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Abstract

This thesis contributes towards the well-posedness theory of stochastic dispersive

partial differential equations. Our investigation focuses on initial value problems as-

sociated with the stochastic nonlinear Schrödinger (SNLS) and stochastic Korteweg-

de Vries (SKdV) equations. We divide this thesis into four main topics, which are

the contents of Chapters 2–5.

Chapter 2 is concerned with the SNLS posed on the d-dimensional tori with

either additive or multiplicative stochastic forcing. In particular, we prove local-in-

time well-posedness for initial data and noise at subcritical regularities. We are also

able to extend this to global-in-time well-posedness at energy subcritical regularity

for certain cases. In the next two chapters, we focus on SNLS posed on the d-

dimensional Euclidean space with additive noise. In Chapter 3, we prove local well-

posedness with the noise at supercritical regularity while the initial data stays at

critical regularity. In Chapter 4, we restrict our attention to dimension 4 and study

SNLS with non-vanishing boundary conditions. In particular, we use perturbative

techniques to prove global well-posedness with data in H1(R4) + 1.

In Chapter 5, we move on from SNLS to SKdV, where we prove L2(T)-global

well-posedness of SKdV with multiplicative noise on the circle. We also verify that

a result on the stabilisation of noise by Tsutsumi [84] continues to hold in our low

regularity setting.
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Notations

Given A,B ∈ R, we use the notation A . B to mean A ≤ CB for some con-

stant C ∈ (0,∞) and write A ∼ B to mean A . B and B . A. We some-

times emphasize any dependencies of the implicit constant as subscripts on ., &,

and ∼; e.g. A .p B means A ≤ CB for some constant C = C(p) ∈ (0,∞) that

depends on the parameter p. We denote by A ∧ B and A ∨ B the minimum and

maximum between the two quantities respectively. Also, dAe denotes the smallest

integer greater or equal to A, while bAc denotes the largest integer less than or equal

to A.

Given a function g : U → C, where U is either Td or R, our convention of the

Fourier transform of g is given by

ĝ(ξ) =

∫
U

e2πiξ·xg(x) dx ,

where ξ is either an element of Zd (if U = Td) or an element of R (if U = R). For

the sake of convenience, we shall omit the 2π from our writing since it does not play

any role in our arguments. Note that we will also use ξ to denote space-time white

noise as commonly seen in literature; this should not cause any confusion.

For c ∈ R, we sometimes write c+ to denote c + ε for sufficiently small ε > 0,

and write c− for the analogous meaning. For example, the statement ‘u ∈ Xs, 1
2
−’

should be read as ‘u ∈ Xs, 1
2
−ε for sufficiently small ε > 0’.

For the sake of readability, in the proofs we sometimes omit the underlying

domain Td from various norms, e.g. we write ‖f‖Hs instead of ‖f‖Hs(Td) and

‖φ‖HS(L2;Hs) instead of ‖φ‖HS(L2(Td);Hs(Td)).

1



Chapter 1

Introduction

This thesis is dedicated to studying well-posedness properties of stochastic disper-

sive partial differential equations (PDEs). One of the most important examples of

dispersive PDEs is the nonlinear Schrödinger equation (NLS)

i∂tu−∆u± |u|2ku = 0,

where u : M ×R→ C with M being either the d-dimensional torus Td or Euclidean

space Rd, and k ≥ 1. This equation is known as focusing in the (−) case and

defocusing in the (+) case. Another example of a dispersive PDE is the Korteweg–

de Vries (KdV) equation

i∂tu+ ∂3
xu+ u∂xu = 0,

where u : M × R→ R with M being either T orR.

Nonlinear dispersive PDEs such as the NLS and KdV are canonical model equa-

tions that arise from physics and engineering. They appear ubiquitously in diverse

fields including nonlinear optics, plasma physics, water waves and telecommunica-

tion systems. On the other hand, random noise is inevitable in physical experiments

and applications. For example, random noise may appear as an external factor, af-

fecting evolution processes in experiments and applications. It is therefore natural

to study these equations with a random forcing. Our interest lies in the rigorous

mathematical analysis on stochastic dispersive PDEs. This is important for applied

sciences as it has provided solid foundations for the verification and applicability
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Chapter 1: Introduction

of these models. Moreover, this theoretical research has proven to be very valuable

for mathematics itself. Indeed, over the last thirty years, nonlinear dispersive PDEs

have presented very difficult and interesting challenges, motivating the development

of many new ideas and techniques in mathematical analysis. One of the sources of

richness of nonlinear dispersive PDEs is that each subclass of equations poses its

own difficulties, thus requiring the elaboration of specific tools.

In this thesis, we focus our study on various models of the stochastic nonlinear

Schrödinger equations (SNLS) and stochastic Korteweg–de Vries equation (SKdV),

either with additive or multiplicative noise. We divide the content into four main

chapters, the first three of which discuss the SNLS, while the last chapter focuses

on SKdV. More specifically, the content of this thesis is laid out as follows:

• In Chapter 2, we discuss well-posedness issues for SNLS on Td for both additive

and multiplicative noise. This is based on the following joint work with Razvan

Mosincat:

[20] K. Cheung, R. Mosincat, Stochastic nonlinear Schrödinger equations on

tori, Stoch. Partial Differ. Equ. Anal. Comput. 7 (2019), no. 2, 169–208.

• In Chapter 3, we prove a local well-posedness result for the additive SNLS

on Rd with rough noise. This is based on the following joint work with Oana

Pocovnicu:

[22] K. Cheung, O. Pocovnicu, On the local well-posedness of the stochastic

cubic nonlinear Schrödinger equations on Rd, d ≥ 3, with supercritical noise,

preprint.

• In Chapter 4, we study the Cauchy problem for the additive SNLS on R4 with

non-vanishing boundary condition. This is based on the following joint work

with Guopeng Li:

[19] K. Cheung, G. Li, On the energy critical SNLS with non-vanishing bound-

ary condition, preprint.

• In Chapter 5, we prove global well-posedness for SKdV with multiplicative

noise on T. This is based on the following joint work with Tadahiro Oh:

[21] K. Cheung, T. Oh, Global well-posedness of the periodic stochastic KdV

equation with multiplicative noise, preprint.

In the remainder of this introduction, we shall briefly state the mathematical prob-

3



Chapter 1: Introduction

lems under consideration and the main results.

1.1 Stochastic nonlinear Schrödinger equations

The Cauchy problem associated to the stochastic nonlinear Schrödinger equation

(SNLS) can be formally stated as follows:

i∂tu−∆u± |u|2ku = F (u, φξ)

u|t=0 = u0

(t, x) ∈ [0,∞)×M, (1.1)

where k ≥ 1, M denotes either the d-dimensional torus Td or Euclidean space Rd,

u : [0,∞) × M → C is the unknown stochastic process, ξ is a space-time white

noise, and φ is a linear operator between some function spaces of M . The random

term F (u, φξ) is either an additive noise of the form φξ or a multiplicative noise

of the form uφξ. We note that the white noise ξ is a very rough object, and this

roughness often presents a serious obstruction to well-posedness. The operator φ

acts as a smoothing operator to counteract the roughness of ξ. Most of the time,

φ will be a Hilbert-Schmidt operator from L2(M) to some Sobolev space Hs(M),

where the value of s is considered to be an indication of the roughness of the noise.

The precise nature of the φ will be stated for each of the problems we will consider.

Let us define our notion of a solution. In dispersive PDEs literature, we often

consider the so-called strong solutions. More specifically, for the deterministic NLS

(i.e. F (u, φξ) = 0 in (1.1)), we say that u is a solution if u satisfies the Duhamel

formulation

u(t) = S(t)u0 ± i
∫ t

0

S(t− t′)(|u|2ku)(t′) dt′ (1.2)

in some function space (usually a Sobolev space) of M , where S(t) := e−it∆ is the

linear Schrödinger propagator. Analogously, our notion of a solution for SNLS (1.1)

will be that of a mild solution, that is, we say that u is a solution to (1.1) if u

satisfies the Duhamel formulation

u(t) = S(t)u0 ± i
∫ t

0

S(t− t′)(|u|2ku)(t′) dt′ − iΨ(u, t) , (1.3)

4



Chapter 1: Introduction

where the additional term Ψ(u, t) is a stochastic convolution corresponding to F (u, φξ).

In the case of additive noise where F (u, φξ) = φξ, we define

Ψ(u, t) =

∫ t

0

S(t− t′)φξ(dt′); (1.4)

while in the multiplicative case F (u, φξ) = uφξ, we define

Ψ(u, t) =

∫ t

0

S(t− t′)uφξ(dt′). (1.5)

Before moving further on SNLS, we give a brief discussion on some symmetries of

the deterministic NLS, as well as their impact on the well-posedness theory.

1.1.1 On scaling and Galilean symmetries

Let us consider the NLS on Rd:i∂tu−∆u± |u|2ku = 0

u|t=0 = u0 ∈ Hs(Rd)

(t, x) ∈ [0,∞)× Rd. (1.6)

The NLS enjoys a scaling symmetry: if u is a solution to NLS, then so is the function

uλ(t, x) := λ−
1
ku
(
t
λ2 ,

x
λ

)
to NLS for any λ > 0. The scaling-critical regularity,

scrit :=
d

2
− 1

k
, (1.7)

is the unique number for which ‖uλ‖Ḣscrit = ‖u‖Ḣscrit for any λ > 0. The Cauchy

problem (1.6) is categorised as

• subcritical if s > scrit,

• critical if s = scrit,

• supercritical if s < scrit.

It is worth noting that the NLS has a conserved quantity (among others) known as

the energy1, given by

E[u](t) =
1

2

∫
Rd
|∇u|2 dx± 1

2k + 2

∫
Rd
|u(t, x)| dx. (1.8)

1This is also the Hamiltonian for NLS.

5



Chapter 1: Introduction

In particular, the energy is also invariant under scaling whenever scrit = 1. For this

reason, the NLS is called energy-subcritical, energy-critical and energy-supercritical

if scrit > 1, scrit = 1 and scrit < 1 respectively.

The NLS has another symmetry, the Galilean symmetry: if u is a solution, then

so is uy(t, x) := e
i
2
y·xe

|y|2
4
tu(t, x + ty) for any y ∈ Rd. In particular, this symmetry

leaves the L2(Rd)-norm invariant, inducing another critical regularity at 0. It is

commonly conjectured that the NLS is well-posed in the Sobolev space Hs(Rd) if

s > scrit and s ≥ 0, and ill-posed if s < max{scrit, 0}. See [82, Section 3.1] for a more

detailed discussion. In the periodic setting, the Galilean symmetry continues to hold

for y ∈ 2Zd, though there is no scaling symmetry. However, the same heuristic still

plays an important role in the periodic setting. In fact, this heuristic is backed up

by many well-posedness and ill-posedness results in the literature for both Rd and

Td, see for example [18, 24, 49, 64, 72].

Moving back to the stochastic PDE, it is therefore natural ask the following

question: regarding the regularity of the initial data and the noise, how well does

the same heuristic hold for SNLS? There are already some partial answers to this

question in the literature. Previously, de Bouard and Debussche [35, 36] studied

SNLS (1.1) on Rd with both additive noise φξ and multiplicative noise uφξ in the

energy-subcritical setting, that is, with scrit < 1 and φ being a Hilbert-Schmidt

operator from L2(Rd) to H1(Rd). They proved global existence and uniqueness of

mild solutions in (i) L2(R) for the one-dimensional cubic SNLS and (ii) H1(Rd) for

defocusing energy-subcritical SNLS. As noted in [77], a slight modification of the ar-

gument in [36] allows one to prove that (1.1) is locally well-posed in Hs(Rd) provided

that φ is Hilbert-Schmidt from L2(Rd) to Hs(Rd) and that s ≥ max(scrit, 0). More

recently, by using the dispersive estimate for the linear Schrödinger operator, Oh,

Pocovnicu and Wang [77] proved local well-posedness for additive SNLS equation in

Rd with subcritical initial data and supercritical noise.

Our first contribution in this thesis is to give some more partial answers to the

question mentioned above beyond the existing literature. We first study SNLS in

the periodic setting in Chapter 2, where we prove local-in-time well-posedness when

the initial data and the noise have subcritical regularity, we then proceed to extend

this solution globally-in-time for certain cases. We move onto the Euclidean setting

6



Chapter 1: Introduction

in Chapter 3 and focus on the cubic SNLS, where we prove local well-posedness with

supercritical noise and critical data.

1.1.2 SNLS on Td with subcritical noise and data

We now state the main results in Chapter 2. Consider the SNLS (1.1) on Td, d ≥ 1,

with either additive noise F (u, φξ) = φξ or multiplicative noise F (u, φξ) = uφξ. We

consider initial data u0 ∈ Hs(Td), s > scrit being non-negative, and the smoothing

operator φ being Hilbert-Schmidt from L2(Td) to Hs(Td). The main results can be

summarised in the following two theorems:

Theorem 1.1 (Well-posedness for additive SNLS on Td). Let F (u, φξ) = φξ. There

exist a stopping time T that is almost surely positive, and a unique solution u in a

subspace of C([0, T ];Hs(Td)) to (1.1) on Td. Moreover, we can extend this solution

globally in time almost surely in the following cases:

(i) the (focusing or defocusing) one-dimensional cubic SNLS for all s ≥ 0;

(ii) the defocusing (i.e. + sign) energy-subcritical SNLS for all s ≥ 1.

Theorem 1.2 (Well-posedness for multiplicative SNLS on Td). Let F (u, φξ) = φξ.

Suppose that φ is also translation invariant. Then there exist a stopping time T that

is almost surely positive, and a unique solution u in a subspace of C([0, T ];Hs(Td))

to (1.1). Moreover, we can extend this solution globally in time almost surely in the

following cases:

(i) the (focusing or defocusing) one-dimensional cubic SNLS for all s ≥ 0;

(ii) the defocusing (i.e. + sign) energy-subcritical SNLS for all s ≥ 1.

Let us briefly describe our method of proof. Our local-in-time argument uses

the Fourier restriction norm method introduced by Bourgain [8] and the periodic

Strichartz estimates proved by Bourgain and Demeter [13]. In particular, the func-

tion space in which the solutions reside from the above theorems can be stated more

precisely as

C([0, T ];Hs(Td)) ∩Xs, 1
2
−ε,

for some small ε > 0, Here, Xs, 1
2
−ε is the Fourier restriction norm space of space-

time functions v such that S(t)v has spatial regularity s and temporal regularity

7



Chapter 1: Introduction

1
2
− ε; see Chapter 2 for the precise definition. In establishing local well-posedness

for the multiplicative SNLS, we also have to combine these tools with the trun-

cation method used by de Bouard and Debussche [34–36]. Note that the extra

technical assumption of φ in Theorem 1.2 means that the noise under consideration

is spatially-homogeneous. Finally, we establish probabilistic a priori bounds on the

mass and energy of solutions (which are conserved quantities for the deterministic

NLS) to extend the local solutions globally.

1.1.3 SNLS on Rd with supercritical noise and critical data

In Chapter 3, we consider the Cauchy problem for the SNLS (1.1) with additive noise

F (u, φξ) = φξ on Rd. As noted previously, it is not difficult to modify the argument

in de Bouard and Debussche [36] to prove local well-posedness for subcritical noise

and initial data. In view of this, we shall in fact study the problem with supercritical

noise and critical data. Consider the cubic SNLS with additive noise:i∂tu−∆u± |u|2ku = φξ

u|t=0 = u0 ∈ Hscrit(Rd)

(t, x) ∈ [0,∞)× Rd, (1.9)

where d ≥ 3 and φ is Hilbert-Schmidt from L2(Rd) to Hs(Rd) for s < scrit. We set

sd :=


1

4
, if d = 3 ,

scrit −
2

5
, if d ≥ 4 .

(1.10)

Our main result is the following theorem:

Theorem 1.3. The Cauchy problem (1.9) is locally well-posed in the following

sense: there exists a unique local-in-time solution u of (1.9) that lies almost surely

in a subspace of C([0, T ];Hs(Rd)), where T = Tω is a stopping time that is almost

surely positive.

Theorem 1.3 is inspired by [6]. In this work, the authors studied the deter-

ministic NLS (1.6) with random initial data: u(0) = fω, where fω is the Wiener

randomisation of some function f ∈ Hs(Rd). They proved local well-posedness of

8



Chapter 1: Introduction

(1.6) in Hs(Rd) for a range of s below scrit, with respect to this randomisation. See

also [5, 14, 40]. In [6], the authors decomposed a solution as u = zω + v, where

zω(t) := S(t)fω is linear and random, and solved the fixed point problem for v.

In our work, we follow a similar argument where we use the so called Da Prato-

Debussche trick and decompose our solution as u = v+Ψ, where Ψ is the stochastic

convolution, and solve the fixed point problem for v.

Our main tools for proving Theorem 1.3 are similar to those in [6]. In particular,

we have the Fourier restriction norm method adapted to the spaces V p of functions of

bounded p-variation and their preduals Up (these spaces were introduced by Koch,

Tataru and their collaborators, see [8, 51, 54]). The precise definitions of these

spaces will be presented in Chapter 3.

1.1.4 SNLS with non-vanishing boundary conditions

In Chapter 4, we digress from the Cauchy problem (1.1) and move onto the following

(defocusing) energy-critical stochastic nonlinear Schrödinger equation on R4:

i∂tu+ ∆u = (|u|2 − 1)u+ φξ

u|t=0 = u0,

(t, x) ∈ [0,∞)× R4, (1.11)

with the non-vanishing boundary condition:

lim
|x|→∞

|u(x)| = 1. (1.12)

As before, u is a complex-valued function, ξ denotes a space-time white noise and

φ is a Hilbert-Schmidt operator from L2(R4) to H1(R4). We note that for the

deterministic case φ = 0, (1.11) is sometimes referred to as the Gross-Pitaevskii

equation (GP). It is related to the NLS in the following way: if u is a solution to

(GP), then the function ũ(t, x) = e−itu(t, x) is a solution the cubic NLS with the non-

vanishing boundary condition lim|x|→∞ |ũ(x)| = 1. We note that (GP) constitutes

the Hamiltonian evolution corresponding to the Ginzburg-Landau energy :

E[u](t) =
1

2

∫
Rd
|∇u|2dx+

1

4

∫
Rd

(
|u|2 − 1

)2
dx. (1.13)

9



Chapter 1: Introduction

Our main result is the following theorem:

Theorem 1.4 (Unconditional global well-poseness for (1.11)). The Cauchy problem

(1.11) with the non-vanishing boundary condition (1.1.4) is globally well-posed in

the energy space2

E(R4) := {u = 1 + v : v ∈ H1
real(R4) + iḢ1

real(R4)}

almost surely. In particular, u(t) is unique in the class Ψ + Ct
(
R; E(R4)

)
almost

surely.

Theorem 1.4 is inspired by the work of Killip, Oh, Pocovnicu and Vişan in [61],

where the authors established unconditional global well-posedness of (1.11) with

φ = 0 under the non-vanishing boundary condition (1.1.4). Their strategy was

to treat the equation as the energy critical NLS with a subcritical perturbation,

and then apply the perturbative approach introduced by Tao, Vişan and Zhang in

[83] together with the conservation of the Ginzburg-Landau energy (1.13) to iterate

local well-posedness. As it turns out, one can adapt this method to the SNLS (1.11).

Although the energy E[u] is no longer conserved in this setting, but one can still

establish a probabilistic a priori bound on E[u]. This allows us to adapt the method

from [61] to prove Theorem 1.4.

1.2 Stochastic KdV equation with multiplicative

noise

In the final chapter of this thesis, we study the periodic stochastic Korteweg-de Vries

equation (SKdV) with multiplicative noise:

∂tu+ ∂3
xu+ u∂xu = uφξ

u(x, 0) = u0(x) ∈ L2(T)

(x, t) ∈ T× R+, (1.14)

where u is a real-valued function, ξ is again a space-time white noise, and the

smoothing operator φ is Hilbert-Schmidt from L2(T) to L2(T). As in the case of

2E(R4) is precisely the space of functions u such that E[u] <∞.

10



Chapter 1: Introduction

SNLS, we consider mild solutions to (1.14), which are functions u that satisfy the

Duhamel formulation

u(t) = U(t)u0 −
1

2

∫ t

0

U(t− t′)∂xu2(t′)dt′ +

∫ t

0

U(t− t′)u(t′)φξ

where U(t) = e−t∂
3
x .

Let us give some related background from the literature. In [37], de Bouard-

Debussche considered the non-periodic version of the problem with homogeneous

multiplicative noise and proved global well-posedness of (1.14) in L2(R) and H1(R).

More specifically, they proved the result for u0 ∈ Hs(R) when φ has the convolution

kernel in Hs(R) ∩ L1(R) with s = 0 or 1. There are also several results on SKdV

with additive noise: ∂tu+ (∂3
xu+ u∂xu)dt = φξ

u(x, 0) = u0(x).

(1.15)

In [39], de Bouard-Debussche-Tsutsumi showed that (1.15) is locally well-posed when

φ is a Hilbert-Schmidt operator from L2(T) to Hs(T) for s > −1
2
. More recently, Oh

[75] proved local well-posedness of (5.4) even when φ = Id, thus handling the case of

the space-time white noise. See [39] and the references therein for the previous works

in the periodic and non-periodic settings as well as some of its physical background.

Also, see [3], [44], [53]. Note that we often see ∂xuφξ as multiplicative noise in SKdV

rather than uφξ as in (5.1), and one can regard our study of (1.14) as the first step

toward understanding more difficult multiplicative noises such as uxφξ.

Our main result in Chapter 5 is the following theorem:

Theorem 1.5. Let φ be Hilbert-Schmidt from L2(T) to itself. Let u0 ∈ L2(T).

The stochastic KdV (1.14) with multiplicative space-time white noise is globally

well-posed almost surely.

Theorem 1.5 is proved using the Fourier restriction norm method, which was

briefly mentioned in Section 1.1.2. This method was employed on the deterministic

KdV equation in [9] by Bourgain to yield global well-posedness in L2(T), and later

the well-posedness regime was improved to H−
1
2 (T) by Kenig-Ponce-Vega [59] (also

see [26]). The tools used in the deterministic analysis rely heavily on the fact that

solutions to the KdV equation are mean-zero. Unfortunately, this is no longer the

11



Chapter 1: Introduction

case for SKdV (1.14). To overcome this issue, we first reduce the SKdV equation

to a coupled system of mean-zero SKdV-type equation and a stochastic differential

equation for the mean. Then, we follow the argument in [10, 75] and perform

a nonlinear analysis on the second iteration in an appropriate Fourier restriction

norm space to construct local solutions. Finally, we appeal to an a priori L2-bound

to extend our local solutions to global ones.

A secondary result in Chapter 5 is the following theorem on the stabilization by

noise, where we verify that the result of Tsutsumi [84] continues to hold in our low

regularity setting. It says that under certain assumptions, the mass of a solution

almost surely decays to zero as time goes to infinity.

Theorem 1.6. Let φ and u0 satisfy the same assumptions as in Theorem 1.5.

Suppose further that there exists a constant α > 1
2
‖φ‖HS(L2;L2) such that for all

v ∈ L2(T), one has

∞∑
k=−∞

[ ∫
T

Re
(
φek(x)

)
|v(x)|2dx

]2

≥ α2‖v‖2
L2(T). (1.16)

Then the solution u of the stochastic KdV (5.1) given by Theorem 1.5 decays in

mass, that is, as t→ 0, we have ‖u(t)‖L2(T) → 0 almost surely.

If the decay property of the L2(T)-norm of the solutions in Theorem 1.6 hold,

then the zero solution is referred to as pseudo-asymptotic stable. A significance of

the above result is the following. On the one hand, by Itô’s formula on the equation,

we obtain for t > 0,

E
[
‖u(t)‖2

L2(T)

]
= E

[
‖u(0)‖2

L2(T)

]
+

∫ t

0

∞∑
k=−∞

E
[
‖u(t′)φen‖2

L2(T) dt
′],

which infers that the second moment of ‖u(t)‖L2(T) is non-decreasing. On the other

hand, Theorem (1.6) tells us that ‖u(t)‖L2(T) itself decays to 0 almost surely.

12



Chapter 2

SNLS on tori

In this chapter, we study the following Cauchy problem associated to a stochastic

nonlinear Schrödinger equation of the form:i∂tu−∆u± |u|2ku = F (u, φξ)

u|t=0 = u0 ∈ Hs(Td)
(t, x) ∈ (0,∞)× Td, (2.1)

where k, d ≥ 1 are integers, Td := Rd/Zd, u : [0,∞) × Td → C is the unknown

stochastic process, and F (u, φξ) is either an additive noise of the form

F (u, φξ) = φξ (2.2)

or multiplicative noise of the form

F (u, φξ) = u · φξ, (2.3)

where the right-hand side of (2.3) is understood as an Itô product1.

We now give a more detailed description of our problem than in the introduc-

tion. Let (Ω,A, {At}t≥0,P) be a filtrated probability space. Let W be the L2(Td)-
1 The multiplicative noise given by the Stratonovich product u◦φξ with real-valued ξ is relevant

in physical applications, as it conserves the mass of u (i.e. t 7→ ‖u(t)‖2L2
x(Td) is constant) almost

surely. Our analysis can handle either the Itô or the Stratonovich product, and we choose to work
with the former for the sake of simpler exposition.
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cylindrical Wiener process given by

W (t, x, ω) :=
∑
n∈Zd

βn(t, ω)en(x), (2.4)

where {βn}n∈Zd is a family of independent complex-valued Brownian motions associ-

ated with the filtration {At}t≥0 and en(x) := exp(2πin · x), n ∈ Zd. The space-time

white noise ξ is given by the (distributional) time derivative of W , i.e. ξ = ∂W
∂t

.

Since the spatial regularity of W is too low (more precisely, for each fixed t ≥ 0,

W (t) ∈ H− d2−ε(Td) almost surely for any ε > 0), we consider a smoothed out ver-

sion φW as follows. We recall the definition of a Hilbert-Schmidt operator, which

is a notion used throughout this thesis: let H,K be Hilbert spaces, an operator

φ : H → K is Hilbert-Schmidt if

‖φ‖2
HS(H;K) :=

∑
n∈Zd
‖φhn‖2

K <∞ , (2.5)

where {hn}n∈Zd is an orthonormal basis of H (recall that ‖·‖HS(H;K) does not depend

on the choice of {hn}n∈Zd). In many instances, we assume φ ∈ HS(L2(Td);Hs(Td))

for appropriate s ≥ 0. In this case, φW is a Wiener process with sample paths in

Hs(Td) and its time derivative φξ corresponds to a noise which is white in time and

correlated in space (with correlation function depending on φ).

As mentioned in the introduction, we use the notion of a mild solution. More

precisely, we say that u is a solution if it is an adapted process u in Hs(Td) that is

continuous in time and satisfies the mild formulation

u(t) = S(t)u0 ± i
∫ t

0

S(t− t′)(|u|2ku)(t′) dt′ − iΨ(u, t) , t ≥ 0 , (2.6)

almost surely, where S(t) := e−it∆ is the linear Schrödinger propagator, and Ψ(u, t) is

a stochastic convolution as in (1.4) and (1.5) corresponding to the stochastic forcing

F (u, φξ). By the definition for W , we can express Ψ as an orthonormal expansion

in the following way: (i) for the additive noise (2.2):

Ψ(u, t) = Ψ(t) :=

∫ t

0

S(t− t′)φ dW (t′) =
∑
n∈Zd

∫ t

0

S(t− t′)φen dβn(t′) (2.7)
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and (ii) for the multiplicative noise (2.3):

Ψ(u, t) :=

∫ t

0

S(t− t′)u(t′)φ dW (t′) =
∑
n∈Zd

∫ t

0

S(t− t′)u(t′)φen dβn(t′) . (2.8)

We have mentioned before in the introduction on the works by de Bouard and

Debussche [35, 36] on SNLS on Rd. Their arguments given in [35, 36] use fixed

point arguments in the space CtH
1
x ∩L

p
tW

1,q
x ([0, T ]×Rd), for some T > 0 and some

suitable p, q ≥ 1. 2 In particular, they use the (deterministic) Strichartz estimates:

‖S(t)f‖LptLqx(R×Rd) ≤ Cp,q‖f‖L2
x(Rd), (2.9)

where the pair (p, q) is admissible, i.e. 2
p

+ d
q

= d
2
, 2 ≤ p, q,≤ ∞, and (p, q, d) 6=

(2,∞, 2). On Td, Bourgain and Demeter [13] proved the `2-decoupling conjecture,

and as a corollary, the following periodic Strichartz estimates:

∥∥S(t)P≤Nf
∥∥
Lpt,x([0,T ]×Td)

≤ Cp,T,εN
d
2
− d+2

p
+ε‖f‖L2

x(Td) . (2.10)

Here, P≤N is the Littlewood-Paley projection onto frequencies {n ∈ Zd : |n| ≤ N},

p ≥ 2(d+2)
d

, and ε > 0 is an arbitrarily small quantity 3. However, such Strichartz

estimates are not strong enough for a fixed point argument in mixed Lebesgue spaces

for the deterministic NLS on Td. To overcome this problem, we shall employ the

Fourier restriction norm method by means of Xs,b-spaces defined via the norms

‖u‖Xs,b :=
∥∥〈n〉s〈τ − |n|2〉bFt,x(u)(τ, n)

∥∥
L2
τHSn(R×Zd)

. (2.11)

The indices s, b ∈ R measure the spatial and temporal regularities of functions

u ∈ Xs,b, and Ft,x denotes Fourier transform of functions defined on R × Td. This

harmonic analytic method was introduced by Bourgain [8] for the deterministic

2Here, W s,r(Td) denotes the Lr-based Sobolev space defined by the Bessel potential norm:

‖u‖W s,r(Td) := ‖〈∇〉su‖Lr(Td) =
∥∥F−1(〈n〉sû(n))

∥∥
`rn(Zd)

,

where 〈n〉 :=
√

1 + |n|2. When r = 2, we have Hs(Td) = W s,2(Td).
3More recently, Killip and Vişan [63] removed the arbitrarily small loss of ε derivatives in (2.10)

when p > 2(d+2)
d . However, we do not need this scale-invariant improvement in our results.
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nonlinear Schrödinger equation (NLS):

i∂tu−∆u± |u|2ku = 0 . (2.12)

We now break down Theorem 1.1 and 1.2 in more details into four separate

theorems below. The first one is on the local well-posedness of additive SNLS.

Theorem 2.1 (Local well-posedness for additive SNLS). Given s > scrit non-

negative, let φ ∈ HS(L2(Td);Hs(Td)) and F (u, φ) = φξ. Then for any u0 ∈ Hs(Td),

there exist a stopping time T that is almost surely positive, and a unique solution

u ∈ C([0, T ];Hs(Td)) ∩Xs, 1
2
−ε([0, T ]) to SNLS with additive noise, for some ε > 0.

Remark 2.2. We point out that scrit is negative only for the one-dimensional cubic

NLS, i.e. (d, k) = (1, 1) for which scrit = −1
2
. Below L2(T), the deterministic cubic

NLS on T was shown to be ill-posed. Indeed, Christ, Colliander and Tao [25] and

Molinet [72] showed that the solution map u0 ∈ Hs(T) 7→ u(t) ∈ Hs(T) is discon-

tinuous whenever s < 0. More recently, Guo and Oh [49] showed an even stronger

ill-posedness result, in the sense that for any u0 ∈ Hs(T), s ∈ (−1
8
, 0), there is no dis-

tributional solution u that is also a limit of smooth solutions in C([−T, T ];Hs(T)).

In the (super)critical regime, i.e. for s ≤ −1
2

= scrit, Kishimoto [64] showed a norm

inflation phenomenon at any u0 ∈ Hs(T): for any ε > 0 and u0 ∈ Hs(T), there

exists a solution uε to NLS such that ‖uε(0)− u0‖Hs(T) < ε and ‖uε(t)‖Hs(T) > ε−1

for some t ∈ (0, ε). See also [76, 78].

Regarding the one-dimensional cubic SNLS on T, we point out that recently

Forlano, Oh and Wang [42] studied a renormalized (Wick ordered, see also [30])

additive SNLS with a weaker assumption than that of Theorem 2.1 above. While we

assume that φ ∈ HS(L2(T);L2(T)), the work of [42] assumes that φ is γ-radonifying

from L2(T) into the Fourier-Lebesgue space FLs,p(T) with s > 0 and 1 < p < ∞.

In particular, this allows them to handle almost space-time white noise, namely

φ = 〈∂x〉−α with α > 0 arbitrarily small.

Remark 2.3. Although we present our results for SNLS on the standard torus

Td = Rd/Zd, our arguments hold on any torus Tdα =
∏d

j=1 R/αjZ , where α =

(α1, ..., αd) ∈ [0,∞)d. This is because the periodic Strichartz estimates (2.10) of

Bourgain and Demeter [13] hold for irrational tori (Tdα is irrational if there is no
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γ ∈ Qd such that γ · α = 0). Prior to [13], Strichartz estimates were harder to

establish on irrational tori – see [50] and references therein.

Now let us recall the following conservation laws for the deterministic NLS:

M(u(t)) :=
1

2

∫
Td
|u(t, x)|2 dx (2.13)

E(u(t)) :=
1

2

∫
Td
|∇xu(t, x)|2 ± 1

2k + 2

∫
Td
|u(t, x)|2k+2 dx, (2.14)

where the sign ± in (2.14) matches that in (2.1) and (2.6). Recall that SNLS (2.1)

with the + sign is called defocusing (and focusing for the − sign). We say that

SNLS is energy-subcritical if scrit < 1 (i.e. for any k ≥ 1 when d = 1, 2 and for k = 1

when d = 3).

For solutions of SNLS these quantities are no longer necessarily conserved. How-

ever, Itô’s lemma allows us to bound these in a probabilistic manner similarly to de

Bouard and Debussche [35, 36]. Therefore, we obtain the following:

Theorem 2.4 (Global well-posedness for additive SNLS). Let s ≥ 0. Given

φ ∈ HS(L2(Td);Hs(Td)), let F (u, φ) = φξ and u0 ∈ Hs(Td). Then the Hs-valued

solutions of Theorem 2.1 extend globally in time almost surely in the following cases:

(i) the (focusing or defocusing) one-dimensional cubic SNLS for all s ≥ 0;

(ii) the defocusing energy-subcritical SNLS for all s ≥ 1.

We now move onto the problem with multiplicative noise, i.e. SNLS with (2.3).

For this case, we need a stronger assumption on φ. By a slight abuse of notation,

for a bounded linear operator φ from L2(Td) to a Banach space B, we say that

φ ∈ HS(L2(Td);B) if4

‖φ‖2
HS(L2(Td);B) :=

∑
n∈Zd
‖φen‖2

B <∞ .

For s ∈ R and r ≥ 1, we also define the Fourier-Lebesgue space FLs,r(Td) via the

norm

‖f‖FLs,r(Td) :=
∥∥〈n〉sf̂(n)

∥∥
`rn(Zd)

.

4In fact, such operators are known as nuclear operators of order 2 and their introduction goes
back to the work of A. Grothendieck on nuclear locally convex spaces.
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Clearly, when r = 2 we have FLs,r(Td) = Hs(Td) and for s1 ≤ s2 and r1 ≤ r2 we

have FLs2,r1(Td) ⊂ FLs1,r2(Td). We now state our local well-posedness result for

the multiplicative SNLS.

Theorem 2.5 (Local well-posedness for multiplicative SNLS). Given s > scrit non-

negative, let φ ∈ HS(L2(Td);Hs(Td)). If s ≤ d
2
, we further impose that

φ ∈ HS(L2(Td);FLs,r(Td)) (2.15)

for some r ∈
[
1, d

d−s

)
when s > 0 and r = 1 when s = 0. Let F (u, φ) = u · φξ. Then

for any u0 ∈ Hs(Td), there exist a stopping time T that is almost surely positive, and

a unique solution u ∈ C([0, T ];Hs(Td))∩Xs, 1
2
−ε([0, T ]) to SNLS with multiplicative

noise, for some ε > 0.

Remark 2.6. The assumption on φ here in Theorem 2.5 is slightly more general than

in Theorem 1.2 from the introduction; this is because if φξ is a spatially homogeneous

noise, i.e. φ is translation invariant, then the extra assumption (2.15) is superfluous.

Indeed, if φ̂en(m) = 0, for all m,n ∈ Zd, m 6= n and φ ∈ HS(L2(Td);Hs(Td)), then

φ ∈ HS(L2(Td);FLs,r(Td)) for any r ≥ 1.

We point out that an extra condition in the multiplicative case was also used

by de Bouard and Debussche [36] in their study of SNLS in H1(Rd), namely they

required that φ is a γ-radonifying operator from L2(Rd) into W 1,α(Rd) for some ap-

propriate α, as compared to the requirement that φ is Hilbert-Schmidt from L2(Rd)

into Hs(Rd) in the additive case.

In the multiplicative case, the stochastic convolution depends on the solution u

and this forces us to work in the space in L2
(
Ω;C([0, T ];Hs(Td)) ∩Xs, 1

2
−ε([0, T ])

)
.

In order to control the nonlinearity in this space, we use a truncation method which

has been used for SNLS on Rd by de Bouard and Debussche [35, 36]. Moreover,

we combine this method with the use of Xs,b-spaces in a similar manner as in [34],

where the same authors studied the stochastic KdV equation with low regularity

initial data on R. This introduces some technical difficulties which did not appear

when using the more classical Strichartz spaces as those used in [35, 36].

Next, we prove global well-posedness of SNLS (2.1) with multiplicative noise.

Similarly to the additive case, the main ingredient is the probabilistic a priori bound
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on the mass and energy of a local solution u. However, we also need to obtain uniform

control on the Xs,b-norms for solutions to truncated versions of (2.6).

Theorem 2.7 (Global well-posedness for multiplicative SNLS). Let s ≥ 0. Given φ

with the same assumptions as in Theorem 2.5, let F (u, φ) = u ·φξ and u0 ∈ Hs(Td).

Then the Hs-valued solutions of Theorem 2.5 extend globally in time in the following

cases:

(i) the (focusing or defocusing) one-dimensional cubic SNLS for all s ≥ 0;

(ii) the defocusing energy-subcritical SNLS for all s ≥ 1.

Before concluding this introduction let us state two remarks.

Remark 2.8. Theorem 2.1 and Theorem 2.5 are almost optimal for handling the

regularity of initial data since the deterministic NLS is ill-posed for s < scrit (see

Remark 2.2). In terms of the regularity of the noise, at least in the additive noise

case, it is possible to consider rougher noise by employing the Da Prato-Debussche

trick, namely by writing a solution u to (2.6) as u = v+Ψ and considering the equa-

tion for the residual part v. In general, this procedure allows one to treat rougher

noise, see for example [5, 6, 30] where they treat NLS with rough random initial

data and more recently [77] where they handled supercritical noise for the additive

SNLS on Rd. In the periodic setting however, the argument gets more complicated

(see for example [5, 6] on Rd versus [30, 73] on Td). The actual implementation of

the aforementioned trick requires cumbersome case-by-case analysis where the num-

ber of cases grows exponentially in k. Even for the cubic case on Td the analysis

is involved, whereas on Rd one can use bilinear Strichartz estimates which are not

available on Td.

Remark 2.9. In the multiplicative noise case, there are well-posedness results on

a general compact Riemannian manifold M without boundaries. In [16], Brzeźniak

and Milllet use the Strichartz estimates of [17] and the standard space-time Lebesgue

spaces (i.e. without the Fourier restriction norm method). ForM = Td, Theorem 2.5

improves the result in [16] since it requires less regularity on the noise and initial

data. In [15], Brzeźniak, Hornung, and Weiss construct martingale solutions in

H1(M) for the multiplicative SNLS with energy-subcritical defocusing nonlinearities

and mass-subcritical focusing nonlinearities.
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Our local-in-time argument uses the Fourier restriction norm method introduced

by Bourgain [8] and the periodic Strichartz estimates proved by Bourgain and Deme-

ter [13]. In establishing local well-posedness for the multiplicative SNLS, we also

have to combine these tools with the truncation method used by de Bouard and

Debussche [34–36]. Moreover, by proving probabilistic a priori bounds on the mass

and energy of solutions, we establish global well-posedness in (i) L2(T) for cubic

nonlinearities (i.e. k = 1) when d = 1, and (ii) H1(Td) for all defocusing energy-

subcritical nonlinearities – see Theorem 2.4 and the preceding discussion for more

details.

The remainder of this chapter is organised as follows. In Section 2.1, we provide

some preliminaries for the Fourier restriction norm method and prove the multilinear

estimates necessary for the local well-posedness results. In Section 2.2, we prove

some properties of the stochastic convolutions Ψ and Ψ[u] given respectively by

(2.7) and (2.8). We prove Theorems 2.1 and 2.5 in Section 2.3. Finally, in Section

2.4 we prove the global results Theorems 2.4 and 2.7.

2.1 Fourier restriction norm method

Let s, b ∈ R. The Fourier restriction norm space Xs,b adapted to the Schrödinger

equation on Td is the space of tempered distributions u on R × Td such that the

norm

‖u‖Xs,b :=
∥∥〈n〉s〈τ − |n|2〉bFt,x(u)(τ, n)

∥∥
`2nL

2
τ (Zd×R)

is finite. Equivalently, the Xs,b-norm can be written in its interaction representation

form:

‖u‖Xs,b =
∥∥〈n〉s〈τ〉bFt,x (S(−t)u(t)) (n, τ)

∥∥
`2nL

2
τ (Zd×R)

, (2.16)

where S(t) = e−it∆ is the linear Schrödinger propagator. This equivalence is useful

for estimating the Xs,b-norm of stochastic convolutions, see for example Lemma 2.18

below.

We now state some facts on Xs,b-spaces. The interested reader can find the proof

of these and further properties in [82]. Firstly, we have the following continuous

20



Chapter 2: SNLS on tori

embeddings

Xs,b ↪→ C(R;Hs
x(Td)) , for b >

1

2
, (2.17)

Xs′,b′ ↪→ Xs,b , for s′ ≥ s and b′ ≥ b . (2.18)

We have the duality relation

‖u‖Xs,b = sup
‖v‖

X−s,−b≤1

∣∣∣∣∫
R×Td

u(t, x)v(t, x) dt dx

∣∣∣∣ . (2.19)

Lemma 2.10 (Transference principle, [82, Lemma 2.9]). Let Y be a Banach space

of functions on R× Td such that

‖eitλe±it∆f‖Y . ‖f‖Hs(Td)

for all λ ∈ R and all f ∈ Hs(Td). Then, for any b > 1
2
,

‖u‖Y . ‖u‖Xs,b

for all u ∈ Xs,b.

Lemma 2.10 is useful for transferring Strichartz estimates on standard Sobolev

spaces to Strichartz estimates on Fourier restriction norm spaces, see for example

(2.28) below.

Given a time interval I ⊆ R, one defines the time restricted space Xs,b(I) via

the norm

‖u‖Xs,b(I) := inf {‖ũ‖Xs,b : ũ|I = u} . (2.20)

Lemma 2.11. Let s ≥ 0 and 0 ≤ b < 1
2
. Then

‖u‖Xs,b(I) ∼ ‖1I(t)u(t)‖Xs,b . (2.21)

This relation is useful for establishing local-in-time estimates, see for example in

Lemma 2.18 later on. The proof of (2.21) is almost identical to [34, Lemma 2.1] for

Xs,b spaces adapted to the KdV equation, we only sketch the proof below.
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Sketch proof of Lemma 2.11. Clearly, by the definition, we have

‖u‖Xs,b(I) ≤ ‖1I(t)u‖Xs,b .

We are required to show the inverse inequality ‖1I(t)u(t)‖Xs,b . ‖u‖Xs,b(I). To this

end, let g(t) = 1I(t)S(−t)u(t), so that

‖1I(t)u‖2
Xs,b =

∑
n∈Z

∫
R
〈n〉2s〈τ〉2b|ĝ(n, τ)|2 dτ

=
∑
n∈Z

〈n〉2s‖Fxg(n)‖2
Hb
t (R).

The claim then follows from the following inequality

‖1Ih‖Hb
t (R) . ‖h‖Hb

t (R). (2.22)

The proof of (2.22) is contained in [34, Lemma 2.1] and so we omit it here.

Lemma 2.12 (Linear estimates, [82, Proposition 2.12]). Let s ∈ R and suppose η

is smooth and compactly supported. Then, we have

‖η(t)S(t)f‖Xs,b . ‖f‖Hs(Td) , for b ∈ R ; (2.23)

∥∥∥∥η(t)

∫ t

0

S(t− t′)F (t′)dt′
∥∥∥∥
Xs,b

. ‖F‖Xs,b−1 , for b >
1

2
. (2.24)

By localizing in time, we can gain a smallness factor, as per lemma below.

Lemma 2.13 (Time localization property, [82, Lemma 2.11]). Let s ∈ R and −1
2
<

b′ < b < 1
2
. For any T ∈ (0, 1), we have

‖f‖Xs,b′ ([0,T ]) .b,b′ T
b−b′ ‖f‖Xs,b([0,T ]) .

We now give the proofs of the multilinear estimates necessary to control the

nonlinearity |u|2ku. Recall the L4-Strichartz estimate due to Bourgain [8] (see also

[82, Proposition 2.13]):

‖u‖L4
t,x(R×T) . ‖u‖X0, 38

. (2.25)
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Lemma 2.14. Let d = 1, s ≥ 0, b ≥ 3
8
, and b′ ≤ 5

8
. Then, for any time interval

I ⊂ R, we have

‖u1u2u3‖Xs,b′−1(I) .
3∏
j=1

‖uj‖Xs,b(I). (2.26)

Proof. First assume that I = R. By the duality relation (2.19), it suffices to show

that ∣∣∣∣∫
R×Td
〈∇〉s(u1u2u3)v dxdt

∣∣∣∣ . 3∏
j=1

‖uj‖Xs,b‖v‖X0,1−b′

for any factors u1, u2, u3, v. By Parseval’s Theorem, we have

∣∣∣∣∫
R×Td
〈∇〉s(u1u2u3)v dxdt

∣∣∣∣ =

∣∣∣∣∣∑
n∈Z

∫
R
〈n〉sFx(u1u2u3)(n)v̂(n) dxdt

∣∣∣∣∣ .
Now

〈n〉sFx(u1u2u3)(n) = 〈n〉s
∑

n1+n2+n3=n

û1(n1)û2(n2)û3(n3)

≤
∑

n1+n2+n3=n

〈n1〉sû1(n1) · 〈n2〉sû2(n2) · 〈n3〉sû3(n3)

= Fx
(
〈∇〉su1 · 〈∇〉su2 · 〈∇〉su3

)
Thus by Parseval’s Theorem again, we have∣∣∣∣∫

R×Td
〈∇〉s(u1u2u3)v dxdt

∣∣∣∣ ≤ ∣∣∣∣∫
R×Td
〈∇〉su1 · 〈∇〉su2 · 〈∇〉su3 · v dxdt

∣∣∣∣ .
The claim then follows from Hölder inequality and (2.25) for each of the four factors

(hence the restrictions b, 1− b′ ≥ 3
8
).

For an arbitrary time interval I, if ũj is an extension of uj, j = 1, 2, 3, then

ũ1ũ2ũ3 is an extension of u1u2u3. We use the previous step to get

‖u1u2u3‖Xs,b′−1(I) ≤
∥∥ũ1ũ2ũ3

∥∥
Xs,b′−1 .

3∏
j=1

‖ũj‖Xs,b

and then we take infimum over all extensions ũj’s and (2.26) follows.

Due to the scaling and Galilean symmetries of the linear Schrödinger equation,
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the periodic Strichartz estimate (2.10) of Bourgain and Demeter [13] is equivalent

with

‖S(t)PQf‖Lpt,x(I×Td) .|I| |Q|
1
2
− d+2

pd
+‖f‖L2

x(Td), (2.27)

for any d ≥ 1, p ≥ 2(d+2)
d

, I ⊂ R finite time interval, and Q ⊂ Rd dyadic cube.

Here, PQ denotes the frequency projection onto Q, i.e. P̂Qf(n) = 1Q(n)f̂(n). By

the transference principle (Lemma 2.10), we get

‖PQu‖Lpt,x(I×Td) .|I| |Q|
1
2
− d+2

pd
+‖u‖X0,b(I), (2.28)

for any b > 1
2
. By interpolating (2.28) with

‖PQu‖Lpt,x(I×Td) . |Q|
1
2
− 1
p‖u‖

X
0, 12−

1
p (I)

, (2.29)

(which follows immediately from Sobolev inequalities, (2.16), and theHs(Td)-isometry

of S(−t)), we can lower the time regularity from b = 1
2
+δ to b̃ = 1

2
−δ, for sufficiently

small δ > 0. Thus, we also have

‖PQu‖Lpt,x(I×Td) .|I|,δ |Q|
1
2
− d+2

pd
+o(δ)‖u‖

X0, 12−δ(I)
(2.30)

Lemma 2.14 only treats the cubic nonlinearity when d = 1. We now prove

the following general multilinear estimates to treat other cases. The proof borrows

techniques from [50].

Lemma 2.15. Let d, k ≥ 1 such that dk ≥ 2 and let I ⊂ R be a finite time interval.

Then for any s > sc, there exist b = 1
2
− and b′ = 1

2
+ such that

‖u1u2 · · ·u2ku2k+1‖Xs,b′−1(I) .|I|

2k+1∏
j=1

‖uj‖Xs,b(I). (2.31)

Proof. In view of (2.21), we can assume that uj(t) = 1I(t)uj(t) and thus by the

duality relation (2.19), it suffices to show

∣∣∣∣∫
R×Td

(
〈∇〉s(u1u2 · · ·u2k+1)

)
v dxdt

∣∣∣∣ . ‖v‖X0,1−b′

2k+1∏
j=1

‖uj‖Xs,b . (2.32)
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We use Littlewood-Paley decomposition: we estimate the left-hand side of (2.32)

when v = PNv, uj = PNjuj for some dyadic numbers N,Nj ∈ 2Z, 1 ≤ j ≤ 2k + 1.

Then the claim follows by triangle inequality and performing the summation

∑
N1

∑
N

N.N1

∑
N2

N2≤N1

· · ·
∑
N2k+1

N2k+1≤N2k

. (2.33)

Notice that without loss of generality, we may assume that N1 ≥ N2 ≥ . . . ≥ N2k+1,

in which case we also have N . N1, and that the factors v and uj are real-valued

and non-negative.

Let ε := s− sc, and we distinguish two cases.

Case 1: N1 ∼ N2. By Hölder inequality,

N s

∫
R×Td

u1u2 · · ·u2k+1v dxdt . N
s
2

1 ‖u1‖Lqt,xN
s
2

2 ‖u2‖Lqt,x
2k+1∏
j=3

‖uj‖Lpt,x‖v‖Lrt,x , (2.34)

with p, q, r chosen such that 2k−1
p

+ 2
q

+ 1
r

= 1. We take p, q such that d
2
− d+2

p
= scrit

and d
2
− d+2

q
= 1

2
scrit, or equivalently p = k(d + 2) and q = 4k(d+2)

dk+2
. These give the

Hölder exponent r = 2(d+2)
d

. By (2.30) and (2.28), we get

N
s
2
j ‖uj‖Lqt,x . N

− ε
2

+

j ‖uj‖Xs,b , j = 1, 2 (2.35)

‖uj‖Lpt,x . N−ε+j ‖uj‖Xs,b , 3 ≤ j ≤ 2k + 1, (2.36)

‖v‖Lrt,x . N0+‖v‖X0,1−b′ . (2.37)

By choosing δ, δ′ � ε in b := 1
2
− δ and in 1− b′ = 1

2
− δ′, respectively, we get

RHS of (2.34) . N−
ε
4‖v‖X0,1−b′

2k+1∏
j=1

N
− ε

4
j ‖uj‖Xs,b . (2.38)

The factors N−
ε
4 , N

− ε
4

j guarantee that we can perform (2.33).

Case 2: N1 � N2. Then, we necessarily have N1 ∼ N or else the left hand side of
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(2.32) vanishes. By Hölder inequality,

N s

∫
R×Td

u1u2 · · ·u2k+1v dxdt . N s
1‖u1‖Lqt,x

2k+1∏
j=2

‖uj‖Lpt,x‖v‖Lrt,x , (2.39)

with 2k
p

+ 1
q
+ 1

r
= 1. As in Case 1, we would like to have p such that d

2
− d+2

p
= scrit, or

equivalently p = k(d+ 2). However, the best we can do with the Strichartz estimate

for the remaining factors is to choose q = r = 2(d+2)
d

, so that we have

N s
1‖u1‖Lqt,x . N0+

1 ‖u1‖Xs,b , (2.40)

‖uj‖Lpt,x . N−ε+j ‖uj‖Xs,b , 2 ≤ j ≤ 2k + 1, (2.41)

‖v‖Lrt,x . N0+
1 ‖v‖X0,1−b′ . (2.42)

Notice that we can overcome the loss of derivative N s
1 only up to a logarithmic

factor. We need a slightly refined analysis.

We cover the dyadic frequency annuli of u1 and of v with dyadic cubes of side-

length N2, i.e.

{ξ1 : |ξ1| ∼ N1} ⊂
⋃
`

Q` , {ξ : |ξ| ∼ N} ⊂
⋃
j

Rj .

There are approximately
(
N1

N2

)d
-many cubes needed, and so

u1 =
∑
`

PQ`u1 =:
∑
`

u1,` , v =
∑
j

PRjv =:
∑
j

vj

are decompositions into finitely many terms. Since |ξ1−ξ| . N2 for ξ1 ∈ supp(û1), ξ ∈

supp(v̂) on the convolution hyperplane, there exists a constant K such that if

dist(Q`, Qj) > KN2, then the integral in (2.32) vanishes. Hence the summation

(2.33) is replaced by ∑
N1

∑
N2

N2�N1

· · ·
∑
N2k+1

N2k+1≤N2k

∑
`,j
j≈`

. (2.43)
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Also, in place of (2.40)-(2.41), we now have

N s
1‖u1,`‖Lqt,x . N0+

2 ‖u1,`‖Xs,b , (2.44)

‖ui‖Lpt,x . N−ε+i ‖ui‖Xs,b , 2 ≤ i ≤ 2k + 1, (2.45)

‖vj‖Lqt,x . N0+
2 ‖vj‖X0,1−b′ , (2.46)

Therefore, by Cauchy-Schwarz inequality and Plancherel identity,

LHS of (2.32) .
∑
N2

∑
N1

N1�N2

∑
`,j
`≈j

N−ε+2 ‖u1,`‖Xs,b‖vj‖X0,1−b′

2k+1∏
i=2

‖ui‖Xs,b

.
∑
N2

N−ε+2

 ∑
N1

N1�N2

∑
`

‖u1,`‖2
Xs,b


1
2
 ∑

N
N�N2

∑
j

‖vj‖2
X0,1−b′


1
2

2k+1∏
i=2

‖ui‖Xs,b

.
∑
N2

N−ε+2 ‖u1‖Xs,b‖v‖X0,1−b′

2k+1∏
i=2

‖ui‖Xs,b

.
2k+1∏
i=1

‖ui‖Xs,b‖v‖X0,1−b′

and the proof is complete.

2.2 The stochastic convolution

In this section, we prove some Xs,b-estimates on the stochastic convolution Ψ(t)

given either by (2.7) or (2.8). We first record the following Burkholder-Davis-Gundy

inequality, which is a consequence of [71, Theorem 1.1].

Lemma 2.16 (Burkholder-Davis-Gundy inequality). Let H,K be separable Hilbert

spaces, T > 0, and W is an H-valued Wiener process on [0, T ]. Suppose that

{ψ(t)}t∈[0,T ] is a process taking values in HS(H;K). Then there is a modification of
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ψ (which we continue to denote as ψ) such that for p ≥ 1,

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

ψ(t′) dW (t′)

∥∥∥∥p
K

]
.p E

[(∫ T

0

‖ψ(t′)‖2
HS(H;K) dt

′
) p

2

]
.

In addition, we prove that Ψ(t) is pathwise continuous in both cases. To this

end, we employ the factorization method of Da Prato [31, Lemma 2.7], i.e. we make

use of the following lemma and (2.49) below.

Lemma 2.17. Let H be a Hilbert space, T > 0, α ∈ (0, 1), and σ >
(

1
α
,∞
)
.

Suppose that f ∈ Lσ([0, T ];H). Then the function

F (t) :=

∫ t

0

S(t− t′)(t− t′)α−1f(t′) dt′ , t ∈ [0, T ] (2.47)

belongs to C([0, T ];H). Moreover,

sup
t∈[0,T ]

‖F (t)‖H .σ,T ‖f‖Lσ([0,T ];H) . (2.48)

We make use of the above lemma in conjunction with the following fact:

∫ t

µ

(t− t′)α−1(t′ − µ)−α dt′ =
π

sin(πα)
, (2.49)

for all 0 < α < 1 and all 0 ≤ µ < t. This can be seen via considerations with

Euler-Beta functions, see [31].

We now treat the additive and multiplicative cases separately below in Subsection

2.2.1 and 2.2.2 respectively. The arguments for the two cases are similar, albeit with

some extra technicalities in the multiplicative case.

2.2.1 The additive stochastic convolution

By Fourier expansion, the stochastic convolution (2.7) for the additive noise problem

can be written as

Ψ(t) =
∑
n∈Zd

en
∑
j∈Zd

(̂φej)(n)

∫ t

0

ei(t−t
′)|n|2dβj(t

′) . (2.50)

We first state the following Xs,b-estimate on Ψ:

28



Chapter 2: SNLS on tori

Lemma 2.18. Let s ≥ 0, 0 ≤ b < 1
2
, T > 0, and σ ∈ [2,∞). Let Ψ be given as

in (2.50). Assume that φ ∈ HS(L2(Td);Hs(Td)). Then there is a modification of Ψ

(which we continue to denote as Ψ) such that

E
[
‖Ψ‖σXs,b([0,T ])

]
. T

σ
2 (1 + T 2)

σ
2 ‖φ‖σHS(L2(Td);Hs(Td)) . (2.51)

Proof. Since 1[0,T ](t)1[0,T ](t
′) = 1[0,T ](t) = 1 whenever 0 ≤ t′ ≤ t ≤ T , we have

1[0,T ](t)Ψ(t)(x) =
∑
n∈Zd

en
∑
j∈Zd

φ̂ej(n)1[0,T ](t)e
it|n|2

∫ t

0

1[0,T ](t
′)e−it

′|n|2dβj(t
′)

By (2.21), we have

‖Ψ(t)‖Xs,b([0,T ]) ∼
∥∥1[0,T ](t)Ψ(t)

∥∥
Xs,b

= ‖〈n〉s〈τ〉bFt,x
(
S(−t)1[0,T ](t)Ψ(t)

)
(τ, n)‖L2

τHSn

=
∥∥∥〈n〉s〈τ〉bFt[gn(t)

]
(τ)
∥∥∥
L2
τ `

2
n

, (2.52)

where

gn(t) :=
∑
j∈Zd

1[0,T ](t)

∫ t

0

1[0,T ](t
′)e−it

′|n|2φ̂ej(n)dβj(t
′) .

By the stochastic Fubini theorem (see [32, Theorem 4.33]), we have

Ft[gn(t)](τ) =

∫
R
e−itτgn(t)dt

=
∑
j∈Zd

∫ ∞
−∞

1[0,T ](t
′)e−it

′|n|2φ̂ej(n)

∫ ∞
t′

1[0,T ](t)e
−itτ dt dβj(t

′).

Since ∣∣∣∣∫ ∞
t′

1[0,T ](t)e
−itτ dt

∣∣∣∣ . min{T, |τ |−1} , (2.53)
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by Burkholder-Davis-Gundy inequality (Lemma 2.16), we get

E
[
|Ft[gn(t)](τ)|σ

]
.

∫ T

0

∑
j∈Zd

∣∣∣∣φ̂ej(n)

∫ ∞
t′

1[0,T ](t)e
−itτ dt

∣∣∣∣2 dt′
σ

2

.

T ∑
j∈Zd
|φ̂ej(n)|2 min{T 2, |τ |−2}

σ
2

.

(2.54)

By (2.52), (2.54), and Minkowski inequality, we get

‖Ψ‖Lσ(Ω;Xs,b([0,T ])) ≤

(∑
n∈Zd

∫ ∞
−∞
〈n〉2s〈τ〉2b (E [|F [gn](τ)|σ])

2
σ dτ

) 1
2

. T
1
2

 ∑
n,j∈Zd

〈n〉2s|φ̂ej(n)|2
∫ ∞
−∞
〈τ〉2b min{T 2, |τ |−2} dτ

 1
2

. T
1
2 ‖φ‖HS(L2;Hs)

(
T 2

∫
|τ |<1

dτ +

∫
|τ |≥1

〈τ〉2b−2 dτ

) 1
2

.

This completes the proof of Lemma 2.18.

The next lemma infers that Ψ has a continuous modification taking values in

Hs(Td). This lemma is known and can be found in, for example, [52, Proposition

1.1]. Nonetheless, we provide a proof using the factorization method mentioned

before.

Lemma 2.19 (Continuity of the additive noise). Let s ≥ 0, T > 0, and 2 ≤ σ <

∞. Assume that φ ∈ HS(L2(Td);Hs(Td)). Then Ψ(·) belongs to C([0, T ];Hs(Td))

almost surely and

E

[
sup
t∈[0,T ]

‖Ψ(t)‖σHs(Td)

]
.T ‖φ‖σHS(L2(Td);Hs(Td)) . (2.55)
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Proof. We fix α ∈
(
0, 1

2

)
and we write the stochastic convolution as follows:

Ψ(t) =
sin(πα)

π

∫ t

0

[∫ t

µ

(t− t′)α−1(t′ − µ)−α dt′
]
S(t− µ)φ dW (µ)

=
sin(πα)

π

∫ t

0

S(t− t′)(t− t′)α−1

∫ t′

0

S(t′ − µ)(t′ − µ)−αφ dW (µ) dt′ ,

(2.56)

where we used the stochastic Fubini theorem [32, Theorem 4.33] and the group

property of S(·). By Lemma 2.17 and (2.56) it suffices to show that the process

f(t′) :=

∫ t′

0

S(t′ − µ)(t′ − µ)−αφ dW (µ)

satisfies

E
[ ∫ T

0

‖f(t′)‖σHs
x
dt′
]
≤ C

(
T, σ, ‖φ‖HS(L2;Hs)

)
<∞ , (2.57)

for some σ > 1
α

.

By Burkholder-Davis-Gundy inequality (Lemma 2.16), for any σ ≥ 2 and any

t′ ∈ [0, T ], we get

E
[
‖f(t′)‖σHs

x

]
.

(∫ t′

0

‖S(t′ − µ)(t′ − µ)−αφ‖2
HS(L2;Hs)dµ

)σ
2

=

∫ t′

0

(t′ − µ)−2α
∑
j∈Zd
‖S(t′ − µ)φej‖2

Hsdµ

σ
2

≤ ‖φ‖σHS(L2;Hs)

(
T 1−2α

1− 2α

)σ
2

,

where in the last step we used 2α ∈ (0, 1) and the Hs(Td)-isometry property of

S(t′ − µ). Hence

LHS of (2.57) =

∫ T

0

E
[
‖f(t′)‖σHs

x

]
dt′ . ‖φ‖σHS(L2;Hs) T

σ
2

(1−2α)+1 <∞ .

The estimate (2.55) follows from (2.48).
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2.2.2 The multiplicative stochastic convolution

The multiplicative stochastic convolution Ψ = Ψ[u] from (2.8) can be written as

Ψ[u](t) =
∑
n∈Zd

en
∑
j∈Zd

∫ t

0

ei(t−t
′)|n|2 ̂(u(t′)φej)(n)dβj(t

′). (2.58)

Recall that if s > d
2
, then we have access to the algebra property of Hs(Td):

‖fg‖Hs(Td) . ‖f‖Hs(Td) ‖g‖Hs(Td) (2.59)

which is an easy consequence of the Cauchy-Schwarz inequality. This simple fact is

useful for our analysis in the multiplicative case. On the other hand, (2.59) is not

available to us for regularities below d
2
, but we use the following inequalities.

Lemma 2.20. Let 0 < s ≤ d
2

and 1 ≤ r < d
d−s . Then

‖fu‖Hs(Td) . ‖f‖FLs,r(Td)‖u‖Hs(Td). (2.60)

Also, for s = 0, we have

‖fu‖L2(Td) . ‖f‖FL0,1(Td)‖u‖L2(Td). (2.61)

Proof. Assume that 0 < s ≤ d
2

and let n1 and n2 denote the spatial frequencies of f

and u respectively. By separating the regions {|n1| & |n2|} and {|n1| � |n2|}, and

then applying Young’s inequality, we have

‖fu‖Hs(Td) .
∥∥∥(〈̂∇〉sf ∗ û)(n)

∥∥∥
`2n

+
∥∥∥(f̂ ∗ 〈̂∇〉su)(n)

∥∥∥
`2n

. ‖f‖FLs,r‖û‖`p + ‖f̂‖`1‖u‖Hs ,

where p is chosen such that 1
r

+ 1
p

= 3
2
. By Hölder inequality, for r′ and q such that

1
r

+ 1
r′

= 1 and 1
q

+ 1
2

= 1
p
,

‖f̂‖`1 . ‖〈n〉−s‖`r′‖f‖FLs,r ,

‖û‖`p . ‖〈n〉−s‖`q‖u‖Hs .
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Since sr′ > d and sq > d provided that r < d
d−s , the conclusion (2.60) follows.

If s = 0, (2.61) follows easily from Young’s inequality:

‖fu‖L2(Td) = ‖f̂ ∗ û‖`2 . ‖f̂‖`1‖û‖`2 = ‖f‖FL0,1‖u‖L2 .

Given φ as in Theorem 2.5, let us denote

C(φ) := ‖φ‖HS(L2(Td);FLs,r(Td)) <∞ , (2.62)

for r = 2 when s > d
2
, for some r ∈

[
1, d

d−s

)
when 0 < s ≤ d

2
, and for r = 1

when s = 0. Recall that if φ is translation invariant, then it is sufficient to assume

that C(φ) < ∞ with r = 2, for all s ≥ 0. We now proceed to prove the following

Xs,b-estimate of Ψ[u].

Lemma 2.21. Let s ≥ 0, 0 ≤ b < 1
2
, T > 0, and 2 ≤ σ < ∞. Suppose that φ

satisfies the assumptions of Theorem 2.5. Then, for Ψ[u] given by (2.8) we have the

estimate

E
[
‖Ψ[u]‖σXs,b([0,T ])

]
. (T 2 + 1)

σ
2C(φ)σ E

[
‖u‖σL2([0,T ];Hs(Td))

]
. (2.63)

Proof. We first prove (2.63). Let g(t) := 1[0,T ](t)S(−t)Ψ(t). By the stochastic

Fubini theorem [32, Theorem 4.33],

Ft,x(g)(τ, n) =

∫
R
e−itτ1[0,T ](t)

∑
j∈Zd

∫ t

0

e−it
′n2

( ̂u(t′)φej)(n) dβj(t
′) dt

=
∑
j∈Zd

∫ T

0

∫ ∞
t′

1[0,T ](t)e
−itτe−it

′n2

( ̂u(t′)φej)(n) dt dβj(t
′) .

Then by (2.21) and the assumption 0 ≤ b < 1
2
, the Burkholder-Davis-Gundy in-

equality (Lemma 2.16), and (2.53), we have

LHS of (2.63) ∼ E
[∥∥〈n〉s〈τ〉bF [g](n, τ)

∥∥σ
L2
τ `

2
n

]
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. E


 ∑
j,n∈Zd

∫
R

∫ T

0

〈n〉2s〈τ〉2b
∣∣∣∣∫ ∞
t′

1[0,T ](t)e
−itτ dt

∣∣∣∣2 ∣∣∣( ̂u(t′)φej)(n)
∣∣∣2 dt′ dτ

σ
2



. (T 2 + 1)
σ
2 E


∫ T

0

∑
j,n∈Zd

〈n〉2s
∣∣∣( ̂u(t′)φej)(n)

∣∣∣2 dt′
σ

2

 .

If s > d
2
, we apply the algebra property of Hs(Td) to get

‖u(t′)φej‖`2jHs . ‖φ‖HS(L2;Hs)‖u(t′)‖Hs .

If 0 ≤ s ≤ d
2
, we have

‖u(t′)φej‖`2jHs . C(φ)‖u(t′)‖Hs . (2.64)

and thus (2.63) follows.

Next, we prove the continuity of Ψ[u](t) in the same way as in Lemma 2.19, i.e.

by using Lemma 2.17.

Lemma 2.22 (Continuity of the multiplicative noise). Let T > 0, s ≥ 0, 0 ≤ b < 1
2
,

and 2 ≤ σ < ∞. Suppose that u ∈ Lσ
(
Ω;Xs,b([0, T ])

)
and that φ satisfies the as-

sumptions of Theorem 2.5. Then Ψ[u](·) given by (2.58) belongs to C([0, T ];Hs(Td))

almost surely. Moreover,

E

[
sup
t∈[0,T ]

‖Ψ[u](t)‖σHs(Td)

]
. C(φ)σ E

[
‖u‖σXs,b([0,T ])

]
. (2.65)

Proof. Applying the same factorisation procedure as in the proof of Lemma 2.19

reduces the problem to proving that the process

f(t′) :=

∫ t′

0

(t′ − µ)−αS(t′ − µ)
[
u(µ)φ

]
dW (µ)

satisfies

E
[∫ T

0

‖f(t′)‖σHs
x
dt′
]
≤ C ′ (T, σ, C(φ)) <∞ (2.66)

for some 0 < α < 1 satisfying α > 1
σ
. By the Burkholder-Davis-Gundy inequality
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(Lemma 2.16) and Lemma 2.20, we have

E
[
‖f(t′)‖σHs

x

]
. E

(∫ t′

0

‖(t′ − µ)−αS(t′ − µ)[u(µ)φ]‖2
HS(L2;Hs)dµ

)σ
2



= E


∫ t′

0

(t′ − µ)−2α
∑
j∈Zd
‖S(t′ − µ)u(µ)φej‖2

Hsdµ

σ
2



. E


∑
j∈Zd
‖φej‖2

FLs,r

∫ T

0

(t′ − µ)−2α‖u(µ)‖2
Hsdµ

σ
2

 .

Then, by Fubini theorem and Minkowski inequality, we obtain

E
[∫ T

0

‖f(t′)‖σHs
x
dt′
]

=
∥∥∥ ‖f‖Hs

x

∥∥∥σ
Lσ(Ω;Lσ

t′ [0,T ])

. C(φ)σ
∥∥∥∥∥∥∥(t′ − µ)−α‖u(µ)‖Hs

x

∥∥∥
L2
µ(0,T ])

∥∥∥∥σ
Lσ(Ω;Lσ

t′ [0,T ])

≤ C(φ)σ E

[∥∥∥∥∥∥∥(t′ − µ)−α‖u(µ)‖Hs
x

∥∥∥
Lσ
t′ (0,T ])

∥∥∥∥σ
L2
µ([0,T ])

]

. C(φ)σ E

[(∫ T

0

(T − µ)2( 1
σ
−α)‖u(µ)‖2

Hs
x
dµ

)σ
2
]

By Hölder and Sobolev inequalities and (2.21), we have

(∫ T

0

(T − µ)2( 1
σ
−α)‖u(µ)‖2

Hs
x
dµ

) 1
2

≤
∥∥∥(T − µ)

1
σ
−α
∥∥∥
L

4
1+2b
µ ([0,T ])

∥∥∥‖u(µ)‖Hs
x

∥∥∥
L

4
1−2b
µ ([0,T ])

. T 1+ 4
1+2b

( 1
σ
−α)
∥∥∥1[0,T ](µ)‖S(−µ)u(µ)‖Hs

x

∥∥∥
L

4
1−2b
µ

.

There exists α = α(σ) := 1
σ

+ 1
4

for which we have

E
[∫ T

0

‖f(t′)‖σHs
x
dt′
]
. E

[
T

2bσ
1+2b‖u‖σXs,b([0,T ])

]
<∞ .
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2.3 Local well-posedness

2.3.1 SNLS with additive noise

In this subsection, we prove Theorem 2.1. Let b = b(k) = 1
2
− be given by Lemma

2.14 (in the case d = k = 1) or by Lemma 2.15 (in the case dk ≥ 2). By Lemma

2.18, for any T > 0, there is an event Ω′ of full probability such that the stochastic

convolution Ψ has finite Xs,b([0, T ])-norm on Ω′.

Now fix ω ∈ Ω′ and u0 ∈ Hs(Td). Consider the ball

BR :=
{
u ∈ Xs,b([0, T ]) : ‖u‖Xs,b([0,T ]) ≤ R

}
where 0 < T < 1 and R > 0 are to be determined later. We aim to show that the

operator Λ given by

Λu(t) = S(t)u0 ± i
∫ t

0

S(t− t′)
(
|u|2ku

)
(t′)dt′ − iΨ(t) , t ≥ 0,

where Ψ is the additive stochastic convolution given by (2.50), is a contraction on

BR. To this end, it remains to estimate the Xs,b([0, T ])-norm of

D(u) :=

∫ t

0

S(t− t′)
(
|u|2ku

)
(t′) dt′ .

For any δ > 0 sufficiently small (such that b+ δ < 1
2
), by Lemma 2.13 and (2.21):

‖D(u)‖Xs,b([0,T ]) . T δ ‖D(u)‖Xs,b+δ([0,T ]) . T δ
∥∥1[0,T ](t)D(u)(t)

∥∥
Xs, 12 +δ .

Let η be a smooth cut-off function, supported on [−1, T + 1], with η(t) = 1 for all

t ∈ [0, T ]. For any w ∈ Xs,− 1
2

+δ that agrees with |u|2ku on [0, T ], by Lemma 2.12,

we obtain

∥∥1[0,T ](t)D(u)(t)
∥∥
Xs, 12 +δ .

∥∥∥∥η(t)

∫ t

0

S(t− t′)w(t′)dt′
∥∥∥∥
Xs, 12 +δ

. ‖w‖
Xs,− 1

2 +δ (2.67)

Then after taking the infimum over all such w, we use Lemma 2.14 or 2.15 and we
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get

‖D(u)‖Xs,b([0,T ]) . T δ‖(uu)ku‖
Xs,− 1

2 +δ([0,T ])
. T δ ‖u‖2k+1

Xs,b([0,T ]) . (2.68)

It follows that

‖Λu‖Xs,b([0,T ]) ≤ c ‖u0‖Hs
x

+ cT δ ‖u‖2k+1
Xs,b([0,T ]) + ‖Ψ(t)‖Xs,b([0,T ]) , (2.69)

for some c > 0. Similarly, we obtain

‖Λu− Λv‖Xs,b([0,T ]) ≤ cT δ
(
‖u‖2k

Xs,b([0,T ]) + ‖v‖2k
Xs,b([0,T ])

)
‖u− v‖Xs,b([0,T ]) . (2.70)

Let R := 2c ‖u0‖Hs
x

+ 2 ‖Ψ(t)‖Xs,b([0,T ]). From (2.69) and (2.70), we see that Λ is a

contraction from BR to BR provided

cT δR2k+1 ≤ 1

2
R and cT δ

(
2R2k

)
≤ 1

2
. (2.71)

This is always possible if we choose T � 1 sufficiently small. This shows the

existence of a unique solution u ∈ Xs,b([0, T ]) to (2.6) on Ω′.

Finally, we check that u ∈ C([0, T ];Hs) on the set of full probability Ω′′ ∩ Ω′,

where Ω′′ is given by Lemma 2.19, that is Ψ ∈ C([0, T ];Hs) on Ω′′. By (2.21), (2.67)

and Lemma 2.14 or 2.15, we also get

‖D(u)‖
Xs, 12 +δ([0,T ])

.
∥∥1[0,T ](t)D(u)(t)

∥∥
Xs, 12 +δ . ‖u‖2k+1

Xs,b([0,T ]) . (2.72)

By the embeddingXs, 1
2

+δ([0, T ]) ↪→ C([0, T ];Hs(Td)), we haveD(u) ∈ C([0, T ];Hs(Td)).

Since the linear term S(t)u0 also belongs to C([0, T ];Hs(Td)), we conclude that

u = Λu ∈ C
(
[0, T ];Hs(Td)

)
on Ω′′ ∩ Ω′.

Remark 2.23. From (2.71), we obtain the time of existence

Tmax := max

{
T̃ > 0 : T̃ ≤ c

(
‖u0‖Hs + ‖Ψ‖Xs,b([0,T̃ ])

)−θ}
, (2.73)

where θ = 2k
δ

. Note that (2.73) will be useful in our global argument.
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2.3.2 SNLS with multiplicative noise

In this subsection, we prove Theorem 2.5. Following [34], we use a truncated version

of (2.6). The main idea is to apply an appropriate cut-off function on the nonlinearity

to obtain a family of truncated SNLS, and then prove global well-posedness of these

truncated equations. Since solutions started with the same initial data coincide up

to suitable stopping times, we obtain a solution to the original SNLS in the limit.

Let η : R → [0, 1] be a smooth cut-off function such that η ≡ 1 on [0, 1] and

η ≡ 0 outside [−1, 2]. Set ηR := η
( ·
R

)
and consider the equation

i∂tuR −∆uR ± ηR
(
‖uR‖Xs,b([0,t])

)2k+1|uR|2kuR = uR · φξ , (2.74)

with initial data uR|t=0 = u0.

Remark 2.24. As in the case for the original multiplicative SNLS, we say that uR

is a solution to (2.74) if it is an adapted process in Hs(Td) that is continuous in

time, such that uR = ΛRuR almost surely, where ΛR is given by

ΛRuR := S(t)u0 ± i
∫ t

0

S(t− t′)ηR
(
‖uR‖Xs,b([0,t′])

)2k+1

|uR|2kuR(t′) dt′ − iΨ[uR](t) .

(2.75)

The key ingredient for Theorem 2.5 is the following proposition.

Proposition 2.25 (Global well-posedness for (2.74)). Let s > scrit, s ≥ 0, and

T,R > 0. Suppose that φ is as in Theorem 2.5. Given u0 ∈ Hs(Td), there exists

b ∈ [0, 1
2
) and a unique process

uR ∈ L2
(

Ω;C
(
[0, T ];Hs(Td)

)
∩Xs,b([0, T ])

)
solving (2.74) on [0, T ].

Before proving this result, we state and prove the following lemma.

Lemma 2.26 (Boundedness of cut-off). Let s ≥ 0, b ∈ [0, 1
2
), R > 0 and T > 0.

There exist constants C1, C2(R) > 0 such that

∥∥∥ηR (‖u‖Xs,b([0,t])

)
u(t)

∥∥∥
Xs,b([0,T ])

≤ min
{
C1 ‖u‖Xs,b([0,T ]) , C2(R)

}
; (2.76)
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∥∥∥ηR (‖u‖Xs,b([0,t])

)
u(t)− ηR

(
‖v‖Xs,b([0,t])

)
v(t)

∥∥∥
Xs,b([0,T ])

≤ C2(R) ‖u− v‖Xs,b([0,T ]) .

(2.77)

Proof. We first prove (2.76). Let w(t, n) = Fx[S(−t)u(t)](n), κR(t) = ηR

(
‖u‖Xs,b([0,t])

)
and

τR := inf
{
t ≥ 0 : ‖u‖Xs,b([0,t]) ≥ 2R

}
. (2.78)

Then κR(t) = 0 when t > τR. By (2.21) and (2.16),

‖κR(t)u(t)‖2
Xs,b([0,T ]) ∼

∥∥1[0,T∧τR]κR(t)u(t)
∥∥2

Xs,b ∼ ‖κR(t)u(t)‖2
Xs,b([0,T∧τR])

∼
∑
n∈Zd
〈n〉2s ‖κR(t)w(t, n)‖2

Hb(0,T∧τR) . (2.79)

We now estimate the Hb(0, T ∧ τR)-norm, for which we use the following character-

ization (see for example [81]):

‖f‖2
Hb(a1,a2) ∼ ‖f‖

2
L2(a1,a2) +

∫ a2

a1

∫ a2

a1

|f(x)− f(y)|2

|x− y|1+2b
dx dy , 0 < b < 1. (2.80)

For the inhomogeneous contribution (i.e. coming from the L2-norm above), we have

∑
n∈Zd
〈n〉2s ‖κR(t)w(t, n)‖2

L2
t (0,T∧τR) ≤ min

{
‖u‖2

Xs,b([0,τR]) , ‖u‖
2
Xs,b([0,T ])

}

≤ min
{

(2R)2 , ‖u‖2
Xs,b([0,T ])

}
.

The remaining part of (2.79) needs a bit more work. Fix n ∈ Zd, then

∫ T∧τR

0

∫ T∧τR

0

|κR(t)w(t, n)− κR(t′)w(t′, n)|2

|t− t′|1+2b
dt′ dt

.
∫ T∧τR

0

∫ t

0

|κR(t)(w(t, n)− w(t′, n))|2

|t− t′|1+2b
dt′ dt

+

∫ T∧τR

0

∫ t

0

|(κR(t)− κR(t′))w(t′, n)|2

|t− t′|1+2b
dt′ dt

=: I(n) + II(n) .
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It is clear that

I(n) . min
{
‖w(n)‖2

Hb((0,τR)) , ‖w(n)‖2
Hb((0,T ))

}
,

and hence ∑
n∈Zd

I(n) . min
{

(2R)2 , ‖u‖2
Xs,b([0,T ])

}
.

For II(n), the mean value theorem infers that

|κR(t)− κR(t′)|2 .

(
‖u‖Xs,b([0,t]) − ‖u‖Xs,b([0,t′])

)2

R2

(
sup
r∈R

η′(r)

)2

.

∥∥1[t′,t]u
∥∥2

Xs,b

R2

.
1

R2

∑
n′∈Zd
〈n′〉2s‖w(·, n′)‖2

Hb(t′,t).

Again, we split ‖w(·, n′)‖2
Hb(t′,t) using (2.80) into the inhomogeneous contribution

(the L2-norm squared part) and the homogeneous contribution (the second term

of (2.80)). We control here only the homogeneous contributions for II(n) as the

inhomogeneous contributions are easier. The homogeneous part of II(n) is controlled

by

1

R2

∑
n′∈Zd
〈n′〉2s

∫ T∧τR

0

∫ t

0

∫ t

t′

∫ λ

t′

|w(t′, n)|2

|t− t′|1+2b
· |w(λ, n′)− w(λ′, n′)|2

|λ− λ′|1+2b
dλ′ dλ dt′ dt

(2.81)

=
1

R2

∑
n′∈Zd
〈n′〉2s

∫ T∧τR

0

∫ λ

0

∫ λ′

0

(∫ T∧τR

λ

1

|t− t′|1+2b
dt

)
|w(t′, n)|2

× |w(λ, n′)− w(λ′, n′)|2

|λ− λ′|1+2b
dt′ dλ′ dλ , (2.82)

where we used 0 ≤ t′ ≤ λ′ ≤ λ ≤ t ≤ T ∧ τR to switch the integrals. Now, the

integral with respect to t is equal to |T ∧ τR − t′|−2b − |λ− t′|−2b, which is bounded

by

|T ∧ τR − t′|−2b ≤ |λ′ − t′|−2b .
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Thus (2.82) is controlled by

1

R2

∑
n′∈Zd
〈n′〉2s

∫ T∧τR

0

∫ λ

0

(∫ λ′

0

|λ′ − t′|−2b|w(t′, n)|2 dt′
)

× |w(λ, n′)− w(λ′, n′)|2

|λ− λ′|1+2b
dλ′ dλ . (2.83)

Since b ∈
[
0, 1

2

)
, by Hardy’s inequality (see for example [82, Lemma A.2]) the t′-

integral is . ‖w(·, n)‖2
Hb(0,λ′) ≤ ‖w(·, n)‖2

Hb(0,T∧τR). After multiplying by 〈n〉2s and

summing over n ∈ Zd, we see that (2.83) is controlled by

1

R2

∑
n,n′∈Zd

〈n〉2s〈n′〉2s ‖w(·, n)‖2
Hb(0,T∧τR) ‖w(·, n)‖2

Hb
λ(0,T∧τR)

.
1

R2
‖u‖2

Xs,b([0,T∧τR]) ‖u‖
2
Xs,b([0,T∧τR])

≤ min
{

4 ‖u‖2
Xs,b([0,T ]) , 16R2

}
.

We now prove (2.77). Let τuR and τ vR be defined as in (2.78). Assume without

loss of generality that τuR ≤ τ vR. We decompose

LHS of (2.77) .
∥∥∥(ηR (‖u‖Xs,b([0,t])

)
− ηR

(
‖v‖Xs,b([0,t])

))
v(t)

∥∥∥
Xs,b([0,T ])

+
∥∥∥ηR (‖u‖Xs,b([0,t])

)
(u(t)− v(t))

∥∥∥
Xs,b([0,T ])

=: A+B .

By the mean value theorem,

A =
∥∥∥(ηR (‖u‖Xs,b([0,t])

)
− ηR

(
‖v‖Xs,b([0,t])

))
v(t)

∥∥∥
Xs,b([0,T∧τvR])

.
1

R
‖v‖Xs,b([0,T∧τvR]) ‖u− v‖Xs,b([0,T ])

. ‖u− v‖Xs,b([0,T ]) .

For B, one runs through the same argument as for (2.76) but with w(t, n) replaced
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by Fx
[
S(−t)

(
u(t)− v(t)

)]
(n), which yields

B . C(R) ‖u− v‖Xs,b([0,T ]) .

We now conclude the proof of Proposition 2.25.

Proof of Proposition 2.25. Let T,R > 0. In view of the mild formulation (2.75), we

consider the following Picard iteration: for t ∈ [0, T ], define

u1(t) := S(t)u0;

un(t) := ΛRun−1(t) ∀n ≥ 2.

To see that {un}n∈N is well-defined, we note that the stochastic convolution Ψ[u] is

defined provided u is an adapted process in Hs(Td). Clearly, u1(t) is adapted, and

hence all terms of u2(t) is also adapted. By induction, we see that each un(t) is also

adapted and hence un+1 is well-defined. To see that un converges to a fixed point

of ΛR, it suffices to prove that ΛR is a contraction in some complete metric space

containing {un}n∈N. To this end, we let ET := L2
(
Ω;Xs,b([0, T ])

)
. Arguing as in

the additive case, and using Lemmata 2.26 and 2.21, we have for any u ∈ ET that

is an adapted process in Hs(Td), we have

‖ΛRu‖ET ≤ C1 ‖u0‖Hs + C2(R)T δ + C3T
b ‖u‖ET ; (2.84)

‖ΛRu− ΛRv‖ET ≤ C4(R)T δ ‖u− v‖ET + C5T
b ‖u− v‖ET . (2.85)

The estimate (2.84) above shows that ΛR maps ET to ET . Moreover, since u1 ∈ ET
(by Lemma 2.12), (2.84) also infers (iteratively) that un ∈ ET for each n. By (2.85),

ΛR is a contraction from ET to ET provided we choose T = T (R) sufficiently small.

Thus {un}n∈N is Cauchy in ET and so it admits a limit uR ∈ ET that is a fixed point

of ΛR. Note that T does not depend on ‖u0‖Hs , hence we may iterate this argument

to extend uR(t) to all t ∈ [0,∞).

Finally, to see that uR ∈ FT := L2
(
Ω;C([0, T ];Hs(Td))

)
, we first note that since
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uR ∈ ET , Lemma 2.22 infers that Ψ[uR] ∈ FT . Then, by similar argument as in the

end of Subsection 2.3.1, we have that D(uR) ∈ L2(Ω;Xs,b
(
[0, T ]

)
), where

D(uR)(t) :=

∫ t

0

S(t− t′)
(
|uR|2kuR

)
dt′ .

Since L2
(
Ω;Xs,b̃([0, T ])

)
↪→ FT for any b̃ > 1

2
, we have D(uR) ∈ FT . Also, it is clear

that S(t)u0 ∈ FT . Hence uR ∈ FT .

Proof of Theorem 2.5. Let

τR := inf
{
t > 0 : ‖uR‖Xs,b([0,t]) ≥ R

}
. (2.86)

Then, ηR(‖uR‖Xs,b([0,t])) = 1 if and only if t ≤ τR. Hence uR is a solution of (2.6) on

[0, τR]. For any δ > 0, we have uR(t) = uR+δ(t) whenever t ∈ [0, τR]. Consequently,

τR is increasing in R. Indeed, if τR > τR+δ for some R > 0 and some δ > 0, then

for t ∈ [τR+δ, τR], we have ηR+δ

(
‖uR+δ‖Xs,b([0,t])

)
< 1 which implies that uR(t) 6=

uR+δ(t), a contradiction. Therefore,

τ ∗ := lim
R→∞

τR (2.87)

is a well-defined stopping time that is either positive or infinite almost surely. By

defining u(t) := uR(t) for each t ∈ [0, τR], we see that u is a solution of (2.6) on

[0, τ ∗) almost surely.

2.4 Global well-posedness

In this section, we prove Theorems 2.4 and 2.7. Recall that the mass and energy of

a solution u(t) of the defocusing (2.1) are given respectively by

M(u(t)) =

∫
Td

1

2
|u(t, x)|2 dx, (2.88)

E(u(t)) =

∫
Td

1

2
|∇u(t, x)|2 +

1

2(k + 1)
|u(t, x)|2(k+1)dx. (2.89)
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It is well-known that these are conserved quantities for (smooth enough) solutions

of the deterministic NLS equation.

For SNLS, we prove probabilistic a priori control as per Propositions 2.27 and

2.29 below. To this purpose, the idea is to compute the stochastic differentials of

(2.88) and (2.89) and use the stochastic equation for u. We shall work with the

following frequency truncated version of (2.1):

i∂tu
N −∆uN ± P≤N |uN |2kuN = F (uN , φNdWN),

uN |t=0 = P≤Nu0 =: uN0

(2.90)

where P≤N is the projection onto the frequency set {n ∈ Zd : |n| ≤ N}, that is,

P̂≤Nf(n) =
∑
|n|≤N

f̂(n),

and that

φN := P≤N ◦ φ and WN(t) :=
∑
|n|≤N

βn(t)en.

By repeating the arguments in Section 2.3, one obtains local well-posedness for

(2.90) with initial data P≤Nu0 at least with the same time of existence as for the

untruncated SNLS.

2.4.1 SNLS with additive noise

We treat the additive SNLS in this subsection. We first prove probabilistic a priori

bounds on (2.88) and (2.89) of a solution uN of the truncated equation.

Proposition 2.27. Let s ≥ 0. Let m ∈ N, T0 > 0, u0 ∈ Hs(Td) and φ ∈

HS(L2(Td);Hs(Td)), and F (u, φξ) = φξ. Suppose that uN(t) is a solution to (2.90)

for t ∈ [0, T ], for some stopping time T ∈ [0, T0]. Then there exists a constant

C1 = C1(m,M(u0), T0, ‖φ‖HS(L2;L2)) > 0 such that

E
[

sup
0≤t≤T

M(uN(t))m
]
≤ C1 . (2.91)

Furthermore, if s ≥ 1 and (2.90) is defocusing, there exists a constant C2 =
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C2(m,E(u0), T0, ‖φ‖HS(L2;H1)) > 0 such that

E
[

sup
0≤t≤T

E(uN(t))m
]
≤ C2 . (2.92)

The constants C1 and C2 are independent of N .

Proof. We first claim that

M(uN(t))m = M(uN0 )m

+m Im

∑
|j|≤N

∫ t

0

M(uN(t′))m−1

∫
Td
uN(t′)φNej dx dβj(t

′)

 (2.93)

+m(m− 1)
∑
|j|≤N

∫ t

0

M(uN(t′))m−2

∣∣∣∣∫
Td
uN(t′)φNej dx

∣∣∣∣2 dt′ (2.94)

+m
∥∥φN∥∥2

HS(L2;L2)

∫ t

0

M(uN(t′))m−1 dt′. (2.95)

To see this, let aNn := Re
(
ûN(n)

)
and bNn := Im

(
ûN(n)

)
. In view of (2.90), we have

daNn = −
(
|n|2bNn ± Im

{
Fx
(
|uN |2kuN

)
(n)
})

dt+
∑
|j|≤N

Im φ̂ej(n) dβ
(i)
j ,

dbNn =

(
|n|2aNn ± Re

{
Fx
(
|uN |2kuN

)
(n)
})

dt−
∑
|j|≤N

Re φ̂ej(n) dβ
(r)
j ,

where β
(r)
j = Re βj and β

(i)
j = Im βj. By applying Itô’s Lemma to the above expres-

sions to obtain (aNn )2 and (bNn )2, and then summing them, we obtain

|û(n, t)|2 = 2 Im
∑
|j|≤N

∫ t

0

û(n, t′)φ̂ej(n) dβj(t
′) + 2t

∑
|j|≤N

|φ̂ej(n)|2.

We sum over |n| ≤ N and then apply Plancherel and Parseval theorems to yield

(2.93)–(2.95) for m = 1. A further application of Itô’s Lemma yields (2.93)–(2.95)

for general m.

We now control (2.93). By Burkholder-Davis-Gundy inequality (Lemma 2.16),
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Hölder and Young inequalities, we get

E

[
sup
t∈[0,T ]

(2.93)

]
.m E


∑
|j|≤N

∫ T

0

M(uN(t′))2(m−1)‖uN(t′)‖2
L2‖φNej‖2

L2dt′


1
2



. ‖φN‖HS(L2;L2) E

[{∫ T

0

M(uN(t))2m−1dt

} 1
2

]

. ‖φ‖HS(L2;L2)T
1
2 E

{ sup
t∈[0,T ]

M(uN(t))m−1

} 1
2
{

sup
t∈[0,T ]

M(uN(t))m

} 1
2



. ‖φ‖HS(L2;L2)T
1
2

0

{
E

[
sup
t∈[0,T ]

M(uN(t))m−1

]} 1
2
{
E

[
sup
t∈[0,T ]

M(uN(t))m

]} 1
2

Hence by Young’s inequality, we infer that

E

[
sup
t∈[0,T ]

(2.93)

]
≤ Cm‖φ‖2

HS(L2;L2)T0 E

[
sup
t∈[0,T ]

M(uN(t))m−1

]
+

1

2
E

[
sup
t∈[0,T ]

M(uN(t))m

]
.

In a straightforward way, we also have

E

[
sup
t∈[0,T ]

(2.94)

]
≤ m(m− 1)‖φ‖2

HS(L2;L2)T0 E

[
sup
t∈[0,T ]

M(uN(t))m−1

]
,

E

[
sup
t∈[0,T ]

(2.95)

]
≤ 2m‖φ‖2

HS(L2;L2)T0 E

[
sup
t∈[0,T ]

M(uN(t))m−1

]
.

Therefore, there is some Cm > 0 such that

E

[
sup
t∈[0,T ]

M(uN(t))m

]
≤M(u0)m + CmT0 E

[
sup
t∈[0,T ]

M(uN(t))m−1

]

+
1

2
E

[
sup
t∈[0,T ]

M(uN(t))m

]
.

(2.96)

We now wish to move the last term of (2.96) to the left-hand side. However, we do

not know a priori that the moments of supt∈[0,T ] M(uN(t)) are finite. To justify this,
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we note that (2.96) holds with T replaced by TR, where

TR := sup
{
t ∈ [0, T ] : M(uN(t)) ≤ R

}
, R > 0.

Now the terms that would be appearing in (2.96) are finite and hence the formal

manipulation is justified. Note that TR → T almost surely as R → ∞ because u

(and hence uN) belongs in C([0, T ];Hs(Td)) almost surely. Hence by letting R→∞

and invoking the monotone convergence theorem, one finds

E

[
sup
t∈[0,T ]

M(uN(t))m

]
≤ 2M(u0)m + 2CmT0 E

[
sup
t∈[0,T ]

M(uN(t))m−1

]
. (2.97)

Hence, by induction on m, we obtain

E

[
sup
t∈[0,T ]

M(uN(t))m

]
. 1 , (2.98)

where we note that the implicit constant is independent of N .

We now turn to estimating the energy. Applying Itô’s Lemma again, we find

that E(uN(t))m equals

E(uN0 )m (2.99)

+m Im

∑
|j|≤N

∫ t

0

E(uN(t′))m−1

∫
Td
|uN |2kuNφNej dx dβj(t′)

 (2.100)

−m Im

∑
|j|≤N

∫ t

0

E(uN(t′))m−1

∫
Td

∆uNφNej dx dβj(t
′)

 (2.101)

+ (k + 1)m
∑
|j|≤N

∫ t

0

E(uN(t′))m−1

∫
Td
|uN |2k|φNej|2 dx dt′ (2.102)

+m
∥∥∇φN∥∥2

HS(L2;L2)

∫ t

0

E(uN(t′))m−1 dt′ (2.103)

+
m(m− 1)

2

∑
|j|≤N

∫ t

0

E(uN(t′))m−2

∣∣∣∣∫
Td

(−∆uN + |uN |2kuN)φejdx

∣∣∣∣2dt′. (2.104)
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We shall control here only the difficult term (2.100) as the other terms are bounded

by similar lines of argument. Firstly, by Burkholder-Davis-Gundy inequality (Lemma 2.16),

we deduce

E

[
sup
t∈[0,T ]

(2.100)

]
≤ CmE


∑
|j|≤N

∫ T

0

E(uN(t′))2(m−1)

∣∣∣∣∫
Td
|uN |2kuNφNej dx

∣∣∣∣2 dt′


1
2

 .
Then, by duality and the (dual of the) Sobolev embedding H1(Td) ↪→ L2k+2(Td),

we have ∣∣∣∣∫
Td
|uN |2kuNφNej dx

∣∣∣∣ ≤ ∥∥|uN |2kuN∥∥H−1(Td)
‖φNej‖H1(Td)

.
∥∥|uN |2kuN∥∥

L
2k+2
2k+1 (Td)

‖φej‖H1(Td)

. E(uN)
2k+1
2k+2‖φej‖H1(Td),

provided that 1+ 1
k
≥ d

2
. Therefore, by Hölder and Young inequalities, and similarly

to the control of (2.93), we have

E

[
sup
t∈[0,T ]

(2.100)

]
≤ Cm‖φ‖2

HS(L2;H1)T0E

[
sup
t∈[0,T ]

E(uN(t))m−1

]
+

1

8
E

[
sup
t∈[0,T ]

E(uN(t))m−
1

2k+2

]

≤ C̃m‖φ‖2
HS(L2;H1)T0E

[
sup
t∈[0,T ]

E(uN(t))m−1

]
+

1

8
E

[
sup
t∈[0,T ]

E(uN(t))m

]
,

where in the last step we used interpolation.

We also have

E

[
sup
t∈[0,T ]

(2.101)

]
≤ Cm ‖φ‖HS(L2;H1) E

[
sup
t∈[0,T ]

E(uN(t))m−1

]
+

1

8
E

[
sup
t∈[0,T ]

E(uN(t))m

]

E

[
sup
t∈[0,T ]

(2.102)

]
≤ Cm ‖φ‖2

HS(L2;H1) +
1

8
E

[
sup
t∈[0,T ]

E(uN)m

]

E

[
sup
t∈[0,T ]

(2.103)

]
≤ Cm‖φ‖2

HS(L2;H1)E

[
sup
t∈[0,T ]

E(uN(t))m−1

]
,
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E

[
sup
t∈[0,T ]

(2.104)

]
≤ C ‖φ‖2

HS(L2;H1) + E

[
sup
t∈[0,T ]

H(uN(t))m−1

]
+

1

8
E

[
sup
t∈[0,T ]

H(uN(t))m

]
.

Gathering all the estimates, there exists Cm > 0 such that

E

[
sup
t∈[0,T ]

E(uN(t))

]
≤ E(u0)m + CmT0 E

[
sup
t∈[0,T ]

E(uN(t))m−1

]
+

1

2
E

[
sup
t∈[0,T ]

E(uN(t))m

]
.

Similarly to passing from (2.96) to (2.97) and by induction on m, we deduce that

E

[
sup
t∈[0,T ]

E(uN(t))m

]
. 1, (2.105)

with constant independent of N .

We now argue that the probabilistic a priori bounds in fact hold for solutions of

the original SNLS.

Corollary 2.28. Let s,m, T, T0, φ be as in Proposition 2.27. Suppose that u ∈

L2(Ω;C([0, T ];Hs
x)) is a solution to (2.1) with (2.2), then the estimates (2.91) and

(2.92) hold with u in place of uN under the same assumptions as Proposition 2.27.

Proof. We assume for simplicity that s = 1. Let ΛN be the mild formulation of

(2.90), more precisely,

ΛN(v) := S(t)uN0 ± i
∫ t

0

S(t− t′)P≤N
(
|v|2kv

)
(t′) dt′ − i

∫ t

0

S(t− t′)φN dWN(t′) .

(2.106)

Let

K(ω) := sup
t∈[0,T ]

‖u(t)‖H1(Td).

Let Tω > 0 be a stopping time satisfying

Tω ≤ c
(

2K(ω) + ‖Ψ‖
X1, 12−([0,Tω ])

)−θ
. (2.107)

Then (as seen in (2.73)), ΛN is a contraction on a ball in X1, 1
2
−([0, Tω]) and has a

unique fixed point uN that satisfies the bounds in Proposition 2.27. We shall show
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that uN converges to u in FTω := L2(Ω;C([0, Tω];H1
x)). To this end, we consider

the mild formulations of uN and u and show that each piece of uN converges to the

corresponding piece in u. Clearly, S(t)uN0 → S(t)u0 in FTω . For the noise, let ΨN(t)

denote the stochastic convolution in (2.106). Then

Ψ(t)−ΨN(t) =

∑
|n|>N

∑
j∈Zd

+
∑
|n|≤N

∑
|j|>N

 en

∫ t

0

ei(t−t
′)|n|2φ̂ej(n)dβj(t

′)

=

∫ t

0

S(t− t′)P>Nφ dW (t′) +

∫ t

0

S(t− t′)πNP≤Nφ dW (t′) ,

where πN denotes the projection onto the linear span of the orthonormal vectors

{ej : |j| > N}. By Lemma 2.19, the above is controlled by

‖P>N ◦ φ‖2
HS(L2;H1) + ‖πNP≤Nφ‖2

HS(L2;H1) ,

which tends to 0 as N →∞ because both norms are tails of convergent series.

Finally we treat the nonlinear terms

Du(t) :=

∫ t

0

S(t− t′)|u|2ku(t′) dt′ ,

D≤Nu(t) :=

∫ t

0

S(t− t′)P≤N
(
|uN |2kuN

)
(t′) dt′ .

We first fix a path for which local well-posedness holds, and prove thatDu−D≤Nu→

0 in X1, 1
2

+. Firstly, by Lemmata 2.12, 2.14 and 2.15, we have

‖Du‖
X1, 12 +([0,Tω ])

. ‖u‖2k+1

X1, 12−([0,Tω ])

and hence Du ∈ X1, 1
2

+([0, Tω]). Now,

∥∥Du−D≤Nu∥∥
X1, 12 +([0,Tω ])

≤
∥∥∥∥∫ t

0

S(t− t′)P≤N(|u|2ku− |uN |2kuN)(t′) dt′
∥∥∥∥
X1, 12 +([0,Tω ])

+ ‖P>NDu‖X1, 12 +([0,Tω ])

=: I + II .
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By the definition of P>N , we have II→ 0 in X1, 1
2

+([0, T ]) as N →∞. By Lemmata

2.12, 2.14 and 2.15 again, we have

I .
(
‖u‖2k

X1, 12−([0,Tω ])
+
∥∥uN∥∥2k

X1, 12−([0,Tω ])

)∥∥u− uN∥∥
X1, 12−([0,Tω ])

(2.108)

We claim that I→ 0 as N →∞ as well. Indeed, ΛN and Λ are 1
2
-contractions with

fixed points uN and u respectively, hence

∥∥u− uN∥∥
X1, 12−([0,Tω ])

≤
∥∥Λ(u)− ΛN(u)

∥∥
X1, 12−([0,Tω ])

+
∥∥ΛN(u)− ΛN(uN)

∥∥
X1, 12−([0,Tω ])

≤
∥∥Λ(u)− ΛN(u)

∥∥
X1, 12−([0,Tω ])

+
1

2

∥∥u− uN∥∥
X1, 12−([0,T ])

.

By rearranging, it suffices to show that the first term on the right-hand side above

tends to 0 as N →∞. Now

∥∥Λ(u)− ΛN(u)
∥∥
X1, 12−([0,Tω ])

≤ ‖P>NS(t)u0‖X1, 12−([0,Tω ])

+

∥∥∥∥P>N ∫ t

0

S(t− t′)|u|2ku(t′) dt′
∥∥∥∥
X1, 12−([0,Tω ])

+
∥∥Ψ>N

∥∥
X1, 12−([0,Tω ])

.

By similar arguments as above, all the terms on the right go to 0 as N →∞. This

proves our claim. By the embedding X1, 1
2

+([0, Tω]) ⊂ C([0, T ];H1(Td)), we have

that ∥∥Du−D≤Nu∥∥
C([0,Tω ];H1)

→ 0 (2.109)

almost surely as N → ∞. By the dominated convergence theorem5, we have

D≤Nu → Du in FTω . This concludes our argument that uN → u in FTω . By

(2.107), we can iterate this argument on [jTω, (j+ 1)Tω] for j ≥ 1 until we cover the

entire interval [0, T ], it follows that uN → u on the whole FT . Hence it follows that

the estimates from Proposition 2.27 also hold for u.

5We recall that in the local theory, uN is obtained as a fixed point from a ball BR := {v ∈
Xs, 12−([0, Tω]) : ‖v‖

Xs, 1
2
−([0,Tω])

≤ Rω} where Rω = 2c‖uN0 ‖Hs
x

+2‖ΨN‖
Xs, 1

2
−[0,Tω]

. Hence one can

take the dominating function to be (for example) 2c‖u0‖Hs
x

+ 2‖Ψ‖
Xs, 1

2
−[0,Tω]

+ ‖Du‖
X

s, 1
2
−

[0,Tω ]

.
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Finally, we conclude the proof of global well-posedness for the additive case.

Proof of Theorem 2.4. Let s ∈ {0, 1} be the regularity of u0 from Theorem 2.4. Let

ε > 0 and T > 0 be given. We claim that there exists an event Ωε such that a

solution u ∈ Xs,b([0, T ])∩C([0, T ];Hs(Td)) exists on [0, T ] in Ωε and P(Ω \Ωε) < ε.

If this claim holds, then by setting

Ω∗ =
∞⋃
n=1

Ω 1
n
,

we have that P(Ω∗) = 1 and u exists on [0, T ], proving the theorem. Let δ ∈ (0, 1)

be a small quantity chosen later. We subdivide [0, T ] into M =
⌈
T
δ

⌉
subintervals

Ik = [(k − 1)δ, kδ]. Let

Ω0 =
M⋂
k=1

{
ω ∈ Ω :

∥∥∥∥∫ t

(k−1)δ

S(t− t′)φ dW (t′)

∥∥∥∥
Xs,b(Ik)

≤ L

}
,

where L > 0 is some large quantity determined later. Now by Chebyshev’s inequality

and Lemma 2.18,

P(Ω \ Ω0) =
M∑
k=1

P

(∥∥∥∥∫ t

(k−1)δ

S(t− t′)φ dW (t′)

∥∥∥∥
Xs,b(Ik)

> L

)

≤
M∑
k=1

1

L2
E

[∥∥∥∥∫ t

(k−1)δ

S(t− t′)φ dW (t′)

∥∥∥∥2

Xs,b(Ik)

]

.
M∑
k=1

δ(δ2 + 1)

L2
‖φ‖2

HS(L2;L2)

≤ 2Mδ

L2
‖φ‖2

HS(L2;L2)

.
T

L2
‖φ‖2

HS(L2;L2) .

By choosing L = L(ε, T, φ) sufficiently large, we may therefore bound P(Ωc
0) above

by ε
2
. Now let

R = max {‖u0‖Hs , L} .

By local theory, there exists a unique solution u(t) to (2.1) with time of existence
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Tmax given in (2.73). In particular, we note that for ω ∈ Ω0,

c
(
‖u0‖Hs + ‖Ψ‖Xs,b

[0,δ]

)−θ
≥ c
(
R + L

)−θ ≥ c
(
2R
)−θ

, (2.110)

where c is as in (2.73). By choosing δ = δ(R) := c(2R)−θ, we see that u(t) exists for

t ∈ [0, δ] for all ω ∈ Ω0. Now define

Ω1 = {ω ∈ Ω0 : ‖u(δ)‖Hs ≤ R} .

By the same argument, u(t) exists for t ∈ (δ, 2δ) for all ω ∈ Ω1. Iterating this

argument, we have a chain of events Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩM−1 where

Ωk = {ω ∈ Ωk−1 : ‖u(kδ)‖Hs ≤ R}

and u(t) exists for all t ∈ [0, (k + 1)δ] on Ωk. Setting Ωε := ΩM−1, u(t) exists on

the full interval [0, T ] on Ωε. It remains to check that Ω \ Ωε remains small. By

Corollary 2.28, we have

P(Ωε) ≤ P(Ω \ Ω0) +
M−1∑
k=0

P(Ωc
k+1 ∩ Ωk)

≤ ε

2
+

M−1∑
k=0

P ({‖u((k + 1)δ)‖Hs > R} ∩ Ωk)

≤ ε

2
+

M−1∑
k=0

1

Rp
E [1Ωk ‖u((k + 1)δ)‖pHs ]

≤ ε

2
+
MC1

Rp

≤ ε

2
+

2TC1(2R)θ

cRp
,

for any p ∈ N. We further enlarge R if necessary by setting

R = max

{
2TC1

c
+ 1, L, ‖u0‖Hs

}
,
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and so we have that

P(Ωε) ≤
ε

2
+ 2θRθ−p+1 .

This is smaller than ε provided we choose p = p(ε, θ) > 0 sufficiently large. Thus

Ωε satisfies our claim.

2.4.2 SNLS with multiplicative noise

In order to globalize solutions of SNLS, for the multiplicative noise case, we need to

prove probabilistic control of the Xs,b-norm of the solutions of the truncated SNLS

uniformly in the truncation parameter (Lemma 2.30). This requires a priori bounds

on mass and energy of solutions.

From Subsection 2.3.2, we obtained a local solution of the multiplicative (2.1)

with time of existence

τ ∗ = lim
R→∞

τR .

Under the hypotheses of Theorem 2.7, we shall prove global well-posedness by show-

ing that τ ∗ =∞ almost surely.

Proposition 2.29. Let T0 > 0 and φ be as in Theorem 2.7. Suppose that u(t)

is a solution for (2.1) with F (u, φξ) = u · φξ on t ∈ [0, T ] for some stopping time

T ∈ [0, T0 ∧ τ ∗). Let C(φ) be as in (2.62). Then for any m ∈ N, there exists

C1 = C1(m,M(u0), T0, C(φ)) > 0 such that

E
[

sup
0≤t≤T

M(u(t))m
]
≤ C1 . (2.111)

Furthermore, if(2.1) is defocusing, there exists C2 = C2(m,E(u0), T0, C(φ)) > 0

such that

E
[

sup
0≤t≤T

E(u(t))m
]
≤ C2 . (2.112)

Proof. We consider the frequency truncated equation (2.90) and apply Itô’s Lemma

to obtain

M(uN(t))m = M(uN0 )m
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+m Im

∑
|j|≤N

∫ t

0

M(uN(t′))m−1

∫
Td
|uN(t′)|2φNej dx dβj(t′)


(2.113)

+m(m− 1)
∑
|j|≤N

∫ t

0

M(uN(t′))m−2

∣∣∣∣∫
Td
|uN(t′)|2φNej dx

∣∣∣∣2 dt′ (2.114)

+m(m− 1)
∑
|j|≤N

∫ t

0

M(uN(t′))m−1

∫
Td
|u(t′)φej|2 dx dt′ . (2.115)

To bound (2.113), we use Burkholder-Davis-Gundy inequality (Lemma 2.16) and

use a similar argument as in the proof of Lemma 2.21 to get

E

[
sup
t∈[0,T ]

(2.113)

]
. E

∑
|j|≤N

(∫ T

0

M(uN(t′))2(m−1)

∣∣∣∣∫
Td
|uN(t′)φej|2 dx

∣∣∣∣2 dt′
) 1

2



≤ C(φ)2E

[(∫ T

0

M(uN(t′))2m

) 1
2

]

≤ C(φ)2

(
E

[
sup
t∈[0,T ]

M(uN(t))m

]) 1
2 (

E
[∫ T

0

M(uN(t′))m dt′
]) 1

2

Similarly, one obtains

E

[
sup
t∈[0,T ]

{(2.114) + (2.115)}

]
. C(φ)E

[∫ T

0

M(uN(t′))m dt′
]

Hence there is a constant C1 = C1(m,M(u0), T, C(φ)) such that

E

[
sup
t∈[0,T ]

M(uN(t))m

]
≤ C1 + C1 E

[∫ T

0

M(uN(t′))m dt′
]

+ C(φ)2

(
E

[
sup
t∈[0,T ]

M(uN(t))m

]) 1
2 (

E
[∫ T

0

M(uN(t′))m dt′
]) 1

2

The left-hand side is bounded above by 3M, where M is maximum of the three

terms of the right-hand side. In any of the three cases, we may conclude the proof

via simple rearrangement arguments and Gronwall’s inequality.
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Turning to the energy, we use Itô’s Lemma and the defocusing equation to obtain

that E(uN(t))m equals

E(uN0 )m (2.116)

+m Im

∑
|j|≤N

∫ t

0

E(uN(t′))m−1

∫
Td
|uN |2(k+1)φNej dx dβj(t

′)

 (2.117)

−m Im

∑
|j|≤N

∫ t

0

E(uN(t′))m−1

∫
Td

(∆uN)uNφNej dx dβj(t
′)

 (2.118)

+m(k + 1)
∑
|j|≤N

∫ t

0

E(uN(t′))m−1

∫
Td
|uN |2(k+1)|φNej|2 dx dt′ (2.119)

+m
∑
|j|≤N

∫ t

0

E(uN(t′))m−1

∫
Td
|∇(uNφNej)(n)|2 dx dt′ (2.120)

+
m(m− 1)

2

∑
|j|≤N

∫ t

0

E(uN(t′))m−2

∣∣∣∣∫
Td

(
−uN∆uN + |uN |2k+1

)
φNej dx

∣∣∣∣2 dt′


(2.121)

For (2.117), we use Burkholder-Davis-Gundy inequality (Lemma 2.16) to get

E

[
sup
t∈[0,T ]

(2.117)

]
. E


∑
|j|≤N

∫ T

0

E(uN(t′))2(m−1)

∣∣∣∣∫
Td
|uN |2k+2φNej dx

∣∣∣∣2 dt′
 1

2

 .

Now, with r as in Theorem 2.5,∣∣∣∣∫
Td
|uN |2k+2φNej dx

∣∣∣∣2 ≤ ∥∥uN∥∥2(2k+2)

L2k+2
x

∥∥φNej∥∥2

L∞x
≤ E(u)2

∥∥∥φ̂Nej∥∥∥2

`1

. E(u)2‖φNej‖2
FLs,r ,

where the last step follows from Hölder inequality as in the proof of Lemma 2.20.
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Therefore, by Hölder’s inequality and (2.62),

E

[
sup
t∈[0,T ]

(2.117)

]
. C(φ)E

[(∫ T

0

E((uN(t′)))2m dt′
) 1

2

]

≤ C(φ)

(
E

[
sup
t∈[0,T ]

E(uN(t))m

]) 1
2 (

E
[∫ T

0

E(uN(t′))m dt′
]) 1

2

.

Similarly, we bound the other terms as follows:

E

[
sup
t∈[0,T ]

(2.118)

]
. C(φ)

(
E

[
sup
t∈[0,T ]

E(uN(t))m

]) 1
2 (

E
[∫ T

0

E(uN(t′))m dt′
]) 1

2

E

[
sup
t∈[0,T ]

{(2.119) + (2.120) + (2.121)}

]
. C(φ)2E

[∫ T

0

E(uN(t′))m dt′
]

It follows that there is a constant C2 = C2(m,E(u0), T, C(φ)) such that

E

[
sup
t∈[0,T ]

E(uN(t))m

]
≤ C2 + C2 E

[∫ T

0

E(uN(t′))m dt′
]

+ C2

(
E

[
sup
t∈[0,T ]

E(uN(t))m

]) 1
2 (

E
[∫ T

0

E(uN(t′))m dt′
]) 1

2

.

Arguing in the same way as for the mass of uN yields the estimate for the energy of

uN . This proves the proposition for uN in place of u. The proposition then follows

by letting N →∞.

We now prove the following probabilistic a priori bound on the Xs,b-norm of a

solution.

Lemma 2.30. Let T,R > 0. Let uR be the unique solution of (2.74) on [0, T ].

There exists C1 = C1(‖u0‖L2 , T, C(φ)) such that

E
[
‖uR‖X0,b([0,T∧τR])

]
≤ C1 .

Moreover, if (2.74) is defocusing, there also exists C2 = C2(‖u0‖H1 , T, C(φ)) such
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that

E
[
‖uR‖X1,b([0,T∧τR])

]
≤ C2 .

The constants C1 and C2 are independent of R.

Proof. Let τ be a stopping time so that 0 < τ ≤ T ∧ τR. By a similar argument

used in local theory, we have

‖uR‖Xs,b([0,τ ]) ≤ C1 ‖uR(0)‖Hs + C2τ
δ ‖uR‖2k+1

Xs,b([0,τ ]) + ‖Ψ‖Xs,b([0,τ ])

≤ C1 ‖uR‖C([T∧τR];Hs) + C2τ
δ ‖uR‖2k+1

Xs,b([0,τ ]) + ‖Ψ‖Xs,b([0,T∧τR]) .

(2.122)

Let K = C1 ‖uR‖C([T∧τR];Hs) + ‖Ψ(t)‖Xs,b([0,T∧τR]) and assume K > 0 (otherwise we

are done). We claim that there exist constants c, C > 0 such that if τ = cK−
2k
δ

‖uR‖Xs,b([0,τ ]) ≤ CK . (2.123)

To see this, we note that the polynomial

pτ (x) = C2τ
δx2k+1 − x+K (2.124)

has exactly one positive turning point at

x′+ =
(
(2k + 1)C2τ

δ
)− 1

2k .

Now

pτ (x
′
+) = C

− 1
2k

2

[
(2k + 1)−

2k+1
2k − (2k + 1)−

1
2k

]
τ−

δ
2k +K

=: −C3τ
− δ

2k +K.

The right-hand side is negative if we choose τ = ( 2
C3
K)−

2k
δ . Since pτ (0) = K > 0,

we have pτ (x) > 0 for 0 ≤ x < x+ where x+ is the unique positive root below x′+.

Now (2.122) is equivalent to pτ
(
‖uR‖Xs,b([0,τ ])

)
≥ 0. But since g( · ) := ‖uR‖Xs,b([0, · ])
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is continuous and g(0) = 0, we must have

g(τ) < x′+ = ((2k + 1)C2)−
1
2k · 2

C3

K := CK ,

which proves (2.123). Iterating this argument, we find that

‖uR‖Xs,b([(j−1)τ,jτ ]) ≤ C
(
‖uR‖C([0,T∧τR];Hs) + ‖Ψ(t)‖Xs,b([0,T∧τR])

)
(2.125)

for all integer 1 ≤ j ≤ dT∧τR
τ
e =: M . Putting everything together, we have

‖uR‖Xs,b([0,T∧τR]) ≤
M∑
j=1

‖uR‖Xs,b([(j−1)τ,jτ ])

≤ C
T ∧ τR
τ

(
‖uR‖C([0,T∧τR];Hs) + ‖Ψ‖Xs,b([0,T∧τR])

)
≤ CT

(
‖uR‖C([0,T∧τR];Hs) + ‖Ψ‖Xs,b([0,T∧τR])

) 2k
δ

+1

.

By Proposition 2.29 and Lemma 2.21, all moments of the last two terms above are

finite. This proves Lemma 2.30.

We can now conclude the proof of Theorem 2.7.

Proof of Theorem 2.7. Fix T > 0. Since τR is increasing in R,

P(τ ∗ < T ) = lim
R→∞

P(τR < T ) = lim
R→∞

P
(
‖uR‖Xs,b([0,T∧τR]) ≥ R

)
≤ lim

R→∞

1

R
E
[
‖uR‖Xs,b([0,T∧τR])

]
.

But then the right-hand side equals 0 by Lemma 2.30. It follows that τ ∗ =∞ almost

surely.

59



Chapter 3

SNLS on Rd with supercritical

noise

In this chapter, we consider the Cauchy problem for the stochastic cubic nonlinear

Schrödinger equation with additive noise (SNLS) on Rd for d ≥ 3:

i∂tu+ ∆u±N (u) + φ ξ = 0

u|t=0 = u0,

(x, t) ∈ Rd × R, (SNLS)

where u : Rd × R → C, N (u) = |u|2u is the cubic nonlinearity, ξ is a space-time

white noise, and φ is a smoothing operator. As seen in Chapter 1, we can express ξ

as dW
dt

, where W is a cylindrical Wiener process on L2(Rd), given by

W (t) =
∑
n∈N

βn(t)en ,

where {en}n∈N is an orthonormal basis of L2(Rd) and {βn}n∈N is a sequence of

independent complex-valued Brownian motions on a probability space (Ω,F ,P). We

assume that the operator φ belongs to HSs := HS(L2(Rd), Hs(Rd)) for appropriate

values of s ≥ 0, namely, it is a Hilbert-Schmidt operator from L2(Rd) to Hs(Rd).

As before, we consider solutions of (SNLS) in the mild sense, that is, functions

u that satisfy

u(t) = S(t)u0 ∓ i
∫ t

0

S(t− t′)N (u)(t′) dt′ − i
∫ t

0

S(t− t′)φ dWt′ , (3.1)
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and we again use Ψ to denote the stochastic convolution:

Ψ(t) := −i
∫ t

0

S(t− t′)φ dWt′ .

The assumption that φ ∈ HSs insures that Ψ ∈ C(R;Hs(Rd)) almost surely; see

Lemma 3.15 below (see also Lemma 2.19 from Chapter 1). Our goal in this chapter

is to construct a unique local-in-time solution of (SNLS) in the case of very rough

stochastic forcing, namely, for values of s below the regularity threshold dictated by

scaling.

We now restate Theorem 1.3 from the introduction. For d ≥ 3, we set

sd :=


1

4
, if d = 3 ,

scrit −
2

5
, if d ≥ 4 .

(3.2)

Theorem 3.1. Let d ≥ 3, s ∈ (sd, scrit), and φ ∈ HSs. Then, given u0 ∈ Hscrit(Rd),

there exists a stopping time T that is almost surely positive and a solution u on

[0, T ] of (SNLS) in the sense of (3.1). Moreover, the solution lies in the class

Ψ + Y scrit
2 ([0, T ]) ⊂ Ψ + C([0, T ];Hscrit(Rd)) ⊂ C([0, T ];Hs(Rd)),

where T = Tω is almost surely positive and Y scrit
2 is defined in Section 2 below (see

Definition 3.6).

Theorem 3.1 is inspired by [6], where the authors studied the deterministic cubic

NLS with random initial data: u(0) = fω, where fω is the Wiener randomisation

of some function f ∈ Hs(Rd). They proved local well-posedness of in Hs(Rd) for a

range of s below scrit, with respect to this randomisation. See also [5, 14, 40]. In [6],

the authors decomposed a solution as u = zω + v, where zω(t) := S(t)fω is linear

and random, and solved the fixed point problem for v, which satisfies:i∂tv + ∆v = N (v + zω)

v(0) = 0.

Similarly, we use the so called Da Prato-Debussche trick and decompose our solution
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in (3.1) as u = v + Ψ. In view of the mild formulation (3.1), v satisfies

v(t) = S(t)u0 ∓ i
∫ t

0

S(t− t′)N (v + Ψ)(t′) dt′ .

In other words, v solves the equationi∂tv + ∆v = N (v + Ψ)

v(0) = u0.

Our main tools for proving Theorem 3.1 are similar to those in [6]: the Fourier re-

striction norm method adapted to the spaces V p of functions of bounded p-variation

and their preduals Up (these spaces were introduced by Koch, Tataru and their col-

laborators, see [8, 51, 54]), the bilinear refinement of the Strichartz estimate and a

case-by-case analysis for estimating the terms vv̄v, vv̄Ψ, vΨ̄Ψ, ΨΨ̄Ψ, etc.

There are two main differences between our arguments in this chapter and those

in [6]. In [6], the analysis used Y s
2 -spaces that are constructed using the V 2 space.

Since the Brownian motion does not belong to V 2 almost surely, we cannot measure

the stochastic convolution in Y s
2 . The Brownian motion, however, does belong to

V p with p > 2, almost surely. So, given p > 2, we show that Ψ ∈ Y s
p almost surely

(see Proposition 3.17 below) and use the Y s
p -spaces in our case-by-case analysis.

Interestingly, the Y s spaces are useful both because of the critical nature of our

problem (i.e. u0 ∈ Hscrit(Rd)) and because of the above mentioned property of the

stochastic convolution.

Another key ingredient in the proof of Theorem 3.1 is the space-time integrability

of the stochastic convolution. Namely, the stochastic convolution belongs almost

surely to Lq([0, T ];W s,r(Rd)) for any T > 0, 1 ≤ q <∞ and 2 ≤ r ≤ 2d
d−2

, provided

that φ ∈ HSs. In comparison to this, the linear solution zω enjoys more space-time

integrability. More precisely, there is no upper bound on the values of r; compare

Proposition 3.14 below and Lemma 2.2 in [6]. This limitation in the space-time

integrability of the stochastic convolution forces us to adopt a different scheme from

[6] in the case-by-case analysis for d ≥ 4. In particular, we require a slightly higher

regularity s > d−2
2
− 2

5
compared to [6]. (We note that for d = 3 we can apply

an almost identical analysis to that in [6], so the regularity that we require s > 1
4
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matches the one in [6].)

Remark 3.2. It is possible to extend Theorem 3.1 to the case of SNLS with higher

power nonlinearities N (u) = |u|p−1u, where p ≥ 5 is an odd integer. However, the

case-by-case analysis becomes exceedingly tedious, where the number of cases is at

least O(p). For this reason, we restrict our exposition to the cubic case.

Remark 3.3. In [77], the second author with Oh and Wang considered the SNLS

with a generic power-type nonlinearity N (u) = |u|p−1u, p > 1. By using a simple

argument based on the dispersive estimate, they proved local well-posedness in the

case of subcritical initial data and supercritical noise. More precisely, in the energy-

(super)critical regime, they considered u0 ∈ Hs0(Rd) and φ ∈ Hs(Rd) where

s0 > scrit and s > scrit − 1

and showed that the residual part v = u − Ψ lies in C([0, T ];W s1,
2d
d−2
−(Rd)) ∩

C([0, T ];Hs1(Rd)) for s1 = min(s0 − 1, s). While the noise considered in [77] can

be rougher than sd, our initial data lies in the critical space Hscrit(Rd) and we con-

structed v ∈ C([0, T ];Hscrit(Rd)).

3.1 Function spaces

In this section we sumarise some properties of Up- and V p-spaces, developed by

Tataru, Koch and their collaborators [51, 54, 69]. Let H be a Hilbert space over C.

Let Z be the set of finite partitions {tk}Kk=0, −∞ < t0 < · · · < tK ≤ ∞ of R. We

make the convention that all functions u : R→ H satisfy u(∞) = 0.

Definition 3.4. Let 1 ≤ p <∞ .

(i) a Up(R;H)-atom is a step function a : R→ H of the form

a(t) =
K∑
k=1

φk−11[tk−1,tk)(t)

where {tk}Kk=0 ∈ Z and {φk}K−1
k=0 ⊂ H are such that

∑K−1
k=0 ‖φk‖

p
H = 1. Then we
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define Up = Up(R;H) to be the space of functions u : R→ H of the form

u =
∞∑
j=1

λjaj where each aj is a Up-atom and {λj} ∈ `1(N,C) (3.3)

with the norm

‖u‖Up(R;H) := inf

{
∞∑
j=1

|λj| : u =
∞∑
j=1

λjaj for some Up-atoms aj, {λj}j∈N ∈ `1(N;C)

}
.

where the infimum is taken over all possible representations of u.

(ii) We define V p = V p(R;H) to be the space of functions u : R→ H such that the

norm

‖u‖V p(R;H) := sup
{tk}Kk=0∈Z

(
K∑
k=1

‖u(tk)− u(tk−1)‖pH

) 1
p

, (3.4)

is finite. We also define V p
rc(R;H) to be the closed subspace of V p(R;H) of all

right-continuous functions u ∈ V p(R;H) such that limt→−∞ u(t) = 0 .

(iii) We define Up
∆H (and V p

∆H, respectively) to be the space of functions u : R→ H

such that ‖u‖Up∆H <∞ (and ‖u‖V p∆H <∞, respectively), where

‖u‖Up∆H := ‖S(−t)u‖Up(R;H) and ‖u‖V p∆H := ‖S(−t)u‖V p(R;H) . (3.5)

We denote by V p
rc,∆H be the subspace of all right-continuous functions in V p

∆H.

Note that the spaces Up(R;H), V p(R;H) and V p
rc(R;H) are Banach spaces. Given

1 ≤ p < q <∞, the elementary embedding `p ↪→ `q implies that

V p(R;H) ↪→ V q(R;H). (3.6)

We also have the following continuous embeddings: for 1 ≤ p < q <∞, we have

Up(R;H) ↪→ V p
rc(R;H) ↪→ U q(R;H) ↪→ L∞(R;H) . (3.7)

The same embeddings hold for Up
∆- and V p

∆-spaces.

We state the following transference principle for V p
∆-spaces.
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Lemma 3.5 (Transference principle). Suppose that T is a k-linear operator that

satisfies

‖T (S(t)φ1, ..., S(t)φk)‖LptLqx(R×Rd) .
k∏
j=1

‖φj‖L2
x

for some 2 ≤ p, q ≤ ∞. Then

‖T (u1, ..., uk)‖LptLqx(R×Rd) .
n∏
j=1

‖uj‖V p−∆,rcL
2
x
.

This follows from the transference principle for Up
∆ spaces (see [51, Proposition

2.19 (i)]) and that V p−
∆,rc(R;H) ↪→ Up

∆(R;H) for p > 2.

Let η : R→ [0, 1] be a smooth even function such that η is supported on [−8
5
, 8

5
]

and η ≡ 1 on [−5
4
, 5

4
]. Let η1(ξ) := η(|ξ|) and, given a dyadic number N > 1, let

ηN(ξ) := η

(
|ξ|
N

)
− η

(
2|ξ|
N

)
.

The Littlewood-Paley projection PN is the Fourier multiplier operator with symbol

ηN . We also define the operators P≤N :=
∑

1≤M≤N PM and P>N :=
∑

M>N PM .

Definition 3.6. Let 2 ≤ p <∞ and s ∈ R.

(i) We define Xs
p(R) to be the closure of C(R;Hs(Rd)) ∩ U2

∆L
2 with respect to the

norm

‖u‖Xs
p(R) :=

( ∑
N≥1

dyadic

N2s ‖PNu‖2
Up∆L

2

) 1
2

.

(ii) We define Y s
p (R) to be the closure of C(R;Hs(Rd))∩V p

rc,∆L
2 with respect to the

norm

‖u‖Y sp (R) :=

( ∑
N≥1

dyadic

N2s ‖PNu‖2
V p∆L

2

) 1
2

.

By (3.6) and (3.7), we immediately have the embeddings

Xs
p(R) ↪→ Xs

q (R) ↪→ Y s
q (R) ↪→ Y s

r (R) (3.8)

for 1 ≤ p ≤ q ≤ r <∞.

The spaces defined so far are all on the whole real line R. More generally, given

any space K(R) defined above and an interval I ⊂ R, we define the local-in-time
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version K(I) as the space of all functions u : I → H such that the norm

‖u‖K(I) := inf
{
‖ũ‖K(R) : ũ|I = u

}
(3.9)

is finite.

We now state some basic estimates regarding the function spaces Y s
p introduced

above.

Lemma 3.7 (Linear estimates). Let s ≥ 0, p ≥ 2, and T ∈ (0,∞]. Then

‖S(t)φ‖Y sp ([0,T )) . ‖φ‖Hs (3.10)

∥∥∥∥∫ t

t0

S(t− t′)F dt′
∥∥∥∥
Y sp ([0,T ))

. sup
v∈Y −s2 ([0,T ))
‖v‖

Y−s2
=1

∣∣∣∣∫ T

0

∫
Rd
F (t, x)v(t, x) dx dt

∣∣∣∣ (3.11)

for all φ ∈ Hs(Rd) and F ∈ L1([0, T );Hs(Rd)).

See [51, 54] for the proof of (3.10) and (3.11) with Xs
2(I)-norms on the left in

place of the Y s
p (I)-norms. Then Lemma 3.7 follows from the embedding (3.8).

Next we state the Strichartz estimates on Rd. We say that a pair (q, r) is

Schrödinger admissible if it satisfies

2

q
+
d

r
=
d

2

with 2 ≤ q, r ≤ ∞ and (q, r, d) 6= (2,∞, 2).

Lemma 3.8 (Strichartz estimates). Let (q, r) be Schrödinger admissible with q > 2

and let p ≥ 2(d+2)
d

. For T ∈ (0,∞], we have

‖u‖LqtLrx([0,T )×Rd) . ‖u‖Y 0
q−([0,T )) (3.12)

‖u‖Lpt,x([0,T )×Rd) .
∥∥|∇| d2− d+2

p u
∥∥
Y 0
p−([0,T ))

(3.13)

Proof. For an admissible pair (q, r), the classical Strichartz estimate states that

‖S(t)φ‖LqtLrx([0,T )×Rd) . ‖φ‖L2 . (3.14)
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Applying the transference principle in Lemma 3.5 and the embedding

Y 0
q− ↪→ V q−

∆ L2
x (3.15)

yields (3.12). As for (3.13), we use Sobolev inequality and (3.14) to get

‖S(t)φ‖Lpt,x([0,T )×Rd) .
∥∥|∇| d2− d+2

p φ
∥∥
L2(Rd)

.

The same argument used to prove (3.12) then yields (3.13).

It will be convenient to introduce the following norm and quasinorm:

Definition 3.9. Let d ≥ 3 and θ ∈ (0, 1). Given an interval I ⊂ R, define the

Z(I)-norm and Zθ(I)-quasinorm as follows:

‖u‖Z(I) :=

( ∑
N≥1

N dyadic

Nd−2 ‖PNu‖4
L4
t,x(I×Rd)

) 1
4

(3.16)

‖u‖Zθ(I) := ‖u‖θZ(I) ‖u‖
1−θ

Y
d−2

2
2 (I)

. (3.17)

From Littlewood-Paley theory and Lemma 3.8, we have

‖u‖Z(I) .
∥∥∥〈∇〉 d−2

4 u
∥∥∥
L4
t,x(I×Rd)

. ‖u‖
Y
d−2

2
4− (I)

. ‖u‖
Y
d−2

2
2 (I)

, (3.18)

and hence we also have

‖u‖Zθ(I) . ‖u‖
Y
d−2

2
2 (I)

. (3.19)

The following bilinear estimates will be useful to us:

Lemma 3.10 (Bilinear Strichartz estimates). Let 1 ≤M ≤ N be dyadic numbers.

Let θ ∈ (0, 1). For space-time functions u, v, let uN := PNu and vM := PMv. Then

the following estimates hold:

‖uNvM‖L2
t,x([0,T )×Rd) . T 0+

(
M

N

) 1
2

M
d−2

2 N0+ ‖uN‖Y 0
2+([0,T )) ‖vM‖Y 0

2+([0,T )) (3.20)

67



Chapter 3: SNLS on Rd with supercritical noise

‖uNvM‖L2
t,x([0,T )×Rd) .

(
M

N

) 1
2
−

M
d−2

2 ‖uN‖Y 0
2 ([0,T )) ‖vM‖Y 0

2 ([0,T )) (3.21)

‖uNvM‖L2
t,x([0,T )×Rd) .

(
M

N

) 1
2

(1−θ)−

‖uN‖Y 0
2 ([0,T )) ‖vM‖Zθ([0,T )) (3.22)

Proof. We only prove (3.20) since the proof of (3.21) can be found in [6, Lemma

3.5] and that of (3.22) can be found in [6, Lemma 6.1].

Given φ1, φ2 ∈ L2(Rd), let w := S(t)PMφ1 · S(t)PNφ2. We first use Hölder’s

inequality to get

‖w‖L2
t,x([0,T )×Rd) = ‖‖w‖L2

x
‖L2

t ([0,T )) ≤ T
ε

2+2ε‖‖w‖L2
x
‖L2+2ε

t (R)

= T
ε

2+2ε‖w‖L2+2ε
t (R;L2

x(Rd)) (3.23)

Then, by Minkowski’s inequality and Sobolev’s inequality, we have

‖w‖L2+2ε
t (R;L2

x(Rd)) ≤ ‖‖w‖L2+2ε
t (R)‖L2

x(Rd) ≤ ‖‖w‖
H

ε
2+2ε
t (R)

‖L2
x(Rd)

=

(∫
Rd

∫
R
|τ |

2ε
2+2ε |ŵ(τ, ξ)|2dτdξ

) 1
2

. (3.24)

Now,

ŵ(τ, ξ) =

∫
ξ1+ξ2=ξ

δ(τ − |ξ1|2 − |ξ2|2)P̂Nφ1(ξ1)P̂Mφ2(ξ2) dξ2 ,

and so we must have |τ | ∼ N2 +M2 . N2. Hence, (3.24) yields

‖w‖L2+2ε
t (R;L2

x(Rd)) ≤ N
ε

2+2ε‖w‖L2
t,x(R×Rd). (3.25)

From Bourgain [11] and Ozawa-Tsutsumi [79], we have the following bilinear refine-

ment of the Strichartz estimate:

‖w‖L2
t,x(R×Rd) .M

d−2
2

(
M

N

) 1
2

‖PMφ1‖L2
x
‖PNφ2‖L2

x
. (3.26)

By (3.25) and (3.26), we have

‖w‖L2+2ε
t (R;L2

x(Rd)) .M
d−1

2 N−
1
2

+ ε
1+ε ‖PMφ1‖L2

t,x
‖PNφ2‖L2

t,x
.
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Then applying the transference principle in Lemma 3.5 and using (3.15) gives:

‖uNvM‖L2+2ε
t (R;L2

x(Rd)) .M
d−1

2 N−
1
2

+ ε
1+ε ‖uN‖V 2+ε

∆
‖vM‖V 2+ε

∆

.M
d−1

2 N−
1
2

+ ε
1+ε ‖uN‖Y 0

2+ε
‖vM‖Y 0

2+ε
.

The inequality (3.20) then follows from (3.23).

We also recall the classical Hölder spaces:

Definition 3.11. Let γ > 0, the γ-Hölder space Cγ(R;H) is the collection of func-

tions u : R→ H such that the norm

‖u‖Cγ(R;H) := sup
t1 6=t2
t1,t2∈R

‖u(t2)− u(t1)‖H
|t2 − t1|γ

+ ‖u‖L∞(R;H) (3.27)

is finite.

We note that Hölder spaces and V p-spaces are related in the following way.

Lemma 3.12. Let p ≥ 2 and let I be a bounded interval of R. The following

inequality holds:

‖u‖V p(I;H) . (1 + |I|)
1
p ‖u‖

C
1
p (I;H)

. (3.28)

Proof. Given u ∈ V p(I;H), we take the trivial extension ũ such that on ũ = u on I

and ũ = 0 outside I. Then

‖u‖V p(I;H) ≤ ‖ũ‖V p(R;H) = sup
{tk}Kk=0∈Z
t1,...,tK−1∈I

(
K∑
k=1

(
‖ũ(tk)− ũ(tk−1)‖H
|t̃k − t̃k−1|

1
p

)p

· |t̃k − t̃k−1|

) 1
p

where t̃j = tj if tj ∈ I, t̃0 = t1 − 1 if t0 /∈ I and t̃K = tK−1 + 1 if tK /∈ I. Note that

‖ũ(tk)− ũ(tk−1)‖H
|t̃k − t̃k−1|

1
p

≤ sup
t1 6=t2
t1,t2∈R

‖u∗(t2)− u∗(t1)‖H
|t2 − t1|

1
p

for any extension u∗ of u to R and all k except possibly the cases when k = 1 and

k = K when tk might not be in I. In these latter cases we have ‖ũ(tk)− ũ(tk−1)‖H ≤
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‖u∗‖L∞(R;H). Hence

‖u‖V p(I;H) ≤ (|I|+ 2)
1
p ‖u∗‖

C
1
p (R;H)

.

Taking infimum over all u∗ that extend u to R then gives (3.28).

Finally, we recall for convenience Schur’s test, which is used several times in

Section 3.3.

Lemma 3.13 (Schur’s test). Let 2N0 denotes the set of dyadic numbers N ≥ 1.

Suppose that K(M,N) : 2N0 × 2N0 → C such that

sup
N∈2N0

∑
M∈2N0

|K(M,N)|+ sup
M∈2N0

∑
N∈2N0

|K(M,N)| <∞ .

Then ∑
N∈2N0

∑
M∈2N0

|K(M,N)aMbN | . ‖aM‖`2M (2N0 ) ‖aN‖`2N (2N0 ) .

3.2 The stochastic convolution

In this Section, we state and prove some estimates on the stochastic convolution

Ψ(t) = −i
∫ t

0

S(t− t′)φ dWt′

that appeared in the mild formulation (3.1). Symbolically, Ψ is the solution of the

equation

Ψ = −(i∂t + ∆)−1φξ.

Here, we assume that φ ∈ HSs for some s ∈ R (though we will eventually make the

restriction s ∈ (sd, scrit] in the proof of local well-posedness). Firstly, we have the

following estimate on space-time norms for the stochastic convolution. This appears

in [77, Lemma 2.1], where the proof is a slight modification of an argument of de

Bouard and Debussche [36]. We shall give the proof here for the convenience of the

reader.

Proposition 3.14 (Space-time integrability of Ψ). Let d ≥ 3, T > 0, q, r ∈ [1,∞)
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and σ ≥ max{q, r}. If 2 ≤ r ≤ 2d
d−2

, then there exists C > 0 such that

E
[
‖Ψ‖σLqtLrx([0,T )×Rd)

] 1
σ ≤ C

√
σ T θ ‖φ‖HS0 (3.29)

for some θ > 0. Moreover, there exist constant c, C ′ > 0 such that for any R > 0

P
(
‖Ψ‖LqtLrx([0,T )×Rd) > R

)
≤ C ′e−cRT

−θ‖φ‖−1

HS0 (3.30)

Proof. Since σ ≥ max{q, r}, by applying Minkowski integral inequality twice and

the fact that Ψ is Gaussian, we have

E
[
‖Ψ‖σLqtLrx([0,T )×Rd)

] 1
σ ≤

∥∥∥∥∥∥∥‖Ψ‖Lrx(Rd)

∥∥∥
Lσ(Ω)

∥∥∥∥
Lq([0,T ])

≤
∥∥∥‖Ψ‖Lσ(Ω)

∥∥∥
LqtL

r
x([0,T )×Rd)

≤ C
√
σ
∥∥∥‖Ψ‖L2(Ω)

∥∥∥
LqtL

r
x([0,T )×Rd)

= C
√
σ

∥∥∥∥∥∥
(∑
k∈N

∫ t

0

|S(t− t′)φek|2 dt′
) 1

2

∥∥∥∥∥∥
LqtL

r
x([0,T )×Rd)

Therefore, applying Minkowski’s inequality once more (using r ≥ 2),

≤ C
√
σ
∥∥∥‖S(t− t′)φek‖L2

t′L
r
x([0,t)×Rd)

∥∥∥
Lqt `

2
k([0,T )×N)

≤ C
√
σ
∥∥∥‖S(τ)φek‖L2

τL
r
x([0,t)×N)

∥∥∥
Lqt `

2
k([0,T )×Rd)

(3.31)

We use Hölder’s inequality to get

‖S(τ)φek‖L2
τL

r
x([0,T )×Rd) ≤ CT

1
2
− 1
q̃
√
σ ‖S(τ)φek‖Lq̃τLrx([0,T )×Rd)

for some q̃ ≥ 2. We also want (q̃, r) to be admissible, that is 2
q̃

+ d
r

= d
2
. Such q̃

exists provided r ≤ 2d
d−2

, which is our assumption. Hence we may apply Stichartz

and Hölder inequalities to get

RHS(3.31) . T
1
2
− 1
q̃

+ 1
q

∥∥∥‖φek‖L2
x

∥∥∥
`2k

= T
1
2
− 1
q̃

+ 1
q ‖φ‖HS0 ,
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which proves (3.29). To prove (3.30), we merely need to apply Chebychev’s inequal-

ity. Indeed, for any R > 0, we have

P
(
‖Ψ‖LqtLrx([0,T )×Rd) > R

)
≤ 1

Rσ
E
[
‖Ψ‖kLqtLrx([0,T )×Rd)

]

Choose k =

(
R

eCT θ‖φ‖HS0

)2

. If k ≥ max{q, r}, then we have

P
(
‖Ψ‖LqtLrx([0,T )×Rd) > R

)
≤ e−k = e−Re

−1C−1T−θ‖φ‖−1

HS0 .

If k < max{q, r}, we choose C ′ > 0 such that C ′e−max{q,r} > 1. Then

P
(
‖Ψ‖LqtLrx([0,T )×Rd) > R

)
≤ 1 < C ′e−max{q,r} < C ′e−k .

Recall that we proved the continuity of the stochastic convolution in the periodic

setting in Lemma 2.19. The same argument can be used to prove an analogous

statement in the Euclidean setting. We record this in the lemma below.

Lemma 3.15 (Continuity of Ψ). Let s ≥ 0 and T > 0. Suppose that φ ∈ HSs.

Then Ψ(·) belongs to C([0, T ];Hs(Rd)) almost surely. Moreover, for any σ ∈ [2,∞),

E

[
sup
t∈[0,T ]

‖Ψ(t)‖σHs(Rd)

]
.T ‖φ‖σHSs .

Our next goal is to prove that Ψ belongs to Y s
p ((0, T ]) with p > 2, almost surely.

To do so, we need to obtain a uniform moment bound on the V p
∆H

s-norm of each

dyadic piece PNΨ. We apply Lemma 3.12 and get control on the C
1
pHs-norm of

S(−t)PNΨ. In particular, we use the following Kolmogorov type inequality, which

we quote from [43, Theorem A.10].

Lemma 3.16 (Kolmogorov). Let (S, d) be a Polish space and T > 0. Let K > 0,

k > r ≥ 1. Suppose that Φ : Ω× [0, T ]→ S is a stochastic process such that

‖d(Φt,Φs)‖Lσ(Ω) ≤ K|t− s|
1
r
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for every s, t ∈ [0, T ]. Then Φ has a continuous version (which we denote by Φ

again) such that for any γ ∈ [0, 1
r
− 1

k
), there exists a constant C(r, γ, T ) > 0 such

that

E
[
‖Φ‖kCγ([0,T ])

] 1
k ≤ C(r, γ, T )K . (3.32)

Moreover, C(r, γ, T )→ 0 as T → 0.

Note that the first part of the statement is simply the classical Kolmogorov

continuity theorem. On the other hand, the bound (3.32) is obtained by applying

the so-called Garsia–Rodemich–Rumsay inequality. See [43, Apendix A] for more

details.

Proposition 3.17 (Ψ belongs to Y s
p with p > 2). Let s ∈ R, φ ∈ HSs, p > 2 and

T > 0. Let σ > 2 be such that 1
p
< 1

2
− 1

k
. Then there exists a constant C(p, T ) > 0

such that

E
[
‖Ψ‖kY sp ([0,T ))

] 1
k ≤ C(p, T )

√
k ‖φ‖HSs (3.33)

with C(p, T ) → 0 as T → 0. In particular, the stochastic convolution Ψ belongs

to Y s
p ([0, T )) almost surely. Moreover, there exist constants K(p), c(p, T ) > 0 such

that

P
(
‖Ψ‖Y sp ([0,T )) > R

)
≤ K(p)e−c(p,T )R2‖φ‖−2

HSs . (3.34)

with c(p, T )→∞ as T → 0.

Proof. In this proof, all spatial norms are on Rd and all temporal norms are on

[0, T ), hence we omit the domains in our writing.

First, note that by Lemma 3.15 we have that Ψ ∈ C([0, T ];Hs(Rd)). For a dyadic

number N ≥ 1, let ΨN = PNΨ and φN = PNφ. By (3.28), we have

‖ΨN‖V p∆Hs . (T + 1)
1
p ‖S(−t)ΨN‖C 1

pHs
(3.35)

Now, for 0 ≤ t1 ≤ t2 ≤ T and any k > 2,

‖S(−t2)ΨN(t2)− S(−t1)ΨN(t1)‖Lk(Ω;Hs
x) =

∥∥∥∥∫ t2

t1

S(−t′)φN dWt′

∥∥∥∥
Lk(Ω;Hs

x)
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=

∥∥∥∥∥∑
j∈N

∫ t2

t1

eit
′|ξ|2〈ξ〉sφ̂Nej(ξ) dβj(t′)

∥∥∥∥∥
Lk(Ω;L2

ξ)

.

(
k

∫ t2

t1

‖φN‖2
HSs dt

′
) 1

2

= k
1
2 (t2 − t1)

1
2 ‖φN‖HSs .

Since 1
p
∈
[
0, 1

2
− 1

k

)
, Theorem 3.16 infers that

E
[
‖S(−t)ΨN‖k

C
1
p
t H

s
x

] 1
k

≤ Ck
1
2 ‖φN‖HSs (3.36)

for some constant C = C(p, T ) > 0 that tends to 0 as T → 0. By Minkowski’s

inequality, (3.35) and (3.36), we have

‖Ψ‖Lk(Ω;Y sp ) .

( ∑
N≥1

dyadic

‖ΨN‖2
Lk(Ω;V p∆H

s)

) 1
2

. (T + 1)
1
p

(∑
N

‖S(−t)ΨN‖2

Lk(Ω; C
1
p
t H

s
x)

) 1
2

. (T + 1)
1
pC(p, T )

√
k

(∑
N

‖φN‖2
HSs

) 1
2

= (T + 1)
1
pC(p, T )

√
k ‖φ‖HSs .

This proves (3.33). To prove (3.34), we use Chebyshev inequality to get

P
(
‖Ψ‖Y sp > R

)
≤

E
[
‖Ψ‖kY sp

]
Rk

. (3.37)

Set k =
(

R
eC‖φ‖HSs

)2

. If 1
p
< 1

2
− 1

k
, then by (3.33), the above is

≤

(
C(p, T )

√
k ‖φ‖HSs

R

)k

≤ e−R
2e−2C(p,T )−2‖φ‖−2

HSs
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If 1
p
≥ 1

2
− 1

k
, i.e. k ≤ 2p

p−2
, then

P
(
‖Ψ‖Y sp > R

)
≤ 1 = e

2p
p−2 e−

2p
p−2 ≤ e

2p
p−2 e−k .

This proves (3.34).

3.3 Local well-posedness

We proceed to prove Theorem 3.1 in this section. We are required to find a fixed

point of the Duhamel formula

u(t) = S(t)u0 ∓ i
∫ t

0

S(t− t′)N (u)(t′) dt′ + Ψ(t) ,

where

Ψ(t) = −i
∫ t

0

S(t− t′)φ dWt′ . (3.38)

We apply the Da Prato-Debussche trick in the following way: we set v = u−Ψ and

v0 = u0, then solving (SNLS) is equivalent to solving the fixed point problem

v(t) = Γ(v)(t) := S(t)v0 ∓ i
∫ t

0

S(t− t′)N (v + Ψ)(t′) dt′ . (3.39)

To this end, we prove that Γ is a contraction in an appropriate closed subset of

Y s
2 ([0, T )), where s > sd.

Before we continue, we first note down some common Strichartz norms we will

use. Fix a small ε > 0. For any space-time functions u1 and u2, we have by Hölder’s

inequality that

‖u1u2‖L2
t,x
≤ ‖u1‖

L2+ε
t L

2d(2+ε)
d(2+ε)−4
x

‖u2‖
L

2(2+ε)
ε

t L
d(2+ε)

2
x

.

Now (
2 + ε,

2d(2 + ε)

d(2 + ε)− 4

)
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is a Schrödinger admissible pair. Hence we may apply (3.12) to deduce that

‖u1u2‖L2
t,x
≤ ‖u1‖Y 0

2+
‖u2‖

L
2(2+ε)
ε

t L
d(2+ε)

2
x

.

Note that the above mentioned pair tends to
(
2, 2d

d−2

)
as ε→ 0. Also,

(
2(2+ε)
ε

, d(2+ε)
2

)
→

(∞, d) as ε→ 0. By an abuse of notation, we shall denote

(
2+,

2d

d− 2
−
)

:=

(
2 + ε,

2d(2 + ε)

d(2 + ε)− 4

)

(∞−, d+) :=

(
2(2 + ε)

ε
,
d(2 + ε)

2

)
.

We will use a similar notation to denote other Lebesgue norms as well.

For I ⊂ R bounded, we now define W s(I) to be the space of functions such that

the norm

‖u‖W s(I) :=



‖u‖
L∞−t (I;L

2d
d−2
x (Rd))

, if d ≥ 5

max
(
‖u‖

L∞−t (I;L
2d
d−2
x (Rd))

, ‖u‖
L

4(d+2)
d

t (I;L

4d(d+2)

d2+2d+4
x (Rd))

)
, if d = 4

max
(
‖u‖

L∞−t (I;L
2d
d−2
x (Rd))

, ‖u‖
L

4(d+2)
d

t (I;L

4d(d+2)

d2+2d+4
x (Rd))

,

‖u‖L4
t (I,L

3
x(Rd)), ‖u‖L∞−t (I,L3+

x (Rd))

)
, if d = 3

is finite. For any 1 ≤ q <∞, 2 ≤ r ≤ 2d
d−2

we recall that, by Proposition 3.14, the

LqtL
r
x([0, T )×Rd)-norm of Ψ is almost surely finite. All the pairs (q, r) appearing in

the definition of W s(I) satisfy the above mentioned property, so the W s-norm will

be a convenient norm for measuring the contribution of Ψ.

We first prove a lemma on how we control the nonlinear term of Γ. Consider

Λ(v)(t) := ∓i
∫ t

0

S(t− t′)N (v + Ψ)(t′) dt′ , (3.40)

so that Γ(v) = S(·)v0 + Λ(v).

Lemma 3.18. Let d ≥ 3, s ∈ (sd, scrit], θ ∈ (0, 1), and I = [0, T ) be a bounded
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interval. Let φ ∈ HSs. Then there exists δ > 0 such that

‖Λ(v)‖
Y
d−2

2
2 (I)

. ‖v‖
Y
d−2

2
2 (I)

‖v‖2
Zθ(I) + ‖Ψ‖3

W s(I) + T δ ‖Ψ‖3
Y s2+(I) + ‖v‖2

Y
d−2

2
2 (I)

‖Ψ‖W s(I)

+ T δ ‖Ψ‖2
Y s2+(I) ‖v‖

Y
d−2

2
2 (I)

(3.41)

and

‖Λ(v2)− Λ(v1)‖
Y
d−2

2
2 (I)

.

(
2∑
j=1

Θ(vj,Ψ)

)
‖v2 − v1‖

Y
d−2

2
2 (I)

,

where

Θ(vj,Ψ) :=‖vj‖
Y
d−2

2
2 (I)

‖vj‖Zθ(I) + ‖vj‖
Y
d−2

2
2 (I)

‖Ψ‖W s(I) + ‖Ψ‖2
W s(I) + T δ ‖Ψ‖2

Y s2+(I) ,

for all v, v1, v2 ∈ Y
d−2

2
2 (I).

Proof. In this proof, all space-time norms will be on the domain [0, T ) × Rd and

hence we often omit this to simplify the writing. Let ΛN(v) := P≤N(Λv). We first

claim that P≤NN (v+Ψ) ∈ L1([0, T );H
d−2

2 (Rd)) almost surely. Indeed, by Bernstein,

Hölder and Sobolev inequalities and (3.12), we have

‖P≤NN (v + Ψ)‖
L1
tH

d−2
2

x

. N
d−2

2 ‖P≤NN (v + Ψ)‖L1
tL

2
x

. N
d−2

2

(
‖v‖3

L3
tL

6
x

+ ‖Ψ‖3
L3
tL

6
x

)
. N

d−2
2

(∥∥〈∇〉 d−2
3 v
∥∥3

L3
tL

6d
3d−4
x

+
∥∥〈∇〉 d−3

3 Ψ
∥∥3

L3
tL

2d
d−2
x

)

. N
d−2

2

(
‖v‖3

Y
d−2

3
2

+
∥∥〈∇〉 d−3

3 Ψ
∥∥3

L3
tL

2d
d−2
x

)
.

(3.42)

By Proposition 3.14, the second term is finite almost surely, hence the claim. It

follows by Lemma 3.7 that we have

‖ΛN(v)‖
Y
d−2

2
2

. sup
v4∈Y 0([0,T ))
‖v4‖Y 0

2
=1

∣∣∣∣∫ T

0

∫
Rd
〈∇〉

d−2
2 P≤NN (v + Ψ)(t, x)v4(t, x) dx dt

∣∣∣∣
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almost surely. We estimate the right-hand side above independently of the cutoff

size N . As a result, by taking N → ∞, the same inequality holds for Λ(v), thus

yielding (3.41). This leads us to analyse expressions of the form∣∣∣∣∫ T

0

∫
Rd
〈∇〉

d−2
2 P≤N(w1w2w3)v4 dx dt

∣∣∣∣ , (3.43)

where w1, w2, w3 ∈ {v,Ψ}, and ‖v4‖Y 0
2

= 1. Note that we ignored any conjugate signs

above since we will always use Hölder inequality to put each term in an appropriate

mixed Lebesgue norm. In most cases, we dyadically decompose each term in (3.43),

in the sense that

(3.43) =
∑

N1,...,N4≥1
Nj dyadic

∣∣∣∣∣
∫ T

0

∫
Rd
〈∇〉

d−2
2

3∏
j=1

PNjwjPN4v4 dx dt

∣∣∣∣∣ ,
but we shall continue to denote PNjwj as wj, and PN4v4 as v4 to simplify the writing.

Note that if we can afford a small derivative loss in the highest frequency, there is

no problem in summing over the dyadic blocks.

Case 1: vvv case. This case is exactly the same as in [6, Proposition 6.3, Case

1], but we repeat the argument here for the sake of completeness. Without loss of

generality, we may assume N1 ≥ N2, N3.

Subcase 1.a: N1 ∼ N4. By Hölder inequality and (3.22), we have∣∣∣∣∫ T

0

∫
Rd
〈∇〉

d−2
2 v1v2v3v4 dx dt

∣∣∣∣ . N
d−2

2
1 ‖v1v3‖L2

t,x
‖v2v4‖L2

t,x

.

(
N2N3

N1N4

) 1
2

(1−θ)−

‖v1‖
Y
d−2

2
2

‖v2‖Zθ ‖v3‖Zθ ‖v4‖Y 0
2
.

By summing over N2 ≤ N1 and N3 ≤ N1 and then using Cauchy-Schwarz inequality

in summing over N1 ∼ N4, the contribution coming from this case is

. ‖v1‖
Y
d−2

2
2

‖v2‖Zθ ‖v3‖Zθ .

Subcase 1.b: N1 ∼ N2 � N4. This time we apply Hölder’s inequality again but only
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use (3.22) on the first factor, and then apply (3.13) on the v4-factor to get∣∣∣∣∫ T

0

∫
Rd
〈∇〉

d−2
2 v1v2v3v4 dx dt

∣∣∣∣ . N
d−2

2
1 ‖v1v3‖L2

t,x
‖v2‖L4

t,x
‖v4‖L4

t,x

.

(
N3

N1

) 1
2

(1−θ)−

‖v1‖
Y
d−2

2
2

‖v3‖Zθ ‖v2‖L4
t,x
‖v4‖L4

t,x

.

(
N3

N1

) 1
2

(1−θ)−(
N4

N2

) d−2
4

N
d−2

4
2 ‖v1‖

Y
d−2

2
2

‖PN3v3‖Zθ ‖v2‖L4
t,x
‖v4‖Y 0

2
.

Summing over N3 and taking supremum over N2 yield

. ‖v2‖Z ‖v3‖Zθ

(
N4

N1

) d−2
4

‖v1‖
Y
d−2

2
2

‖v4‖Y 0
2
.

By Schur’s test, we have

. ‖v1‖
Y
d−2

2
2

‖v2‖Zθ ‖v3‖Zθ .

Case 2: ΨΨΨ case. By symmetry, we may assume N3 ≥ N2 ≥ N1.

Subcase 2.a: N2 ∼ N3. We consider three cases in estimating∣∣∣∣∫ T

0

∫
Rd

Ψ1〈∇〉
d−2

4 Ψ2〈∇〉
d−2

4 Ψ3v4 dx dt

∣∣∣∣ ,
namely d = 3, d = 4 and d ≥ 5. For d = 3, by Hölder’s inequality we have:∣∣∣∣∫ T

0

∫
Rd

Ψ1〈∇〉
1
4 Ψ2〈∇〉

1
4 Ψ3v4 dx dt

∣∣∣∣
≤ N−s1 N

1
4
−s

2 N
1
4
−s

3 ‖〈∇〉sΨ1‖L6−
t L6

x
‖〈∇〉sΨ2‖L6

tL
3+
x
‖〈∇〉sΨ3‖L6

tL
3+
x
‖v4‖L2+

t L6−
x

whose contribution is bounded by ‖Ψ‖3
W s provided s > 1

4
= s3.

For d = 4, by Hölder’s inequality and Sobolev’s inequality we have:∣∣∣∣∫ T

0

∫
Rd

Ψ1〈∇〉
1
2 Ψ2〈∇〉

1
2 Ψ3v4 dx dt

∣∣∣∣
≤ ‖Ψ1‖L6−

t L4+
x
‖〈∇〉

1
2 Ψ2‖L6

tL
4
x
‖〈∇〉

1
2 Ψ3‖L6

tL
4
x
‖v4‖L2+

t L4−
x
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≤ N−s+1 N
1
2
−s

2 N
1
2
−s

3 ‖〈∇〉sΨ1‖L6−
t L4

x
‖〈∇〉sΨ2‖L6

tL
4
x
‖〈∇〉sΨ3‖L6

tL
4
x
‖v4‖Y 0

2

whose contribution is bounded by ‖Ψ‖3
W s provided s > 1

2
(which is less restrictive

than s > s4 = 3
5
).

Finally, for d ≥ 5, by Hölder’s inequality and Sobolev’s inequalties we have:∣∣∣∣∫ T

0

∫
Rd

Ψ1〈∇〉
d−2

4 Ψ2〈∇〉
d−2

4 Ψ3v4 dx dt

∣∣∣∣
≤ ‖Ψ1‖

L6−
t L

3d
2
x

‖〈∇〉
d−2

4 Ψ2‖
L6
tL

12d
3d+2
x

‖〈∇〉
d−2

4 Ψ3‖
L6
tL

12d
3d+2
x

‖v4‖
L2+
t L

2d
d−2
x

≤ ‖〈∇〉
3d−10

6 Ψ1‖
L6−
t L

2d
d−2
x

‖〈∇〉
d−2

4
+ 3d−14

12 Ψ2‖
L6
tL

2d
d−2
x

‖〈∇〉
d−2

4
+ 3d−14

12 Ψ3‖
L6
tL

2d
d−2
x

‖v4‖
L2+
t L

2d
d−2
x

≤ (N1N2N3)
3d−10

6
−s‖〈∇〉sΨ1‖

L6−
t L

2d
d−2
x

‖〈∇〉sΨ2‖
L6
tL

2d
d−2
x

‖〈∇〉sΨ3‖
L6
tL

2d
d−2
x

‖v4‖Y 0
2

whose contribution is bounded by ‖Ψ‖3
W s provided s > 3d−10

6
. Note that this is less

restrictive than s > sd.

Subcase 2.b: N2 � N3 ∼ N4. Let β = 1
2

if d = 3 and β = 1
3

if d ≥ 4.

Subsubcase 2.b.i: N1, N2 � Nβ
3 . By Hölder inequality, (3.20) and using that s <

scrit = d−2
2

, we have

∣∣∣∣∫ T

0

∫
Rd

Ψ1Ψ2〈∇〉
d−2

2 Ψ3v4 dx dt
∣∣∣ ≤ N

d−2
2

3 ‖Ψ2Ψ3‖L2
t,x
‖Ψ1v4‖L2

t,x

. T 0+N
d−1

2
−s

2 N
d−3

2
−s+

3 N
d−1

2
−s

1 N
− 1

2
+

4

3∏
j=1

‖Ψj‖Y s2+
‖v4‖Y 0

2

. T 0+N
d−4

2
−s+β(d−1−2s)

3

3∏
j=1

‖Ψj‖Y s2+
.

The exponent on N3 is negative provided s > sd. Hence the contribution to (3.43)

in this case is

. T 0+ ‖Ψ‖3
Y s2+

.

Subsubcase 2.b.ii: N1 � Nβ
3 . N2. By Hölder’s inequality, (3.20) and using that
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s < scrit = d−2
2

, we have

∣∣∣∣∫ T

0

∫
Rd

Ψ1Ψ2〈∇〉
d−2

2 Ψ3v4 dx dt
∣∣∣ ≤ N

d−2
2

3 ‖Ψ2‖L4
tL

d
x
‖Ψ3‖

L4
tL

2d
d−2
x

‖Ψ1v4‖L2
t,x

. T 0+N−s2 N
d−2

2
−s

3 N
d−1

2
−s

1 N
− 1

2
+

4 ‖〈∇〉sΨ2‖L4
tL

d
x
‖〈∇〉sΨ3‖

L4
tL

2d
d−2
x

‖Ψ1‖Y s2+
‖v4‖Y 0

2

. T 0+N
d−3

2
−s+β( d−1

2
−2s)+

3 ‖〈∇〉sΨ2‖L4
tL

d
x
‖〈∇〉sΨ3‖

L4
tL

2d
d−2
x

‖Ψ1‖Y s2+
.

If d = 3, the exponent of N3 is negative provided s > 1
4

= s3. If d = 4, it is negative

for s > 3
5

= s4. If d ≥ 5, we further apply Sobolev inequality to get

. T 0+N
d−3

2
−s+β( 2d−5

2
−2s)+

3

3∏
j=2

‖〈∇〉sΨj‖
L4
tL

2d
d−2
x

‖Ψ1‖Y s2+
.

In this case, we need s > 5d−14
10

= sd to hold. Hence the contribution to (3.43) in

this case is

. T 0+ ‖Ψ‖2
W s ‖Ψ‖Y s2+

Subsubcase 2.b.iii: N1, N2 & Nβ
3 . By Hölder’s inequality,

∣∣∣∣∫ T

0

∫
Rd

Ψ1Ψ2〈∇〉
d−2

2 Ψ3v4 dx dt
∣∣∣ . N

d−2
2

3

2∏
j=1

‖Ψj‖L6−
t Ld+x

‖Ψ3‖
L6−
t L

2d
d−2
x

‖v4‖
L2+
t L

2d
d−2
−

x

. N
d−2

2
−s−2βs

3

2∏
j=1

‖〈∇〉sΨj‖L6−
t Ld+x

‖〈∇〉sΨ3‖
L6−
t L

2d
d−2
x

‖v4‖Y 0
2
.

If d = 3, the exponent over N3 is negative if s > 1
4

= s3. If d ≥ 4, we further apply

Sobolev inequality to get

. N
d−2

2
−s+2β

(
d−4

2
−s
)

+

3

3∏
j=1

‖〈∇〉sΨj‖
L6−
t L

2d
d−2
x

‖v4‖Y 0
2
.

In this case, the exponent of N3 is negative if s > 5d−14
10

= sd. Hence the contribution

to (3.43) from this case is

. ‖Ψ‖3
W s .
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Case 3: vvΨ case. By symmetry, we may assume N1 ≥ N2.

Subcase 3.a: N1 & N3. We only apply dyadic decomposition to v1, v2 and Ψ3. In

this case, we have N1 ∼ max{N2, N3, |ξ4|} where ξ4 is the spatial frequency of v4.

By Hölder inequality, (3.21) and Sobolev inequality,∣∣∣∣∫ T

0

∫
Rd
〈∇〉

d−2
2 v1v2Ψ3v4 dx dt

∣∣∣ . ∥∥∥〈∇〉 d−2
2 v1v2

∥∥∥
L2
t,x

‖Ψ3v4‖L2
t,x

.

(
N2

N1

) 1
2
− 2∏
j=1

‖vj‖
Y
d−2

2
2

‖Ψ3‖L∞−t Ld+x
‖v4‖

L2+
t L

2d
d−2
−

x

.

(
N2

N1

) 1
2
− 2∏
j=1

‖vj‖
Y
d−2

2
2

N−s+3 ‖〈∇〉sΨ3‖L∞−t Ld+x
‖v4‖Y 0

2
.

If d ≥ 4, we further apply Sobolev inequality to get

.

(
N2

N1

) 1
2
− 2∏
j=1

‖vj‖
Y
d−2

2
2

N
d−4

2
−s+

3 ‖〈∇〉sΨ3‖
L∞−t L

2d
d−2
x

‖v4‖Y 0
2
.

By Schur’s test, summing in N3 and using that s > d−4
2

, the contribution to (3.43)

in this case is

. ‖v‖2

Y
d−2

2
2

‖Ψ‖W s .

Subcase 3.b: N1 � N3. For d = 3, by Hölder’s inequality, (3.21) and the fact that

(4, 3) is a Schrödinger admissible pair, we have∣∣∣∣∫ T

0

∫
Rd
v1v2〈∇〉

1
2 Ψ3v4 dx dt

∣∣∣ ≤ ‖v1〈∇〉
1
2 Ψ3‖L2

t,x
‖v2v4‖L2

t,x

≤ N
− d−2

2
1 N

1
2
−

2 N
1
2
−s

3 N
− 1

2
+

4 ‖〈∇〉
d−2

2 v1‖L4
tL

3
x
‖〈∇〉sΨ3‖L4

tL
6
x
‖v2‖

Y
d−2

2
2

‖v4‖Y 0
2

≤ N
− d−3

2
1 N−s+3 ‖v1‖

Y
d−2

2
2

‖〈∇〉sΨ3‖L4
tL

6
x
‖v2‖

Y
d−2

2
2

‖v4‖Y 0
2

whose contribution is ‖v‖2

Y
d−2

2
2

‖Ψ‖W s provided s > 0.

For d ≥ 4, by Hölder’s inequality, (3.21) and Sobolev’s inequality, we have∣∣∣∣∫ T

0

∫
Rd
v1v2〈∇〉

d−2
2 Ψ3v4 dx dt

∣∣∣ ≤ ∥∥∥v1〈∇〉
d−2

2 Ψ3

∥∥∥
L2
t,x

‖v2v4‖L2
t,x
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. N
d−2

2
−s

3 N
1
2
−

2 N
− 1

2
+

4 ‖v1‖L2+
t Ldx
‖〈∇〉sΨ3‖

L∞−t L
2d
d−2
x

‖v2‖
Y
d−2

2
2

‖v4‖Y 0
2

. N
d−2

2
−s

3 N
1
2
−

2 N
− 1

2
+

4

∥∥∥〈∇〉 d−4
2
−v1

∥∥∥
L2+
t L

2d
d−2
−

x

‖〈∇〉sΨ3‖
L∞−t L

2d
d−2
x

‖v2‖
Y
d−2

2
2

‖v4‖Y 0
2

. N
d−3

2
−s+

3 N
− 1

2
+

1 ‖v1‖
Y
d−2

2
2

‖〈∇〉sΨ3‖
L∞−t L

2d
d−2
x

‖v2‖
Y
d−2

2
2

‖v4‖Y 0
2
.

The exponent over N3 is negative provided s > d−3
2

, which is less restrictive than

s > sd. Hence the contribution coming from this case is

. ‖v‖2

Y
d−2

2
2

‖Ψ‖W s .

Case 4: vΨΨ case. By symmetry, we may assume N3 ≥ N2.

Subcase 4.a: N1 & N3. By Hölder’s inequality and (3.12),

∣∣∣∣∫ T

0

∫
Rd
〈∇〉

d−2
2 v1Ψ2Ψ3v4 dx dt

∣∣∣ . ∥∥∥〈∇〉 d−2
2 v1

∥∥∥
L2+
t L

2d
d−2
−

x

3∏
j=2

‖Ψj‖L∞−t Ld+x
‖v4‖

L2+
t L

2d
d−2
−

x

. N−s2 N−s3 ‖v1‖
Y
d−2

2
2

3∏
j=2

‖〈∇〉sΨj‖L∞−t Ld+x
‖v4‖Y 0

2
.

If d ≥ 4, we further apply Sobolev inequality to get

. N
d−4

2
−s+

2 N
d−4

2
−s+

3 ‖v1‖
Y
d−2

2
2

3∏
j=2

‖Ψj‖
L∞−t L

2d
d−2
x

‖v4‖Y 0
2
,

where the exponent over N2 and N3 are negative provided s > d−4
2

, which is less

restrictive than s > sd. If N3 & max(N1, N4), then this allows us to sum over N1 and

N4. Otherwise, we have N1 ∼ N4 � N3, in which case we can use Cauchy-Schwarz

inequality to sum over N1 ∼ N4. Hence the contribution to (3.43) in this case is

. ‖v‖
Y
d−2

2
2

‖Ψ‖2
W s .

Subcase 4.b: N3 � N1. Suppose first that N2 ∼ N3, then we must have N4 . N3.

By Hölder’s inequality and (3.13),
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∣∣∣∣∫ T

0

∫
Rd
v1Ψ2〈∇〉

d−2
2 Ψ3v4 dx dt

∣∣∣ . N
d−2

2
3 ‖v1‖Ld+2

t,x

3∏
j=2

‖Ψj‖
L

4(d+2)
d
−

t L

4d(d+2)

d2+2d+4
+

x

‖v4‖
L2+
t L

2d
d−2
−

x

. N
d−2

2
−2s

3 ‖v1‖
Y
d−2

2
2

3∏
j=2

‖〈∇〉sΨj‖
L

4(d+2)
d
−

t L

4d(d+2)

d2+2d+4
+

x

‖v4‖Y 0
2

Note that 4d(d+2)
d2+2d+4

< 2d
d−2

if d ≤ 4. If d ≥ 5, we apply Sobolev inequality to get

. N
d−2

2
−2s+ d2−2d−12

2(d+2)
+

3 ‖v1‖
Y
d−2

2
2

3∏
j=2

‖〈∇〉sΨj‖
L

4(d+2)
d
−

t L
2d
d−2
x

‖v4‖Y 0
2

The condition for the exponent of N3 to be negative is s > d−2
4

if d ≤ 4 and

s > d2−d−8
2(d+2)

if d ≥ 5. These are less restrictive than s > sd for d ≥ 4. Hence the

contribution from this case is

. ‖v‖
Y
d−2

2
2

‖Ψ‖2
W s .

Thus it remains to consider the case N4 ∼ N3 � N2, N1.

Subsubcase 4.b.i: N1, N2 � N
1
3

3 . By Hölder’s inequality, (3.20) and (3.21), we have

that

∣∣∣∣∫ T

0

∫
Rd
v1Ψ2〈∇〉

d−2
2 Ψ3v4 dx dt

∣∣∣ ≤ ∥∥∥Ψ2〈∇〉
d−2

2 Ψ3

∥∥∥
L2
t,x

‖v1v4‖L2
t,x

. T 0+N
d−1

2
−s

2 N
d−3

2
−s+

3 N
1
2

1 N
− 1

2
+

4

3∏
j=2

‖Ψj‖Y s2+
‖v1‖

Y
d−2

2
2

‖v4‖Y 0
2

. T 0+N
2d−6−4s

3
+

3

3∏
j=2

‖Ψj‖Y s2+
‖v1‖

Y
d−2

2
2

.

The exponent of N3 is negative provided

s >
d− 3

2
, (3.44)

which is less restrictive than s > sd. Hence the contribution coming from this case

84



Chapter 3: SNLS on Rd with supercritical noise

is

. T 0+ ‖Ψ‖2
Y s2+
‖v‖

Y
d−2

2
2

.

Subsubcase 4.b.ii: N1 � N
1
3

3 . N2. By Hölder’s inequality,∣∣∣∣∫ T

0

∫
Rd
v1Ψ2〈∇〉

d−2
2 Ψ3v4 dx dt

∣∣∣ ≤ ‖Ψ2‖L4
tL

d
x

∥∥∥〈∇〉 d−2
2 Ψ3

∥∥∥
L4
tL

2d
d−2
‖v1v4‖L2

t,x

. N
1
2

1 N
− 1

2
+

4 N−s2 N
d−2

2
−s

3 ‖v1‖
Y
d−2

2
2

‖v4‖Y 0
2
‖〈∇〉sΨ2‖L4

tL
d
x
‖〈∇〉sΨ3‖

L4
tL

2d
d−2
x

. N
3d−8−8s

6
+

3 ‖v1‖
Y
d−2

2
2

‖〈∇〉sΨ2‖L4
tL

d
x
‖〈∇〉sΨ3‖

L4
tL

2d
d−2
x

‖v4‖Y 0
2
.

If d = 3, the exponent of N3 is negative provided s > 1
8
. If d ≥ 4, we further apply

Sobolev inequality to get

. N
2d−6−4s

3
+

3 ‖v1‖
Y
d−2

2
2

‖〈∇〉sΨ2‖
L4
tL

2d
d−2
x

‖〈∇〉sΨ3‖
L4
tL

2d
d−2
x

.

In this case, the exponent of N3 remains negative if the condition (3.44) holds, which

is less restrictive than s > sd. Hence the contribution from this case is

. ‖v‖
Y
d−2

2
2

‖Ψ‖2
W s .

Subsubcase 4.b.iii: N2 � N
1
3

3 . N1. For d = 3, by Hölder’s inequality, (3.20), and

the fact that (4, 3) is a Schrödinger admissible pair, we have∣∣∣∣∫ T

0

∫
Rd
v1Ψ2〈∇〉

1
2 Ψ3v4 dx dt

∣∣∣∣ ≤ N
1
2

3 ‖v1Ψ3‖L2
t,x
‖Ψ2v4‖L2

t,x

. T 0+N
− 1

2
1 N

1
2
−s+

3 N1−s
2 N

− 1
2

+

4

∥∥∥〈∇〉 1
2v1

∥∥∥
L4
tL

3
x

‖〈∇〉sΨ3‖L4
tL

6
x
‖Ψ2‖Y s2+

‖v4‖Y 0
2

. T 0+N
1−8s

6
+

3 ‖v1‖
Y
d−2

2
2

‖〈∇〉sΨ3‖
L∞−t L

2d
d−2
x

‖Ψ2‖Y s2+
‖v4‖Y 0

2
.

The exponent of N3 is negative if s > 1
8
, which is less restrictive than s > s3.

For d ≥ 4, by Hölder’s inequality, (3.20), Sobolev inequality, and the fact that
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s < scrit, we have∣∣∣∣∫ T

0

∫
Rd
v1Ψ2〈∇〉

d−2
2 Ψ3v4 dx dt

∣∣∣∣ ≤ N
d−2

2
3 ‖v1Ψ3‖L2

t,x
‖Ψ2v4‖L2

t,x

. T 0+N
d−2

2
−s+

3 N
d−1

2
−s

2 N
− 1

2
+

4 ‖v1‖L2+
t Ldx
‖〈∇〉sΨ3‖

L∞−t L
2d
d−2
x

‖Ψ2‖Y s2+
‖v4‖Y 0

2

. T 0+N
− d−2

2
+ d−4

2
+

1 N
d−2

2
−s+

3 N
d−1

2
−s

2 N
− 1

2
+

4

×
∥∥∥〈∇〉 d−2

2 v1

∥∥∥
L2+
t L

2d
d−2
−

x

‖〈∇〉sΨ3‖
L∞−t L

2d
d−2
x

‖Ψ2‖Y s2+
‖v4‖Y 0

2

. T 0+N
2d−6−4s

3
+

3 ‖v1‖
Y
d−2

2
2

‖〈∇〉sΨ3‖
L∞−t L

2d
d−2
x

‖Ψ2‖Y s2+
‖v4‖Y 0

2
.

Here, the exponent of N3 is negative if (3.44) holds, which is less restrictive than

s > sd. Hence the contribution coming from this case is

. T 0+ ‖v‖
Y
d−2

2
2

‖Ψ‖W s ‖Ψ‖Y s2+
.

Subsubcase 4.b.iv: N
1
3

3 . N1, N2. For d = 3, by Hölder’s inequality, using the fact

that (4, 3) is Schrödinger admissible, and (3.12) we have∣∣∣∣∫ T

0

∫
Rd
v1Ψ2〈∇〉

1
2 Ψ3v4 dx dt

∣∣∣∣
. N

1
2
−s

3 N
− 1

2
1 N−s2

∥∥∥〈∇〉 1
2v1

∥∥∥
L4
tL

3
x

‖〈∇〉sΨ2‖L4
tL

3+
x
‖〈∇〉sΨ3‖L∞−t L6

x
‖v4‖L2+

t L6−
x

. N
1−4s

3
3 ‖v1‖

Y
1
2

2

‖〈∇〉sΨ2‖L4
tL

3+
x
‖〈∇〉sΨ3‖L∞−t L6

x
‖v4‖Y 0

2
.

The contribution in this case is ‖v‖
Y
d−2

2
2

‖Ψ‖2
W s provided that s > 1

4
= s3.

For d ≥ 4, by Hölder’s inequality and Sobolev inequality, we have∣∣∣∣∫ T

0

∫
Rd
v1Ψ2〈∇〉

d−2
2 Ψ3v4 dx dt

∣∣∣
≤ N

d−2
2

3 ‖v1‖L2+
t Ldx
‖Ψ2‖L∞−t Ld+x

‖Ψ3‖
L∞−t L

2d
d−2
x

‖v4‖
L2+
t L

2d
d−2
−

x

. N
d−2

2
−s

3 N−1+
1 N

d−4
2
−s+

2

∥∥∥〈∇〉 d−2
2 v1

∥∥∥
L2+
t L

2d
d−2
−

x

‖〈∇〉sΨ2‖
L∞−t L

2d
d−2
x
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× ‖〈∇〉sΨ3‖
L∞−t L

2d
d−2
x

‖v4‖Y 0
2

. N
2d−6−4s

3
+

3 ‖v1‖
Y
d−2

2
2

‖〈∇〉sΨ2‖
L∞−t L

2d
d−2
x

‖〈∇〉sΨ3‖
L∞−t L

2d
d−2
x

‖v4‖Y 0
2
.

Thus we need the condition (3.44) to hold, which is less restrictive that s > sd.

Hence the contribution from this case is

. ‖v‖
Y
d−2

2
2

‖Ψ‖2
W s .

The conclusion then follows by putting together the above four cases and by using

Young’s inequality.

The following proposition concludes the proof of Theorem 3.1.

Proposition 3.19. Let d ≥ 3, s ∈ (sd, scrit] and θ ∈ (1
2
, 1]. Suppose that u0 ∈

H
d−2

2 (Rd). Then for any ε > 0, there exist a stopping time T > 0 and an event

Ω′ ⊆ Ω such that P(Ω \Ω′) < ε, and that for each ω ∈ Ω′, there is a unique solution

u = v + Ψ to (SNLS) such that v belongs to

BR,η,T :=

{
v ∈ Y

d−2
2

2 ([0, T )) ∩ C([0, T );H
d−2

2 ) : ‖v‖
Y
d−2

2
2 ([0,T ))

≤ 2R, ‖v‖Zθ([0,T )) ≤ 2η

}
.

for some sufficiently large R and small η.

Proof. Set

R̃ := ‖v0‖
H
d−2

2 (Rd)
. (3.45)

For M > 0, we define

ΩM :=
{
‖Ψ‖Y s2+([0,1)) + ‖Ψ‖W s([0,1)) ≤M

}
.

Then by Propositions 3.14 and 3.17, we may choose M = M(ε) so that P (Ω \ ΩM) <

ε. Let R = max{R̃,M}, and let η > 0 be such that

η < R−
1

2θ−1 . (3.46)

We now fix ω ∈ ΩM and proceed to show that the map Γ defined in (3.39) is a

contraction on BR,η,T for some suitable T .
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Recall that, by (3.40), Γv = S(t)v0 + Λv. We first claim that Λ is an operator

maping C([0, T );H
d−2

2 )∩Y
d−2

2
2 ([0, T )) to itself. Let v be a function in this space. By

Proposition 3.18, Λv ∈ Y
d−2

2
2 ([0, T )), and hence by the embedding Y

d−2
2

2 ↪→ L∞t H
d−2

2
x ,

we have Λv ∈ L∞t ([0, T );H
d−2

2
x ). To prove continuity for Λv, it suffices to show

continuity for P≤N(Λv). Indeed, continuity of Λv then follows from the uniform

bound on ‖P≤N(Λv)‖
Y
d−2

2
2

independent of N as in the proof of Proposition 3.18. To

this end, let h > 0. We have

‖P≤N(Λv)(t+ h)− P≤N(Λv)(t)‖
H
d−2

2
x

≤
∥∥∥∥P≤N (∫ t+h

t

S(t+ h− t′)N (v + Ψ) dt′
)∥∥∥∥

H
d−2

2
x

+

∥∥∥∥P≤N (∫ t

0

S(t− t′)[S(h)− Id]N (v + Ψ) dt′
)∥∥∥∥

H
d−2

2
x

≤
∫ t+h

t

‖P≤NN (v + Ψ)‖
H
d−2

2
x

dt′ +

∫ t

0

‖[S(h)− Id]P≤NN (v + Ψ)‖
H
d−2

2
x

dt′

By (3.42), we have P≤NN (v+ Ψ) ∈ L1
tH

d−2
2

x . Since {S(t)}t∈[0,T ) is strongly continu-

ous overH
d−2

2 , the above tends to 0 as h→ 0. It follows that ΛNv ∈ C([0, T );H
d−2

2 (Rd)).

This concludes the proof of the claim.

With δ > 0 as in Lemma 3.18, we choose T = T (ω) < η
3
δ such that

‖Ψ‖W s([0,T )) ≤ η2 ,

‖S(t)v0‖Zθ([0,T )) ≤ η . (3.47)

Consider a function v ∈ BR,η,T . By Lemma 3.18, there exists a constant C > 0 such

that

‖Λv‖
Y
d−2

2
2 ([0,T ))

≤ C

4
(η2R + η6 + T δR3 + η2R2). (3.48)

Since η < R−1 (due to the assumption in (3.46)) and that T < η
3
δ , we have

‖Λv‖
Y
d−2

2
2 ([0,T ))

≤ CηR . (3.49)
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Similarly, Lemma 3.18 implies that

‖Λv2 − Λv1‖
Y
d−2

2
2

≤ Cη ‖v2 − v1‖
Y
d−2

2
2

. (3.50)

Since Γv = S(t)v0+Λv, by (3.46), (3.10) and decreasing η (and hence T ) if necessary,

we obtain

‖Γv‖
Y
d−2

2
2 ([0,T ))

≤ 2R ,

‖Γv2 − Γv1‖
Y
d−2

2
2 ([0,T ))

≤ 1

2
‖v2 − v1‖

Y
d−2

2
2 ([0,T ))

.

Lastly, by ‖ · ‖Z([0,T )) . ‖ · ‖
Y
d−2

2
2 ([0,T ))

, (3.47), (3.10), (3.45), and (3.46) we have

‖Γv‖Zθ([0,T )) ≤
(
‖S(t)v0‖Z([0,T )) + ‖Λv‖Z([0,T ))

)θ (
‖S(t)v0‖

Y
d−2

2
2 ([0,T ))

+ ‖Λv‖
Y
d−2

2
2 ([0,T ))

)1−θ

≤
(
‖S(t)v0‖Z([0,T )) + Cη2R

)θ (
‖S(t)v0‖

Y
d−2

2
2 ([0,T ))

+ Cη2R

)1−θ

≤ η + Cη2θR + Cη2−θR1−θ + Cη2R ≤ 2η .

Hence Γ is a contraction on BR,η,T .
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Chapter 4

The 4-D energy–critical SNLS

with non–vanishing boundary

condition

In this chapter, we consider the Cauchy problem for the following energy-critical

stochastic nonlinear Schrödinger equation on R4:i∂tu+ ∆u = (|u|2 − 1)u+ φξ

u|t=0 = u0,

(t, x) ∈ [0,∞)× R4, (4.1)

with the non-vanishing boundary condition:

lim
|x|→∞

|u(x)| = 1, (4.2)

where u is a complex-valued function, where ξ denotes a space-time white noise on

R+ × Rd and φ is a bounded operator on L2(Rd). The mild formulation for this

equation is given by

u(t) = S(t)u0 − i
∫ t

0

S(t− t′)
[
(|u|2 − 1)u

]
(t′)dt′ − i

∫ t

0

S(t− t′)φξ(t′),

where S(t) := eit∆ denotes the linear Schrödinger operator. Our main goal is to

construct global-in-time dynamics for (4.6) in the energy-critical cases. As per
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usual, we denote by

Ψ(t) :=

∫ t

0

S(t− t′)φξ(dt′) (4.3)

the stochastic convolution. We will impose that φ ∈ HS(L2;H1), which ensures the

regularity of Ψ to be 1 (see Lemma 3.15 in the preceding chapter). Let us recall the

Ginzburg-Landau energy mentioned in the introduction:

E[u](t) =
1

2

∫
Rd
|∇u|2dx+

1

4

∫
Rd

(
|u|2 − 1

)2
dx.

We shall prove global well-posedness in the energy space E(R4) of functions u such

that E[u] <∞. More explicitly, E(R4) can be expressed as

E(R4) := {u = 1 + v : v ∈ H1
real(R4) + iḢ1

real(R4)}.

We now restate the main theorem of this chapter from the introduction:

Theorem 4.1 (Unconditional global well-poseness for the SNLS). Let d = 4 and

φ ∈ HS(L2;H1). Assume u0 ∈ E(R4). Then, the SNLS (4.1) with condition (4.2) is

gobally well-posed in the energy space E(R4), almost surely. In particular, u(t) is

unique in the class Ψ + Ct
(
R; E(R4)

)
, almost surely.

As mentioned in the introduction, Theorem (4.1) will be proved by treating

(4.1) as as the energy-critical NLS with a perturbation. To this end, we rewrite the

equation as follows. Suppose that u is a solution to (4.1). If u = 1 + v∗, then v∗

satisfies i∂tv
∗ + ∆v∗ = |v∗|2v∗ + 2 Re(v∗)v∗ + |v∗|2 + 2 Re(v∗) + φξ

v∗|t=0 =: u0 − 1.

(4.4)

In terms of v∗, the Hamiltonian then takes the form

E[u](t) = E[v∗ + 1] =
1

2

∫
R4

|∇v∗|2dx+
1

4

∫
R4

(
|v∗|2 + 2 Re(v∗)

)2
dx, (4.5)

where we continue to denote E[v∗ + 1] by E[v∗] for simplicity.

We now go one step further and subtract Ψ from v∗, that is, we define v :=
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u− 1−Ψ. Then v satisfiesi∂tv + ∆v = |v|2v + g(v,Ψ)

v|t=0 = v0 := u0 − 1,

(4.6)

where

g(v,Ψ) := (|v + 1 + Ψ|2 − 1)(v + 1 + Ψ)− |v|2v

= 2 Re(v)v + 2 Re(Ψ)v + 2 Re(v̄Ψ)v

+ Ψ2v + |v|2 + 2 Re(v) + 2 Re(Ψ) + 2 Re(v̄Ψ) + Ψ2

+ Ψ|v|2 + 2 Re(v)Ψ + 2 Re(Ψ)Ψ + 2 Re(v̄Ψ)Ψ + Ψ3.

(4.7)

It is, however, more convenient to view this complicated expression as

O
( 3∑

j=1

(Ψ + v)j − v3

)

as the real parts and the conjugate signs play little to no role in our arguments.

This chapter is organized as follows. In the preliminaries, we record the classical

Strichartz estimates and the perturbation lemma from [85]. We prove the local

wellposedness in Section 4.2 and lists the key perturbation lemma, Sections 4.3 splits

into three parts, first we obtain the bounded Hamiltonian in Section 4.3.1; then by

applying the perturbation lemma we prove the global wellposedness in Section 4.3.2;

finally we prove the unconditional uniqueness.

4.1 Preliminaries

4.1.1 Strichartz estimates

We now recall the classical Strichartz estimates. Given 0 ≤ q, r ≤ ∞ and a time

interval I ⊆ [0,∞), we consider the mixed Lebesgue spaces LqtL
r
x(I × R4) of space-
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time functions u(t, x), endowed with the norm

‖u‖LqtLrx(I×Rd) =

(∫
I

(∫
R4

|u(x, t)|r dx
) q

r

dt

) 1
q

.

If the domain is clear, we often shorten this space to LqtL
r
x, as well as Lrt,x when

q = r.

We say that a pair of exponents (q, r) is admissible if 2
q
+ 4

r
= 2 with 2 ≤ q, r ≤ ∞

and (q, r, d) 6= (2,∞, 2). It is convenient to introduce the following norms. Given a

space-time slab I × R4, and j ∈ {0, 1}, we define the Ṡj(I)-norm by

‖u‖Ṡj(I) := sup
{
‖∇ju‖LqtLrx(I×Rd) : (q, r) is admissible

}
.

We use Ṅ j(I) to denote the dual space of Ṡ0(I). More precisely, we define

‖u‖Ṅj(I) := inf
{
‖∇ju‖

Lq
′
t L

r′
x (I×Rd)

: (q, r) is admissible
}
,

where (q′, r′) denotes the pair of Hölder conjugates of (q, r). We can now state the

Strichartz estimates in terms of these norms; see [47, 58, 80, 87].

Lemma 4.2 (Strichartz estimates). We have the following homogeneous estimate

‖S(t)u0‖Ṡj(I) . ‖u0‖Ḣj
x

and the inhomogeneous Strichartz estimate∥∥∥∥∫ t

t0

S(t− t′)F (t′)dt′
∥∥∥∥
Ṡj(I)

. ‖F‖Ṅj(I).

We note down some common admissible pairs that will be used throughout this

chapter:

(2, 4),

(
6,

12

5

)
, (∞, 2).

In particular, we shall define the space Ẋ1(I) endowed with the norm

‖u‖Ẋ(I) := ‖∇u‖
L6
tL

12
5
x (I×R4)

, (4.8)
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which serves as an auxiliary space in where we shall establish local well-posedness.

Finally, we recall Proposition 3.14 and Lemma 3.15, for which we restate as the

following lemma for the reader’s convenience:

Lemma 4.3. Suppose that φ ∈ HS(L2;Hs) for some s ∈ R.

(i) Ψ ∈ Ct
(
R+;Hs(Rd)

)
almost surely. In particular, for p ≥ 2, there exists

C = C(T, ρ) > 0 such that

E
[

sup
0≤t≤T

‖Ψ(t)‖pHs

]
≤ C‖φ‖p

HS(L2(Rd);Hs(Rd))
.

(ii) Given any 1 ≤ q < ∞ and 2 ≤ r ≤ 4, we have Ψ ∈ Lqt ([0, T ];W s,r
(
Rd)
)

almost surely for any T > 0. In particular, for p ≥ max(q, r), there exists

C = C(T, p, q, r) > 0 such that

E
[
‖Ψ‖p

Lq([0,T ];W s,r(Rd))

]
≤ C‖φ‖p

HS(L2(Rd);Hs(Rd))
.

4.1.2 Perturbation lemma

Consider the energy critical NLS equation

i∂tw + ∆w = |w|2w. (4.9)

Global well-posedness and scattering for (4.9) was proved by Vişan in [85]. Impor-

tantly, the following space-time bound on a global solution u to (4.9) holds:

‖w‖Ṡ1(R×R4) ≤ C(‖w0‖Ḣ1). (4.10)

The idea of proving Theorem 4.1 is to view (4.1) as a energy-critical NLS (4.9) with

a perturbation, more details are addressed in Section 4.2. The key perturbation

results we will use is Lemma 4.4, which is Theorem 3.8 in [62].

Lemma 4.4 (Perturbation lemma). Let w0 ∈ Ḣ1(R4), I be a compact time interval

with |I| ≤ 1. Let w̃ be a solution on I × Rd to the perturbed equation:

i∂tw̃ + ∆w̃ = |w̃|2w̃ + e (4.11)
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for some function e. There exist functions ε0 and C̄ mapping from R3
+ to R+, that

are non-increasing in each argument, such that if

‖w̃‖L6
t,x(I×R4) ≤ L, (4.12)

‖w̃‖L∞t Ḣ1
x(I×R4) ≤ E0, (4.13)

‖w̃(t0)− w0‖Ḣ1
x(R4) ≤ E ′, (4.14)

for some t0 ∈ I and positive quantities L,E0, E
′, and that

‖S(t− t0)(w̃(t0)− w0)‖Ẋ1(I) ≤ ε, (4.15)

‖∇e‖Ṅ0(I) ≤ ε, (4.16)

for some 0 < ε < ε0, then there exists a solution w to (4.9) with initial data w0

satisfying

‖w − w̃‖L6
t,x(I×R4) ≤ C̄(E0, E

′, L)ε, (4.17)

‖w − w̃‖Ṡ1(I) ≤ C̄(E0, E
′, L)ε, (4.18)

‖w‖Ṡ1(I) ≤ C̄(E0, E
′, L). (4.19)

Remark 4.5. By the Strichartz estimate, condition (4.15) is redundant if E ′ = O(ε).

4.2 Energy-critical NLS with a perturbation

In this section, we consider the defocusing energy-critical NLS with a perturbation:∂tv + ∆v = (|v + f + 1|2 − 1)(v + f + 1)

v|t=0 = v0,

(4.20)

where f is a given deterministic function, satisfying certain regularity conditions. By

applying the perturbation lemma, we prove global existence for (4.20), assuming an a
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priori energy bound of a solution v to (4.20). See Proposition 4.10. In Section 4.3.2,

we then present the proof of Theorem 4.1 by writing (4.1) in the form (4.20) (with

f = Ψ) and verifying the hypotheses in Proposition 4.10.

By the standard Strichartz theory, we have the following local well-posedness of

the perturbed NLS (4.20).

Proposition 4.6 (Local well-posedness of the perturbed NLS). Let I0 = [t0, t0 +

T ] ⊆ [0,∞) be an interval. Let f be as in (4.20). Suppose that

‖v0‖Ḣ1(R4) ≤ R and ‖f‖L∞t Ḣ1
x(I0×R4) ≤M,

for some R,M ≥ 1. Then there exists some small η0 = η0(R,M) > 0 and a compact

interval I ⊆ I0 containing t0 such that if

‖S(t− t0)v0‖Ẋ1(I) + ‖f‖Ẋ1(I) ≤ η,

for some η ≤ η0, then there exists a solution v ∈ Ct
(
I; Ḣ1

x(R4)
)
∩ Ẋ1(I) to (4.6)

with v(t0) = v0. Moreover, v satisfies

‖v − S(t− t0)v0‖Ẋ1(I) ≤ η (4.21)

Remark 4.7. Note that the above proposition considers data from Ḣ1(R4). This

is fine for us because E(R4) ⊂ Ḣ1(R4). Indeed, we have

‖v0‖Ḣ1(R4) ≤ ‖Re(v0)‖Ḣ1(R4) + ‖ Im(v0)‖Ḣ1(R4)

≤ ‖Re(v0)‖H1(R4) + ‖ Im(v0)‖Ḣ1(R4).

Proof. We show that the map Γ defined by

Γv(t) := S(t− t0)v0 − i
∫ t

t0

S(t− t′)
[
(|v + f + 1|2 − 1)(v + f + 1)

]
(t′)dt′

is a contraction on

BR,M,η = {v ∈ Ẋ1(I) ∩ Ct(I; Ḣ1
x(R4)) : ‖v‖L∞t Ḣ1(I×R4) ≤ 2R̃, ‖v‖Ẋ1(I) ≤ 2η}
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with respect to the Ẋ1(I) ∩ Ct(I; Ḣ1
x(R4))-metric, where R̃ := max(R,M). Let

v1, v2, v3 be functions in Ẋ1(I). Then by Strichartz, Hölder and Sobolev inequalities,

we have∥∥∥∥∫ t

0

S(t− t′)
(
v1v2v3 + v1v2 + v1

)
(t′)dt′

∥∥∥∥
Ẋ1(I)

.
∑

{i,j,k}={1,2,3}

‖vivj∇vk‖
L2
tL

4
3
x (I×R4)

+
∑

{i,j}={1,2}

‖vi∇vj‖
L

6
5
t L

12
7
x (I×R4)

+ ‖∇v1‖L1
tL

2
x(I×R4)

. ‖v1‖Ẋ1(I)‖v2‖Ẋ1(I)‖v3‖Ẋ1(I) + |I|
1
2‖v1‖Ẋ1(I)‖v2‖Ẋ1(I)

+ |I|‖v1‖L∞t Ḣ1
x(I×R4).

(4.22)

Now, by (4.7), we have

(|v + f + 1|2 − 1)(v + f + 1) = |v|2v + |f |2v + 2 Re (vf)v + 2 Re (f + v)v (4.23)

+ |v|2f + |f |2f + 2 Re (vf)f + 2 Re (f + v)f (4.24)

+ |v|2 + |f |2 + 2 Re (vf) + 2 Re (f + v) (4.25)

We choose η0 � R̃−1 ≤ 1 and |I| ≤ min
{

1, η3R̃−1
}

. Fix η ≤ η0 in the following.

Then (4.22) and (4.23) infer that

‖Γv‖Ẋ1(I) ≤ ‖S(t− t0)v0‖Ẋ1(I) + ‖Γv − S(t− t0)v0‖Ẋ1(I)

. ‖S(t− t0)v0‖Ẋ1(I) + C

(
‖v‖3

Ẋ1(I)
+ |I|

1
2‖v‖2

Ẋ1(I)
+ |I| · ‖v‖L∞t Ḣ1

x(I×R4)

+ ‖f‖3
Ẋ1(I)

+ |I|
1
2‖f‖2

Ẋ1(I)
+ |I| · ‖f‖L∞t Ḣ1

x(I×R4)

)

≤ η + Cη3 ≤ 2η, (4.26)
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provided η0 is sufficiently small. Similarly, we have

‖Γv‖L∞t Ḣ1
x(I×R4) ≤ ‖S(t− t0)v0‖L∞t Ḣ1

x(I×R4) + ‖Γv − S(t− t0)v0‖L∞t Ḣ1
x(I×R4)

≤ R + Cη3 ≤ 2R̃.

Hence Γ maps BR,M,η to BR,M,η. Finally, the difference estimate follows analogously.

Indeed, for v1, v2 ∈ BR,M,η, we have

‖Γv1 − Γv2‖L∞t Ḣ1
x(I×R4)∩Ẋ1(I) ≤

1

2
‖v1 − v2‖L∞t Ḣ1

x(I×R4)∩Ẋ1(I).

Therefore, Γ is a contraction on BR,M,η. The estimate (4.21) is a direct consequence

of the above estimates.

As a consequence of Proposition 4.6, we have the following local well-posedness

for the SNLS (4.1).

Lemma 4.8 (Local well-poseness for the SNLS). Let φ ∈ HS(L2(R4);H1(R4)).

Then, given any u0 ∈ E(R4), there exists an almost surely positive stopping time

T = Tω(u0) and a unique local-in-time solution u = 1 + v∗ ∈ E(R4) to the energy-

critical SNLS (4.1). Furthermore, the following blowup alternative holds; let T ∗ =

T ∗ω(u0) be the forward maximal time of existence. Then, either

T ∗ =∞ or lim
T↗T ∗

‖u‖Ẋ1(0,T ) =∞.

4.3 Proof of the main theorem

We present the proof of Theorem 4.1 in this section. The first objective is to obtain

an a priori bound for the energy of the solution. Armed with this bound as well as

tools from the previous sections, we prove global existence by an iterative application

of the perturbation lemma (Lemma 4.4). Finally, we conclude the argument by

proving unconditional uniqueness.
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4.3.1 Bound on the energy

Recall the definition of the energy E[u](t) from (4.5). Our goal in this subsection

is to state and prove a priori bound on the energy.These a priori bounds follow

from Ito’s lemma and the Burkholder-Davis-Gundy inequality. In order to justify

an application of Ito’s lemma, one needs to go through a certain approximation

argument. See Proposition 3.2 in [36] for details.

Proposition 4.9. Assume the hypotheses in Lemma 4.8. Then,

(i) for any t ∈ [0, T ], the energy E[u](t) defined in (4.5) can be expressed as

E[u](t) = E[u0] + t
(
‖∇φ‖2

HS(L2;Ḣ1)
+ ‖φ‖2

HS(L2;L2)

)
(4.27)

+
∑
n∈N

∫∫
[0,t]×R4

(
|v∗|2 + Im(v∗)2 + 4 Re(v∗)

)
|φn|2 dt′ dx (4.28)

+ Im

∫∫
[0,t]×R4

(
|v∗|2v∗ −∆v∗ + |v∗|2 + 2 Re(v∗)v∗ + 2 Re(v∗)

)
φ dW dx.

(4.29)

(ii) Moreover, given T0 > 0, there exists a constant

CE = C
(
E(u0), T0, ‖φ‖HS(L2;H1)

)
> 0

such that for any stopping time T with 0 < T < min(T ∗, T0) almost surely, we

have

E
[

sup
0≤t≤T

E[u](t)

]
≤ CE. (4.30)

where u is the solution to the defocusing energy-critical SNLS (4.1) with

u|t=0 = u0 and T ∗ = T ∗ω(u0) is the forward maximal time of existence.

Proof. The expression on E[u](t) follows from a similar computation as in Proposi-

tion 2.27 and hence we omit the details. We turn to prove (4.30). The term (4.27)

is easily bounded:

E
[

sup
t0≤t≤T

(4.27)

]
. T‖φ‖HS(L2;Ḣ1). (4.31)
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Turning our attention to (4.28), by Hölder, Sobolev and Young inequalities, we have

E
[

sup
0≤t≤T

(4.28)

]
≤ CE

[∑
n∈N

∫
[0,T ]

(
‖v∗‖2

L4
x(R4) + ‖v∗‖L2

x(R4)

)
‖φn‖2

L4
x
dt′
]

≤ 2T‖φ‖2
HS(L2;H1)E

[
sup

0≤t≤T

(
E[u](t)

) 1
2

]

≤ CT 2‖φ‖4
HS(L2;Ḣ1)

+
1

8
E
[

sup
0≤t≤T

E[u](t)

]
.

(4.32)

Finally, we bound (4.29). By Burkholder-Gundy-Davis, Hölder, Sobolev and Young

inequalities, we have

E
[

sup
0≤t≤T

Im

∫∫
[0,t]×R4

|v∗|2v∗φdWdx

]

≤ CE
[(∑

n∈N

∫ T

0

∣∣∣∣ ∫
R4

|v∗|2v∗φndx
∣∣∣∣2dt′) 1

2
]

≤ CE
[(∑

n∈N

∫ T

0

∥∥|v∗|2v∗∥∥2

Ḣ−1
x
‖φn‖2

Ḣ1
x
dt′
) 1

2
]

≤ CE
[(∑

n∈N

∫ T

0

∥∥v∗∥∥3

L4
x
‖φn‖2

Ḣ1
x
dt′
) 1

2
]

≤ C‖φ‖HS(L2;H1)E
[

sup
0≤t≤T

E[u](t)
3
8

]

≤ C‖φ‖HS(L2;H1)E
[
1 + sup

0≤t≤T
E[u](t)

1
2

]

≤ C‖φ‖HS(L2;H1) + C‖φ‖2
HS(L2;H1) +

1

32
E
[

sup
0≤t≤T

E[u](t)

]
.

where we used the elementary fact A
3
8 ≤ 1 ∧ A 1

2 ≤ 1 + A
1
2 in the penultimate

inequality. The rest of the contributions from (4.29) are controlled in a similar

manner and we omit the details. Ultimately, we obtain

E
[

sup
0≤t≤T

(4.29)

]
≤ C(φ) +

1

8
E
[

sup
0≤t≤T

E[u](t)

]
(4.33)
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Combining (4.31)–(4.33) concludes the proof.

4.3.2 Global existence

We now prove the existence part of Theorem 4.1. Let v0 be such that 1+v0 ∈ E(R4).

The bulk of the argument is contained in the following proposition on the perturbed

NLS (4.20).

Proposition 4.10. Let T > 0 be given. Let f be as in (4.20). Assume the following

conditions hold:

1. There exists θ > 0 such that for any interval I ⊆ [0, T ], we have

‖f‖L∞t Ḣ1
x(I×R4) + ‖f‖Ẋ1(I) ≤ C‖φ‖HS(L2;H1)|I|θ;

2. Given a solution v, we have the following a priori bound

‖v‖L∞t Ḣ1
x([0,T ]×Rd) ≤ R.

Then, there exists a time τ = τ(R, θ) > 0 such that given any t0 ∈ [0, T ), a solution

v exists on [t0, t0 + τ ] ∩ [0, T ] for this particular path. This implies that v in fact

exists in the entire interval [0, T ], as t0 is arbitrary.

Proof. Let v be the local solution on SNLS obtained from Proposition 4.6. The

main idea is to view (4.6) as a perturbation to the energy-critical cubic NLS (4.9),

that is, regard v as w̃ in Lemma 4.4 with

e = g(v, f),

where g(v, f) as in (4.7). The argument follows closely in [61].

Let w be the global solution to the energy-critical cubic NLS (4.9) with initial

data w(t0) = v0. Then, by assumption ‖w(t0)‖Ḣ1 ≤ R, and so by (4.10)

‖w‖Ẋ1(R) . R.

This, together with assumption (2), infer that we can divide the interval [t0, T ] into

101



Chapter 4: The 4-D energy–critical SNLS with non–vanishing boundary condition

J = J(R, φ, θ, η) many subintervals Ij = [tj, tj+1] so that

‖w‖Ẋ1(Ij)
+ ‖f‖Ẋ1(Ij)

≤ η (4.34)

for some η � η0, where η0 is dictated by Lemma 4.6. We also write [t0, t0 + τ ] =⋃J ′

j=0[0, t0 + τ ] ∩ Ij) for some J ′ ≤ J , where [t0, t0 + τ ] ∩ Ij 6= ∅ for 0 ≤ j ≤ J ′.

We would like to apply Proposition 4.4 on each interval Ij with e = g(vΨ).

Starting with j = 0, we see that (4.13) is automatically satisfied with E0 = R by

assumption and (4.14) holds trivially with, say, E ′ = 1 since v(t0) = w(t0); this

also infers that Condition (4.15) holds (for any ε) by Strichartz estimate. We now

turn to (4.12). Since the nonlinear evolution w is small on Ij, the linear evolution

S(t− tj)w(tj) is also small on Ij. Indeed, by rearranging the Duhamel formula, we

have

S(t− tj)w(tj) = w(t) + i

∫ t

tj

S(t− t′)
[
|w|2w

]
(t′)dt′

for any t ∈ Ij; together with Strichartz, Hölder and Sobolev inequalities, we obtain

‖S(t− tj)w(tj)‖Ẋ1(Ij)
≤ ‖w‖Ẋ1(Ij)

+ C‖w2∇w‖
L2
tL

4
3
x (Ij×R4)

≤ η + C‖∇w‖
L6
tL

12
5 x (Ij×R4)

‖w‖2
L6
t,x(Ij×R4)

≤ η + Cη3

≤ 2η,

(4.35)

since η � η0 ≤ 1. By Lemma 4.6 together with (4.34) and (4.35) for j = 0, v exists

on the interval I0, moreover,

‖v‖Ẋ1(I0) ≤ ‖S(t− t0)v‖Ẋ1(I0) + ‖v − S(t− t0)v0‖Ẋ1(I0) ≤ 6η

Thus by the Sobolev embedding Ẇ 1, 12
5 (R4) ⊂ L6(R4), we have ‖v‖L6

t,x(I0×R4) ≤ Cη

for some absolute constant C. Therefore, Condition (4.12) in Lemma 4.4 is satisfied

with L = C ′η.

Let us now verify (4.16), that is, we need to estimate ‖∇e‖Ṅ0(I0) = ‖∇g(v, f)‖Ṅ0(I0).

In view of (4.7) and (4.37), we distribute the derivative to each term and apply
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Strichartz estimate to each contribution, and put the cubic, square and linear terms

in L2
tL

4
3 , L

6
5
t L

12
7 and L1

tL
2
x respectively. We then use Hölder and Sobolev inequalities

to put each term in Ẋ1(I) (as seen in (4.22)). This gives

‖∇e‖Ṅ0(I0) . ‖f‖
3
Ẋ1(I0)

+ |I0|
1
2

(
‖v‖2

Ẋ1(I0)
+ ‖f‖2

Ẋ1(I0)

)
+ |I0|

(
‖v‖L∞t Ḣ1

x(I0×R4) + ‖f‖L∞t Ḣ1
x(I0×R4)

)
.φ |I0|3θ + |I0|

1
2 (η2 + |I0|2θ) + |I0|(R + |I0|θ)

.R τ
θ′

(4.36)

for some θ′ = θ′(θ) > 0. Let ε ∈ (0, ε0) to be chosen later, where ε0 = ε0(R, 1, C ′η)

is dictated by Lemma 4.4. We choose τ = τ(ε, φ, θ, R) sufficiently small so that

‖∇e‖Ṅ0(I0) ≤ ε. (4.37)

This verifies (4.16). Therefore, all hypotheses of Lemma 4.4 are satisfied on the

interval I0, with L = C ′η, E0 = R and E ′ = 1. Hence we obtain

‖w − v‖Ṡ1(I0) ≤ C̄(R, 1, C ′η)ε =: C0(R, η)ε. (4.38)

Consider now the second interval I1. Again, Condition (4.13) is satisfied automati-

cally with E0 = R by assumption. Since the pair (∞, 2) is admissible, (4.38) infers

that

‖w(t1)− v(t1)‖Ḣ1 ≤ C0ε.

By choosing ε = ε(R, η) sufficiently small, Condition (4.13) holds with E ′ = 1.
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Turning to (4.12), by Strichartz, (4.38) and 4.35, we have

‖S(t− t1)v(t1)‖Ẋ1(I1) ≤
∥∥S(t− t1)

[
v(t1)− w(t1)

]∥∥
Ẋ1(I1)

+ ‖S(t− t1)w(t1)‖Ẋ1(I1)

≤ ‖w(t1)− v(t1)‖Ḣ1
x

+ 2η

≤ C0(R, η)ε+ 2η

≤ 3η

(4.39)

provided

C0ε < η. (4.40)

If this holds, then by Lemma 4.6 and (4.34), v exists on the interval I0, moreover,

‖v‖Ẋ1(I1) ≤ ‖S(t− t0)v(t1)‖Ẋ1(I1) + ‖v − S(t− t0)v(t1)‖Ẋ1(I1) ≤ 8η

By Sobolev inequality, we see that Condition (4.12) is satisfied with L = Cη as

before. Now, for Condition (4.15), by Strichartz estimate and (4.38), we have

‖S(t− t0)(w̃(t0)− w0)‖Ẋ1(I) ≤ C̃C0ε

where C̃ is the absolute constant coming from Strichartz estimate. Then Condition

(4.15) is satisfied as long as

C̃C0ε < ε0(R, 1, C ′η). (4.41)

Lastly, we argue as in (4.36) to obtain

‖∇e‖Ṅ0(I1) ≤ ε ≤ C̃C0ε,

without needing to change τ = T (ε, φ, θ, R). Hence Condition (4.16) is satisfied

provided (4.40) and (4.41) hold, which can be done by shrinking ε = ε(R, η) if

104



Chapter 4: The 4-D energy–critical SNLS with non–vanishing boundary condition

necessary. Hence Lemma 4.4 infers that

‖v − w‖Ṡ1(I1) ≤ C̄(R, 1, C ′η)C̃C0ε =: C1(R, η)ε.

We now recursively define Cj(R, η) := C̄(R, 1, C ′η)C̃Cj−1 for 1 ≤ j ≤ J ′. In other

words, Cj(R, η) = C̄(R, 1, C ′η)j+1C̃j. Arguing iteratively, we have

‖v − w‖Ṡ1(Ij)
≤ Cjε

as long as

Cj−1ε < η,

Cjε < ε0(R, 1, C ′η).

(4.42)

Since Cj is increasing in j, we just need to ensure that (4.42) holds for j = J ′.

Recalling that J ′ ≤ J = J(R, η), we see that (4.42) holds for all j provided that

ε is chosen sufficiently small, depending only on R and η. In particular, we have

constructed a solution v in the entire interval [t0, t0 + τ ], where τ = τ(R, η, ε). This

proves the proposition.

4.3.3 Global existence

We are now ready to prove the existence part of Theorem 4.1. Let T > 0 and ε > 0.

We claim that there exists an event Ωε ⊆ Ω such that P(Ωε) > 1− ε and that in Ωε,

there exist θ > 0 and R = R(T, φ) such that

‖Ψ‖L∞t Ḣ1
x([t0,t0+τ ]×R4) + ‖Ψ‖Ẋ1(I) ≤ C(φ)|I|θ for any I ⊆ [0, T ] (4.43)

and that the a priori bound

‖v‖L∞t Ḣ1([0,T ])×R4 ≤ R (4.44)

holds. Indeed, by Lemma 4.3 and Markov inequality, one can easily find an event of

arbitrarily large probability in which the bound (4.43) holds. As for (4.44), recalling
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that v = u− 1−Ψ = v∗ −Ψ and also the definition of E[u], we have

‖v‖L∞t Ḣ1([0,T ]×R4) ≤ ‖v
∗‖L∞t Ḣ1([0,T ]×R4) + ‖Ψ‖L∞t Ḣ1

x([0,T ]×R4)

≤ sup
0≤t≤T

[
E(u)(t)]

1
2 + ‖Ψ‖L∞t Ḣ1

x([0,T ]×R4).

Then by Lemma 4.3, Proposition 4.9 and Chebyshev’s inequality, one can again find

an event of arbitrarily large probability in which (4.44). Hence the claim holds and

we can invoke Proposition 4.10 to extend the solution v to all times in [0, T ] for each

ω ∈ Ωε. This completes the existence part of the proof.

4.3.4 Unconditional uniqueness

We turn now to showing that the global solutions constructed above are unique

among those that are continuous (in time) with values in the energy space. We

mimic the arguments in [28] and [61]. To this end, let v0 be such that 1+v0 ∈ E(R4)

and let v be the global solution to (4.6) constructed above. In particular, v ∈ Ṡ1(I)

for any compact time interval I. Let ṽ : [0, t′]×R4 → C be a second solution to (4.6)

with the same initial data such that 1 + ṽ ∈ C([0, t′]; E(R4)) almost surely and write

z := v−ṽ. In what follows, we fix an ω ∈ Ω for which both v and ṽ ∈ C([0, t′]; E(R4)).

As z(0) = 0 and ω is continuous in time, shrinking t′ if necessary, we may assume

‖Re(z)‖L∞t Ḣ1
x([0,t′]×R4) + ‖ Im(z)‖L∞t Ḣ1

x([0,t′]×R4) ≤ η (4.45)

for a small η > 0 to be chosen shortly. By Sobolev embedding Ḣ1(R4) ⊂ L4(R4),

this yields

‖z‖L∞t L4
x([0,t′]×R4) . η, (4.46)

in particular, we have z ∈ L2
tL

4
x([0, t

′]×R4). Recalling that v ∈ Ṡ1(I) almost surely

for any compact time interval I and further shrinking t′ if necessary, we may also

assume (by Sobolev embedding W 1, 12
5 (R4) ⊂ L6(R4)) that

‖v‖L6
t,x([0,t′]×R4) ≤ η. (4.47)
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On the other hand, as seen at the end of the previous subsection, one can find an

event of arbitrarily large probability such that (4.43) holds. Hence we may assume

ω lies in this event. By Sobolev embeddings Ḣ1(R4) ⊂ L4(Rd) and Ẇ 1, 12
5 ⊂ L6(R4),

as well as shrinking t′ if necessary, we have

‖Ψ‖L∞t L4
x([0,t′]×R4) ≤ η, (4.48)

‖Ψ‖L6
t,x([0,t′]×R4) ≤ η. (4.49)

Now,

[
|v|2v + g(v,Ψ)

]
−
[
|ṽ|2v + g(ṽ,Ψ)

]
∼
(

Re(Ψ)|z|+ |Re(z)|+ |Ψ||Re(z)|+ |Ψ|2|z|

+ |Re(Ψ)||Ψ||Re(z)|+ |Re(Ψ)||Re(z)|+ |z|2

+ |z||v|+ |Ψ||z|2 + |Ψ||z||v|+ |Re(Ψ)||z|2

+ |Re(Ψ)||z||v|+ |z|3 + |z||v|2
)

= O
(
|z|3 + |z||v|2 + |Ψ||z|2 + |z|2 + |Ψ||z||v|+ |Ψ||z|+ |Ψ|2|z|+ |z||v|+ |Re(z)|

)
.

By Strichartz and Hölder inequalities together with (4.45)–(4.49), we have

‖z‖L2
tL

4
x

+ ‖Re(z)‖L∞t L2
x

. ‖z3‖
L2
tL

4
3
x

+ ‖zv2‖
L

6
5
t L

12
7
x

+ ‖z2‖L1
tL

2
x

+ ‖zv‖L1
tL

2
x

+ ‖Ψz2‖
L2
tL

4
3
x

+ ‖Ψzv‖
L

6
5
t L

12
7
x

+ ‖Ψz‖L1
tL

2
x

+ ‖Ψ2z‖
L2
tL

4
3
x

+ ‖Re(z)‖L1
tL

2
x

. ‖z‖L2
tL

4
x

[
‖z‖2

L∞t L
4
x

+ ‖v‖2
L6
t,x

+ t′
1
2‖z‖L∞t L4

x

+ t′
1
2‖v‖L∞t L4

x
+ ‖Ψ‖L∞t L4

x
‖z‖L∞t L4

x
+ ‖Ψ‖L6

t,x
‖v‖L6

t,x

+ t′
1
2‖Ψ‖L∞t L4

x
+ ‖Ψ‖2

L6
t,x

]
+ t′‖Re(z)‖L∞t L2

x
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. ‖z‖L2
tL

4
x
(η2 + ηt′

1
2 + t′

1
2 ) + t′‖Re(z)‖L∞t L2

x
.

where we omitted the domain [0, t′] × R4 above for the sake of readability. Taking

η sufficiently small and shrinking t′ further if necessary, we obtain

‖z‖L2
tL

4
x([0,t′]×R4) + ‖Re(z)‖L∞t L2

x([0,t′]×R4) = 0,

which proves v = ṽ almost surely on [0, t′]× R4.

By time translation invariance, this argument can be applied to any sufficiently

short time interval, which yields global unconditional uniqueness. This completes

the proof of Theorem 4.1.
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Chapter 5

Global well-posedness of the

periodic Stochastic KdV with

multiplicative noise

In this chapter, we consider the Cauchy problem for the periodic stochastic Korteweg-

de Vries equation (SKdV) with multiplicative noise:

du+ (∂3
xu+ u∂xu)dt = uφdW

u|t=0 = u0 ∈ L2(T)

(x, t) ∈ T× R+, (5.1)

where T = R/(2πZ), u is a real-valued function, and W (t) = ∂B
∂x

is a cylindrical

Wiener process on L2(T). With en(x) = 1√
2π
einx, we can write

W (t) =
∑
n

βn(t)en(x),

where {βn}n≥0 is a family of mutually independent complex-valued Brownian mo-

tions (here we take β0 to be real-valued) in a fixed probability space (Ω,F , P ) asso-

ciated with a filtration {Ft}t≥0 and β−n(t) = βn(t) for n ≥ 1. We normalize βn such

that Var(βn(1)) = 1 for n ≥ 0. The covariance operator φ is a Hilbert-Schmidt op-

erator on L2(T) that maps real-valued functions to real-valued functions. Moreover,

we assume that the noise is homogeneous, i.e. we assume that φ is a convolution

operator. Abusing the notation, we also use φ to denote the kernel of φ, and write
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the Fourier coefficient of φ as φn. These assumptions mean that we have

φf(x) =

∫
T
φ(x− y)f(y)dy =

∞∑
n=−∞

φnf̂(n)en(x), (5.2)

and that φ−n = φn with φ0 ∈ R. Note that this implies that φen = φnen for all

n ∈ Z. The Hilbert-Schmidt assumption implies that the norm

‖φ‖L2(L2(T)) :=

(∑
n∈Z

‖φen‖2
L2(T)

) 1
2

=

(∑
n∈Z

|φn|2
) 1

2

(5.3)

is finite.

In [37], de Bouard-Debussche considered the non-periodic version of the problem

with homogeneous multiplicative noise and proved global well-posedness of (5.1) in

L2(R) and H1(R). More specifically, they proved the result for u0 ∈ Hs(R) when φ

has the convolution kernel in Hs(R) ∩ L1(R) with s = 0 or 1.

There are also several results on SKdV with additive noise:du+ (∂3
xu+ u∂xu)dt = φdW

u(x, 0) = u0(x),

(5.4)

where φ is a bounded linear operator on L2(T). In [39], de Bouard-Debussche-

Tsutsumi showed that (5.4) is locally well-posed when φ is a Hilbert-Schmidt oper-

ator from L2(T) to Hs(T) for s > −1
2
. More recently, the second author [75] proved

local well-posedness of (5.4) even when φ = Id, thus handling the case of the space-

time white noise. See [39] and the references therein for the previous works in the

periodic and non-periodic settings as well as some of its physical background. Also,

see [3], [44], [53]. Note that we often see uxφdW as multiplicative noise in SKdV

rather than uφdW as in (5.1), and one can regard our study of (5.1) as the first step

toward understanding more difficult multiplicative noises such as uxφdW .

Our first goal in this chapter is to show that (5.1) is locally well-posed when

u0 ∈ L2(T) and we take φ to be Hilbert-Schmidt from L2(T) into itself. First, we
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briefly review recent well-posedness results of the periodic (deterministic) KdV:

ut + uxxx + uux = 0

u
∣∣
t=0

= u0,

(x, t) ∈ T× R. (5.5)

In [9], Bourgain introduced a weighted space-time Sobolev space Xs,b whose norm

is given by

‖u‖Xs,b(T×R) =
∥∥〈n〉s〈τ − n3〉bû(n, τ)

∥∥
L2
n,τ (Z×R)

, (5.6)

where 〈 · 〉 = 1 + | · |. He proved local well-posedness of (5.5) in L2(T) via the fixed

point argument, immediately yielding global well-posedness in L2(T) thanks to the

conservation of the L2-norm. Kenig-Ponce-Vega [59] (also see [26]) improved Bour-

gain’s result and established local well-posedness of (5.5) in H−
1
2 (T) by establishing

the bilinear estimate

‖∂x(uv)‖Xs,b−1 . ‖u‖Xs,b‖v‖Xs,b , (5.7)

for s ≥ −1
2

and b = 1
2

under the mean-zero assumption on u and v. Colliander-Keel-

Staffilani-Takaoka-Tao [26] proved the corresponding global well-posedness result in

H−
1
2 (T) via the I-method.

There are also results on (5.5) which exploit the complete integrability of (5.5).

In [10], Bourgain proved global well-posedness of (5.5) in the class M(T) of measures

λ, assuming that its total variation ‖λ‖ is sufficiently small. His proof is based on

the trilinear estimate on the second iteration of the integral formulation of (5.5),

assuming an a priori uniform bound on the Fourier coefficients of the solution u of

the form

sup
n∈Z
|û(n, t)| < C (5.8)

for all t ∈ R. Then, he established the a priori estimate (5.8) using the complete

integrability. More recently, Kappeler-Topalov [57] proved global well-posedness of

(5.5) in H−1(T) via the inverse spectral method. For (5.1), the integrability structure

is destroyed due to the noise, and thus these results are not directly applicable.

We point out that all the nonlinear estimates above were established under the

assumption that the spatial mean is zero for all t ∈ R. Firstly, let us consider

the deterministic KdV (5.5). Recall that the (spatial) mean of a solution u(t) is
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preserved under the flow. Suppose that the mean α0 of the initial condition u0 is

not zero. Then, we can transform KdV with non-zero mean into mean-zero KdV by

a Galilean transformation

u(x, t)→ u(x+ α0t, t)− α0

as in [27]. One can then proceed to use the nonlinear estimates in [9, 10, 26, 57, 59] to

prove well-posedness for mean-zero KdV, which can be converted into well-posedness

of the original non-zero mean with the prescribed mean α0. This was in particular

simple for the deterministic KdV thanks to the conservation of the mean under the

flow.

In [39, 75], a similar argument was employed to reduce SKdV (5.4) with additive

noise to the mean-zero case. The transformation in this case depends not only on

the mean of the initial condition but also on the Brownian motion β0 at the zeroth

frequency since (5.4) does not preserve the mean of the solution. See [39, 75] for

details.

In establishing nonlinear estimates for SKdV (5.1) with multiplicative noise, we

also need to assume the mean-zero condition. It turns out that this is not so simple

due to the multiplicative structure of the noise.

(a) Mean-zero projection: One way to handle this issue is to simply make the

equation mean-zero by introducing the Dirichlet projection onto the non-zero (spa-

tial) frequencies to the noise, i.e. we consider

du+ (∂3
xu+ u∂xu)dt = P 6=0

[
uφdW

]
u(x, 0) = u0(x) ∈ L2(T),

(5.9)

where P 6=0f(x) =
∑

n6=0 f̂(n)en(x). It is easy to verify that (5.9) preserves the mean

of a solution. Suppose that the mean α0 of the initial condition is not zero. We can

define v(x, t) = u(x+ α0t, t)− α0. Then, v satisfies

dv + (∂3
xv + v∂xv)dt = P 6=0

[
vφdŴ

]
+ α0P 6=0φdŴ

v(x, 0) = v0(x) = u0(x)− α0,

(5.10)
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where Ŵ is given by

Ŵ (x, t) := W (x+ α0, t) =
∑
n

βn(t)einα0ten(x). (5.11)

We have introduced additive noise in (5.10). However, note that the mean of a

solution to (5.10) is zero at any time (as long as it exists), since the mean of the

initial condition v0 is zero and (5.10) also preserves the mean of a solution. Once we

prove local well-posedness of (5.10), we establish local well-posedness of (5.9) with

prescribed mean α0.

(b) Stochastic KdV-mean system: We now discuss a different way to handle

the non-zero mean case without introducing an artificial projection as in (a). In

the following, we apply a sequence of transformations to (5.1) and formulate the

mean-zero version of (5.1). Let v1(x, t) = u(x + α0t, t) − α0, where α0 = the mean

of u0. Then, v1 satisfiesdv1 + (∂3
xv1 + v1∂xv1)dt = (v1 + α0)φdŴ

v1(x, 0) = v0 = u0(x)− α0,

(5.12)

where Ŵ (x, t) = W (x + α0t, t) as in (5.11). As before, the mean of the initial

condition v0 is zero. Now, let µ(t) = µ(t, ω;u) denote the mean of v1 at time t. i.e.

µ(t) =
1

2π

∫
T

∫ t

0

(v1(r) + α0)φdŴ (r)dx

=
1

2π

∑
n∈Z

∫ t

0

∫
T
v1(x, r)en(x)dx φne

inα0rdβn(r) +

∫ t

0

α0φ0e0dβ0(r)

=
1

2π

∑
n∈Z

∫ t

0

v̂1(n, r)φne
inα0rdβn(r) +

1√
2π

∫ t

0

α0φ0dβ0(r). (5.13)

Define v2 = v1−µ(t). Note that v̂2(n, t) = v̂1(n, t) for n 6= 0, and that v2 has spatial
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mean zero for all t (as long as it exists) and satisfies

dv2 + (∂3
xv2 + (v2 + µ(t))∂xv2)dt = P 6=0

[
v2φdŴ

]
+ (α0 + µ(t))P 6=0φdŴ

v2(x, 0) = u0(x)− α0.

(5.14)

where P 6=0 is the Dirichlet projection onto the nonzero frequencies. Finally, by

defining v3(x, t) = v2

(
x+

∫ t
0
µ(r)dr, t

)
, we see that v3 has the spatial mean zero for

all t (as long as it exists) and that it satisfies

dv3 + (∂3
xv3 + v3∂xv3)dt = P 6=0

[
v3φdW̃

]
+ (α0 + µ(t))P 6=0φdW̃

v3(x, 0) = u0(x)− α0,

(5.15)

where W̃ is given by

W̃ (x, t) := Ŵ

(
x+

∫ t

0

µ(r)dr, t

)
= β0(t)e0 +

∑
n6=0

1√
2
βn(t)ein(α0t+

∫ t
0 µ(r)dr)en(x).

(5.16)

From (5.13) (5.15) with v1(x, t) = v2(x, t) + µ(t) = v3

(
x −

∫ t
0
µ(r)dr, t

)
+ µ(t), we

reduced (5.1) to a coupled system of mean-zero SKdV and a stochastic differential

equation for the mean of a solution u to (5.1)(SKdV-mean system):

dv + (∂3
xv + v∂xv)dt = P 6=0

[
vφdW̃

]
+ (α0 + µ(t))P 6=0φdW̃

dµ = 1
2π

∑
n6=0 v̂(n, t)φne

in
∫ t
0 α0+µ(r)drdβn(t) + 1√

2π
(α0 + µ(t))φ0dβ0(t)

v(x, 0) = v0 with mean 0, µ(0) = 0.

(5.17)

Note that v has spatial mean 0 (as long as it exists) since v0 has mean 0 and (5.17)

preserves the mean of v. Therefore, we concentrate on studying well-posedness of

(5.17) with mean-zero initial condition v0.

We could have defined v directly as

v(x, t) = u

(
x−

∫ t

0

µ(r)dr, t

)
+ µ(t).

The difference between (5.10) and (5.17) is the presence of µ(t) in the additive noise.
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Recall that u is called a (local-in-time) mild solution to (5.1) if u satisfies

u(t) = U(t)u0 −
1

2

∫ t

0

U(t− t′)∂xu2(t′)dt′ +

∫ t

0

U(t− t′)[u(t′)φdW (t′)] (5.18)

at least for t ∈ [0, T ] for some T > 0, where U(t) = e−t∂
3
x . Similarly, the mild

formulation of (5.17) is given by

v(t) = U(t)v0 −
1

2

∫ t

0

U(t− t′)∂xv2(t′)dt′ + Φ1(v)(t) + Φ2(µ, α0)(t) (5.19)

µ(t) =
∑
n6=0

∫ t

0

v̂(n, t′)φne
in

∫ t′
0 µ(r)drdβn(t′) +

∫ t

0

(α0 + µ(t′))φ0dβ0(t′). (5.20)

where the stochastic convolutions Φ1 and Φ2 are given by

Φ1(t) = Φ1(v)(t) :=

∫ t

0

U(t− t′)P6=0

[
v(t′)φdW̃ (t′)

]
(5.21)

Φ2(t) = Φ2(µ, α0)(t) :=

∫ t

0

U(t− t′)(µ(t′) + α0)P 6=0φdW̃ (5.22)

with W̃ as in (5.16).

Now, let us briefly describe how we construct a (local-in-time) mild solution (v, µ)

to (5.17). Due to the presence of the multiplicative noise, we need to introduce

a truncation to (5.19)-(5.20) as in de Bouard-Debussche [36, 37]. In establishing

estimates in Xs,b defined in (5.6), we need to take the temporal regularity b to

be less than 1
2

due to the regularity of the stochastic convolutions Φ1(t) and Φ2(t)

(which have the same temporal regularity as the Brownian motion.) This introduces

additional difficulty in nonlinear analysis for estimating the second term on the right-

hand side of (5.19), since the bilinear estimate (5.7) does not hold for any s ∈ R

if b 6= 1
2
. In order to overcome this difficulty, we follow the argument in [10, 75]

and perform a nonlinear analysis on the second iteration in Xs,b with s = 0 and

b < 1
2
. The high regularity s = 0 allows us to proceed without assuming complete

integrability and the a priori bound (5.8). After establishing local well-posedness,

we can use an a priori L2-bound to extend local-in-time solutions (v, µ) to global

ones.
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Theorem 1. Let φ be as in (5.2) such that φ is Hilbert-Schmidt from L2(T) into

itself. Given mean-zero v0 ∈ L2(T) and α0 ∈ R, the coupled system (5.17) is globally

well-posed, in the sense that, given any time T > 0, there exists a unique pair (v, µ)

in the space

L2
(
Ω;C([0,∞);L2(T)

)
× L2

(
Ω;C([0,∞);R)

)
satisfying (5.17) on [0,∞) almost surely.

Given a solution (v,m) of (5.17), a solution u of (5.1) can be recovered via

u(x, t) = v

(
x− α0t−

∫ t

0

µ(r)dr, t

)
+ α0 + µ(t). (5.23)

Hence, we obtain the following theorem as a corollary to Theorem 1.

Theorem 2. Let φ be as in (5.2) such that φ is Hilbert-Schmidt from L2(T) into it-

self. The stochastic KdV (5.1) with multiplicative space-time white noise is globally

well-posed (with the prescribed mean on u0).

Remark 5.1. Technically, the uniqueness of (v, µ) in Theorem 1 holds in the smaller

space

L2
(
Ω;C([0,∞);L2(T) ∩X0, 1

2
−δ

T

)
× L2

(
Ω;C([0,∞);R)

)
for some small δ > 0, where X

0, 1
2
−δ

T is a time restricted Fourier restriction norm

space (see (5.6) above and Section 5.1 below).

Finally, we verify that the result of Tsutsumi [84] on the stabilization by noise

continues to hold in our low regularity setting. Specifically, it states that the mass

of a solution almost surely decays to zero as time goes to infinity.

Theorem 3. Let φ and u0 satisfy the same assumptions as in Theorem 2. Suppose

further that there exists a constant α > 1
2
‖φ‖HSt(L2

x) such that for all v ∈ L2(T), one

has

∞∑
k=−∞

[ ∫
T

Re
(
φek(x)

)
|v(x)|2dx

]2

≥ α2‖v‖2
L2(T). (5.24)

Then the solution u of the stochastic KdV (5.1) given by Theorem 2 decays in mass,
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that is, as t→∞, we have

‖u(t)‖L2
x(T) → 0

almost surely.

This chapter is organized as follows: In Section 2, we introduce some notations.

In Section 3, we introduce the functional framework we will be using and state

deterministic linear and bilinear estimates from [74]. In Section 4, we discuss the

second iteration and the truncated version of the mean-zero stochastic KdV coupled

system. We then prove the required estimates to analyse the modified systems in

Section 5 and 6. In section 7, we gather everything and give a proof of Theorem 1.

Finally, we briefly prove Theorem 3 in Section 8.

5.1 Function spaces

The main function space we use throughout this chapter is the Fourier restriction

norm spaces Xs,b = Xs,b(T × R) (for s, b ∈ R) adapted to the KdV equation as

mentioned and defined in (5.6). Equivalently, the Xs,b-norm can be written in its

interaction representation form:

‖u‖Xs,b = ‖〈n〉s〈τ〉bFt,x(U(−t)u(t))(n, τ)‖`2nL2
τ (R×Z) , (5.25)

where U(t) = eit∂
3
x is the linear KdV propagator.

Given an interval I ⊆ R, we define the local-in-time version Xs,b
I on I, by

‖u‖Xs,b
I

= inf
{
‖ũ‖Xs,b(T×R) : ũ|I = u

}
.

Most of the time, the interval I is given by [0, T ] for some T > 0. In this case, we

simply use the notation Xs,b
T := Xs,b

[0,T ].

We now state some basic properties of these spaces. One can find the proofs of

these facts in, for example, [82]. Firstly, we have the following continuous embed-
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dings

Xs,b ↪→ C(R;Hs
x(Td)) , for b >

1

2
, (5.26)

Xs′,b′ ↪→ Xs,b , for s′ ≥ s and b′ ≥ b. (5.27)

We have the duality relation

‖u‖Xs,b = sup
‖w‖

X−s,−b≤1

∣∣∣∣∫
R×Td

u(t, x)w(t, x) dt dx

∣∣∣∣ . (5.28)

For s ≥ 0 and 0 ≤ b < 1
2
, we have the following relation between Xs,b and its time

restricted version:

‖u‖Xs,b
I
∼ ‖1I(t)u(t)‖Xs,b , (5.29)

see for example [37, Lemma 2.1] for a proof.

By (5.25), we have the following linear estimate.

Lemma 5.2. Let s, b ∈ R and T > 0. For any f ∈ Hs, we have

‖U(t)f‖Xs,b
T

. ‖f‖Hs . (5.30)

By localizing in time, we can gain a smallness factor, as per lemma below.

Lemma 5.3 (Time localisation property). Let s ∈ R and −1
2
< b′ < b < 1

2
. For any

T ∈ (0, 1), we have

‖u‖
Xs,b′
T

.b,b′ T
b−b′‖u‖Xs,b

T
.

The following refinement of the L4
t,x-Strichartz inequality by Bourgain [9] is im-

portant to us. For a textbook treatment, see for example [41][Theorem 3.18]

Lemma 5.4 (L4
t,x-Strichartz inequality). For any space-time function u, we have

‖u‖Xs,b . ‖u‖Xs,b .
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5.2 Second iteration and truncation

We now go over the details of our strategy of solving the Stochastic KdV-mean sys-

tem discussed previously. As mentioned before, we work with the mild formulations

(5.19) and (5.20). Denoting by N (·, ·) the bilinear form

N (u1, u2)(t) :=

∫ t

0

U(t− t′)∂x(u1u2)(t′)dt′, (5.31)

(5.19) then becomes

v(t) = U(t)v0 −
1

2
N (v, v)(t) + Φ1(v)(t) + Φ2(µ, α0)(t) (5.32)

A first approach is to attempt a contraction argument in a suitable subspace of

L2
(
Ω;X0,b

T

)
×L2(Ω;L2([0, T ])) for some short time T . The presence of the stochastic

convolutions require us to set b = 1
2
− δ for a small δ > 0. This means we need to

control each of the above term in L2
(
Ω, X

0, 1
2
−δ

T

)
-norm. In the following analysis, we

shall assume that all space-time functions u have spatial mean zero for all t, that is,

û(0, t) = 0 for all t.

We now consider the X
0, 1

2
−δ

T -norm of the nonlinear term (5.31). By taking the

spatial Fourier transform of (5.31) and the temporal Fourier transform of ∂x(u1u2),

we may rewrite

N (u1, u2)(x, t) = −
∑

n∈Z\{0}

neinx
∫ ∞
−∞

eitτ − eitn3

τ − n3
û1u2(n, τ)dτ

=: I(u1, u2)(x, t) + II(u1, u2)(x, t).

(5.33)

In the following, we let (n, τ), (n1, τ1), (n2, τ2) denote the space-time Fourier variables

of N (u1, u2), u1 and u2 in (5.31) respectively. We also use the notation

k0 := 〈τ − n3〉 and kj := 〈τj − n3
j〉.

Recall the following observation made in Bourgain [9]:

n3 − n3
1 − n3

2 = 3nn1n2, for n = n1 + n2, (5.34)
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which in turn implies that

MAX := max(k0, k1, k2) & 〈nn1n2〉. (5.35)

We define the sets Aj for j ∈ {0, 1, 2} by

Aj := {(n, n1, n2, τ, τ1, τ2) ∈ Z3 × R3 : kj = MAX}, (5.36)

Denote by Ij(u1, u2), IIj(u1, u2) andNj(u1, u2) the contribution of I(u1, u2), II(u1, u2)

and N (u1, u2) respectively on Aj. Then

N (u1, u2) =
2∑
j=0

Nj(u1, u2) =
2∑
j=0

Ij(u1, u2) + IIj(u1, u2).

The term ‖N0(u1, u2)‖
X0, 12−δ,T

can be controlled via the standard bilinear estimate

as in [9] and [59] (see Lemma 5.6 below). However, we cannot do the same for

N1(u1, u2) (and symmetrically, N2(u1, u2)). Indeed, the bilinear estimate is known

to fail for temporal regularity below 1
2

for the contribution N1(u1, u2) (see [60]).

Instead, we will consider a second iteration of (5.19), more specifically, we will

substitute in (5.19) for the first argument of N1 (respectively, the second argument

of N2).

Note that the space-time Fourier transforms of U(t)v0 and II(v, v) are distri-

butions supported on {τ = n3}. On the other hand, we have kj = MAX &

〈nn1n2〉 � 1 on Aj, hence the terms N1(U(t)v0, v), N1(II(v, v), v), N2(v, U(t)v0)

and N2(v, II(v, v)) vanish and do not appear in (5.37). This leads us to consider the

second iterated SKdV-mean system:

v(t) =U(t)v0 −
1

2
N0(v, v)(t) + Φ1(v)(t) + Φ2(µ, α0)(t)

− 1

2
N1

(
I(v, v), v

)
(t) +N1

(
Φ1(v) + Φ2(µ, α0), v

)
(t)

− 1

2
N2

(
v, I(v, v)

)
(t) +N2

(
v,Φ1(v) + Φ2(µ, α0)

)
(t).

(5.37)

µ(t) =
∑
n6=0

∫ t

0

v̂(n, t′)φne
in

∫ t′
0 µ(r)drdβn(t′) +

∫ t

0

(α0 + µ(t′))φ0dβ0(t′). (5.38)
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Meanwhile, we consider the following truncation to the equation in order to handle

the multiplicative noise. Let η : R → [0, 1] be a smooth function supported on

[−1, 2] such that η(t) = 1 for t ∈ [0, 1]. Given R > 0, and a mean-zero space-time

function u, we define the following notation:

η
R

(t) := η

(
t

R

)

η̃
R

(u)(t) := η
R

(
‖u‖

X
0, 12−δ
t

)
,

T
R
u := η

R
(u)u.

(5.39)

The following lemma from [37] relates the truncation T
R

and Xs,b-norms.

Lemma 5.5 (Lemma 2.2 in [37]). Let R > 0. There exist constants C1(R) > 0 and

C2 > 0 (the latter does not depend on R) such that for any u, v ∈ X0,b
T , one has

∥∥T
R
v
∥∥
X0,b
T
≤ min

{
C1(R), C2‖v‖

X
0, 12−δ
T

}
(5.40)

∥∥T
R
v − T

R
u
∥∥
X

0, 12−δ
T

≤ C2

∥∥v − u∥∥
X

0, 12−δ
T

(5.41)

Note that (5.41) is not explicitly stated and proved in [37] but the proof follows

the same argument as for (5.40). See also [20, Lemma 4.3] for the same lemma in

the context of stochastic nonlinear Schrödinger equations.

We now turn back to (5.19)–(5.20) and introduce T
R

to various places. This

leads us to consider the following R-truncated SKdV mean-zero system:

v(t) =U(t)v0 −
1

2

[
N0(T

R
v, v) +N1(v, T

R
v) +N2(T

R
v, v)

]
(t)

+ T
R

Φ1(T
R
v)(t) + T

R
Φ2(µ, α0)(t)

(5.42)

µ(t) =
∑
n6=0

∫ t

0

v̂(n, t′)φne
in

∫ t′
0 µ(r)drdβn(t′) +

∫ t

0

(α0 + µ(t′))φ0dβ0(t′). (5.43)

If we do the same as before and consider its second iteration, we arrive at the
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following second iterated R-truncated SKdV-mean system:

v(t) = U(t)v0 −
1

2
N0

(
v, T

R
v
)
(t) + T

R
Φ1(T

R
v)(t) + T

R
Φ2(µ, α0)(t)

− 1

2
N1

(
I(v, T

R
v) + 1[0,T ]TR

(
Φ1(T

R
v)
)

+ 1[0,T ]TR
(
Φ2(µ, α0)

)
, T

R
v

)
(t)

− 1

2
N2

(
T
R
v, I(T

R
v, v) + 1[0,T ]TR

(
Φ1(T

R
v)
)

+ 1[0,T ]TR
(
Φ2(µ, α0)

))
(t)

(5.44)

µ(t) =
∑
n6=0

∫ t

0

v̂(n, t′)φne
in

∫ t′
0 µ(r)drdβn(t′) +

∫ t

0

(α0 + µ(t′))φ0dβ0(t′). (5.45)

The systems (5.19)–(5.20) and (5.37)–(5.38) are equivalent whenever t ∈ [0, T ∧ τ
R

],

where τ
R

= τ
R

(v, α0, µ) is the stopping time

τ
R

:= inf
{
t > 0 :‖v‖

X
0, 12−δ
t

∨ ‖Φ1(T
R
v)‖

X
0, 12−δ
t

∨ ‖Φ2(α0, µ)‖
X

0, 12−δ
t

≥ R
}
. (5.46)

Our strategy of proving Theorem 1 shall be as follows. We first consider smooth

approximations {uN0 }N∈2Z of the initial data u0 ∈ L2(T). By a high regularity global

well-posedness result of multiplicative SKdV as stated in Tsutsumi [84], there ex-

ist global solutions uN to the multiplicative SKdV. This correspond to solutions

(vN , µN) of the SKdV-mean system, and by considering second iteration and trun-

cation discussed, we are able to perform Xs,b-analysis to show that (vN , µN) is

Cauchy in some Xs,b topology. We then proceed to show that the limit (v, µ) is

indeed a solution to the SKdV-mean system. Meanwhile, one can also perform a

contraction on the second iterated R-truncated SKdV-mean system (5.44)–(5.45),

and this secures the uniqueness of our solution (v, µ). Finally, we establish the

continuity-in-time of v by analysing each term in the mild formulation separately.

This turns out to be not so trivial since some of the terms do not necessarily lie in

X0,b with b > 1
2
, which prevents us from directly applying the embedding (5.26).
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5.3 Deterministic estimates

In this section, we state and prove various multilinear estimates of the nonlinear

terms necessary for our analysis.

Lemma 5.6. Let u1, u2 be space-time functions with spatial mean 0. Let δ > 0.

Then

‖N0(u1, u2)‖
X0, 12−δ

. ‖u1‖X0, 13
‖u2‖X0, 13

.

Proof. Recall that we have k0 = MAX. This implies that k0 � 1 and we may

replace |τ − n3| by k0. We first note that II0 is a free solution, i.e. II0(t) = U(t)f

where

f̂(n) =

∫
k0=MAX

n

τ − n3
û1u2(n, τ)dτ .

Hence by Lemma 5.2 and duality, there exists d ∈ `2(Z) with ‖d‖`2n ≤ 1 such that

for any b ∈ R,

‖II0(u1, u2)‖X0,b . ‖f‖`2n

.
∑

n,n1∈Z\{0}
n1+n2=n

∫
τ1+τ2=τ

〈n〉
k0

d(n) û1(n1, τ1) û2(n2, τ2) dτ1 dτ.

By using 〈n〉 . 〈n1〉〈n2〉 and (5.34), we have

〈n〉
k0

.
(〈n〉〈n1〉〈n2〉)

1
2

(〈n〉〈n1〉〈n2〉)1−4δk2δ
1 k

2δ
2

.
1

〈n〉 1
2
−4δ〈n1〉

1
2
−4δ〈n2〉

1
2
−4δk2δ

1 k
2δ
2

Hence the above is controlled by

∑
n,n1∈Z\{0}
n1+n2=n

d(n)

〈n〉 1
2
−4δ

[ ∫
û1(n1, τ1)

〈n〉 1
2
−4δk2δ

1

dτ1

] [ ∫
û2(n2, τ2)

〈n〉 1
2
−4δk2δ

2

dτ2

]
=:
∑
n∈Z

g0(n) g1 ∗ g2(n).

By Parseval Theorem, Hölder and Hausdorff-Young inequalities, we have

∫
ĝ0(−x)ĝ1(x)ĝ2(x)dx ≤

2∏
j=0

‖ĝj‖L3
x
≤

2∏
j=0

‖ĝj‖
`

3
2
n
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≤ ‖〈n〉−( 1
2
−4δ)‖3

`6n
‖d‖`2n

2∏
j=1

∥∥∥∥∫ 〈τ − n3〉 1
2
−δûj(n, τ)

〈τ − n3〉 1
2

+δ
dτ

∥∥∥∥2

`2n

. ‖u1‖X0, 12−δ
‖u2‖X0, 12−δ

.

We now turn to bounding I0. By duality, there exists d ∈ L2
τ,n with ‖d‖L2

τ,n
≤ 1

such that

‖I0(u1, u2)‖
X0, 12−δ

.
∑

n,n1∈Z\{0}
n=n1+n2

〈n〉

k
1
2

+δ

0

∫ ∞
−∞

û1(n1, τ1)û2(n2, τ2)d(n, τ)dτ1dτ

.
∑

n,n1∈Z\{0}
n=n1+n2

〈n〉 1
2

+δ〈n1〉
1
2
−δ〈n2〉

1
2
−δ

(〈nn1n2〉)
1
2

+δ

∫ ∞
−∞

û1(n1, τ1)û2(n2, τ2)d(n, τ)dτ1dτ

.
∑

n,n1∈Z\{0}
n=n1+n2

∫ ∞
−∞

û1(n1, τ1)û2(n2, τ2)d(n, τ)dτ1dτ

≤ ‖d‖L2
n,τ
‖u1‖L4

t,x
‖u2‖L4

t,x

. ‖u1‖X0, 13
‖u2‖X0, 13

.

Putting everything together gives us

‖N0(u1, u2)‖
X0, 12−δ

. ‖u1‖X0, 13
‖u2‖X0, 13

.

We now discuss the contributions coming fromN1 (and symmetrically, N2). Note

that the estimates allow us to put N1 in the larger space X0, 1
2

+δ.

Lemma 5.7. Let u, v, w, z be space-time functions with spatial mean 0. Let δ > 0.

Then for T > 0 sufficiently small, the following estimates hold:

‖N1(z, w)‖
X

0, 12 +δ

T

. ‖z‖
X

0, 12
T

‖w‖
X

0, 13
T

(5.47)

‖N1(I(u, v), w)‖
X

0, 12 +δ

T

. ‖u‖
X0, 13 ,T

‖v‖
X

0, 13
T

‖w‖
X

0, 13
T

. (5.48)
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Proof. Suppose first that k1 ∼ 1, then k1 ∼ kb1 for any b ∈ R. In particular, we have

‖N1(z, w)‖
X

0, 12 +δ

T

∼ ‖N1(z, w)‖
X

0, 12−2δ

T

. T δ‖N1(z, w)‖
X

0, 12−δ
T

. T δ‖N1(z, w)‖
X

0, 12 +δ

T

.

(5.49)

Now suppose that k1 � 1. By duality, there exists d ∈ L2
n,τ with ‖d‖L2

n,τ
≤ 1 such

that ‖I1(z, w)‖
X0, 12 +δ and ‖II1(z, w)‖

X0, 12 +δ are controlled by

.
∑

n,n1∈Z\{0}
n=n1+n2

∫
τ=τ1+τ2

〈n〉

k
1
2
−δ

0

d(n, τ)ẑ(n1, τ1)ŵ(n2, τ2)dτ1dτ. (5.50)

Using 〈n〉 . 〈n〉〈nn1n2〉−
1
2k

1
2
1 . k

1
2
1 and a L4

t,xL
2
t,xL

4
t,x Hölder inequality, the above is

.
∑

n,n1∈Z\{0}
n=n1+n2

∫
τ=τ1+τ2

d(n, τ)

k
1
2
−δ

0

k
1
2
1 ẑ(n1, τ1)ŵ(n2, τ2)dτ1dτ.

. ‖z‖
X0, 12
‖w‖

X0, 13
.

By (5.49) and (5.48), the estimate (5.47) holds for a sufficiently small T > 0.

We now turn to (5.48). We first note that (5.49) and (5.50) continue to hold

with z = I(u, v). In particular, there exists d ∈ L2
n,τ with ‖d‖L2

n,τ
≤ 1 such that

‖I1(I(u, u), u)‖
X0, 12 +δ and ‖II1(I(u, u), u3)‖

X0, 12 +δ are controlled by

.
∑

n,n1,n3∈Z\{0}
n=n1+n2
n1=n3+n4

∫
τ=τ1+τ2
τ1=τ3+τ4

〈n〉〈n1〉

k
1
2
−δ

0 k1

ŵ(n2, τ2)û(n3, τ3)v̂(n4, τ4)d(n, τ)dτ1dτ3dτ

.
∑

n,n1,n3∈Z\{0}
n=n1+n2
n1=n3+n4

∫
τ=τ1+τ2
τ1=τ3+τ4

d(n, τ)

k
1
2
−δ

0

ŵ(n2, τ2)

〈n2〉
û(n3, τ3)v̂(n4, τ4)dτ1dτ3dτ.

We may thus conclude the proof by a L4
t,xL

4
t,xL

4
t,xL

4
t,x Hölder inequality.
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5.4 Stochastic estimates

In this section, we present several estimates on the stochastic convolutions Φ1(v)

and Φ2(µ, α0) defined in (5.21)-(5.22). We recall that φ is a convolution operator

(see (5.2)) that is Hilbert-Schimdt from L2(T) into itself. The objects of study here

are the stochastic convolutions

Φ1(t) = Φ1(v)(t) :=

∫ t

0

U(t− t′)P 6=0

[
v(t′)φdW̃ (t′)

]
(5.51)

Φ2(t) = Φ2(µ, α0)(t) :=

∫ t

0

U(t− t′)(µ(t′) + α0)P 6=0φdW̃ (5.52)

given in (5.21) and (5.22), as well as the mean

M(t) = M(µ, v, α0)(t)

:=
∑
n6=0

∫ t

0

v̂(n, t′)φne
in

∫ t′
0 µ(r)drdβn(t′) +

∫ t

0

(α0 + µ(t′))φ0dβ0(t′)

(5.53)

We assume that v, v1, v2 ∈ Lγ(Ω;X0, 1
2
−δ,T ) and µ, µ1, µ2 ∈ Lγ(Ω;L2([0, T ])) for some

γ ∈ [2,∞), δ > 0 and T > 0.

Lemma 5.8. There exists θ > 0 such that the following estimates hold:

‖Φ1(v)‖
Lγ(Ω,X

0, 12−δ
T )

. T θ‖φ‖L2(L2)‖v‖Lγ(Ω,X0,0
T ) (5.54)

‖Φ1(v2)− Φ1(v1)‖
Lγ(Ω,X

0, 12−δ
T )

. T θ‖φ‖L2(L2)‖v2 − v1‖Lγ(Ω,X0,0
T ) (5.55)

‖Φ2(µ, α0)‖
Lγ(Ω,X

0, 12−δ
T )

. T θ‖φ‖L2(L2)

(
‖µ‖Lγ(Ω,L2([0,T ])) + T

1
2 |α0|

)
(5.56)

‖Φ2(µ2, α0)− Φ2(µ1, α0)‖
Lγ(Ω,X

0, 12−δ
T )

. T θ‖φ‖L2(L2)‖µ2 − µ1‖Lγ(Ω,L2([0,T ])). (5.57)

Proof. We only prove (5.54) here, since (5.55) follows from (5.54) by the linearity

of Φ1 as a function of v, and the other two estimates follow from similar arguments.
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Let g(t) = 1[0,T ](t)U(−t)Φ1(t). Then by stochastic Fubini theorem,

ĝ(n, τ) ∼
∑

k∈Z\{0}

∫ T

0

e−itτ
∫ t

0

eit
′n3 ̂v(t′)φek(n)einα0t′dβk(t

′) dt

=
∑

k∈Z\{0}

∫ T

0

(∫ T

t′
e−itτdt

)
eit
′n3

φkv̂(n− k, t′)einα0t′dβk(t
′).

Hence by Burkholder–Davis–Gundy inequality, we have

‖Φ1(v)‖
Lγ(Ω,X

0, 12−δ
T )

∼ ‖〈τ〉
1
2
−δ ĝ(n, τ)‖Lγ(Ω,L2

n,τ )

.

∥∥∥∥∥
( ∑

n∈Z
k∈Z\{0}

∫ ∞
∞
〈τ〉1−2δ

∣∣∣∣ ∫ T

t′
e−itτdt

∣∣∣∣2 ∫ T

0

|φkv̂(n− k, t′)|2dt′ dτ

) 1
2
∥∥∥∥∥
Lγ(Ω)

. (T + T 2)
1
2

(∫ ∞
−∞
〈τ〉−1−2δdτ

) 1
2

‖φ‖L2(L2)‖v‖Lγ(Ω,X0,0,T )

. (T + T 2)
1
2‖φ‖L2(L2)‖v‖Lγ(Ω,X0,0

T )

Remark 5.9. Lemma 5.8 holds for the higher regularity s > 0 as well.

We now present some estimates on the mean M(m, v, α0).

Lemma 5.10. There exists θ > 0 such that the following estimates hold:

‖M(µ, v, α0)‖Lγ(Ω;L∞([0,T ]))

. ‖φ‖HSt(L2
x)

(
T θα0 + T θ‖µ‖L2(Ω;L∞([0,T ])) + ‖v‖L2(Ω;X0,0

T )

)
‖M(µ2, v2, α0)−M(m1, v1, α0)‖Lγ(Ω;L∞([0,T ]))

. ‖φ‖HSt(L2
x)

(
T θ‖µ2 − µ1‖L2(Ω;L∞([0,T ])) + ‖v2 − v1‖L2(Ω;X0,0

T )

)
.

Proof. By Doob submartingale inequality and Ito isometry, we have∥∥∥∥∫ t

0

(α0 + µ(t′))φ0dβ0(t′)

∥∥∥∥
Lγ(Ω;L∞([0,T ]))

.

∥∥∥∥∫ T

0

(α0 + µ(t′))φ0dβ0(t′)

∥∥∥∥
Lγ(Ω)
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.

∥∥∥∥∫ T

0

(α0 + µ(t′))φ0dβ0(t′)

∥∥∥∥
L2(Ω)

= |φ0|
(∫ T

0

E
[
(α0 + µ(t′))2

]
dt′
) 1

2

. T
1
2φ0α0 + |φ0|‖µ‖L2(Ω;L2([0,T ]))

≤ T
1
2φ0α0 + T

1
2 |φ0|‖µ‖L2(Ω;L∞([0,T ])).

In the same way, the first contribution of M is estimated as follows:∥∥∥∥∑
n6=0

∫ t

0

v̂(n, t′)φne
in

∫ t′
0 µ(r)drdβn(t′)

∥∥∥∥
Lγ(Ω;L∞([0,T ]))

.

∥∥∥∥∑
n6=0

∫ T

0

v̂(n, t′)φne
in

∫ t′
0 µ(r)drdβn(t′)

∥∥∥∥
L2(Ω)

=
√

2

(∑
n6=0

∫ T

0

E
[
|v̂(n, t′)|2

]
|φn|2dt′

) 1
2

≤
√

2 sup
n
|φn|‖v‖L2(Ω;X0,0

T )

The difference estimate follows from a similar computation.

Finally, we turn to the nonlinearity N1 where one of the entries is a stochastic

convolution. We first consider the following set; given n1 ∈ Z, define

Ω(n1) := {η ∈ R : η = −3nn1n2 + o(〈nn1n2〉
1

100 ) for some n ∈ Z with n = n1 + n2}.

(5.58)

We will need the following lemma from [26, (7.50) and Lemma 7.4]:

Lemma 5.11. For any n1 ∈ Z \ {0}, we have

∫
〈τ1 − n3

1〉−1
1Ω(n1)(τ1 − n3

1)dτ1 . 1. (5.59)

Lemma 5.12. Let T > 0 and let u, v be space-time functions with spatial mean 0.

Then

∥∥N1

(
u, v
)∥∥

X
0, 12 +δ

T

.

(
‖u‖

X
0, 12−δ
T

+ ‖1Ω(n1)(τ1 − n3
1)k

1
2
1 û‖L2

n1,τ1

)
‖v‖

X
0, 12−δ
T

. (5.60)
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Proof. We are required to control the moments of

∑
n,n1∈Z\{0}
n=n1+n2

∫
τ=τ1+τ2

〈n〉

k
1
2
−δ

0

d(n, τ)û(n1, τ1)v̂(n2, τ2)dτ1dτ. (5.61)

We split into two cases:

• Case (i): max{k0, k2} & 〈nn1n2〉
1

100 . Rewriting (5.61) gives

∑
n,n1∈Z\{0}
n=n1+n2

∫
τ=τ1+τ2

〈n〉

(k0k2)200δk
1
2
−δ

1

d(n, τ)

k
1
2
−201δ

0

[
k

1
2
−δ

1 ŵ(n1, τ1)
][
k200δ

2
̂̃v(n2, τ2)

]
dτ1dτ.

In this region,

〈n〉

(k0k2)200δk
1
2
−δ

1

.
〈n1n2〉

1
2

+δ〈n〉 1
2
−δ

〈nn1n2〉2δ〈nn1n2〉
1
2
−δ

. 1.

By an L4
t,xL

2
t,xL

4
t,x-Hölder inequality and Lemma 5.3, there exists θ > 0 such that

(5.61) . ‖u‖
X

0, 12−δ
T

‖v‖
X

0, 13 +200δ

T

. T θ‖u‖
X

0, 12−δ
T

‖v‖
X

0, 12−δ
T

• Case (ii): max{k0, k2} � 〈nn1n2〉
1

100 . Then τ1 − n3
1 ∈ Ω(n1). By using

〈n〉

k
1
2
1

.
〈n〉 1

2 〈n1n2〉
1
2

〈nn1n2〉
1
2

. 1,

and an L4
t,xL

2
t,xL

4
t,x-Hölder inequality and Lemma 5.3, we have

(5.61) .
∑

n,n1∈Z\{0}
n=n1+n2

∫
τ=τ1+τ2

d(n, τ)

k
1
2
−δ

0

[
1Ω(n1)(τ1 − n3

1)k
1
2
1 û(n1, τ1)

]
v̂(n2, τ2)dτ1dτ.

(5.62)

. ‖1Ω(n1)(τ1 − n3
1)k

1
2
1 û‖L2

n1,τ1
‖v‖

X
0, 12−δ
T

(5.63)

This concludes the proof.

Lemma 5.13. Let T > 0 and let u, v be space-time functions with spatial mean 0.
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There exist constants θ, C(R) > 0 such that

∥∥N1

(
1[0,T ]TR

(
Φ1(T

R
u)
)
, T

R
v
)∥∥

Lγ(Ω;X
0, 12−δ
T )

≤ T θC(R) min
{
‖φ‖L2(L2)‖u‖Lγ(Ω;X0,0

T ), ‖v‖Lγ(Ω;X0, 12−δ,T )

} (5.64)

∥∥N1

(
1[0,T ]TR

(
Φ2(µ, α0)

)
, T

R
v
)∥∥

Lγ(Ω;X
0, 12−δ
T )

≤ T θC(R) min
{
‖φ‖L2(L2)

(
‖µ‖Lγ(Ω;L2([0,T ])) + |α0|

)
, ‖v‖

Lγ(Ω;X0, 12−δ,T )

}
(5.65)

Proof. We only prove (5.64) since (5.65) is similar. We apply Lemma 5.58 to see

that the X
0, 1

2
−δ

T -norm is bounded by

(
‖T

R
Φ1(u)‖

X
0, 12−δ
T

+ ‖1Ω(n1)(τ1 − n3
1)k

1
2
1 Ft,x(TRΦ1(T

R
u))‖L2

n1,τ1

)
‖T

R
v‖

X
0, 12−δ
T

We now take Lγ(Ω)-norm of the above expression and treat the two terms separately.

For the first term, (5.64) is obtained by alternately using the first bound in (5.40)

to control one factor by C(R) and using the second bound in (5.40) to control the

other factor, and additionally using (5.54) to bound ‖Φ1(u)‖
X

0, 12−δ
T

.

For the second term, we use Hölder Inequality to get

‖1Ω(n1)(τ1 − n3
1)k

1
2
1 Ft,x(TRΦ1(T

R
u))‖Lγ1 (Ω;L2

n1,τ1
)‖TRv‖

Lγ2 (Ω;X
0, 12−δ
T )

. (5.66)

where γ < γ1, γ2 < ∞ satisfy 1
γ1

+ 1
γ2

= 1
γ
. By Burkholder-Davis-Gundy inequality

and Lemma 5.11,

∥∥1Ω(n1)(τ1 − n3
1)k

1
2
1 Ft,x(TRΦ1(T

R
u))
∥∥
Lγ1 (Ω;L2

n1,τ1
)

.

[
E
( ∑
k,n1∈Z

∫ ∞
−∞

k−1
1 1Ω(n1)(τ1 − n3

1)dτ1

∫ T

0

|T̂
R
u(n1 − k, t′)φk|2dt′

) γ
2
] 1
γ1

. ‖φ‖L2(L2
x)‖TRu‖Lγ1 (Ω;X0,0

T ). (5.67)

For the first bound in (5.64), we set γ1 = γ and γ2 = ∞, and simply bound
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‖T
R
v‖

X
0, 12−δ
T

by C(R) and discard the cutoff η
T
(u) in (5.67). To get the second

bound, we set γ1 = γ(γ+ε)
ε

and γ2 = γ + ε. Then (5.66) is bounded by

‖T
R
u‖

L
γ(γ+ε)

ε (Ω;X0, 12−δ)
‖T

R
v‖

Lγ+ε(Ω;X0, 12−δ)
≤ C1(R)1+ ε

γ+εC
γ
γ+ε

2 ‖v‖
γ
γ+ε

Lγ(Ω;X0, 12−δ)
,

where C1(R) and C2 are as in Lemma 5.5. Letting ε→ 0 concludes the proof.

We end this section with some probabilistic a priori bounds on solutions. Firstly

we have the following a priori bound on the mass of solutions of SKdV.

Lemma 5.14. Let T > 0. Suppose that u ∈ C([0, τ ];L2(T)) is a solution of the

Stochastic KdV (5.1) with initial data u0 ∈ L2(T), where τ is a stopping time. Then

for any γ ≥ 2, there exists a constant C1 = C1(γ, φ, T, u0) such that

E
[

sup
0≤t≤τ∧T

‖u‖γL2(T)

]
≤ C1. (5.68)

Moreover, if (v, µ) is the solution to the SKdV mean-system (5.19)–(5.20) with

subscribed mean α0, then there exists another constant C2 = C2(α0, γ, φ, T, u0) such

that

E
[

sup
0≤t≤τ∧T

|µ(t)|γ
]

+ E
[

sup
0≤t≤τ∧T

‖v‖γL2(T)

]
≤ C2. (5.69)

Proof. The proof of (5.68) follows the exact same argument as in [37][Lemma 3.1]

by apply Itô’s Formula on (5.1) and bounding each term. Now, let (v, µ) be the

solution to the SKdV mean-system (5.19)–(5.20) with subscribed mean α0. Then

u(x, t) = v

(
x− α0t−

∫ t

0

µ(r)dr, t

)
+ α0 + µ(t).

Now, we have

‖v‖L2
x
≤
(∫

T

∣∣∣v(x− µ0t−
∫ t

0

µ(r)dr, t
)

+ α0 + µ(t)
∣∣∣2dx) 1

2

+ α0 + µ(t)

= ‖u‖L2
x

+ α0 + µ(t).

(5.70)
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By Lemma 5.10, for any 0 ≤ t ≤ τ ∧ T , we have

E
[

sup
0≤t≤τ∧T

|µ(t)|γ
]
. ‖φ‖HSt(L2

x)

(
T θE

[
sup

0≤t≤τ∧T
|µ(t)|2

]
+ E

[
‖v‖2

X0,0
τ∧T

])
.

Now, ‖v‖X0,0
τ∧T
≤ T sup0≤t≤τ∧T ‖v‖L2

x
. Since γ ≥ 2, by Young’s inequality, we have

E
[

sup
0≤t≤S

|µ(t)|γ
]
≤ C(φ, T, γ) +

1

2
E
[

sup
0≤t≤τ∧T

|µ(t)|γ
]

+
1

4
E
[

sup
0≤t≤τ∧T

‖v(t)‖γL2
x

]
.

(5.71)

Then (5.69) follows from (5.70) and (5.71).

Lemma 5.14 implies the following estimate, which tells us that the X0, 1
2
−δ-norm

of solutions of the R-truncated system does not grow in R.

Lemma 5.15. Let T,R > 0. Let (v
R
, µ

R
) ∈ C([0, T ];L2(T)) be the solution to the

R-truncated system (5.19)–(5.20) with data v0 and subscribed mean α0. Then there

exists C = C(α0, ‖v0‖L2
x
, φ, T ), independent of R, such that

E
[
‖v

R
‖
X

0, 12−δ
T∧τ

R

]
≤ C.

Proof. Let S ∈ [0, T ∧ τ
R

] be a stopping time. By (5.37) and using the estimates

established in Sections 5.3 and 5.4 above, there are constants C, θ > 0 such that

‖v
R
‖
X

0, 12−δ
S

≤ C‖v0‖L2
x

+ CT θ‖v
R
‖2

X
0, 12−δ
S

+ CT θ‖v
R
‖3

X
0, 12−δ
S

+ C‖v
R
‖
X

0, 12−δ
S

‖1Ω(n)(τ − n3)k
1
2 Φ̂‖L2

n,τ
+ ‖Φ‖

X
0, 12−δ
T∧τ

R

,

where Ω(n) is as defined in 5.58, and Φ = Φ1(v
R

)+Φ2(µ
R
, α0). By Young’s inequality,

and assuming that ‖v
R
‖
X

0, 12−δ
S

≥ 1 (otherwise we simply bound it by 1), we have

‖v
R
‖
X

0, 12−δ
S

≤ C1‖vR‖C([0,T ];L2
x) + C1S

θ‖v
R
‖3

X
0, 12−δ
S

+ C2(T )‖1Ω(n)(τ − n3)k
1
2
0 Φ̂‖2

L2
n,τ

+ ‖Φ‖
X

0, 12−δ
T∧τ

R

.

(5.72)
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Let

K = C1‖vR‖C([0,T ];L2
x) + C2(T )‖1Ω(n)(τ − n3)k

1
2
0 Φ̂‖2

L2
n,τ

+ ‖Φ‖
X

0, 12−δ
T∧τ

R

, (5.73)

then (5.72) is equivalent to

p
S

(
‖v

R
‖
X

0, 12−δ
S

)
≥ 0 (5.74)

where p
S

denotes the polynomial p
S
(x) = C1S

θx3 − x + K. We shall show via a

continuity argument that

‖v
R
‖
X

0, 12−δ
S

. K (5.75)

if we choose S ∼ K−
2
θ . Indeed, we first note that p

S
has a unique positive turning

point at x+ := (3C1S
θ)−

1
2 , and p

S
(x+) = −cS− θ2 + K for some c > 0. Choosing

S =
(

2K
c

)− 2
θ , we have that P

S
(x+) < 0. Let 0 < xr1 < x+ < xr2 be the two positive

roots of p
S
. Then (5.72) can only hold if 0 ≤ ‖v

R
‖
X

0, 12−δ
S

≤ xr1 or ‖v
R
‖
X

0, 12−δ
S

≥ xr2.

But the latter is impossible since the function g(S) := ‖v
R
‖
X

0, 12−δ
S

is continuous and

g(0) = 0. Hence we must have ‖v
R
‖
X

0, 12−δ
S

≤ xr1 < x+ ∼ S−
θ
2 , which implies (5.75).

Iterating this argument on Ij := [jS, (j + 1)S] for 0 ≤ j ≤
⌈
T∧τ

R

S

⌉
, we get that

‖v
R
‖
X

0, 12−δ
Ij

. K,

whence

‖v
R
‖
X

0, 12−δ
T∧τ

R

.
T ∧ τ

R

S
K . TK1+ 2

θ . (5.76)

Since we are on the interval [0, T ∧ τ
R

] In view of (5.73), the first and third terms K

have moments bounded by constants (independent of R) by Lemma 5.14 and 5.8.

To bound the moments of the second term, we apply the same argument we used in

(5.67) to get

E
[
‖1Ω(n)(τ − n3)k

1
2
0 Φ̂‖γL2

n,τ

] 1
γ

. ‖φ‖HSt(L2
x)

(
‖v

R
‖Lγ(Ω;X0,0

T ) + ‖µ
R
‖Lγ(Ω;L∞([0,T ]))

)
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The right-hand-side is bounded again by Lemma 5.14. Hence the lemma is proved

by taking γ-moment on (5.76).

5.5 Proof of Theorem 1

In this section, we give a proof of Theorem 1. We fix u0 ∈ L2(T) as the initial data

to the SKdV problem (5.1) and let v0 = u0 − α0 := u0 −
∫
T u0(x)dx.

5.5.1 Existence and uniqueness

Our first step is to prove the local well-posedness of the iterated SKdV system

(5.44)–(5.45) with initial data v0 and subscribed mean α0. In what follows, we

define the space

ET :=

{
(v, µ) ∈ L2(Ω;X0, 1

2
−δ,T )× L2(Ω;L∞[0, T ]) :

∫
T
v = 0

}
(5.77)

We first show that the second iterated SKdV-mean system (5.37)–(5.38) is locally

well-posed.

Proposition 5.16. Let v0 ∈ L2(T), α0 ∈ R and R > 0. Then there exists a

unique global-in-time solution (v
R
, µ

R
) ∈ L2(Ω;X0, 1

2
−δ,τ∗) × L2(Ω;L∞([0, τ ∗])) to

the R-truncated system (5.44)–(5.45) almost surely.

Moreover, let τ
R

be as defined in (5.46). Then

τ ∗ := lim
R→∞

τ
R

is either positive or equals to ∞, and that

(v, µ)(t) := (v
R
, µ

R
)(t) for t ∈ [0, τ

R
]

is the unique solution to the system (5.19)–(5.20) over the time interval [0, τ ∗).

Proof. Let

ΓR(v, µ) :=
(
Γ1,R(v, µ),Γ2(v, µ)

)
:=
(
RHS(5.44),RHS(5.45)

)
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Let T > 0. We shall prove that ΓR is a contraction on ET . Putting together the

estimates in Sections 5.3 and 5.4 as well as using Lemmata 5.2 and 5.5, there exist

constants C1(R), C2(T, φ, α0) > 0 such that

∥∥Γ1,R(v, µ)
∥∥
L2(Ω;X

0, 12−δ
T )

≤ C1(T,R)
(
‖v0‖L2

x
+ ‖φ‖HSt(L2

x)‖v‖
L2(Ω;X

0, 12−δ
T )

+ α0‖µ‖L2(Ω;L∞([0,T ])) + α0

)
∥∥Γ2,R(v, µ)

∥∥
L2(Ω;L2([0,T ]))

≤ C2(T, φ)
(
α0 + ‖µ‖L2(Ω;L∞([0,T ])) + ‖v‖

L2(Ω;X
0, 12−δ
T )

)
.

Hence Γ maps ET to itself. Similarly, we have

∥∥Γ1,R(v2, µ2)−Γ1,R(v1, µ1)
∥∥
L2(Ω;X

0, 12−δ
T )

+
∥∥Γ2,R(v2, µ2)− Γ2,R(v1, µ1)

∥∥
L2(Ω;L∞([0,T ]))

≤ T θC(R, φ)

(
‖v2 − v1‖L2(Ω;L∞([0,T ])) + ‖µ2 − µ1‖L2(Ω;L∞([0,T ]))

)
.

Hence by choosing T = T (R, φ) sufficiently small, we have

‖ΓR(v2, µ2)− ΓR(v1, µ1)‖ET ≤
1

2
‖(v2 − v1, µ2 − µ1)‖ET .

Hence ΓR : ET → ET is a contraction, and so there exists a unique (v
R
, µ

R
) ∈ ET

satisfying the R-truncated system (5.44)–(5.45). Note that the time of existence of

((v
R
, µ

R
)) does not depend on ‖v0‖L2

x
, thus we can iterate the argument to get the

global-in-time solution (v
R
, µ

R
).

Let τ
R

:= τ
R

(v
R
, µ

R
, α0) be defined in (5.46). Then (v

R
, µ

R
) is a solution of

(5.37)–(5.38) on [0, τ
R

]. If R′ > R, then (v
R
, µ

R
)(t) = (v

R′
, µ

R′
)(t) whenever t ∈

[0, τ
R

]. Consequently, τ
R

is increasing in R, and τ ∗ := limR→∞ τR is a well-defined

stopping time that is either positive or infinite almost surely. By defining (v, µ)(t) =

(v
R
, µ

R
)(t) for each t ∈ [0, τ

R
], we see that (v, µ) is a solution of the system (5.19)–

(5.20) on [0, τ ∗) almost surely.

We now construct a global solution (v, µ) to the original SKdV-mean system, that

is, given T > 0 , we construct (v, µ) satisfying (5.37)–(5.38) on [0, T ]. Let N ∈ 2N be

a dyadic number. Let uN0 := PNu0. Then uN0 ∈ H2 and by Theorem 1.1 in Tsutsumi
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[84], there exists a global solution uN ∈ L2
(
Ω;L∞2TH

2
x

)
∩L6

(
Ω;C2TL

2
x

)
to SKdV (5.1)

on [0, 2T ]. By letting α0 be the mean of uN0 (noting that α0 = û0(0) = ûN0 (0) is

invariant in N), we can associate uN with the solution (vN , µN) to the SKdV-mean

system (5.17), so that

uN(x, t) = vN
(
x− α0t−

∫ t

0

µN(r)dr, t

)
+ α0 + µN(t).

Given R > 0, (vN , µN) also satisfies the R-truncated system (5.42)–(5.43) on the

time interval [0, τ
R,N

], where τ
R,N

= τ
R

(vN , µN , α0) is as defined in (5.46). By

Markov’s inequality,

P
(
τ
R,N

< 2T
)

= P
(
‖vN‖

X
0, 12−δ
2T∧τ

R,N

∨ ‖Φ1(T
R
vN)‖

X
0, 12−δ
2T∧τR,N

∨ ‖Φ2(α0, µ
N)‖

X
0, 12−δ
2T∧τ

R,N

≥ R

)

.
1

R
E
[
‖vN‖

X
0, 12−δ
2T∧τ

R,N

+ ‖Φ1(T
R
vN)‖

X
0, 12−δ
2T∧τ

R,N

+ ‖Φ2(α0, µ
N)‖

X
0, 12−δ
2T∧τ

R,N

]
.

(5.78)

By Lemmata 5.8, 5.10 and 5.15, the expectation above is bounded by a constant

not dependent1 on R and N . By choosing N ′ so that

τ
R,N′
≤ 2 inf

N
τ
R,N

,

we can find R > 0 sufficiently large so that for any ε > 0, we have

P
(

inf
N
τ
R,N

< T
)
≤ P

(
τ
R,N′

< 2T
)
< ε,

and hence

P
(

inf
N
τ
R,N

< T
)

= 0.

We fix such R, so that almost surely, (vN , µN) is a solution to the R-system (5.44)–

(5.45) on [0, T ]. In particular, we can view any appearance of T
R

in (5.44) as the

1The constant does depend on the initial data in the sense that it is an increasing function of
the L2

x-norm of the initial data. However, we have ‖uN0 ‖L2
x
≤ ‖u0‖L2

x
, and so we can modify the

constant to not depend on N .

136



Chapter 5: Global well-posedness of the periodic Stochastic KdV with multiplicative
noise

identity operator. This allows us to apply Lemma 5.5, and we shall do so implicitly

below. We first show that {vN , µN)}N is Cauchy in L2(Ω;X0, 1
2
−δ). Indeed for

M,N ∈ 2N and any 0 < T̃ ≤ T , we may proceed as in the proof of Proposition 5.16

to get

‖(vN , µN)− (vM , µM)‖E
T̃
≤ C1‖vN0 − vM0 ‖L2

x
+ C2(R, φ)T̃ θ‖(vN , µN)− (vM , µM)‖E

T̃
.

Then by choosing T̃ ≤ (2C2)−
1
θ and rearranging, we have

‖(vN , µN)− (vM , µM)‖E
T̃
≤ 2C1‖vN0 − vM0 ‖L2

x
.

By definition of P≤N , the sequence {vN0 }N∈2N is Cauchy on L2(T). Hence
{

(vN , µN)
}
N∈2N

is Cauchy in ET̃ . The time T̃ does not depend on the initial data v0, hence by re-

peating this argument on [T̃ , 2T̃ ], we see that
{

(vN , µN)
}
N∈2N

is Cauchy in E[T̃ ,2T̃ ].

By iterating dT/T̃ e times, we have that
{

(vN , µN)
}
N∈2N

is Cauchy in ET . Let

(v, µ) ∈ ET denote the limit. We now show that (v, µ) solves the SKdV-mean

system (5.17).

In view of (5.44)–(5.45), by Lemmata 5.2, 5.8 and 5.6, we have, as N →∞,

U(·)vN0 → U(·)v0,

Ψ1(vN) + Ψ2(µN , α0)→ Ψ1(v) + Ψ2(µ, α0),

N0(vN , vN)→ N0(v, v)

in L2(Ω;X
0, 1

2
−δ

T ), as well as µN → µ in L2(Ω;L∞([0, T ])). On the other hand, we

observe that (by Lemma 5.7) N1(vN , vN) and N2(vN , vN) are in fact Cauchy in the

stronger space L2(Ω;X
0, 1

2
+δ

T ) and hence respectively admit some limits N ∗1 and N ∗2
in said space. We can then write

v = U(·)v0 +N0(v, v) +N ∗1 +N ∗2 + Ψ1(v∗) + Ψ2(µ∗, α0).

We are thus required to show that N ∗1 = N1(vN , vN) (the argument for N ∗2 =

N2(v, v) is symmetric), that is, we show that N1(vN , vN) → N1(v, v). By (5.41), it
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suffices to show that N1(vN , vN)→ N1(v, v). To this end, we simply substitute the

equations of vN and v into the first arguments, so that

N1(vN , vN) = N1

(
N (vN , vN) + Ψ1(vN) + Ψ2(µN , α0), vN

)
,

N1(v, v) = N1

(
N0(v, v) +N ∗1 +N ∗2 + Ψ1(v) + Ψ2(µ, α0), v

)
.

By Lemmata 5.13 and 5.8, we have

N1

(
Ψ1(vN) + Ψ2(µN , α0), vN

)
→ N1

(
Ψ1(v) + Ψ2(µ, α0), v).

Moving onto the nonlinear piece, we write

N1

(
N (vN , vN)

)
=

2∑
j=0

N1

(
Nj(vN , vN)

)
and treat each piece separately. By (5.47) and using a telescoping sum, for j ∈ {1, 2},

we have

∥∥N1

(
Nj(vN , vN), vN

)
−N1

(
N ∗j , v

)∥∥
X

0, 12 +δ

T

.
∥∥Nj(vN , vN)−N ∗j

∥∥
X

0, 12 +δ

T

∥∥vN∥∥
X

0, 12−δ
T

+
∥∥N ∗j ∥∥

X
0, 12 +δ

T

∥∥vN − v∥∥
X

0, 12−δ
T

.

Since τ
R
> T almost surely,

∥∥vN∥∥
X

0, 12−δ
T

≤ C(R) for some constant C(R) > 0.

The same applies to
∥∥Nj(vN , vN)

∥∥
X

0, 12 +δ

T

after substituting the equation for vN and

apply the same arguments as seen above. By possibly passing to a subsequence,

we have that Nj(vN , vN) converges to N ∗j in X
0, 1

2
+δ

T almost surely. It follows that∥∥N ∗j ∥∥
X

0, 12 +δ

T

≤ C(R) almost surely. Therefore,

∥∥N1

(
Nj(vN , vN), vN

)
−N1

(
N ∗j , v

)∥∥
L2(Ω;X

0, 12 +δ

T )

. C(R)

(∥∥Nj(vN , vN)−N ∗j
∥∥
L2(Ω;X

0, 12 +δ

T )
+
∥∥vN − v∥∥

L2(Ω;X
0, 12−δ
T )

)

→ 0
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as N →∞. Finally, it remains to show that

N1

(
N0(vN , vN), vN

)
→ N1

(
N0(v, v), v

)
in L2(Ω;X

0, 1
2

+δ

T ). To see this, we write, as in Section 5.2,

N1

(
N0(vN , vN), vN

)
= N1

(
I0(vN , vN), vN

)
N1

(
N0(v, v), v

)
= N1

(
I0(v, v), v

)
.

The claimed convergence then follows by applying the estimate (5.48). This con-

cludes the proof that N1

(
vN , vN

)
→ N1

(
v, v
)

in L2(Ω;X0, 1
2

+δ).

In summary, we have proved that (v, µ) ∈ L2(Ω;X
0, 1

2
−δ

T )×L2(Ω;L∞([0, T ])) is a

solution to the SKdV-mean system (5.17). This solution is also unique in said space.

Indeed, any solution to (5.17) is also a solution to the iterated system (5.37)–(5.38),

which is unique by Proposition 5.16 up to time τ ∗. But as seen in (5.78), τ ∗ = ∞

almost surely. Hence uniqueness holds up to the whole interval [0, T ]. It remains to

verify that v lies in L2(Ω;C([0, T ];L2(T))), and we shall do so in the next subsection.

5.5.2 Continuity in time

We constructed the solution (v, µ) to (5.17) in the previous section, and we are now

required to show that v ∈ L2(Ω;C([0, T ];L2(T))). We write v(t) as

U(t)v0 −
1

2

2∑
j=0

Nj(v, v)(t) + Φ1(v)(t) + Φ2(µ, α0)(t).

The linear part U(t)v0 clearly lies in C([0, T ];L2
x). As seen in the previous section, we

have Nj(v, v) ∈ L2
(
Ω;X

0, 1
2

+δ

T

)
and hence Nj(v, v) ∈ L2(Ω;C([0, T ];L2(T))) by the

embedding (5.26). The continuity of the stochastic convolutions Φ1(v) and Φ2(µ, α0)

follow in a similar manner as in the case for SNLS (as in Lemma (2.19)).

It remains to verify that N0(v, v) ∈ L2(Ω;C([0, T ];L2(T))). We shall follow

[9, 26] and prove that N0(v, v) ∈ L2
(
Ω;F`2

nL
1
τ

)
, where F`2

nL
1
τ is the space-time
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Fourier-Lebesgue space endowed with the norm

‖u‖F`2nL∞τ = ‖û(n, τ)‖`2nL1
τ (Z×R).

We have the embedding

F`2
nL

1
τ ↪→ C([0, T ];L2). (5.79)

Indeed, by Plancherel’s Theorem and Minkowski’s inequality, we have

‖u‖L∞t L2
x([0,T ]×T) ≤

∥∥∥∥∫
R
eitτ û(n, τ)dτ

∥∥∥∥
`2nL
∞
t

≤ ‖u‖F`2nL1
τ
.

Moreover, the Fourier transform of an L1 function is continuous. Hence the embed-

ding (5.79). The content of the next lemma then concludes our proof.

Lemma 5.17. Let u1, u2 be mean zero space-time functions. Then

∥∥η
T
N0(u1, u2)

∥∥
F`2nL1

τ
. ‖u1‖X0, 12−δ

‖u2‖X0, 12−δ
.

Proof. This proof is similar in flavour to the proof of Lemma 5.13. Appealing to

(5.33) and that |τ − n3| � |nn1n2| > 0, we have that

∥∥η
T
N0(u1, u2)

∥∥
F`2nL1

τ
.η

∥∥∥∥〈n〉k0

û1u2(n, τ)

∥∥∥∥
`2nL

1
τ

. (5.80)

We split into two cases.

• Case (i): k1 & 〈nn1n2〉
1

100 . By Cauchy-Schwartz and duality, there exists d ∈ L2
n,τ

with ‖d‖L2
n,τ
≤ 1 such that

RHS(5.80) ≤

∥∥∥∥∥∥∥〈τ − n3〉−( 1
2

+δ)
∥∥
L2
τ

∥∥∥∥ 〈n〉
k

1
2
−δ

0

û1u2(n, τ)

∥∥∥∥
L2
τ

∥∥∥∥∥
`2n

.
∑

n,n1∈Z\{0}
n=n1+n2

∫
τ1+τ2=τ

〈n〉

k
1
2
−δ

0

d(n, τ)û1(n1, τ1)û2(n2, τ2)dτ1dτ.

140



Chapter 5: Global well-posedness of the periodic Stochastic KdV with multiplicative
noise

Now,
〈n〉

k
1
2
−δ

0

.
(〈n〉〈n1〉〈n2〉)

1
2
−δ

k
1
2
−δ

0

· (〈n〉〈n1〉〈n2〉)δ

k100δ
1

k100δ
1 . k100δ

1 .

The result then follows by an application of L2
t,xL

4
t,xL

4
t,x-Hölder inequality and the

L4-Strichartiz inequality.

• Case (ii): k1 � 〈nn1n2〉
1

100 . We consider the set Ω(n) defined as in (5.58). By

Cauchy-Schwartz, Lemma 5.11 and duality, we have

RHS(5.80) =

∥∥∥∥1Ω(n)(τ − n3)
〈n〉
k0

û1u2

∥∥∥∥
`2nL

1
τ

.

∥∥∥∥∥
(∫

R
1Ω(n)(τ − n3)〈τ − n3〉−1dτ

) 1
2
∥∥∥∥〈n〉
k

1
2
0

û1u2

∥∥∥∥
L2
τ

∥∥∥∥∥
`2n

.
∑

n1∈Z\{0}
n=n1+n2

∫
τ=τ1+τ2

〈n〉

k
1
2
0

d(n, τ)û1(n1, τ1)û2(n2, τ2)dτ1dτ.

Since 〈n〉

k
1
2
0

. 1, the result then follows again by an application of L2
t,xL

4
t,xL

4
t,x-Hölder

inequality and the L4-Strichartiz inequality.

5.6 Time decay of solutions

We briefly prove Theorem 3 in this last section. We can repeat the argument of the

proof of Theorem 1.2 in [84] almost verbatim. We only need to verify that in our

setting, one can continue to use the exponential martingale inequality to bound the

second term on the right-hand side of (3.1) in [84]:

∞∑
k=−∞

∫ t

0

Re
〈
u(t)φek, u(t)

〉
‖u(t)‖2

L2
x(T)

dβ
(r)
k (t),

where β
(r)
k = Re βk. More specifically, we need to check that the Novikov condition

E

[
exp

(
b2

2

∫ T

0

∞∑
k=−∞

∣∣∣∣Re
〈
u(t)φek, u(t)

〉
‖u(t)‖2

L2
x(T)

∣∣∣∣2dt)
]
<∞. (5.81)
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Tsutsumi used Sobolev embedding to bound the quantity inside the exponential by

b2T 2

2

∞∑
k=−∞

‖φek‖2
L∞x

.
b2T 2

2

∞∑
k=−∞

‖φek‖2
H2
x

=
b2T 2

2
‖φ‖2

L2(L2;H2).

This is not available to us since φ is not necessarily in L2(L2;H2). However, since

we assumed φ to be a convolution operator, we have that

Re
〈
u(t)φek, u(t)

〉
≤ |φk|

∣∣〈u(t)ek, u(t)
〉∣∣ ≤ |φk|‖u(t)‖2

L2
x(T).

Hence

LHS(5.81) . exp

(
b2T 2

2
‖φ‖2

HSt(L2
x)

)
<∞.

The rest of the proof then follows as in [84].
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[6] Á. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the

cubic nonlinear Schrödinger equation on Rd, d ≥ 3, Trans. Amer. Math. Soc.

Ser. (2015), B 2, 1–50.
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H. Poincaré Anal. Non Linéaire 23(5) (2006), 765–779.

[46] P. Gérard, The Gross–Pitaevskii equation in the energy space. Stationary and

time dependent Gross–Pitaevskii equations, Contemp. Math. 473, Amer. Math.

Soc., Providence, RI, (2008), 129–148.

[47] J. Ginibre, G. Velo, Smoothing properties and retarded estimates for some dis-

persive evolution equations, Comm. Math. Phys. 144 (1992), no. 1, 163–188.

[48] J. Ginibre, Y. Tsutsumi, G. Velo, On the Cauchy Problem for the Zakharov

System, J. Funct. Anal., 151 (1997), 384–436.

[49] Z. Guo and T. Oh, Non-existence of solutions for the periodic cubic NLS below

L2, Internat. Math. Res. Not. (2016), doi: 10.1093/imrn/rnw271.

[50] Z. Guo, T. Oh and Y. Wang, Strichartz estimates for Schrödinger equations on

irrational tori, Proc. Lond. Math. Soc. (3) 109 (2014), no. 4, 975–1013.

[51] M. Hadac, S. Herr, H. Koch, Global Well-posedness and scattering for the KP-

II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéeaire 26
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Gross-Pitaevskii and cubic-quintic nonlinear Schrödinger equations with non-

vanishing boundary conditions. Math. Res. Lett. 19 (2012), no. 5, 969–986.
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