L=
View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Queensland University of Technology ePrints Archive

Reduced Complexity On-line Estimation of Hidden Markov Model
Parameters.

J.B. Moore! and J.J. Ford!

1 Department of Systems Engineering, Research School of Information Sciences and
Engineering, Australian National University, Canberra, ACT 0200, Australia.

Abstract

In this paper we propose and study low complexity algorithms for on-
line estimation of hidden Markov model (HMM) parameters. The estimates
approach the true model parameters as the measurement noise approaches
zero, but otherwise give improved estimates, albeit with bias. On a finite
data set in the high noise case, the bias may not be significantly more severe
than for a higher complexity asymptotically optimal scheme. Our algorithms
require O(N3) calculations per time instant, where N is the number of states.
Previous algorithms based on earlier hidden Markov model signal processing
methods, including the expectation-maximumisation (EM) algorithm require
O(N*) calculations per time instant.

1 Introduction

A discrete time homogeneous Markov chain, with a finite state space having NV elements, is
supposed observed in noise. Such a situation is termed a hidden Markov model or HMM.
A recent treatment can be found in Elliott[3].

In addition to estimating the state of the chain given the observations, it is often
of importance to estimate the state values, transition probability matrix and the noise
characteristics, see Collings[2], Elliott[3], Ford[4, 5] and Moore[12, 13]. To estimate the
transition matrix of the Markov chain using the well established classical Baum-Welch
algorithm and related expectation-maximisation (EM) algorithms based on data up until
time 7T and initial model parameter estimates, it is usual to estimate the number of
jumps J7' of the chain from state ¢ to state j, for 1 < i,j < N, up to the time 7" and
the occupation times (’)% is state ¢ for 1 < ¢ < N. Here N is the number of states in

the model. Then J;/(0O%)~! gives an improved estimate in a likelihood sense for the
probability of the state switching from ¢ to j, ie. a;;. To estimate other model parameters
involved in the measurement equation, related transitions ’Tf« from states 7 to outputs are
required. Using the improved model parameters the process is repeated until convergence
to a (local) maximum of the likelihood function. The EM algorithm re-estimates model
parameters using forward and backward passes through the data, and so is not really an
on-line scheme. Also, the theory gives only local convergence to a local maximum of the
likelihood function.

In Moore[12], almost-sure consistent convergent parameter estimators are proposed for
estimating hidden Markov model parameters online. The almost-sure asymptotic conver-
gence results are obtained via standard martingale convergence results, refer to Meyer[11]
and Neveu[14], and the Kronecker lemma, refer to Loeve[10] and Neveu[14], stability prop-
erties for HMM filters are used, see Dey[1], Shue[17], and ordinary differential equation the-
ory for stochastic approximation, see Ljung[9], Kushner[7], Gerencsér[6] and LeGland[8].
The optimal parameter estimates converges almost surely to the true parameter values Of
course, there must be persistence of excitation in the models, (and estimators), to achieve
this property. The results presented in Moore[12] contrast the Baum-Welch re-estimation
results which are only guaranteed to converge to a local maximum of the likelihood func-
tion.

Here, we propose reduced complexity estimation schemes based on the consistent
schemes in Moore[12] with the view to reducing (additional) computational effort at each


https://core.ac.uk/display/33495862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

step from O(N*) to O(N?) The schemes become consistent as the noise level approaches
zero, but otherwise giving improved estimates, albeit with bias.

In Section 2, the discrete-time HMM signal model is defined, on-line estimators are
introduced, and associated convergence properties reviewed, including the almost sure con-
vergence result from Moore[12]. In Section 3, reduced complexity algorithms are proposed.
Simulations are given in Section 4, and conclusions in Section 5.

2 Dynamics, Measure Change, and Martingale Properties

2.1 Dynamics

Our time parameter set is the non-negative integers 7+ = {0,1,2,...}. On a probabil-
ity space (2, F, P) we suppose we have a finite state, time homogeneous Markov chain
{X(},0 € Z*. As pointed out in Elliott[3], without loss of generality we can take the state
space of the Markov chain to be the set S = {ey,es,...,¢e,} of unit vectors in IRYN. Here
e; =(0,0,...,1,...,0) € RV,

Consequently, at each £, X; € S. Consider the state space model

Xy = AXp 1 +Vy (1)
Yo = (C'Xpo1) + (D' Xpo1)wp. (2)

[1,1,...,1]) elements a;; > 0,

Here A € RV*N is the stochastic matrix with 1’4 = 1 :=
= P(X¢|X¢—1 = €;). Also V} is a

1 <, <N, and satisfying E[Xy] = AE[zr_1], a;;
martingale increment satisfying

E[Vig1]Xp] =0 RV,

Here, wy is a sequence of i.i.d. N(0,1) random variables defined on (2, F, P). That
the measurements y; € IR are linear in Xy _; is not really a restriction since nonlinear op-
erations f(X) are linear in X as with f=(f(e1), f(e2),..., flen)), f(X) = (f, X). Denote,
C = (Ch...,CN)/,D: (d17---7dN)/-

Write G, := the sigma field generated by {Xo, Xy,..., Xk, ¥1,...,yx} and Vi := the
sigma field generated by {yi,...,yr}. We shall write M for the model determined by these
parameters (aj;, ¢, d;), 1 < 7,7, < N. We assume throughout that the model order N is
known.

2.2 Measure Change

From Elliott[3] recall that a probability P is introduced such that under P, X is still
a Markov chain with transition matrix A, but the random variables y; are themselves
independent and normally distributed as N (0, 1).

¢ ((ye = C'Xgo1) /(D' Xy1))
(D' Xo—1)o(ye)

Ae(Xo—y) =

where ¢(z) is, for example ﬁe—l’z}/?.

With Ag = 1 and A, = Héf:l/\g(Xg_l), a probability measure P can be defined on
(2,Go) by putting % lg,= Ak.
One can then show (see Elliott[3]), that under P, {w} is a sequence of independent

N(0,1) random variables, where wy := (yr, — (C"Xy_1))/(D'Xk_1).
Furthermore, under P the state X remains a Markov chain with transition matrix A.
Let us denote the model (1) (2) as

M= M(A,C, D, )
where 7o = E[X¢].



2.3 Transitions and Occupation Times

For1 <r,s < N write J/* = Zéf:l (Xi—1,€) (X, €5), then J7® is the number of jumps of
{X}} from state r to state s up to time k. The Markov chain X}, is not observed directly,
but only through the observations j. The occupation times for being in state » up until
time k are O =577, J}

Let us denote

T = (J°), 1<rs<NeRVN (3)
O = Jil e RY (4)
Thus in obvious notation
k
Te = > XX, (5)
=1
k k
(Or)aing = D Xeo1X) 1 =Y (Xeo1)diag (6)
=1 =1

Post multiplication of (1) by X ; and summing yields

2
T = Ak Ok)diag + 71 ViX_y (M)
=1

Given knowledge of {X}}, it makes sense to estimate A as
Ak = jk(ok)dlag (8)

at least when the inverse exists (as when all states are excited). We say that the states
are persistently exciting when there is an finite integer M > 0, such that O is k > M
for« =1,..., N and a constant B < oo such that for all KX > M and 1 <7 < N then
k(O})~' < B. This is equivalent to the condition that

lim sup(l(’)k_l)

9
k—oc0 ik k < ( )

diag
In a parallel manner to the above, one can define transitions 7 (f) = Sk (Xo—1,6r) fye)

where f(y) is either y, or y?, depending on application. So define the row vector with
elements 7, as

k
Zf yo) Xi_y- (10)
=1
Now (2) leads to
k
T (y) = C'h ™ (Ok)diag + D'k (X{_)) diagte (11)
=1

and thus estimates can be defined as
Cr = TLW)(O8) g (12)
Likewise, squaring (2) and post-multiplying by X, _; we have:

Z XZ 1 dlagwé
/=1

kl}—\

(Ok)dlag ‘|’ d%v d%7 B '

| =

1 !
Elﬁc(yz) = [0%7 C%v ce ]

| =
]~

—|—2(Cld17 CQdQ7 .. ) (Xg_l)diagwg. (13)

~
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Estimates D can be constructed from
(d3,d3, ..., d%) = T{(W*) (Ok)diag — (€1, €1, - -, €% (14)

2.4 Parameter Estimation

Consider model “estimates”, possibly time varying, denoted /ﬁk = M\l, M\Q, .. .,Mk. Let
us denote associated conditional mean estimates based on the correct model and “incor-
rect” model as

X = E[X4 | Ve, M]; X =F {Xk | yk7/\7k—1}

k)b, My

i = LI Ve M) Ty, = F {jk | yk7/\7k—1}
Owe = E[Ok | Vi, M]; @Mkvx/l\k—l =L {Ok | yk7/\7k—1}

~

Taf) = BN IY6M: Ty (D =BT | Ve Mena]  (15)

Similar notation will denote one step ahead predictions )A(Mk_l etc., or smoothed estimates

Xk|k-|—d etc.

Now, in seeking on-line estimates of Jj, such as conditional mean filtered, it turns
out, perhaps surprisingly, to be essential to work first with on-line estimates of J; given
X}, = ¢; for each ¢ and then derive the desired estimates from these. Thus define

j,;X = Xirow vec Ji € RV *N? (16)
row vec Jp = l’j,;X e RIXN?, (17)

Let us define conditional mean estimates and associated unnormalized forms under P for
Ji as follows

T =BTk 1 Ve MY, o(F) = B [MTE | Yi, M. (18)

With ﬁ)fk? @?Uw O'(’Ejfk) and O'(Oi('k) similarly defined. The following lemma is a convenient
re-packaging of the following results of Chapter 3 of Elliot[3] to a matrix form.

Lemma 1 Consider the HMM signal model (1) (2) denoted by M. The conditional mean
filtered estimates for j,;X, Tk, 7;X, T, under P, are obtained from:

U(jk)fk) = AB(yk)U(ij—uk—l) + ((Ael)diaga (A62)diaga R (AeN)diag) (B(i‘/k)(ak—l)diag @ I)

row vec o(Jx|r) = l/O'(jk)fk) (19)
o(T) = AB(y)o (T 1w=1) + AB(yk) (- 1)diag f(9)
row vec o(Tgp) = l’a(ﬁjl(k). (20)

Proof: See Moore[12]
Remarks:

1. Exponential stablilty or initial-condition forgetting of the filters (19) and (20) follows
by appealing to the generalised Perron-Frobenius result, see Seneta[16], in the same
way as in Dey[1], LeGland[8], Shue[17]

2. The computational difficulty is that the U(jk)fk) calculation requires N* multiplica-

tions for each up-date. See Elliott[3] for alternative form of the filters which can be
easier to implement in practice.



3. Note Oy = Ji1, so that o(O,) = o(Jgk) 1. (Note also that oy can be derived from
U(jk)fk) by summing operations).

Now consider parameter estimates

_ ~ ~ -1
Apvi o = I o (Op 5 )
Elk,My_1 jk|k,/\/lk_1 Elk,My_1 diag
_ ~ -1
A (o — ) 21
klk My 7;|k,/\/lk_1(f) FkMi—1 ) ding (21)

and likewise for D via (14) and then introduce the persistently excitation condition

k|k7-x/l\k—l
assoclated with the model M and its “estimate” M} as

. 1A !
kh_}n(r)lo sup (Eomk’ﬂk_l)diag < oo (22)

The case studied in Moore[12] is where Mj_, is given adaptively from estimates
and D

A

E|k My Ck|k,/\7k_1 k| My

2.5 Convergence Results

Before proceeding to propose reduced-complexity algorithms for estimating HMM param-
eters we repeat here the almost sure convergence results for estimating the transition
probability matrix A, stated in Moore[12].

Theorem 1 Consider the HMM of (1) (2) and a particular observation sequence and
state sequence outcome, {yr} and { X}, of the HMM with all states in { Xy} persistently
exciting in that (9) holds. Consider the (somewhat artificial) case where the conditional
mean estimates based on the true model M are available. Then

klggo Aty Crpenss Doy = A,C, D, as. (23)

The almost sure convergence rate guaranteed is ﬁ(k)% which is like ﬁ(lnk(lnlnk)a)%, for

k > 4 and for any o > 1, and the mean square rate is (k_)_% where (k_)_% is arbitrarily

slower than k_%.

Proof: See Moore [12]. The proof is based on martingale convergence results and the
Kronecker Lemma.

Theorem 2 Consider the HMM of (1) (2) and a particular observation sequence and
state sequence outcome, {yr} and { X}, of the HMM with all states in { Xy} persistently

exciting in that (9) holds. Consider also an assumed model set My, where My, is adaptively
updated using Aklkﬁ/l\ which we suppose is persistently exciting, along with M, in that
’ k-1

(22) holds and C' and D are known. Then

lim A, — = A as, (24)

Proof: See Moore[12]. The proof is based on the ordinary differential equation approach.

Remark: See Moore[12] for the case when C and D are also to be

estimated.

k)b, My k)b, My



3 Reduced Complexity Algorithms

One way to reduce the computational requirements of the overall estimation algorithm (21)
is by reducing the computational effort used to produce estimates of the conditional mean.
We note that there is a subset of models { M} for which calculation of the conditional mean
estimates is computational easier than for other models. Hence, the key idea of this paper
is to calculate the conditional mean estimates of J; and Oy corresponding to one of these
special models M (or a sequence of these models) rather than generic model “estimates”
such as the adaptive My above. This will reduce the computational effort required to
implement the overall estimation algorithm (21) .

An example of one such M is the i.i.d. sequence model which is a subset of the valid

HMMs. For the purpose of generating the conditional mean estimates, 7, and

k|k7-x/l\k—l
Ok|kﬁ/l\ , the state sequence can be modelled as an i.i.d. sequence, leading to a model
’ k-1
estimate with My = M,;4 for all k as

|
1

Miiq = {Asia, C, D, 7o}, Aiid:ﬁ A (25)
1 ... 1

The filters now denoted jk|k,Miid and @k|k7Miid require O(N?) calculations per time instant.
This is a reduction from the O(N?) calculations per time instant required to implement
the the general filters jk|k7-x/l\k—1 and @klhﬂk_l using estimates Ak|k7-x/l\k—1‘

The filters for the model set M,z = {a@Ayq + BInxn,C, D, mo} for scalar «, § where
{a, 8 : I’A = 1} also requires only O(N?) calculations per time instant. This set can
approximate a larger class of models and results in reduced estimation error.

Remark

1. Even though A = I may appear a likely candidate model of {M} for reducing
complexity the persistently excitation condition (22) is not satisfied for this model
and the convergence no longer holds.

2. Correct estimation occurs in low noise because Xk|k I Xj. and invariant of A.
?

4 Simulations Studies

4.1 Reduced Complexity Fstimation

A 3000 point, 2-state HMM was generated

with parameters: a; = 0.8, i =1,2and a;; = 0.2 Vi,ji# j,C =[2,4]and D = 0.1 1.
Estimation was performed in two ways: using the simplified model approximation (25),
and using M}, corresponding to the best available parameter estimates. At this noise level
little bias is introduced by the approximation.

4.2 Threshold

To examine the bias introduced into the parameter estimation a 10000 point, 2-state HMM
generated with parameters: a; = 0.8, i = 1,2 and a;; = 0.2 Vi,j i # j, C' = [2,4] was
simulated at various SNRs. Estimation of A is performed assuming M = M;;4. Figure
1 shows estimation error verses SNR. From this figure it appears that for SNR > 12 or
D < 0.2 the bias introduced is insignificant.



4.3 More Complicated Approzimations

A 10000 point, 2-state HMM was generated with parameters: a; = 0.8, ¢ = 1,2 and
a;; =02 Vi,ji#j,C=[2,4] and D = 0.7 or SNR=6.3. Estimation of A was performed
using three methods: using the model set M,g, using the model set M;;4, and using the
adaptive scheme of Moore [12]. Figure 2 shows the convergence of parameters estimates
over time At this noise level it appears using models M,z reduces the estimation error.

5 Conclusions

In this paper we present reduced complexity algorithms for on-line estimation of hidden
Markov model parameters. The presented algorithm requires only O(N?) calculations per
time instant compared to the O(N*) calculations required to implement the estimation al-
gorithm presented in Elliott[3]. The various estimates are not guaranteed to be consistent,
but simulation studies indicate their usefulness.
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Figure 1: The empirical calculated of bias after 10000 points.
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Figure 2: An empircal comparsion



