and exchange with each other and accept as valid.

One way to attempt to understand proof is via derivations, the formal
objects that logicians use to model deduction. Gentzen intended his system
of natural deduction to be

a formalism that reflects as accurately as possible the actual
logical reasoning involved in mathematical proofs (Gentzen 1969,
p. 74)

and he described its derivations as having
[a] close affinity to actual reasoning (ibid., p. 80).

One can read this as meaning that all valid mathematical inferences should
be instances of the logical rules of natural deduction, or closely related to
them.! If mathematicians did actually explicitly work according to certain
fixed formal rules, then proof would be unmysterious: understanding proof
would just come down to understanding the relevant formal rules. However
as many authors point out, in reality mathematical proofs do not proceed
according to any list of rules that one could specify in advance: there is far

!This is apparently the reading of Goethe and Friend (2010, pp. 274-275). It is also
possible that Gentzen merely intended that the logical substructure of proofs should be
expressible in natural deduction — aspects such as introducing and eliminating premises,
moving from a statement about an arbitrary x to a statement about all , and so on.



too much variety of inferences for that, and new proofs will often contain
inferences that are somewhat (or completely) novel.?

More plausible than a naive rules based view of proof is one on which the
correctness of a proof consists in its being formalizable — translatable into a
derivation according to some given system of formal rules. What exactly this
description amounts to will depend on what notion of translation is employed
(and on the underlying system of formal rules). Though historically often
implicitly assumed by philosophers of mathematics to be correct, numerous
authors have recently objected to this view. There have thus been many
calls to develop a new, more plausible account of mathematical proof and
its epistemology.?

This paper aims to provide such an account, or at least the beginnings
of it — found largely in sections 3 and 4. The account is not actually of
proof in general, but only of rigorous proof, rigour being the standard of
acceptable proof in much of modern mathematics. I do not view this as a
significant limitation. Indeed I argue in section 2 that questions like “what
is mathematical proof?”, asked in full generality, are unlikely to receive a
satisfying answer: there is no univocal notion of proof in mathematics, or at
least not one we can expect to obtain a substantial philosophical analysis of.
The account of rigorous proof given here is not the last word on the subject,
and I note places where it could be expanded on.

The account put forward here takes a somewhat novel approach: instead
of focusing exclusively on proofs, considering also the ability of mathema-
ticians to produce and recognize valid inferences. Where does this ability
to recognize validity come from? What can be said about it? Answering
these questions is one way to gain insight into what is going on in proofs
themselves - how they justify their conclusions.

The resulting account is used to address two questions about proof that
have been raised in the literature. The first is that of how mathematicians
are so able to generate agreement about the validity of proofs. This pheno-
menon — that if a mathematician thinks a proof is valid, they can generally
convince others, or be convinced themselves of a flaw in it — has been no-
ted by various authors, including Azzouni (2004, pp. 83-84) and Antonutti
Marfori (2010, pp. 267, 270-271). Explaining it is one of the major mo-
tivations for the “derivation-indicator” view of proof that Azzouni (2004)
puts forward. Azzouni’s analysis of proof has met with controversy, with for

2These points are argued for instance by Tragesser (1992), Celluci (2009), Leitgeb
(2009), Goethe and Friend (2010), and Larvor (2012). A nuanced version of the rule based
approach to proof is given by Hamami (2019). Due to the arguments of the previously
mentioned authors, I do not think an account like Hamami’s can ultimately be successful,
though I do not have space to discuss it in detail here.

3As illustrations of the objections, and the calls for improvement, see for instance
Rav (1999, 2007), Celluci (2009), Detlefsen (2009), Leitgeb (2009), Pelc (2009), Goethe
and Friend (2010), Antonutti Marfori (2010), Larvor (2012), Weir (2016), De Toffoli and
Giardino (2016), and Larvor (2019).



instance Tanswell (2015) raising what appear to be valid criticisms. Using
the account of rigour put forward here, in section 5 I give an explanation
of this agreement about validity that aims to be simpler and more plausible
than Azzouni’s.

The second question is that of whether rigorous proofs are necessarily
formalizable. In section 7 it is argued not that formalizability is directly re-
quired of valid proofs (as is sometimes thought), but that it is a consequence
of the norm of rigour in mathematics — as spelled out in sections 3 and 4
— that valid proofs are necessarily formalizable. The worries of Rav (1999)
and Weir (2016) about whether the process of filling in intermediate steps
in an argument will ever terminate are addressed, and a possible response
to the related worry of Pelc (2009) is sketched.

One cannot properly discuss formalizability without discussing what for-
mal system one is targeting, and first section 6 considers the argument that
mathematicians should really be regarded as working in naive set theory,
with its unrestricted comprehension scheme. This has been claimed for in-
stance by Jones (1998) and Leitgeb (2009). If correct this would render the
formalizability claim empty of interest, since set theory with unrestricted
comprehension is inconsistent and so any argument is trivially formalizable
in it (with every inference justified by your favourite set theoretic paradox).
This position is evaluated, and dismissed.

These are not all the worries about formalizability that have been or
could be raised, and consideration of further qualms — such as the concern
expressed by for instance Larvor (2012) that informal arguments may un-
dergo some sort of violence, or essential loss, when formalized — will have to
await consideration in further work.

2 Initial remarks on rigour

The main account of rigour is found in sections 3 and 4 and, but first there
are some preliminary remarks worth making. To begin with, we will see some
examples of non rigorous mathematics; this helps illustrate the distinctive
nature of mathematical rigour, and is also used to argue against the idea that
there is a unified notion of “proof” in mathematics that is worth conceptually
analyzing. Indeed one of the intended lessons of this paper is that it is
rigorous proof, not proof in general, which is the philosophically interesting
concept. The latter part of this section summarizes the discussion of rigour
given by Burgess (2015), which makes a number of valid, significant points,
but which does not address the questions discussed in section 1 that this
paper attempts to answer.

First, the examples of non rigorous mathematics. One good example
consists of manipulations involving infinitesimals in the 17" and 18}
turies, which — before the introduction of limits into analysis — were not

cen-



generally rigorous. For a toy example of how they often worked, we can
determine the derivative of the function = — 22. If we let dz be small, then
we have

(x +dx)* —2? 2?4+ 2zde +da® —2®  2wdx + da?
dz B dz B dz

=2x +dx

and then since dz is small we discard it, obtaining 2x as the derivative of
x + 22 at x. Arguments along these lines (and more complicated versions)
were carried out by various authors, with Fermat perhaps being the first to
give this particular kind of calculation (Kline 1990b, pp. 344-345). These
methods met with criticism however, as it was not clear what the status of
“small” quantities such as dr was, or what was allowed when manipulating
them. Indeed if dzx is small but non zero then the result is only approximate;
for the result to be exact, we require that 2z + dr = 2z, but then we obtain
by subtraction that dz = 0 and so we cannot divide by dz to begin with.
Rolle pointed this out (Mancosu 1989, pp. 230-231), followed more famously
by Berkeley who complained that infinitesimals appeared to be the “ghosts
of departed quantities” (Berkeley 1999, pp. 80-81).

Other common methods in the 17*" and 18" centuries also lacked rigour.
Often arguments proceeded by assuming that what held for the finite also
held for the infinite, with infinite series being manipulated as though they
were finite sums, without worrying about issues of convergence. For instance
Jacob Bernoulli argued (essentially) that

1= (Legagro )= (Grgrg+)
= gt stg gt

_(1 1)+(1 1>+<1 1>+ _1+1+1+
- 2 2 3 3 4 2060 120 T

despite knowing that the sum 1+ % + % +...is infinite (Kline 1990b, p. 443).*
As illustrated by many further examples in Kline (ibid., Chapter 20), infinite
series were freely manipulated in this period without worrying about con-
vergence, despite these methods sometimes leading to false or contradictory
conclusions.

Arguments like these gradually came to be seen as unacceptable. In the
19" century both the calculus and the study of infinite series were rephrased
in terms of the concept of limit, putting them on a firm footing (Kline 1990a,
Chapter 40). Infinitesimals were then largely eschewed in analysis until
Robinson demonstrated how one could in fact reason rigorously about them,

4One can adjust this argument to make it rigorous by telescoping the partial sums:
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via the logical concept of a non standard model (Robinson 1996). Recent
work has shown how the inconsistency in arguments like the above involving
infinitesimals can be embraced and utilized, in a suitable paraconsistent logic
(see for instance Brown and Priest 2004, and Sweeney 2014).

Other ways of reasoning formerly regarded as valid also came to be shun-
ned, such as appeals to intuition. Proofs were demanded of even very in-
tuitive statements, with the Jordan curve theorem being a famous example.
This states that if ¢ : S' — R? is continuous and injective then R\ ¢(S!)
consists of exactly two connected components, one of which is bounded and
the other unbounded, and ¢(S?) is the boundary of each component. If one
explained all the relevant terms — “continuous”, “injective”, “bounded” and
so on — to a layman, they would likely state that this was simply immediate,
and one might well get the same reaction from some undergraduates (par-
ticularly those with a preference for applied mathematics). It takes some
effort to imagine a curve ¢ in such a way that the conclusion seems any-
thing but obvious. Nonetheless mathematicians were not satisfied with this,
and providing a rigorous proof turned out to be very difficult. Bolzano had
already noted that this fact required proof (Coulston 1970, p.274) and this
proof was only provided by Jordan (published in Jordan 1887) more than
30 years after Bolzano’s death.’

There are a number of lessons to be drawn from these examples. Firstly,
they can be used to assess the adequacy of an account of rigour, such as that
given in sections 3 and 4 — it needs to be able to explain why they are not
considered rigorous. Secondly, such examples illustrate that an argument
does not have to be rigorous to be reliable, or explanatory, or valuable.
Arguments involving infinitesimals in the 18" century could plausibly be all
three (such as the differentiation example above), as could manipulations
of infinite series. Much of modern non rigorous physics and engineering is
also presumably reliable, explanatory and valuable. Nonetheless rigour does
bring benefits, some of which will be discussed in this paper.

These examples also illustrate the broadness of the notion of mathema-
tical proof in times past. This, I believe, tells against the desire to seek
a philosophical account of the general notion of proof — to discover what
proof in general “really is”, or where its boundaries are drawn. Indeed in
the above examples, reasoning of various kinds all distinct from the usual
mathematical paradigm of deduction is seen. To make arguments involving
infinitesimals one postulates a new manner of calculation, in which a quan-
tity is treated at one stage as non zero, and later as small enough that it can
be neglected. This can otherwise be viewed as the postulation of a new kind
of entity with these apparently odd properties. Either way, it is essentially

®Some controversy followed Jordan’s proof, with Veblen (1905) claiming it was flawed,
and claiming to give the first rigorous proof. However Hales (2007) argues that Jordan’s
proof was basically valid, though perhaps not as polished as it could be.



a form of abductive reasoning: reasoning of a kind which is not justified by
anything that has gone before, but instead by its immense success in solving
all manner of differential problems.® It is not so different to the postulation
of new principles or entities in physics, except that it is confirmed by mat-
hematical applications and deductions, rather than by experiments. Then
the manipulation of infinite series as though they were finite is essentially
a case of argument by analogy, again backed up by its apparent success in
solving problems. Finally we have appeals to intuition, delivering conclu-
sions that one finds very hard to doubt because of one’s intuitive grasp of
the concepts involved — not so different from the intuition that philosophical
zombies could exist, or that nothing can cause itself.

I do not think there is much to be gained by seeking to discover what
these disparate forms of reasoning “have in common”. They are all taken
to justify high credence in their conclusions, and they all concern abstract,
mathematical subject matter, but beyond that I am not sure there is much
to be said. Certainly one could conduct a fruitful investigation into ab-
ductive reasoning, or intuition as a form of evidence, but there is unlikely
to be much distinctive to say about either in the context of mathemati-
cal proof that does not apply to more general contexts. There is also not
much I think to say about why such methods were accepted, beyond that
they were felt to be reliable. The best assessment of proof in general may
just be that there are different kinds of permissible actions that one may
carry out, as Larvor (2012) puts it. It is rigorous proof which I think is
more deserving of philosophical attention: this is where the ideal of flawless
deduction that Euclid aspired to takes its purest form (Burgess 2015, pp.
36-38), and where mathematical reasoning is found at its most distinctive,
and epistemologically robust.

The variety of kinds of inference allowed in proofs historically makes
it clear that it is only for rigorous mathematics that one could defend the
formalizability of arguments. For instance what would a formal system
for arguments like Bernoulli’s, involving manipulation of divergent series,
look like? Would it formalize analogies between the finite and the infinite?
Similarly there is no reason to think that irreducibly intuitive reasoning
would be formalizable.

Given the major differences between the historical standard of proof and
what modern rigour permits, an obvious question is how and why the shift
to rigour came about. Considering that would take us too far afield, but it is
one topic which Burgess discusses (ibid., Chapter 1) in his account of rigour,
to which we now turn. Burgess is mainly concerned with implications of the
norm of rigour for the debate over structuralism, and does not give explicit

SAs an anonymous referee remarks, part of the confidence in the use of infinitesimals
stemmed from how in many cases one could use them to solve a problem — like the volume
of a sphere — whose solution was already known, and thus check that the infinitesimal
methods gave the correct results.



arguments concerning the kinds of questions raised in section 1 — the epis-
temology of proof, the ability of mathematicians to reach agreement about
the validity of proofs, the issue of formalizability and so on. Nonetheless
some observations he makes are worth highlighting.

Burgess emphasises that any piece of rigorous mathematics takes place in
a context of existing results and definitions which can be appealed to (Bur-
gess 2015, pp. 149-158). One can then extend the boundaries of knowledge
with a new argument, stringing together definitions and proofs of propositi-
ons, appealing to existing results and using existing concepts where needed.
Burgess also emphasises that often it does not matter whether a fact one is
appealing to is a basic principle or a consequence thereof, or how concepts
used were actually defined as long as the properties one needs of them do
hold. This is the basis of his critique of structuralism as a metaphysical
position.”

Both aspects of the rigorous process — definitions, and proofs of propo-
sitions — merit some attention. Burgess notes that when introducing a new
concept, one is required a clear definition in terms of existing ones (ibid.,
p. 7). This definition does not have to be completely formal — for instance
one can state that a vector space is a set equipped with an abelian group
structure and a scalar multiplication operation, without specifying exactly
how this is coded set theoretically: as a triple (V,+,-), or ((V,4),), or as
(4,-), or in some other way. It just needs to be clear that the definition
could be made completely precise in such a way that all uses made of the
concept would be valid.

Burgess also discusses what the standard of rigour requires for proofs of
propositions. He considers various possibilities, and ultimately comes to the
(tentative) conclusion that:

What rigor requires is that each new result should be obtained
from earlier results by presenting enough deductive steps to pro-
duce conviction that a full breakdown into obvious deductive
steps would in principle be possible (ibid., p. 97)

This I think is basically right. However there is more to say before this
can be brought to bear on the issues discussed in section 1. If we are
interested in the epistemology of proof, then this is only a sketch rather
than a full account. How is this conviction generated? How is it reliable?
If mathematicians are judging formalizability in principle (which is roughly
what “full breakdown into obvious deductive steps” might amount to), how

"He argues that exactly how the concepts one uses were defined is often irrelevant,
as all one will need are certain derived properties. Thus one need not care about how
things were defined when doing mathematics. It is this irrelevance of definitions that
Burgess argues has been mistaken by structuralists for a metaphysical truth about the
nature of mathematical structures, with structuralists hoping to infer for instance that
mathematical objects have only general structural properties (Burgess 2015, Chapter 3).



are they able to judge this? As discussed in section 1, most mathematicians
have no experience of or interest in formalization, after all. There is also the
question of how mathematicians are so good at resolving disputes, discussed
in section 1, which we could hope to answer. Addressing these issues is the
purpose of the remainder of the paper.

3 A rigorous eduction

As mentioned in section 1, the account of rigorous proof put forward here
uses a somewhat novel approach: to try to understand the skill of mathema-
ticians in judging and producing rigorous proofs by thinking about how this
skill is acquired. For this we will start at the beginning. There are many
different universities around the world that teach rigorous mathematics, and
they may teach it in somewhat different ways, but there are some common
features that can be pointed to. Students are generally taught the basics
of rigorous proof by seeing and working through examples, paired with des-
criptions of how and why the reasoning involved works. An example of a
basic early result students might see is displayed in fig. 1.

2.1.8 Theorem (a) Ifa € Randa #0, thena® > 0.
(b) 1>0. '
(¢) Ifne N, thenn > 0.

Proof. (a) By the Trichotomy Property, if a 3 0, then eithera € Por —a € P. Ifa € P,
then by 2.1.5(i1), a®=a-a €P. Also,if —a € P, then a*> = (—a)(—a) € P. We conclude
that if a # 0, then at > 0.

(b) Since 1 = 12, it follows from (a) that 1 > 0.

Figure 1: “Introduction to Real Analysis”, Bartle and Sherbert, p.26
(proof of (c) is omitted)

This demonstrates a fact commonly assumed without question: that the
square of a non zero real is positive. Probably the only part of the argument
that requires explanation is the symbol P, which denotes the set of (strictly)
positive real numbers. Axioms concerning this set have been stated a few
pages previously. The relevant axioms are that:

(i) For any a € R, either a € P or (—a) € P or a = 0, with exactly one of
these holding.

(ii) If a,b € P then a-b € P.

From these the above proof proceeds straightforwardly, arguing by cases.
The main thing to note about this proof is just how incredibly detailed it

is. Virtually all of the logical structure of the argument is right there on the

page. There are places where one could be even more explicit, in particular



in the assertion that a? = (—a)(—a), and indeed this follows immediately
from the facts that 1 = (—1)(—1) and that (—a) = (—1)a, which are both
given as exercises (Bartle and Sherbert 2000, p. 29). Nonetheless the proof
is very close to the formal level and would be no challenge to formalize.

We can call this level of very great detail that proofs can be carried out at
the “week 2 level of detail”. Of course students may not see this particular
argument in week 2, or at all; it is just a convenient name. We are not
defining the “week 2 level of detail” here in terms of what is comprehensible
to certain students— instead we give examples of basic arguments at this level
of incredible detail, such as the above and also for instance basic number
theoretic results (Taylor and Garnier 2014, Theorem 6.2; Silverman 2012,
Lemma 7.1) or basic results from linear algebra (Axler 1997, Propositions
1.1-1.6).

As students learn the subject they won’t just be passively reading proofs
like this. They will also typically (and importantly) be proving these kinds
of basic facts themselves, demonstrating them with arguments written out
at this very explicit level of detail. The hope is that by doing this they
will gain what we can call “proficiency at week 2 detail”, the ability to prove
simple facts like this one by chaining together these kinds of very basic steps.

A bit more will be said about how this basic level of proficiency is gained
later in this section. For now we proceed onwards through the curriculum.
As time passes the arguments the students are presented with will gradually
get faster, and have fewer of the details filled in. Some time later — perhaps
a few months, or a term — they may encounter an argument like that in
fig. 2.

6.2.1 Interior Extremum Theorem Let ¢ be an interior point of the interval I at which
f: 1 — R has a relative extremum. If the derivative of f at ¢ exists, then f'(c) = 0.

Proof. We will prove the result only for the case that f has a relative maximumm at c; the
proof for the case of a relative minimum is similar.
If f'(c) > O, then by Theorem 4.2.9 there exists a neighborhood V C I of ¢ such that
f&x) = fl©
_—— >

X —=c

0 for xeV x#ec.

If x € V and x > c, then we have

RGP IONY

x—=c

f) = fle)y=(x—c) 0.

But this contradicts the hypothesis that f has a relative maximum at ¢. Thus we cannot
have f’(c) > 0. Similarly (how?), we cannot have f’(c) < 0. Therefore we must have
f'(c) = 0. QED.

Figure 2: “Introduction to Real Analysis”, Bartle and Sherbert, p.168
This theorem presents another fundamental fact: that if a function on an

interval has a “relative extremum” — a local maximum or a local minimum
— at an interior point, and is differentiable there, then the derivative must



be zero. This is clear by visualizing the situation, but we are doing rigorous
mathematics so are not satisfied with that, and we demand a proof.

The argument given is again fairly detailed, but is slightly less explicit
than the previous example: not all the details are there. It only actually
covers the case where f/(c¢) > 0, showing that this cannot happen, and the
task of showing that f’(c¢) < 0 cannot occur is left to the reader. If the reader
has understood the argument they should have no problem seeing how this
would go, or writing it out. This aspect of the proof is fundamental to the
way we learn rigorous mathematics. Students will hopefully not be treating
proofs like the deliverances of some oracle: lecturers will ideally encourage
them to engage with the proofs, to see if they could have proved the results
themselves, to see if they can prove similar results by similar methods, and
to see if they can fill in any parts where the proof is sketchy, and check any
parts of the proof they are not sure about in more detail.

The course did not start by teaching students the week 2 level of detail
material just to pad the schedule. The hope is that now when they meet
an argument like this which is a little bit faster, strung together out of infe-
rences that are simple but not necessarily completely basic, they can check
any inference they are not sure of by proving it in more detail, using their
“proficiency at week 2 detail” that they have hopefully already attained.
Thus they can sharpen their judgement of which simple (but not completely
basic) inferences are valid, checking such inference whenever necessary by
seeing if they can be proved.

Students won’t just be seeing theorems like this however. They will also
be proving these kinds of slightly higher level statements themselves, by
stringing together inferences that are simple (but not necessarily completely
basic). By doing so they will hopefully gain what we can call “proficiency
at term 2 detail”, the ability to prove these slightly higher level inferences
by stringing together simple inferences, and to reliably judge the validity of
simple inferences (checking whenever necessary by proving them at the week
2 level of detail).® Again we define the “term 2 level of detail” by giving
examples, such as the above and also for instance from Bartle and Sherbert
(2000, Theorem 5.2.1), Axler (1997, Proposition 2.9, Proposition 2.13) and
Silverman (2012, Lemma 9.2).

As the terms go by the students are gradually exposed to more and
more condensed arguments. After another year or so they might meet an
argument like that in fig. 3.

Here the students see a proof that power series can be differentiated term

8 A note on terminology. I find it natural to speak of proving inferences, as in proving
them in greater detail, though strictly speaking this may be a category error: inferences are
things that we draw, assess, or justify, and we normally only speak of proving statements
and propositions. Nonetheless I think it is clear what is meant — replacing a given inference
by a chain of intermediate inferences, which collectively constitute a proof of the conclusion
from the premises — and it is a convenient and expressive idiom.

10



9.4.12" Differentiation Theorem A power series can be differentiated term-by-term
within the interval of convergence. In fact, if

0 o0

flx) = Za",\'", then f'x) = Z"anxn_l for |x] < R.

n=0 n=\

Both series have rhe same radius of convergence.

Proof. Sincelim(n'/™) = 1, the sequence (Inanll/”

(|an|“") is bounded. Moreover, it is easily seen that

) is bounded if and only if the sequence

lim sup (I”a,. |U") = lim sup (‘an U") .

Therefore, the radius of convergence of the two series is the same, so the formally differen-
tiated serjes is uniformly convergent on each closed and bounded interval contained in the
interval of convergence. We can then apply Theorem 9.4.4 to conclude that the formally
differentiated series converges to the derivative of the given series. Q.ED.

Figure 3: “Introduction to Real Analysis”, Bartle and Sherbert, p.270

by term. The proof is another step up in terms of compression, in terms of
relying on the intelligence of the reader. This can be seen in the first line,
where the reader is expected to see that a certain sequence is bounded if
and only if another sequence is. Also in the second sentence, the reader is
expected to “easily see” that a certain equation holds. These statements are
extremely plausible; and if a student has any doubt, they can check them by
proving them in more detail, using the “proficiency at term 2 detail” ability
they have hopefully gained. They do not need to take these statements on
trust, and they do not need to guess.

Again we can talk roughly about this “year 2 level of detail”, giving
further examples of arguments at about this level of detail to help explicate
it, again for instance from analysis (Bartle and Sherbert 2000, Theorems
9.3.2 and 10.1.3), from number theory (Silverman 2012, Theorem 42.1), and
also from ring theory (Aluffi 2009, Proposition I11.3.11, I11.4.5) and complex
analysis (Bak and Newman 2010, Proposition 3.1).

This process continues in the obvious way. As the years progress a stu-
dent is exposed to gradually faster and faster arguments, arguments where
gradually more and more of the details are left out and more is left to
the reader’s intelligence. We can pick out further levels of detail a stu-
dent will encounter, in the same way as above. First, we define a “year 3
level of detail” by giving examples, now with a wider variety: from functi-
onal analysis (Rudin 1987, Theorems 4.6-4.12), complex analysis (Conway
1978, §IV.2), measure theory (Fremlin 2010, Chapter 12), general topology
(Munkres 2000, §33), algebraic topology (J. M. Lee 2000, Chapter 13), dif-
ferential geometry (J. Lee 2012, Chapter 3), commutative algebra (Aluffi
2009, §V.1), representation theory (James and Liebeck 2001, Chapter 6),
number theory (I. M. Niven, A. Niven, and Zuckerman 1991, §1.2), combi-
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natorics (Szemerédi 1975, Facts 1 & 2), logic (Cori and Lascar 2000, §1.1),
and category theory (Awodey 2010, Proposition 2.10). Again these may not
be arguments a given student actually sees in their third year, but the level
of detail is intended to be one that competent third year students will be
gaining proficiency at, for both reading and writing proofs.

Detail here is not the same thing as accessibility. An argument can be
very detailed but still difficult, for instance because it involves difficult con-
cepts, or relies on difficult results, or because the result is poorly motivated
and the proof strategy unexplained — or just because the argument is too
long. Detail here means explicitness, and proximity to definitions, and how
much the proof says of what could be said. It is the antonym of “how much
is left out”.

Naturally these predicates “week 2 level of detail”, “year 2 level of detail”
and so on will be vague: we may not be able to always determine precisely
whether an argument is at the year 2 level of detail or not, just as we may
not be able to decide whether a jumper is red, or perhaps orange instead.
That does not undermine these predicates’ validity or usefulness. Although
there will be borderline cases, there will also be cases where we can in fact
state with confidence that an argument is at around the year 2 or year 3
level of detail, rather than the week 2 or graduate level of detail (defined
shortly). Of course an argument may not all take place at the same level of
detail, so that describing the different levels of detail its parts take place at
may be more appropriate than trying to shoehorn the whole argument into
one category — as with a multicoloured jumper. One issue with these levels
of detail that does not have such a comparison with jumpers is that it can
potentially be quite difficult to compare the detail of pieces of mathematics
from very different areas, where the reasoning is of a very different style.
We can mitigate that as here by giving examples from a wide range of areas
when characterizing levels of detail.

We now continue in the same way, defining further levels of detail a stu-
dent will encounter. It should perhaps be emphasised that this terminology
of levels of detail is new terminology I am introducing, and not a standard
part of mathematical discourse. There are times one might see something
like it used — for instance if a mathematician presented an unconvincing ar-
gument to a colleague, and after some questioning the colleague asked them
to explain it more slowly, like they were talking to a grad student. Also,
concepts like these can perhaps be seen as implicitly underlying some mathe-
maticians’ talk of detail in mathematics, an example of which will be seen in
section 5 when discussing how these levels of detail can help mathematicians
resolve disputes about the validity of proofs.

We will actually now pick out two different graduate levels of detail.
First, we define the “graduate level of detail (explicit)” by giving examples,
from functional analysis (Banach 1987, Theorem II.1), complex analysis
(Conway 1978, §IV.6), measure theory (Schwartz 1954), general topology
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Figure 4: Levels of detail

(Walker 1974, §1.1-1.16), algebraic topology (Switzer 2002, Chapter 4), dif-
ferential geometry (Hirsch 1976, §1.3), algebraic geometry (Eisenbud and
Harris 2000, §1.1.4), commutative algebra (Eisenbud 1995, Chapter 1.2), re-
presentation theory (Fulton and Harris 1991, Lecture 4), number theory
(I. M. Niven, A. Niven, and Zuckerman 1991, §5.7), combinatorics (Erdos
1947, Theorem 1), logic (Prawitz 1965, Chapters I-1II), and category theory
(MacLane 1998, §I1.3-11.6).

The basic idea is hopefully now clear, but we can keep going and pick out
a “graduate level of detail (terse)” by giving some examples: from algebraic
topology (Hatcher; 2001, §2.2), differential geometry (Thurston 1997, §2.7),
algebraic geometry (Hartshorne 1977, §I1.3) and category theory (MacLane
1998, Chapter IX). As seen in the examples above, some research mathema-
tics is written out at a level of detail already covered: for instance Szemerédi
(1975, Facts 1 & 2) at the year 3 level of detail, and Banach (1987, The-
orem II.1), Schwartz (1954), Erdos (1947, Theorem 1) and Prawitz (1965,
Chapters I-11II) at the graduate level of detail (explicit). However plenty of
research mathematics does take place at a level of greater compression, and
one could keep going and pick out levels of this, named perhaps “research
article level of detail (terse)”, “research article level of detail (very terse)”,
and maybe one or two more. A range of levels of detail we can obtain in
this way is seen in fig. 4.

To be clear, there is nothing privileged about the levels of detail listed
in fig. 4. There is a continuum of levels of detail that we could potentially
pick from (perhaps idealizing somewhat, given that statements in proofs are
finite objects), and nothing to mark out those in fig. 4 as special; they are
just useful examples for the purposes of this paper.
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A little more should be said about the upper reaches of mathematics, at
the top of fig. 4 and beyond. In fact it is clear that nothing too different
happens as one approaches the research frontier — the gradual ascent to
levels of greater and greater compression continues. That nothing radically
different is happening can be seen in the ability of professors to take the most
important, beautiful or useful results in a field — once it has matured — and
collate them into a textbook with proofs accessible to graduate students. In
the process proofs may be simplified or altered, but there is never any great
obstacle to writing out what was once research level mathematics at a level
of detail that graduate students can follow. One can see this in for instance
the titles in the Springer Graduate Texts in Mathematics series.

A particularly extreme example of this is given by the case of Perelman’s
proof of the Poincaré conjecture. This was one of the most major conjectures
in mathematics, and the subject of a Clay Millennium Prize. In 2002 and
2003 Perelman uploaded three papers containing a claimed proof (Perelman
2002, 2003b,a). The papers were written at a very high level, containing
mathematics sketchy enough that despite only totally 70 pages, it took teams
of mathematicians 3 years — working in correspondence with Perelman — to
verify the argument as correct. Perelman was then offered a Field’s medal,
and subsequently a Millennium Prize, both of which he declined. Since
2006 more detailed expositions of his argument have been produced, such
as Morgan and Tian (2007), which is a textbook intended to be accessible
to graduate students. Indeed it looks to be at about the graduate level of
detail (explicit) or graduate level of detail (terse). It comes in at 521 pages
— about 8 times longer than Perelman’s original papers. This is quite an
increase, but even so it shows that there is not too dramatic a leap in terms
of compression from maths at a level graduate students can understand to
some of the most concise mathematics acceptable as a proof.

Now to say a little more about the lower end of fig. 4. First, a po-
tential issue is that some areas of maths are generally only studied at a
high level, because they have substantial mathematical prerequisites or ty-
pically involve subtle or complex arguments. This is the case with harmonic
analysis, the theory of functions of several complex variables, and modern
algebraic geometry, amongst other areas. This presents a potential problem
with regards to the lower levels of detail in fig. 4, since for instance no-one
does algebraic geometry in week 2 of their degree. In some cases this is un-
problematic since expanding an argument in great detail will lead to basic
inferences like those found in other areas — for instance combinatorics or
analysis, in the case of harmonic analysis. In other cases reasoning used is
more sui generis. Nonetheless in these cases I think it still makes sense to
talk about what an inference carried out at say the term 2 level of detail
would look like. In fact we sometimes see this happen: when a new manner
of argument is introduced, even to advanced students, a few very explicit
examples are often given of how it works. This is so that students have a
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sense of what is underlying more complex arguments, and know what to fall
back on if they ever find more complex arguments hard to follow or produce.
An instance of this from differential topology — a fairly advanced subject,
done in full generality — is seen in J. Lee (2012, Proposition 2.4). Here Lee
is giving an example of how to use the smooth charts on a manifold to prove
local facts about them, and it is written up in great detail to make clear to
students how this works, at around the week 2 or term 2 level of detail. One
could do the same for other advanced subjects, for instance writing out the
arguments of Eisenbud and Harris (2000, §1.1.4) from algebraic geometry
mentioned above at the term 2 level of detail.

A second issue about levels of greater detail is one that was rather passed
over in the discussion above: what takes place in the initial stages of lear-
ning rigorous mathematics, before the ascent up the levels of compression
can start. To begin with, students will be taught how the basics of proof
work, and what to do with the logical vocabulary A, 3, -,V and so on, by a
combination of examples and informal descriptions of what is going on and
why. For instance they will (hopefully) learn by seeing and working through
examples that to prove a statement Vn ¢(n) about all numbers, one can take
an unknown number n, prove that ¢(n) holds without assuming anything
special about n, and then deduce that indeed Vn ¢(n) holds — essentially the
V-introduction rule from natural deduction. The logical workings of proof
can be stated in simple, clear, precise form — in terms of the hypotheses
active at each stage, and how to introduce and exploit them — and when
students can grasp how this works from examples it is not such a great sur-
prise. Anyway not all students do manage to learn the rules from examples,
and how to best teach the logic of proof is much discussed in the mathema-
tics education literature (see for instance S. S. Epp 2003; S. Epp 2009). As
well as the logical vocabulary students will learn the basics of set theory,
including how to determine if two sets are equal via extensionality (whether
this is an axiom or an inference rule is not important to the students, and
the distinction may not be clear to them), and they will be shown various
acceptable ways of forming new sets — power sets, cartesian products and so
on.

There is a further basic aspect of proof that students are expected to
infer from examples, and this is the ability to prove results by describing
algorithms or procedures to achieve some desired mathematical goal, with
Euclid’s algorithm being an early example students often encounter (Sil-
verman 2012, pp. 33-34), and further examples coming in linear algebra
(Axler 1997, Proposition 2.6, Proposition 2.7; Artin 1991, pp. 14-15) and
other areas. Though some such proofs can be rephrased as arguments by
induction, sometimes they may implicitly require the definition of functions
by recursion, and this is not usually something early undergraduates will be
in a position to justify formally — the set theoretic treatment of recursion is
typically taught later on in a more general form that applies to recursions
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on all ordinals (such as in Jech 2006, Theorem 2.15). In fact this does not
present any sort of problem, and is not so different to the cases above where
students grasp principles from examples; in this case the general principle
implicitly underlying these kinds of recursive arguments is the axiom of de-
pendent choice. This states that if X is a set and R is a binary relation on X
such that for all z € X there is y € X with xRy, then for all x € X there is
a sequence (xg,x1,...) of elements of X where o = = and for all i, ; Rx;11.
That this is a statement rather than an inference rule, and not a basic axiom
of set theory (it is deduced from the axiom of choice) is not important here.
It is intuitive, and can be stated clearly, simply and precisely, and it is not
a surprise that students can grasp from examples what kinds of arguments
are in line with it.

The basic axioms governing sets are exempted from the general require-
ment that inferences be justifiable by proofs in greater detail. One can rig-
htly assert this without actually deciding on which the basic axioms are; for
instance it does not matter whether one regards the statement that function
sets B4 exist as a basic axiom, or as justified by an argument that appeals
to more basic axioms (union, separation, pair set and power set perhaps).
Whatever the basic axioms are, they need not be justified by a proof, and
other basic properties of sets are justified in terms of them (perhaps out of
sight of students). There has been some discussion of exactly what means
of set formation are allowed in mathematics — in particular, whether the
unrestricted comprehension principle of naive set theory is used — and this
issue will be addressed in section 7.

With these points addressed, we have the essentials of how rigour is
learnt. We can pick out different levels of detail maths is done at by giving
examples, and students proceed upwards through these levels of detail as
described above: once they have gained proficiency at a certain level of
detail they are in a position to engage with more concise arguments, with a
tutored sense of what less explicit are valid — tutored by their experience at
proving such inferences. If they are ever unsure, they can use their existing
proficiency to check a larger inference and see if it can in fact be justified
by a proof; and if so, they can ask why they were suspicious about it, and
consider how to adjust their instincts to recognize such inferences as valid in
future. It is essential to the normal process of learning rigorous mathematics
that students are in a position to check inferences for themselves in this way,
rather than just being presented with high level arguments they are intended
to imitate. This is the most significant difference between mathematics
as taught rigorously, and mathematics as taught in a physics degree (for
instance). As discussed above there are also cases early on where students
are expected to infer general principles from examples. There are only a few
such cases though, and the reasoning each general principle encompasses
can be characterized simply and precisely.

As mentioned in section 1, there are various places where this account
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could be expanded on. This could be a task for further investigations on the
subject. For instance, one might seek a better understanding of exactly how
students “adjust their instincts” to recognize a wider variety of inferences
as valid, having seen particular cases to be provable in greater detail; or
how, and with what degree of success, they “infer general principles from
examples” in the early stages. There is not space to properly consider such
questions in this paper, however.

4 The concept of rigour

Implicit in the process of learning rigorous maths described above is that
each time a student is trying to master a new level of greater compression,
it is constitutive of inferences being at that level of compression that they
be provable at a previous level of detail, a level the student is already com-
fortable at — so that there are no leaps in the process of learning rigorous
mathematics where a student is unable to check inferences for themselves
(apart from when grasping certain basic principles). Indeed if inferences at
the level of greater compression didn’t need to be provable in more detail,
then “checking” them by seeing which inferences can be justified with a proof
would be a mistake. As discussed above, the basic axioms of set theory are
exempted (whatever exactly they are taken to be), and are intended to be
accepted by students without argument, though possibly with the assurance
that they are “obvious”.

Similarly, it is constitutive of rigour that nontrivial inferences can po-
tentially be proved at a level of greater detail, so that if there is ever any
unclarity — or disagreement — about the correctness of an inference it can be
resolved by seeking a proof, or requesting one. Again proving in more de-
tail here means an appreciable step up in detail, going up a notch in terms
of levels of detail that we can pick out. This is one useful mechanism in
mathematics for resolving disputes about the validity of proofs, as discussed
in section 5. For the purpose of resolving disputes, this requirement is of
less practical importance at levels of very great detail, as mathematicians
may agree immediately about sufficiently basic inferences; but equally, for
these simpler inferences it is generally more obvious that they can be pro-
ved in greater detail, and how such a proof would go, so the requirement
is no unnecessary burden. Also, the ability to gain greater clarity about
the correctness of inferences at all levels by seeking a more detailed proof
is very important for the purposes of learning mathematics, as mentioned
above. Again, the basic axioms of set theory are exempted from the re-
quirement of being justifiable in greater detail: their correctness is not up
for debate (within mathematics) and is supposed as a precondition for the
mathematical enterprise to get going.

This is, I think, the key feature of rigorous mathematics: that there is a
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range of levels of detail that it can take place at, where inferences at a more
compressed level can necessarily be proved at an appreciably greater level of
detail. This requirement that inferences be provable in more detail is why
the examples discussed in section 2 were not rigorous: the manipulations of
infinitesimals and infinite series discussed could not be justified in greater
detail, and could not be regarded as basic rigorous rules in themselves since
it was not clear how to demarcate what reasoning was acceptable.”? Similarly
brute intuitions such as for the truth of the Jordan curve theorem are not
in themselves suitable in proofs unless they can be backed up with more
detailed arguments.

The necessity that inferences be provable in greater detail applies to le-
vels of detail that students (and mathematicians) reach after progressing
onwards from the basic level at which the subject is first taught — assu-
med above to be the week 2 level of detail. However not all students do
manage to directly grasp how proof works at this level of detail, and some
need more explicit demonstration of the rules that proof is implicitly follo-
wing. There are courses and textbooks which provide this, such as Velleman
(2006), which teaches how proof works essentially by teaching how to prove
statements using the natural deduction rules: here the premises being used
are explicitly tracked and calculated with, according to the rules governing
the various bits of logical vocabulary. We can call this most basic, most ex-
plicit level of detail the “intro to proof level of detail”. Students can use this
as a stepping stone to gain comprehension of how basic arguments at the
week 2 level of detail work, and implicit in this (as above with later levels of
detail) is that inferences at the week 2 level of detail be provable at the intro
to proof level of detail — otherwise gaining a grasp of how arguments work
at the intro to proof level would be misleading as to what is going on at the
week 2 level. Thus we can extend the above argument that inferences need
to be provable in greater detail all the way down until we reach the intro to
proof level of detail, where arguments explicitly use the natural deduction
rules.

A minor caveat to this ability to prove in greater detail is that some
arguments may require rephrasing when proving in more explicit formal
terms — for instance one would often justify the Euclidean algorithm as an
informal recursive process of repeated division with remainder, described for
integers a,b > 0 perhaps by saying:

Write a = qob + o with 0 < rg < b,
write b = q1rg + r1 with 0 < r1 < rg,

9Reasoning with infinitesimals was put on a firm footing by Robinson (1996) in terms
of the logical concept of non standard model, and Nelson (1977) showed how to give a
rigorous axiomatization for the approach. One can also use a paraconsistent approach to
embrace the contradictory nature of infinitesimals, as seen in Brown and Priest (2004)
and Sweeney (2014).
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write g = qory + 1o with 0 < 79 < 71y,
and so on, until we reach r,, =0

which if proved more explicitly would be transformed into some sort of
formal recursive definition (of the form justified by the axiom of dependent
choice — though there is no choice here — as discussed in section 3). In these
kinds of cases one is replacing a part of a proof with a similar more detailed
version, rather than literally filling in inferences in greater detail. However
these kinds of cases are the exception rather than the rule, and do not make
any essential difference to any of the discussion below, so we will generally
include them under “proving in greater detail” (speaking a little loosely).

Now although the account above has focused on the ability to prove infe-
rences in greater detail, it should be emphasised that one does not generally
have to see how to prove an inference in greater detail to understand it,
or accept it. For instance, to someone familiar with the notion of homeo-
morphism it probably feels obvious that the sphere {z € R3 : ||z| = 1} is
homeomorphic to the cube {x € R3 : max; |z;| = 1}, but sitting down and
trying to write out a proof of this could well take a while. Such examples
are not limited to topology. In logic — a subject where perhaps one would
expect “intuition” would play less of a role — it might well feel obvious that
substituting term ¢ for variable z in a formula ¢, when z is not free in ¢,
will just return ¢, but again proving this in detail would take a bit of work
(though probably less insight than the previous example). These kinds of
higher level judgements about inferences — without a proof in mind — are an
essential part of mathematics. Nonetheless it is important in rigorous mat-
hematics that the option of proving inferences in more detail is there, to aid
in gaining a firm grasp of any new concepts, and in guiding and sharpening
one’s judgement in any difficult cases — not all homeomorphic spaces are as
obviously homeomorphic as the two above.

Also, when checking a proof one does not always necessarily actually
check that every inference in is valid. Indeed if an unsurprising claim in a
proof is supported by reasoning that looks like the right kind of thing, and
the right amount of effort, then an experienced mathematician may pass on
without checking every single detail. This is seen in interviews conducted by
Andersen (2017) with mathematics referees, and also mentioned by Thurston
(1997, p. 32). It appears this can be a fairly good guide to the overall
correctness of results, though numerous commentators have remarked on
the unreliability of the mathematical literature and the pervasiveness of
errors in proofs, to which this manner of refereeing may be a contributing
factor (Jaffe and Quinn 1993; Thurston 1994, p. 33; Nathanson 2008; Grear
2013, pp. 421-422).
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5 Disagreements about validity

It is traditional when studying deduction to think in terms of a single sharply
defined notion of validity, that every inference either has or lacks. I think
the above analysis of rigour rather tells against this conception.

Indeed having picked out various levels of detail that mathematical infe-
rences can take place at, we can introduce a cumulative hierarchy of validity
predicates — “valid at the week 2 level of detail”, “valid at the term 2 le-
vel of detail”, and so on, where for instance “valid at the term 2 level of
detail” means an inference either at the term 2 level of detail, or at a le-
vel of greater detail. One can keep ascending in this way, defining validity
predicates which allow larger and larger, more and more compressed infe-
rences, inferences that are increasingly challenging for even an experienced
mathematician to follow. At some point one will reach inferences compres-
sed enough that they are well beyond the bounds of what mathematicians
consider to be valid. However there appears to be no natural place on the
continuum of levels of detail to draw a line, and say this is the limit of
validity: that inferences at least that detailed are valid, while those less
detailed are not. Asserting that there is a precise such limit seems to just
be philosophical dogma, unsupported by the facts of the practice. Suppose
for instance that a preprint of an article is uploaded to the arXiv, and read
by two mathematicians experienced in the field — one of whom concludes
that it is perfectly rigorous, the other that the proof of a certain lemma is
too sketchy and incomplete. Who are we to say as philosophers that one is
definitely right, and the other definitely wrong? I think it is more plausible
to say that judgements of validity are — to some extent — both vague and
subjective.

Some philosophers are aghast at this suggestion, it is worth explaining
why, given the account of rigour above, it is not as damaging a claim as
might be thought. In as much as there is disagreement about the validity
of a certain inference, the framework of rigour provides a mechanism for
resolving it.

That mathematicians are good at resolving disagreements about validity
— that if a mathematician believes a proof is valid, they are generally able to
convince others of this, or become convinced themselves of a flaw in it — has
been noted by various authors as a fact that deserves explanation, and is one
of the main motivations of Azzouni’s derivation indicator view of proof is to
attempt to provide this (Azzouni 2004, pp. 83-84; Antonutti Marfori 2010,
pp. 267, 270-271). The idea behind Azzouni’s account is that the informal
proofs mathematicians write serve to indicate formal derivations. This has
met with criticism, with Tanswell (2015) pointing out that attempted proofs
may have many different attempted formalizations, which poses a problem
since Azzouni wants to characterize validity of the informal proof in terms of
success of the indicated formal derivation. Additionally as seen in section 3,
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mathematics generally proceeds at a much greater level of compression than
is found in formal proofs, and (as mentioned in section 1) most mathema-
ticians have no experience of or interest in the activity of formalization, so
Azzouni’s account is rather far removed from how mathematicians typically
engage with proofs in practice.

Instead of hoping for an explanation in terms of completely formal proofs,
it is more promising to look to the process of proving in more detail itself.
Indeed if a mathematician ever puts forward a purported proof in which
an inference is not convincing, then a more detailed justification for that
inference can be requested — an appreciable step up to a level of greater
detail, perhaps from the research article level of detail (terse) to the graduate
level of detail (terse), as discussed in section 3.10 At this level of greater
detail inferences are more transparent and judgements of validity are more
reliable, and this may already serve to resolve the controversy — with the
new argument being acceptable, or an obvious error in it discovered. If
not, and an inference in this more detailed argument is still controversial,
a more detailed justification can be asked of it in turn, taking us to a still
greater level of detail at which errors will be even more obvious — perhaps
we now reach the third year level of detail. In principle this process will
terminate when one reaches the level of complete formalization, though in
practice if both sides are of sound mind and proceeding in good faith then
the controversy will be resolved well before that.!!

Thus if one believes a proof to be rigorous, in as much as this belief
is correct one can always (in principle, and usually in practice) fill in the
details of any inferences that are felt to be sketchy, to increase the level of
detail to one which is found acceptable. In the imagined case considered
initially of two mathematicians disagreeing about an arXiv preprint — with
one finding that a particular lemma was argued for too briefly — the dispute
would normally be resolvable in this way, bringing the proof into a form
acceptable to everyone.

Thus though in my view there may be some subjectivity and vagueness
to where exactly the limits of rigour are drawn, much more significant is
the strong form of objectivity afforded by rigour, in which there are always
robust reasons available to win over an objector — provided one’s assessment
of a proof as valid is justified.

In fact this dispute resolution mechanism is essentially that described in
the Princeton Companion to Mathematics:

[T]he fact that arguments can in principle be formalized provi-
des a very valuable underpinning for the edifice of mathematics,

Though this terminology of levels of detail is new, the process is not.

1The resolution of disagreement in this manner is an example of the idea from argu-
mentation theory that a debate goes down to the level of detail that will satisfy both
parties (using the apt words of an anonymous referee). For more on argumentation theory
and mathematics, see Aberdein and Dove (2013).
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because it gives a way of resolving disputes. If a mathematician
produces an argument that is strangely unconvincing, then the
best way to see whether it is correct is to ask him or her to ex-
plain it more formally and in greater detail. This will usually
either expose a mistake or make it clearer why the argument
works. (Gowers, Barrow-Green, and Leader 2008, p.74)

Sections 3 and 4 can be seen as a clarification and elaboration of the process
outlined in this quote. As an explanation of how disputes in mathematics
can be resolved, this seems to be both more straightforward and more plau-
sible than Azzouni’s account, and better grounded in mathematical practice.
However there may well be more to be said about the reality of disputes over
validity in mathematics, and how well this simple account fits it.

6 Naive set theory?

The final topic of the paper is how this account of rigour impacts on the
question of formalizability. Before the discussion of this in section 7, we
take a brief detour from the main course of the paper, to address a scep-
tical view about the basic principles used in mathematics: the idea that
mathematicians should be viewed not as working in a system like ZFC(U),
but in naive set theory, with its axiom scheme of unrestricted comprehen-
sion. This has been suggested by Leitgeb (2009), and some mathematicians
have made similar claims about their own understanding (Jones 1998, p.
205; Aluffi 2009, p. 1). Indeed “Naive set theory” is actually the title of a
set theory textbook by Halmos (Halmos 2011). If mathematicians are best
regarded as using unrestricted comprehension, this would make the claim
that mathematical proofs can be formalized trivial, since set theory with
unrestricted comprehension is inconsistent and so any argument can be im-
mediately formalized in it (with every inference justified by a set theoretic
paradox).

The key step when considering this possibility is to distinguish different
senses of the term “naive set theory”. Certainly most mathematicians do not
know what the axioms of ZFC are, but they do have a solid grasp of how to
legitimately form new sets: by taking unions, subsets, power sets, Cartesian
products, function sets, equivalence classes, and so on. This understanding
may be “naive” in the sense that it is not accompanied by explicit awareness
of how these operations are justified in terms of the basic axioms — but that
is totally different to “naive” set theory in the logicians’ sense, in which the
central principle is that of unrestricted comprehension, the scheme

Jy (xey & é(x))

for all formulae ¢ in which y does not occur free.!? Indeed the above set

12The set theory in Halmos’s textbook is naive in an even weaker sense. Halmos does
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forming operations are not generally justified in any more direct terms by
unrestricted comprehension than by ZFC; to form Cartesian products for in-
stance, one still needs to go through the rigmarole of defining what ordered
pairs are and what a family of objects is, and the availability of unrestricted
comprehension does not significantly simplify this. Moreover, there is no
evidence of mathematicians making essential appeals to unrestricted com-
prehension, and this being accepted as valid. In the normal course of mat-
hematics, all classes one would like to be sets are easily seen to be set sized
using the standard set forming operations. In category theory, where size
issues are encountered, the axiom of universes was introduced specifically
so that they could be dealt with in a rigorous way. There are occasional
instances where classes are manipulated as though they were sets, for in-
stance in the definition of the Grothendieck group as a quotient of the set
of isomorphism classes of finitely generated modules over a ring R; but in
this case there is nothing genuinely troubling going on since one can easily
define a set of representatives of the isomorphism classes instead (the quo-
tient modules % of powers of R, with isomorphic quotients identified), or
one can appeal to the axiom of universes.

Moreover there are genuine mathematical cases where the distinction
between sets and classes is crucial, and the use of unrestricted comprehension
would be disastrous. For instance the general adjoint functor states that if
G : D — C is a functor with D complete and locally small, then G has a
left adjoint iff it preserves all limits and satisfies the solution set condition
(MacLane 1998, p. 121). The solution set condition states that a set of
morphisms with a certain property exists, and in this case the fact that this
be a set rather than a class is key, as there is always a class of morphisms
with the required property. In the presence of unrestricted comprehension,
the general adjoint functor theorem would become the claim that any limit
preserving functor whose domain is complete and locally small has a left
adjoint, which is false in general. The issue of which functors have adjoints
is not some category theoretic curiosity — it arises naturally in various areas
of mathematics including algebra and topology.

Thus the way mathematicians form sets may be naive in the sense that
it need not be founded in explicit knowledge of the basic principles, but
there is no indication that it is naive in the sense of relying on unrestricted
comprehension. If it did, signs of this ought not to be too hard to find.

in fact state the usual basic axioms of set theory (with no mention of unrestricted com-
prehension), and he uses them to derive various set theoretic operations and facts, but
he says the approach is naive in that “the language and notation are those of ordinary
informal (but formalizable) mathematics”.
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7 Formalizability

Now to the question of formalizability itself. As advertised previously, it
will be argued here that valid rigorous proofs are formalizable, in principle,
though what this means requires clarification. The prospects for feasible
formalization will also be touched on.

For the purposes of this section we will introduce the concept of “de-
ductive grounding” between levels of detail. If L, L’ are levels of detail, then
we say that L' is deductively grounded in L if every inference valid at level
of detail L’ is provable at level of detail L.'® This concept of grounding is
justificatory rather than metaphysical, and does not share all the properties
of standard notions of metaphysical grounding (for instance it is reflexive).
This concept of grounding uses a notion of provability, and the kind of mo-
dality employed here needs to be spelt out before we know what deductive
grounding amounts to. The notion of provability we will use is one of “in
principle” provability, abstracting from limitations in terms of time or other
resources (and thus perhaps abstracting away from the limitations of our
own physical universe). One could otherwise use a notion of what is actu-
ally feasibly provable, given the physical and biological constraints on us,
and obtain thereby a notion of “feasible deductive grounding”.

We can relate this notion of deductive grounding to a notion of “in
principle formalizability”. Indeed, we can fix some standard system of first
order natural deduction (for instance that of Prawitz 1965, Chapter I), and
we take a formal proof to be a complete derivation in this system in the
language of set theory with all premises amongst the axioms of ZFCU. We
then define the “formal level of detail” to consist just of these formal proofs.
We characterize a proof as being formalizable in principle if every inference
in it is provable at the formal level of detail. Thus the claim that every
proof at a level of detail L is formalizable in principle is just the claim that
L is deductively grounded in the formal level. This is a weak notion of
formalizability in principle, and for instance if the Riemann hypothesis is a
theorem of ZFC then the one line proof of the Riemann hypothesis from no
premises is formalizable in principle by this definition. Nonetheless it is one
available sense of formalizability in principle; the question of what we do
and should mean by formalizability will be returned to later in this section.

The key property of this notion of in principle provability is that it
satisfies a version of the converse Buridan formula. In general the converse
Buridan formula is (the scheme of formulae) of the form

vz O(¢(x)) = O(Va ¢(x)).

3 As was noted in section 4, some inferences at level L' may be part of an informal
section of a proof which as a whole needs to be replaced by a more detailed and formal
version at level L; this was illustrated with the example of the Euclidean algorithm. This
caveat makes no real difference to what follows.
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It is of the same general form as the converse Barcan formula, though with
an existential instead of universal quantifier (Konyndyk 1986, p. 94). This
converse Buridan formula is not typically valid. For instance if I have a well
stocked fridge, it may be the case that for every item in the fridge I can
have that item as part of my dinner, but that it is impossible for me to have
every item in the fridge as part of my dinner. Nonetheless in cases where
one abstracts from resource constraints it can be valid. In particular if we
have a finite set S of inferences, and write Prov to indicate that we have
obtained a proof of s € S, then we do have that

Vse S O(Prov(s)) = O(Vse S Prov(s))

since if each element of S is provable, then — given sufficient time — it will
be possible to obtain coeval proofs of every element of S.

It follows that if level of detail L’ is deductively grounded in level of
detail L, and we have a proof p of result s valid at level of detail L', then
one can in principle obtain a proof of the s at level of detail L. Indeed every
inference in p is provable at level of detail L, so that (as just discussed) it is
possible to obtain a simultaneous proof of every inference in p; concatenating
these then gives a proof of s at level of detail L, as claimed.

Thus we can obtain that the notion of deductive grounding is transitive.
Indeed suppose we have levels of detail L, L', L with L’ deductively groun-
ded in L and L” deductively grounded in L’. Let s be an inference valid at
level of detail L”. Then by the definition of deductive grounding, we can in
principle obtain a proof of s at level of detail L’; but then as just discussed,
given such a proof one can in principle obtain a proof of s at level of detail
L. Thus s is indeed provable at level of detail L.14

Now as discussed in section 4, it is crucial for rigour that valid mathema-
tical inferences be provable in greater detail (unless they are already basic).
This is an essential part of how rigorous mathematics is learnt, and of how
validity is reliably judged — since for inferences that are not immediately
convincing, one can always clarify the situation by seeking a proof in more
detail. In both cases proving in more detail means an appreciable step up
in detail, going up a notch in terms of levels of detail that we can pick out.
This is an important mechanism for resolving disputes in mathematics, as
seen in section 5.

We will now argue that for the levels of detail that a student moves
through on their way to mastering research level mathematics, each more
compressed level is deductively grounded in its more detailed predecessors.
We will consider a student gradually moving through an education in mat-
hematics, where at each time ¢ there is the level of detail m; of mathematics
that they have mastered so far, and the level of detail I; that they are lear-
ning at that point. We will assume that the collection of times ¢ making up

'This argument could be carried out more formally, and implicitly uses the rule $$¢p =
Q¢ of S4, which holds for the kind of metaphysical possibility being employed.
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this period of education forms a complete ordered set, which we denote by
I. I may or may not have endpoints — an initial point, and/or a final point.
If L and L’ are levels of detail we will write L < L' to denote that L’ consists
of mathematical inferences at least as compressed as those at level L. We
will assume that the function ¢ — m; is monotonic, i.e. that if ¢ > ¢ then
my > my. For there to be no magical jumps in this process of learning, it
needs to be the case that for all times ¢ not initial in I, there is some ¢’ < ¢
such that m; < Iy, so that the level of detail mastered at time ¢ was actually
learnt at some previous point in time. We also need that for all times ¢ not
final in I, there is some ¢’ > t such that my < l;, so that there is no magical
jump after time ¢ where at all subsequent times, a level of detail has been
mastered that is greater than that which was being learnt at time ¢. Finally,
as discussed above, it is constitutive of learning rigorous mathematics that
at each stage, the level of detail one is learning is deductively grounded in a
level of detail one has already mastered, i.e. that I; is deductively grounded
in my.

Now for the argument. For each ¢ there is some t' < ¢ such that m; < Iy,
but [y is deductively grounded in my, so that by transitivity m; is also
deductively grounded in my (call this backwards grounding). Also, for each
t, there is ' > t such that my < l;, so that my is deductively grounded in
my (call this forwards grounding). Now suppose for contradiction that there
is s > t such that ms is not deductively grounded in m;. We let r be the
infimum of

{s | ms not deductively grounded in m;}

(a set which is bounded below by ¢). By forwards grounding, there is ¢’ > ¢
such that my is deductively grounded in m;, so that by monotonicity of m,
we have that r > ¢/ > t. Thus r is not initial in I, and so by backwards
grounding for 7, there is t < r such that m, is deductively grounded in my.
But by the definition of r, we must have that my is deductively grounded
in my, and thus by transitivity that m, is deductively grounded in m;. But
then forwards grounding for r gives that there is ¢ > r such that my is
grounded in m,, and thus in my; then by monotonicity of m, if r <t <t
then my» is deductively grounded in my, so that ¢’ is actually a lower bound
for

{s | ms not deductively grounded in m},

so that r is not the infimum of this set, giving the required contradiction.
Thus from the assumptions we have made, it follows that if s > ¢, then mg
is deductively grounded in my.

Thus we obtain that all levels of detail that can be mastered rigorously,
from a process starting at the week 2 level of detail, are deductively grounded
in the week 2 level of detail. Then it is clear by inspection that arguments
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at the week 2 level of detail can be written out as formal derivations, as
was noted in section 3, and their premises are all amongst the basic axioms
of set theory, so that the week 2 level of detail is deductively grounded in
the formal level. Otherwise, as discussed in section 4, one can define an
“intro to proof level of detail”, in which the natural deduction rules are
explicitly used, and which some students use as a stepping stone to master
the week 2 level of detail; it follows (as above) that the week 2 level of detail
is deductively grounded in the intro to proof level of detail, whose proofs
are trivially formalizable — they are already natural deductions of a slightly
nonstandard kind. FEither way we obtain that the week 2 level of detail is
deductively grounded in the formal level, and thus that all the levels of detail
that can be mastered rigorously are deductively grounded in the formal level.
In other words, all rigorous mathematics is, in principle, formalizable. This
is not a mere empirical fact obtained by looking at examples of mathematical
arguments (except perhaps for the step from the formal level to the intro
to proof or week 2 level), but a direct consequence of the norm of rigour in
mathematics as enunciated here in terms of levels of detail.

This account answers a potential worry about formalizability: if rigour
requires proofs to be formalizable, how are mathematicians so good at jud-
ging this? The answer is that mathematicians are not directly judging for-
malizability, but are instead judging the rigour of inferences (as discussed
in sections 3 and 4), and that formalizability is obtained as a consequence
of rigour.

In the literature the main worry about this kind of in principle forma-
lizability is raised by Rav (1999), reiterated by Weir (2016). Rav considers
a situation where one has an inference A — B in a proof, and after some
thought fills this in with intermediate inferences to obtain A — Ay, A1 —
Ao, ..., Ay, — B. Perhaps one is then questioned by a student or non spe-
cialist as to why A; follows from A, and comes up with a new interpolation
A — A A" — A;. Rav claims we can give no “theoretical” reason why
this process of adding interpolations ought to ever terminate (Rav 1999, pp.
14-15).

The basic problem with this description is the lack of any attempt to
characterize the form the interpolating inferences must take. One cannot
just write in any intermediate inferences that suit one’s fancy, whether jus-
tifying an inference to oneself or to a sceptic. For instance suppose we are
trying to argue that the fact there are infinitely many primes (IP) is a con-
sequence of the fundamental theorem of arithmetic (FTA), and we write RH
for the Riemann hypothesis and ST for Szemerédi’s theorem. It is clearly
nonsense to try to justify FTA — IP by filling in intermediate inferences of
the form

FTA — RH, RH — ST, ST — RH, RH — IP.

These may be valid as material implications (in the presence of the axioms
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of ZFC), but they are totally useless as intermediate inferences for us; and
to explain why they are the wrong kind of intermediate inferences, we have
to start putting inferences on some sort of scale of plausibility, or simplicity,
or evidentness, and require that adding intermediate inferences take us in
the increasing direction on this scale. This is the first step towards thinking
of mathematics in terms of levels of detail, as in sections 3 and 4, and to
the requirement — implicit in Rav’s description — that nontrivial inferences
be provable in greater detail. Then the straightforward observations that
1) this requires an appreciable step up in detail, in terms of levels of detail
that we can pick out, and that 2) there are only finitely many such steps
up in terms of detail that we can pick out, and that a student can pass
through on their way from week 2 mathematics to the research frontier,
give the dissolution of Rav’s worry (I do not know whether these count as a
“theoretical” reason, in Rav’s terms).

The argument given above concerned in principle formalizability, but it
is also possible to say a little from this perspective about how practical for-
malization might be. Indeed we can use the above framework to address
a weaker version of Rav’s worry put forward by Pelc (2009), who accepts
that the process of filling in with intermediate inferences will necessarily
terminate, but questions whether we have any reason to believe this process
will result in a formal proof of feasible length (given some initial proof of
reasonable size). Pelc defines a vast number M in terms of various funda-
mental constants, large enough so that there is no possibility of us ever (in
practice) constructing a formal proof of this length. His number M is at
least the number of particles in the universe divided by the Planck time (in
seconds), and thus at least 102 on standard estimates; so a special case of
Pelc’s worry is whether when formalizing a proof of reasonable length, we
have any reason to believe the resulting formal proof will be less than 10129
symbols.

The framework of levels of detail developed above can also be useful
when addressing this kind of worry. Indeed one can get from the week
2 level of detail to the research article level of detail (terse) in a small
number of steps up: via the year 2 level of detail, the graduate level of
detail (explicit), and the research article level of detail (explicit). For each
of these steps one can estimate by considering examples what kind of factor
increase in length one generally obtains, when writing out an inference from
the more compressed level at the more detailed level. Though it would have
to be confirmed by more careful investigation, my belief from considering
examples is that this factor is not generally too large, with a factor of less
than 5 being common, a factor of 10 being fairly rare and a factor of 20 being
very rare (as a proportion of inferences). This is supported by the example
of Perelman’s proof of the Poincaré conjecture discussed in section 3, where
an extremely high level argument was written out at around the graduate
level of detail with a factor of increase in length of 8. Thus though one may
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obtain exponential growth in proof length as one fills in details in a proof,
to bring it down to the week 2 level of detail, the base and exponent are
both fairly small: the former being the factor of increase with each step
to greater detail, the latter being the number of such steps (4 in the case
above). Even with a factor of 20 at each stage, and another factor of 20
(again a crude upper bound) to reach the formal level from the week 2 level,
this gives us an overall factor of increased length of at most 20° = 3,200, 000
to formalize an argument at the research article level of detail (terse). This
is vastly less than the factor Pelc is concerned might be necessary. Though
this could undoubtedly result in very unwieldy proofs (if this crude upper
bound was attained), they would still be within the bounds of feasibility, as
usually conceived — requiring perhaps a few gigabytes or tens of gigabytes
of space to store on a hard drive.

Even if one can fill out the above sketched argument to make a convincing
case that all rigorous proofs of reasonable length will be feasibly formalizable,
this does not meet one major kind of objection to formalizability: namely,
that the process of formalization so dramatically changes a proof that the
formal proof that results cannot rightly be regarded as the “same proof” as
the original, and thus should not be regarded as a formalization of it. Larvor
writes of the “violence or essential loss” that can result from formalization
(Larvor 2012, p. 717). A related question concerns what practical relevance
formalization has, or could have, to mathematics; it played only an indirect
role in the account of rigour from sections 3 and 4, and turned out to be
inessential to the process of resolving disputes in mathematics described in
section 5. These questions will have to await possible consideration in future
work.

8 Final thoughts

To conclude, there are a few loose ends concerning rigorous proof to discuss.

First, to say a bit about a topic that has been neglected here: under-
standing proofs. Indeed instead of just checking each line of a proof, one
generally also wants to understand the proof “as a whole”. This can be phe-
nomenologically quite distinct from mere confidence that each line follows
from the previous ones, as Tieszen (1992, pp. 58-59) emphasises. Though
it is tempting to think about understanding in terms of the distinctive sub-
jective subjective experience of grasping a proof, this characteristic sensation
may not always be attainable — for instance it may be hard to gain the fee-
ling of an immediate grasp of a proof taking longer than a page or so, or of a
proof which relies on substantial previous results. An attractive alternative
is to think of understanding as an ability, as advocated by Avigad (2011):
for instance understanding a proof may mean that one can recreate it one-
self, convey its ideas informally to another mathematician, use its ideas or
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techniques to prove similar results, generalize it, suggest how it could have
been discovered, and so on. In many of these capacities that displays under-
standing of a proof, the ability to create or recognize valid proofs — proofs in
which every inference is valid (as discussed above) — is key: recreating the
proof means writing out a similar valid proof of the same result, generalizing
it means writing out a similar valid proof of a more general result, and so on.
Arguably, to convey the ideas behind the proof to another mathematician
means to use words, gestures, diagrams and so on to equip the recipient
with the means to recreate for themselves a similar valid proof of the result
in question. As Thurston (1994, pp. 31-32) emphasises, it can often be
much easier to convey mathematical ideas by informal communication than
by embedding them in and then excavating them from rigorous proofs.

A second point is that in practice in mathematics it is not demanded
that every inference in a proof actually be valid. Total validity is intended
when many philosophers speak of proof (as has been the attitude in this
paper), but in reality if an argument published in a mathematics journal
contains a number of typos and minor logical errors, it may still be regarded
as a perfectly acceptable proof. We could call the mathematicians’ use
of the word proof “proof in the weak sense”; to distinguish it from the
philosophical use of the term. The key feature I think for proof in this
weak sense is I think that the proportion of valid inferences is high, or very
high, and that those inferences which are invalid are each fixable relatively
easily. Thus for instance the classification of finite simple groups may well
be a proof in this weak sense, even though it is so enormously long that it is
practically certain that it contains errors. This is more or less the view taken
by Aschbacher (2005). A proof of a result in this weak sense still establishes
that its conclusion is a logical consequence of the basic principles used —
since in principle one could convert it into a proof in the strict sense, in
which case the result would be a logical consequence of the relevant basic
principles (as seen in section 7), and whether or not the conclusion is a
logical consequence of the basic principles is independent of whether any
such strict proof is actually written out.

Finally, a note on the epistemology of mathematics. In sections 3 and 4,
an attempt was made to understand how rigour is judged in mathematics by
thinking about how rigorous proof is learnt — by a gradual ascent up levels
of greater and greater compression, at each stage being able to tutor one’s
judgement of which inferences are valid by checking if they can be proved
in greater detail. There is undoubtedly more that could be said about this
process, but at any rate it is only part of a full epistemology of mathematics.
Indeed it was argued in section 7 that a valid proof shows its conclusion to
be a logical consequence of the basic principles used; but this in itself does
not imply that the conclusion is true. That would require further arguments,
for instance arguments that the basic principles themselves are true. Thus
the epistemology sketched here is one component of a full epistemology of
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proof, which would need to be supplemented by an epistemology of the
basic principles themselves. Whether the basic principles generally used
in mathematics — those of set theory — are true, and how we could know
this, are exactly the kinds of epistemological questions that philosophy of
mathematics has long wrestled with, and which some advocates of the shift
to focusing on actual mathematics like to disparage, or describe as irrelevant
to mathematics itself (for instance Rav 1999, Goethe and Friend 2010 and De
Toffoli and Giardino 2016). It is of note that thinking about mathematical
practice and the epistemology of proof leads us back naturally to exactly
this standard epistemological question.
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