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ABSTRACT 

 

Patients with burn wounds are susceptible to wound infection and sepsis. This research 

introduces a novel burn wound dressing which contains silver nanoparticles (SNP) to treat 

infection in a 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na
+
) 

hydrogel. Silver nitrate was dissolved in AMPS-Na
+
 solution and then exposed to gamma 

irradiation to form SNP infused hydrogels. The gamma irradiation results in a crosslinked 

polymeric network of sterile hydrogel dressing and a reduction of silver ions to form SNP 
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infused in the hydrogel in a one step process. About 80% of the total silver was released from 

the hydrogels after 72 h immersion in simulated body fluid (SBF) solution, therefore; they are 

suggested to be use on wounds for 3 days. All the hydrogels were found to be non-toxic to 

normal human dermal fibroblast (NHDF) cells. The silver loaded hydrogels had good 

inhibitory action against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus 

aureus (MRSA). Results from a pilot study on a porcine burn model showed that the 5 mM 

silver hydrogel was efficient at preventing wounds from bacterial colonization and the results 

were comparable to the commercially available silver dressings (Acticoat
TM

, PolyMem 

Silver
®

). These results support its use as a potential burn wound dressing.  

 

KEYWORDS: hydrogels; dressings; burn wounds; antimicrobial activity; cell culture; 

nanoparticles; silver; gamma irradiation; spectroscopy; polymer synthesis  

 

INTRODUCTION 

 

The antimicrobial properties of silver have been known for many centuries and silver has a 

long history of use as a clinical antimicrobial agent. In 1884, silver nitrate solution was 

commonly used to eliminate blindness caused by postpartum infections in newborns [1]. In 

1964, 0.5% silver nitrate solution was first introduced to burn care and this attracted a 

research interest in silver for several years afterwards [2]. The breakthrough discovery of 

silver sulfadiazine cream for treatment of burn wound infections in the late 1960s [3, 4] has 

prompted the use of silver in topical antimicrobial agents over the last four decades. In 1993, 

the antibacterial efficacy of various metals was noted and silver was found to have the most 

effective antibacterial action with the least toxicity to animal cells [5]. 

Once antibiotics were discovered, the use of silver as a bacterial agent decreased. However, 

with the increasing prevalence of antibiotic-resistant strains such as methicillin-

resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant enterococci (VRE), there 

has recently been a renewed interest in using silver as an antibacterial agent for burn wounds, 

particularly as microbial resistance to silver is rare [6]. Although the antimicrobial properties 

of silver ions have been known for hundreds of years, the mechanisms behind its inhibition of 

bacterial growth have only recently been elucidated. Silver ions may deactivate bacterial key 

enzymes [7] or enter the cell and intercalate between the purine and pyrimidine base pairs of 

DNA, disrupting the bond between the two strands and leading to DNA denaturation [4, 8] 
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The advent of nanotechnology resulted in the development of nanocrystalline silver 

containing dressings for burn wound treatment [9, 10]. Nanocrystalline silver dressings are 

widely used and are well known antimicrobial treatments for burns and chronic wounds [11]. 

Silver nanoparticles (SNP) have been infused into wound dressings, and in vitro studies have 

found them to inhibit Pseudomonas aeruginosa and Staphylococcus aureus [12]. Recently, 

antimicrobial gels containing SNP were found to have low toxicity and effective inhibition of 

Staphylococus sp. and Pseudomonas aeruginosa cell growth [13]. The advantage of smaller 

particles is that their surface area to volume ratio increases and more reactions can take place 

in a short time between molecules on the surface [14]. SNP show efficient antimicrobial 

activity compared to silver salts because of their larger surface area, which provides greater 

contact with microbes. [15]. In addition, SNP are more effective than silver ions as silver ions 

form salts with halides resulting in an inert silver form [6] causing a short lived antimicrobial 

effect. In contrast, SNP allow a steady release of silver resulting in a long-term antimicrobial 

activity [16].  

In general, the antimicrobial mechanism of SNP is similar to that of silver ions [17]. There are 

several possible mechanisms for the antimicrobial mechanisms of SNP: SNP may adhere to 

the microbial cells, interrupting transmembrane electron transfer; They may penetrate inside 

bacterial cells, oxidizing cell components, or; SNP may dissolve into silver ions which can 

also react with proteins and DNA, adding their effects to the action of SNP [17, 18].  

The selection of a suitable dressing for each wound is an important step in the treatment 

process. Hydrogels are popular dressings because of their wound management abilities which 

include: reducing pressure and shear forces; absorbing exudates; maintaining a moist 

environment; protection from trauma and bacterial invasion; and providing thermal insulation. 

In 2011, Witthayaprapakorn suggested 2-acrylamido-2-methylpropane sulfonic acid (AMPS) 

based hydrogels were suitable for use as burn wound dressings [19]. The study of water 

properties of the hydrogels (adsorption retention and water vapor transmission rate) indicated 

that they may have the ability to maintain moisture in the wound area. UV irradiation was 

performed to crosslink the polymer chains; however as UV irradiation is not a recommended 

sterilization technique for drugs and medical devices [20], the hydrogels were unfortunately 

not a ready-to-use dressing for medical purposes. Autoclaving is a recommended sterilization 

technique, however the impact of heat may cause changes in the polymer network and 

degradation of the dressing may occur. 

In this study, we developed novel wound dressings comprised of the beneficial combination 

of AMPS sodium salt hydrogels containing SNP. The hydrogel promotes wound healing with 
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a moist environment and the SNP is lethal to pathogens that infect burns. The gamma 

irradiation technique used in this study serves as a single step synthesis of silver hydrogel 

dressings resulting in a ready-to-use sterile wound dressings. The antimicrobial activity of the 

novel dressings against common burn wound pathogens compared to commercially available 

silver dressings (product B and C) were evaluated using bactericidal measurement (broth 

culture and plate count method) in our previous study [21]. The cytotoxicity assessment of the 

novel dressings on human skin cell lines compared to common silver products (product B, C 

and Flamazine
TM

 cream) was performed utilizing various cytotoxicity assays and was reported 

elsewhere [22]. This study details the preparation and characterization of the novel dressing 

and testing in an in vivo animal study. Pretests of antimicrobial activity and cytotoxicity 

compared to the commercial hydrogel (product A) were performed initially to select the best 

concentration of silver hydrogel for use in the animal study.  

 

EXPERIMENTAL 

 

Materials 

2-acrylamido-2-methylpropane sulfonic acid (AMPS) was purchased from Merck Chemicals, 

Darmstadt, Germany. N-N’-methylenebis(acrylamide) (MBA) was purchased from Sigma-

Aldrich, USA. Silver nitrate (AgNO3) (99.998% purity) was purchased from Fisher Scientific, 

USA. Anhydrous sodium hydroxide (NaOH) pellets were of analytical grade and purchased 

from Carlo Erba, Milan, Italy. All other chemicals were of analytical reagent grade and used 

without further purification. The commercial dressings Cutinova Hydro
® 

(a polyurethane gel 

matrix with a polyurethane film top), Acticoat
TM

 (an absorbent polyester core laminated 

between two outer layers of nanocrystalline silver coated polyethylene mesh) and Jelonet
®

 (an 

open weave gauze impregnated with  soft paraffin) were purchased from Smith & Nephew 

(Hull, UK). PolyMem Silver
®

 (a superabsorbent, hydrophilic polyurethane foam with 

surfactant, humectant and nanocrystalline silver) was obtained from Ferris Mfg Corp (USA). 

In this study, the commercial dressings were defined as product A, product B, product C and 

control product (Jelonet
®

).  

 

Synthesis of AMPS hydrogels containing SNP  

To create the silver hydrogel, AMPS monomer was dissolved in distilled water. The solution 

was titrated with NaOH solution under cold conditions to pH 7.0 ± 0.1 and the volume was 

adjusted to obtain a 40% (w/v) AMPS-Na
+
 aqueous solution. The crosslinker, MBA (0.1% 
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mol/mol monomer) was added to the solution and the solution was stirred overnight at room 

temperature. To incorporate SNP into the hydrogel, AgNO3 was dissolved in the AMPS-Na
+
 

aqueous solution in the presence of MBA to concentrations of 2.5 mM, 5 mM and 10 mM. 

The mixture was loaded into a nylon bag (0.2 ml of solution: 1 cm
2
 surface area of the bag) 

and the contents were sealed and irradiated in a cobalt-60 gamma irradiator (IR-211, Nordion 

International Ltd., Ottawa, Ontario, Canada) at 25 kGy for 4.5 h. The pure or neat hydrogel 

was similarly produced without addition of AgNO3. 

 

Characterization of the SNP formation  

The hydrogel sheets were air-dried and coated with a thin layer of palladium gold alloy. 

Surface morphology was monitored by scanning electron microscopy (SEM) using a Hitachi 

S-4800 (Chiyoda, Tokyo, Japan) operated at 3.0 kV and 20 µA. Hydrogels were submerged in 

deionized (DI) water at 35°C with agitation (60 rpm) for 24 h to obtain silver release solutions 

and these solutions were dried on copper grids. The particle sizes and crystal morphology 

were examined using transmission electron microscopy (TEM) on a FEI Tecnai G
2
 F30 

(USA) operated at 200 kV. Histograms of SNP size distribution were obtained from manually 

measuring the size of 200 particles from TEM images by the via ImageJ program version 

1.47. Aliquots of the silver release solution from the hydrogels were mixed with a 1 M 

Hydrochloric acid solution (HCl). The mixtures were centrifuged to observe silver chloride 

(AgCl) precipitation. 

 

Characterization of the physical properties of the hydrogels 

The physical properties of the novel hydrogels were compared to product A. To determine the 

Equilibrium Degree of Swelling (EDS), each hydrogel was cut into 1.0 x 1.0 cm
2 

pieces and 

was weighed (w1), before being immersed in simulated body fluid solution (SBF) [23] at 

35°C with agitation (60 rpm) for 72 h. The swelled hydrogels were then blotted and weighed 

(w2) and the percent EDS was calculated as follows: 

 

EDS	(%) = 		
�	�
	� 	× 	100	%                                                                                                     

 

To assess the gel fraction or percent gelation, the hydrogels were cut into 0.5 x 0.5 cm
2
 pieces 

and dried in an oven at 60°C for 24 h to obtain the original dry weight (w0). Each dried 

specimen was placed in a tea bag which was submerged in DI water at 121°C for 4 h in an 
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autoclave. The hydrogels were then dried at 60°C for 72 h to obtain the weight after 

extraction (wE). The percentage of gelation was calculated using the following formula: 

 

Gelation	(%) = 	E
	0

	× 	100  %                                                                     

 

To determine the swelling ratio, the hydrogels were cut into 0.5 x 0.5 cm
2
 pieces and dried in 

an oven at 60°C for 24 h to obtain the dry state weight (wd), before being immersed in SBF 

solution at 35°C in a water bath with a shaking rate of 60 rpm. At the time intervals (0.5, 1, 2, 

3, 6, 12, 24, 30, 72 h), the samples were removed from the solution, blotted and weighed to 

find the swollen state weight (ws). They were then returned to the solution until equilibrium 

was reached. The swelling ratio was calculated by the following equation: 

 

Swelling	ratio	(%) = 	��	�
	� 	× 	100 %                          

 

To examine absorptive capacity, each hydrogel was cut into 1.0 x 1.0 cm
2 

pieces and 

immersed in 30 ml of SBF at 35°C with agitation (60 rpm) for 1, 3, 6, 12, 24 or 72 h. After 

each time interval, the volume of the immersion solution was measured for evaluation of the 

absorptive capacity of the hydrogels. 

To measure moisture retention, each hydrogel was cut into 0.5 x 0.5 cm
2
 pieces, weighed (wi) 

and placed in an oven at 35°C. At different time intervals (0, 3, 6, 12, 24, 72 h) the hydrogel 

was weighed (wt) and moisture retention capability (Rh) was calculated using the following 

equation: 

 

Rh(%) = �	 
	!" × 100%                                                     

 

The measurement of water vapor transmission rate (WVTR) was conducted according to a 

monograph of the European Pharmacopoeia [24]. A hydrogel disc (15 mm in diameter) was 

used to cover the top of a 13 mm diameter bottle (A = area of the bottle mount in m
2
) 

containing 10 ml of DI water. Parafilm was used to seal between the top of the bottle and the 

hydrogel. The WVTR of the hydrogel was determined by measuring the weight of the bottle 

before (wi) and after (wt) being kept in an oven at 35°C for 24 h, and was calculated using the 

following formula: 
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WVTR = (Wi-Wt)

A×24
× 10

6 		g. m
-2 

h
-1
            

       

Characterization of the mechanical properties of hydrogels 

The tensile strength and elongation at breaking point of the hydrogel were measured using 5.0 

cm x 1.0 cm pieces on a universal testing machine (Lloyd LRX, Lloyd Instruments Ltd, 

Fareham, Hampshire, UK) with a 500 N load and a cross-head speed of 50 mm/min.  

  

Study of silver release from the silver hydrogels 

To assess the cumulative silver released under physiological conditions the silver hydrogels 

were cut into 15 mm diameter discs, and each disc was immersed in 50 ml SBF solution at 

35°C with agitation at 60 rpm. At various time intervals (1, 3, 6, 12, 24 h, 3, 5, 7, 10 days), 

the immersion solution was collected to measure the silver content and the 50 ml SBF 

solution was replaced at each time interval. The concentration of silver, either in neutral or ion 

form, was measured by atomic absorption spectroscopy using a flame atomic absorption 

spectrometer (SpectrAA300, Varian, USA). To measure the actual amount of silver within the 

hydrogel, the same size disc was immersed in 50 ml of nitric acid (HNO3) to extract the silver 

from the dressing. The total silver in the solution was then examined. 

 

Cytotoxicity of the hydrogels  

The cytotoxicty evaluation was based on a protocol adapted from the ISO 10993-5 [25] 

standard test method. Neat hydrogel, silver hydrogels and product A were cut into 5 mm 

diameter discs and sterilized by immersion in 70% v/v ethanol for 30 min. They were then 

washed twice with 10 mM phosphate buffered saline (PBS, pH 7.4) and DI water before being 

immersed in 24-well tissue-culture polystyrene plates (TCPS; NunclonTM, Roskilde, 

Denmark) that contained 2 ml of a serum-free media (SFM) of Dulbecco’s Modified Eagle 

Medium (DMEM) containing 1% l-glutamine, 1% lactalbumin, and 1% antibiotic and 

antimycotic formulation (Invetrogen Corp., USA) for 1, 3 and 7 days. After these time points, 

the hydrogels were removed and the extraction media were collected. 

Normal human dermal fibroblast (NHDF) cells were cultured in DMEM media (comprised of 

10% fetal bovine serum (FBS), 1% l-glutamine, and 1% antibiotic and antimycotic 

(Invitrogen Corp., USA) at 37°C with media changed every 3 days. The cells were seeded in a 

24-well plate at a density of 10,000 cells/well in DMEM overnight to allow cell attachment. 
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The media was replaced with SFM for the next 24 h and then the hydrogel extraction media 

for 24 h.  

The relative cell viability was determined using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide (MTT, Sigma, USA) assay. After a PBS (10 mM, pH 7.4) wash, 

300 µl of 0.5 mg/ml MTT was added to each well and cells were incubated at 37°C for 30 min 

before removal of MTT solution. Yellow MTT is reduced to purple formazan crystals in the 

mitochondria of living cells [26]. The purple crystals were dissolved in 1 ml of 

dimethylsulfoxide (DMSO) solution (9:1.25 v/v of DMSO:glycine buffer pH 10.5). The plate 

was agitated for 10 min at 250 rpm and absorbance at 570 nm was measured on a 

Thermospectronic Genesis 10 UV-vis spectrophotometer (Thermo Spectronic, USA). Three 

independent experiments were performed for the cytotoxicity assay. Differences between 

samples and controls were evaluated with one-way analysis of variance (ANOVA) and the 

Tukey’s Multiple Comparison Test using GraphPad Prism version 6.03. Statistically 

significant differences were set at p < 0.01 (99% confidence).  

 

Measurement of antibacterial activity by the disc diffusion method  

The hydrogels were immersed in DI water for 24 h to prevent absorption of water from the 

agar. They were then cut into discs (5 mm diameter) and sterilized under a Funa-UV-Linker 

FS800 (Funakoshi, Bunkyo-ku, Tokyo, Japan) for 30 min. The disc diffusion method 

described by The US Clinical and Laboratory Standards Institute (CLSI) [27] was used with 

common burns pathogens:  three gram positive bacteria (Staphylococcus aureus ATCC 

25923, Staphylococcus Epidermidis wild type, and Methicillin-resistant Staphylococcus 

aureus (MRSA) wilde type) and two gram-negative bacteria (Escherichia coli ATCC 25922, 

Pseudomonas aeruginosa ATCC 9027). To simulate an infected wound, a microbial load 

greater than 10
5
 colony forming unit (CFU)/g of tissue [28] is required, so the bacterial 

colonies were diluted in normal saline to a 0.5 McFarland Standard solution (10
8
 CFU/ml). 

The bacteria inocula were spread on Tryptic Soy Agar (TSA) plates and the hydrogel discs 

were placed on the agar. Plates were incubated at 37°C for 24 h and the diameter of the 

inhibition zone was measured for each hydrogel disc. 

 

Measurement of antibacterial activity by the shake flask method 

A shake flask method modified from ASTM E2149-01 was used to test activity against two 

major pathogens that infected burn wounds: gram-positive MRSA (wild type) and gram-

negative P. aeruginosa (ATCC 9027). Glassware and solutions were sterilized in an autoclave 
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at 121°C for 15 min before being used and the test samples were cut into 15 mm diameter 

discs and sterilized under UV lamps for 30 min. A colony of P. aeruginosa or MRSA was 

cultured in 2 ml of Tryptic Soy Broth (TSB) at 37°C for 2 h with agitation (Orbital incubator 

shaker, GYROMAX
TM

 737, Amerex Inst. Inc., USA) at 250 rpm. The culture medium was 

transferred to a 100 ml of TSB and incubated for 3-5 hours with shaking at 250 rpm until the 

optical density at 600 nm (OD 600) was 0.2 - 0.3. The cells were then isolated using a 

refrigerated microcentrifuge (Kubota-6500, Kubota Crop. Bunkyo-ku Tokyo, Japan) at 8000 

rpm, 4°C for 10 min. The cells were washed with normal saline solution and were diluted 

with alkaline peptone water (APW) to create a 5 ml culture medium solution with a cell 

concentration of 10
8
 CFU ml. Addition of 200 µl of this diluted cell culture solution into a 

flask that contained 50 ml of APW created a solution of 10
6
 CFU/ml of cells. Each hydrogel 

sample was then added to individual culture flasks, which were incubated at 37°C on a shaker 

(250 rpm). At each time point (0, 1, 3, 6, 12, 24 h), a 0.5 ml aliquot underwent serial tenfold 

dilutions (10
-1

,10
-2

,10
-3

,…) and 100 µl of each diluted solution was spread on duplicate TSA 

plates. The plates were incubated for 24 h at 37°C, and the average number of colonies was 

expressed as CFU/ml after correction for the dilution factor. Bacterial surviving curves were 

plotted using the number of colonies at each culture time point. The log reduction compared 

to an untreated culture was also calculated using the following equation: 

 

Log reduction = Log (CFU.ml
-1

 of control) – Log (CFU.ml
-1

 of sample) 

 

A pilot study on a porcine burn model 

The animal experiment was approved by the University of Queensland Animal Ethics 

committee and the animal was treated humanely and with appropriate analgesics. One young 

Large White juvenile pig weighing 26 kg (approximately 8 weeks old) was used for this 

study. Wounds were created under general anaesthesia using a modified version of method 

developed from our previous research involving deep dermal partial thickness burn injury in 

pigs [29]. Four of these wounds were created on each flank, with 8 wounds in total. Four 

different treatments including: the control product with Melolin
® 

(Smith & Nephew, Hull, 

UK) on top, product B, product C and 5 mM silver hydrogel with Tegaderm
TM

 film (3M, 

USA) on top were randomly applied on the 8 wounds in duplicate. The size of each dressing 

was 5x5 cm
2
. Dressings were changed every 2-3 days. Wounds were photographed and 

clinical notes were taken to record the healing process. At the end of week 6, five examiners 

recorded the appearance of the treated wounds as a cosmetic score before the animal was 
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euthanized.  Statistical analysis of the cosmetic score was performed according to a method 

similar to that described for cytotoxicity study. 

 

RESULTS AND DISCUSSION 

 

Silver nanoparticle formation 

The gamma irradiation technique used in this study serves as a single step synthesis of silver 

hydrogel dressings. It was used to crosslink the polymer chains, to reduce silver ions to form 

SNP, and to provide ready-to-use sterile wound dressings. Figure 1 shows a schematic 

representation of radical polymerization of AMPS monomer in the presence of an MBA 

crosslinker and the reduction of silver ions to form SNP infused in the crosslinked polymer 

network due to gamma irradiation. Gamma irradiation generates solvated electrons and 

hydrogen radicals, which reduce silver ions to neutral silver atoms that consequently coalesce 

to form SNP [30, 31]. The original colorless AMPS sodium salt solution created colorless 

neat hydrogels. Gamma irradiation changed the colorless silver AMPS sodium salt solutions 

into brown hydrogels, with darker shades of brown resulting from increased concentrations of 

silver (Figure 2).  A similar observation was also reported elsewhere [32]. SEM images reveal 

that the pure hydrogel had a plain smooth surface while silver hydrogels had rough surfaces 

with particles on the surfaces (Figure 3b-c). Similar results were observed in a previous study 

[33]. The SEM image of 10 mM silver hydrogel (Figure 3c) shows denser distribution of 

particles than the SEM image of 5 mM silver hydrogel (Figure 3b). The TEM images of the 

silver released from the hydrogels indicated that the size of the SNP were less than 30 nm 

(Figure 4a-c). The histograms of particle size distributions of the silver hydrogels obtained 

from the corresponding TEM images are shown in Figure 4a-c. The average particle sizes 

were 8.08, 6.53, 4.83 nm for 2.5, 5 and 10 mM silver hydrogel, respectively. The 10 mM 

silver hydrogel was found the have the most uniform size distribution with 3-6 nm SNP at 

57.5% abundance. Figure 4d shows TEM images of selected single crystals of SNP released 

from 5 mM silver hydrogel. The particles were crystalline in variety of shapes. Similarly, a 

variety of single crystal shapes was observed from the SNP released from 2.5 and 10 mM 

silver hydrogel (images not shown). 
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SNP are generally unstable in suspension and can be readily oxidized and dissolved into silver 

ions [17]. The novel silver hydrogels would therefore be expected to contain a proportion of 

ionic silver which was not completely transformed into SNP during the hydrogel preparation 

process. The silver release solutions from the hydrogels were mixed with HCl solution in 

order to observe silver chloride (AgCl) precipitation and therefore the presence of ionic silver. 

Unpredictably, no precipitation was visually observed. This may be due to a very low 

concentration of silver ions dissolved into the solution, indicating the majority of silver in the 

dressing is present as SNP. 

  

Characterization of hydrogel physical and mechanical properties 

The EDS of the neat hydrogel was 1278.6% (Table 1). The EDS decreased from 1478.1% to 

1228.4% as the silver concentration increased from 2.5 to 10 mM.  These EDS values were 

inversely proportional to the gelation values (72.1% for 2.5 mM, 80.7% for 5 mM and 82.7% 

for 10 mM). Gelation inversely relates to the free volume inside the gel networks, with 2.5 

mM silver hydrogel displaying the lowest gelation or highest free volume inside the gel and 

the highest EDS. The EDS of product A was 443.1%, which is about 3 times lower than the 

AMPS hydrogels and the gelation of product A was 95.8%, indicating the low free volume 

inside the gel networks.  

After 72 h of immersion in SBF solution, AMPS hydrogels had a calculated absorptive 

capacity of 6.3-7.3 ml/cm
2
 of hydrogel (surface area), compared to the calculated absorptive 

capacity of product A at 72 h, which was 4.6 ml/cm
2
 of hydrogel (Table 1). This indicated 

that all of the AMPS hydrogels have greater ability to adsorb exudate from wounds than the 

commercial hydrogel. The results confirmed an earlier report that product A had a lower free 

volume in the gel network than AMPS hydrogels and, therefore, it had less adsorption 

capacity. 

The moisture retention results at 6 h did not show any significant difference in values between 

the neat and silver hydrogel (Table 1). Moisture retention capacity of the neat and silver 

hydrogels ranged between 97.5-98.1 %, confirming that the neat hydrogel and the silver 

hydrogels had the same moisture retention. Product A had a moisture retention capacity of 

100.1%, indicating that none of the water evaporated from the commercial hydrogel within 6 

h at 35°C.  

The WVTR values of all hydrogels (range 86.7-102.0 g.h
-1

.m
 2

, Table 1) were lower than the 

evaporative water loss of second and third degree burned skin (178 ± 5.5 g/h.m
2
 and 143.2 ± 

4.5 g/h.m
2
, respectively) [34]. This suggests that the AMPS hydrogels can be used to retain 
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body fluid and preserve a moist environment for burn wounds. Product A had an extremely 

low WVTR value (0.94 ± 0.5 g/h.m
2
) which was lower than first degree burn (8.5 ± 0.5 

g/h.m
2
) [34] as well as second and third degree burned skin. This result indicates that product 

A would have a greater ability than the developed novel silver hydrogel to protect against 

water loss and maintain a moist environment for all degrees of burn wounds, particularly 

superficial burns. 

All silver hydrogels initially showed an accelerated increase in swelling until 12 h (Figure 5), 

with equilibrium reached at 72 h. The concentration of silver affected the swelling behaviors 

of the hydrogels. The 2.5 mM silver had the highest swelling capacity at each time interval, 

followed by 5 mM and 10 mM, respectively. For the EDS and percent gelation, it would be 

expected that the greater the concentration of silver, the less free volume of the hydrogel 

network available to absorb water. Unexpectedly, the neat hydrogel had swelling behavior, 

EDS values and percent gelation, similar to the 10 mM silver hydrogel. It can be hypothesized 

that without SNP, pure AMPS hydrogels have a different network configuration due to the 

presence of Na
+
 ions. The gel network structures of these dressings should be examined in 

future studies.  

The mechanical properties of the hydrogel wound dressings were assessed by tensile strength 

and elongation at breaking point (Table 1). All silver loaded hydrogels had tensile strength 

values (0.0280-0.0328 MPa) similar to the neat hydrogel (0.0294 MPa). The tensile strength 

of product A was greatest (0.0419 MPa). The elongation at breaking point for all silver loaded 

hydrogels (222.3%-253.3%) was higher than the neat hydrogel (183.5%). For product A the 

elongation at break point was 765.3% or about 3 fold higher than the AMPS hydrogels.  

 

Cumulative silver release  

The amount of silver released from the silver hydrogels when submerged in SBF or HNO3 

solution is shown in Table 2. The cumulative silver released from silver hydrogels after 10 

days of immersion in SBF were 90.25%, 89.97% and 81.26% for 2.5 mM, 5 mM and 10 mM 

silver, respectively. The release of silver from the hydrogels could be divided into three stages 

(Figure 6). During the initial 24 h of immersion time, there was rapid release of about 60% of 

the total silver released. From 24 h - 72 h, the cumulative releases of silver were 82.41%, 

75.63% and 78.56% for 2.5 mM, 5 mM and 10 mM silver hydrogels, respectively.  A slight 

but continuous terminal silver release from 72 h - 240 h was observed for all of the hydrogels. 

A time course of silver release solution from the hydrogels (1, 3, 6, 24, 72 h) was also 

observed using TEM. This showed that more SNP were released with longer immersion 

Page 12 of 33Journal of Pharmaceutical Sciences



 

 

13

times, confirming silver is released from the dressings as SNP, rather than ions. It can be 

concluded that the hydrogels when used as a wound dressing, would be actively releasing 

silver over 72 h.   

 

Cytotoxicity evaluation  

NHDF cells were treated with the extraction media from the neat hydrogel, silver hydrogels 

and product A, and cell viability was assessed at 1, 3 and 7 days (Figure 7). This was 

considered an indirect cytotoxicity assessment, because the extraction media of the hydrogel 

samples were tested on the cells instead of the hydrogel samples directly. None of the 

hydrogel samples were identified as toxic to NHDF as after all treatments, cells had over 90% 

viability. There was no significant difference (p > 0.01) in cell viability of all test hydrogels 

compared to controls up to 7 days confirming that the hydrogels have no cytotoxicity to the 

tested cells. Similar results were observed in our previous study of intensive cytotoxicity 

assessment of the hydrogels compared to topical silver products used in burn care on different 

skin cell lines [22]. 

 

Antibacterial evaluation 

The inhibition zone diameters of bacteria after treatment with the 5 mm diameter hydrogels 

and product A pre-swelled in DI water are shown in Table 3. For the neat hydrogel and 

product A, no antibacterial activity was observed after treatment for 24 h. The 2.5 mM silver 

hydrogel had antibacterial activity against E.coli but not against any of the other bacteria. The 

10 mM silver hydrogel had the most powerful inhibitory activity for all bacteria tested, and 5 

mM silver hydrogel also inhibited the cell growth of all bacteria. However, this experiment 

was performed with swelled hydrogels (immersion in DI water for 24 h to prevent absorption 

of water from the agar) and possibly over 60% of the silver infused in the hydrogels may have 

already been released from the hydrogels during the pre-immersion according to the silver 

release study. Consequently, the swelled silver hydrogels may have lost some antibacterial 

activity before the treatment. 

As the 2.5 mM hydrogel showed poor inhibitory activity in the disc diffusion method, it was 

excluded from the shake flask experiment. The log reduction of bacterial cell growth of 

bacterial inocula of 10
6
 CFU/ml treated with the neat hydrogel, silver hydrogels (5 mM and 

10 mM silver) and product A at different time intervals are shown in Table 4. The bacterial 

survival curves of P. aeruginosa and MRSA are shown in Figure 8a and 8b, respectively. For 

gram-negative P. aeruginosa, 5 mM and 10 mM silver hydrogels had a similar potential to 
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inhibit the bacteria cell growth. After 3 h treatment, the log reduction was >4.43. A log 

reduction >3 is referred to bactericidal whereas log reduction <3 is considered bacteriostatic 

[21, 35]. Therefore, the results indicate that 5 and 10 mM silver hydrogels are bacteriocidal at 

3 h against P. aeruginosa. These results were also graphed as survival curves (Figure 8a). 

After 3 h, both silver hydrogels reduced the microbe inocula below the detection limit (10
2
 

CFU/ml). For MRSA, 5 mM and 10 mM silver hydrogel inhibited the bacterial cell growth 

after 12 h of treatment, with a log reduction of >6.41. Both 5 mM and 10 mM silver hydrogels 

reduced the tested microbial inocula below the detection limit within 12 h (Figure 8b). Wang 

et al [36]  has previously reported two explanations as to why gram-positive bacteria may be 

less susceptible to silver ions than gram-negative bacteria. First, silver ions are positively 

charged and more silver may get trapped by the negative charge of the peptidoglycan cell wall 

in gram-positive bacteria. Second, the fact that the cell wall of gram-positive bacteria is 

thicker than that of gram-negative bacteria may lead to the decreased susceptibility of gram-

positive bacteria. In the case of the neat hydrogel and product A, log reductions fluctuated 

considerably indicating poor inhibition activity.  The survival curves of both microbes treated 

with these hydrogels showed they were never able to reduce the colony level to below 10
5
 

CFU/ml.  

 

Treatments on a porcine burn model 

The 5 mM silver hydrogel was chosen to be the best dressing and was used for testing in an 

animal study due to it having the least silver content required for effective antibacterial 

activity. A porcine model was selected due to morphological and physiological similarities to 

human skin [29]. This pig burn model mimics human clinical wounds in appearance, exudate, 

breakdown, scarring and healing process. Large bacteria colonization zones were observed for 

both control wounds. Small red bumps were found around the wounds as shown in Figure 9a. 

A skin swab was not collected, however skin rashes of this nature have been identified from 

previous animals undergoing wound healing studies as being colonised with Staphylococcus. 

The wounds treated with silver hydrogel (Figure 9b) and the commercial silver dressings 

(product B and product C) showed no bacterial colonization. This is in accordance with the 

theory that silver incorporated in dressings helps to prevent wound infection. Product B 

treatments left a stain from the released silver. The visible stain from treatment of product B 

may due to the fact that product B has a silver content of 0.84-1.34 mg/cm
2
 [37] which is 

about 10 fold higher than the silver content in the 5 mM silver hydrogel (maximum silver 

content of 0.108 mg/cm
2
). The wound exudate, which was absorbed into the dressing, was 
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found to increase the chance of breakage of product C and the silver hydrogel. The silver 

hydrogel was found to be an easily removable dressing (Figure 9d). Its transparency enabled 

observation of the wound healing process (Figure 9c). In addition, it efficiently absorbed the 

exudate from the wound. The hydrogel darkened in color due to exudate adsorption. All 

wounds took approximately 35 days to completely re-epithelize. The cosmetic scores for all 

the wounds treated with silver dressings were not significantly different (p > 0.01) compared 

to the control wound. It can be concluded that silver hydrogel was comparable to the common 

silver dressings tested. Additionally, there are three particular advantages of the developed 

silver hydrogel over the commercially available dressings tested. Firstly, the single step 

synthesis provides a ready to use sterile dressing. Secondly, it is non-cytotoxic, yet has strong 

antimicrobial activity. Finally, the low-cost novel dressing which is easy and cheap to 

manufacture can be a good treatment option for developing countries and rural locations. 

 

CONCLUSIONS 

 

Novel antibacterial burn wound dressings based on AMPS-Na
+
 hydrogel containing SNP have 

been successfully prepared with single step production via gamma irradiation. The formation 

of SNP was confirmed by electron microscopy. The WVTR confirmed that all hydrogels 

could be used to decrease body fluid loss and maintain a moist environment for burn wounds.  

The cumulative release of silver from the novel dressings was about 80% at 72 h. Therefore, it 

would be an effective antimicrobial wounds dressing for approximately 72 h. The cytotoxicity 

test results showed that none of the silver hydrogels were toxic to NHDF for at least 7 days of 

exposure. The antibacterial activity evaluation indicated that the 5 mM and 10 mM silver 

hydrogels inhibited the growth of gram-positive MRSA after 12 h of the treatment and they 

took only 3 h to inhibit gram-negative P. aeruginosa cell growth. The 5 mM silver hydrogel 

was selected to be the best dressing and was used to treat a porcine burn model in comparison 

to the two common silver burn wound dressings (product B and product C). All silver 

treatments sufficiently protected the wounds from bacterial colonization. The cosmetic score 

revealed the novel silver hydrogel was a comparable dressing to the two common dressings. 

The simple production, effective antimicrobial activity, lack of cytotoxicity and effective use 

in an animal study support the use of the 5 mM silver hydrogel as a novel burn wound 

dressing. 
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Table 1 Physical and mechanical properties of the tested hydrogels from triplicate 

experiments. 

Sample EDS  

(% at 72 h) 

Gelation 

(%) 

Adsorptive 

capacity 

(ml/cm2) 

Moisture 

retention  

(% Rh at 6) 

WVTR 

(g/m
2
/h) 

(72 h) 

Tensile strength 

(MPa) 

Elongation at 

break 

(%) 

neat 1278.6 ± 19.5 84.6 ± 8.5 7.3 ± 0.6 98.1 ± 0.1 97.5 ± 5.0 0.0294 ± 0.0057 183.5 ± 68.7 

2.5 mM 1478.1 ± 20.4 72.1 ± 9.8 7.1 ± 0.7 97.5 ± 0.1 102.0 ± 4.2 0.0280 ± 0.0030 222.3 ± 42.9 

5 mM 1360.9 ± 5.9 80.7 ± 8.2 6.7 ± 0.2 97.7 ± 0.3 95.2 ± 4.9 0.0328 ± 0.0066 253.3 ± 66.5 

10 mM 1228.4 ± 0.3 82.7 ± 9.3 6.3 ± 0.1 97.8 ± 0.2 86.7 ± 3.1 0.0296 ± 0.0038 232.5 ± 30.3 

product A 443.1 ± 4.4 95.8 ± 0.4 4.6 ± 0.3 100.1 ± 0.1 0.94 ± 0.5 0.0419 ± 0.0046 765.3 ± 134.6 
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Table 2 Amount of extracted silver, amount of silver released and percentage of 

cumulative silver release of the silver hydrogels after 10 days immersion in SBF from 

triplicate experiments.  

Concentration of 

silver 

(mM) 

Amount of extracted 

silver 

(ppm) 

Amount of silver 

released 

(ppm) 

(%) cumulative 

silver release 

2.5 1.95 1.76 ± 0.09 90.25  ± 4.65 

5 3.09 2.78 ± 0.41 89.97 ± 13.27 

10 6.62 5.38 ± 0.33 81.26 ± 5.01 
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Table 3 Inhibition zone length of bacteria treated with the hydrogels by the disc 

diffusion method from triplicate experiments. 

sample 

 

Inhibition zone length 

(mm) 

S. aureus MRSA 
S. 

epidermidis 
E. coli 

P. 

aeruginosa 

neat 0 0 0 0 0 

2.5 mM 0 0 0 7.4 ±   0.6 0 

5 mM 8.7 ± 0.6 8.2  ± 0.3 8.9  ±  0.4 8.4 ±  0.4 7.2 ± 0.8 

10 mM 10.8  ±  0.7 8.9 ± 0.9 10.7  ±  0.7 10.4 ± 0.7 8.7 ± 0.7 

product A 0 0 0 0 0 
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Table 4 Log reduction of MRSA and P. aeruginosa cell growth after treatment with 

the tested hydrogels using the shake flask method from duplicate experiments. 

Bacteria Hydrogels Log reduction at time intervals (h) 

1 3 6 12 24 

product A 0.40 ± 0.06 0.89 ± 0.28 0.34 ± 0.04 0.38 ± 0.02 1.34 ± 0.03 

P.aeruginosa neat 0.35 ± 0.02 0.28 ±0.03 0.02 ± 0.04 0.14 ± 0.07 1.15 ± 0.06 

5 1.33 ± 0.09 >4.43 ± 0.00 >5.21 ± 0.00 >6.68 ± 0.00 >7.26 ± 0.00 

10 1.75 ± 0.65 >4.43 ±0.00 >5.21 ± 0.00 >6.68 ± 0.00 >7.26 ± 0.00 

MRSA 

product A -0.02 ± 0.09 0.01 ± 0.09 0.38 ± 0.01 1.57 ± 0.01 1.38 ± 0.34 

neat -0.01±0.02 0.02 ± 0.01 0.66 ±0.10 0.69 ± 0.11 0.36 ± 0.00 

5 mM 0.01 ± 0.09 0.38 ±0.10 2.53 ± 0.10 >6.41 ± 0.00 >6.28 ± 0.00 

10 mM -0.03 ± 0.08 2.60 ±0.05 3.02 ± 0.17 >6.41 ± 0.00 >6.28 ± 0.00 

 

Page 23 of 33 Journal of Pharmaceutical Sciences



  

 

 

Figure 1. A schematic representation of polymerization of AMPS monomer with gamma irradiation.  Silver 
ions were reduced to form SNP which were infused in the crosslinked polymeric network.  

80x58mm (300 x 300 DPI)  
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Figure 2. The appearance of the radiated hydrogel pads darkened with increasing silver concentration. a: 
neat hydrogel, b: 2.5 mM silver hydrogel, c: 5 mM silver hydrogel, d: 10 mM silver hydrogel.  

80x20mm (300 x 300 DPI)  
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Figure 3. SEM images of a neat hydrogel, b: 5 mM silver hydrogel and c: 10 mM silver hydrogel.  
80x18mm (300 x 300 DPI)  
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Figure 4. TEM images from immersion solutions of silver hydrogels and histograms of size distribution from 
the respective TEM images. a: 2.5 mM silver hydrogel, b: 5 mM silver hydrogel and c: 10 mM silver. d: TEM 

images of selected single crystals of SNP released from 5 mM silver hydrogel.  
80x56mm (300 x 300 DPI)  
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Figure 5. The swelling behaviors of the neat hydrogel, silver hydrogels and product A immersed in simulated 
body fluid solution at 35 ºC from triplicate experiments.  
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Figure 6. The cumulative release of silver from silver hydrogels after immersion in simulated body fluid 
solution at 35 ºC from triplicate experiments. a: cumulative release of silver (ppm), b: % cumulative release 

of silver.  
276x111mm (300 x 300 DPI)  
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Figure 7. The cytotoxicity of the neat hydrogel, nanosilver hydrogels and product A on Normal Human 
Dermal Fibroblast cells from triplicate experiments.  
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Figure 8. Bacterial survival curves of a: P. aeruginosa and b: MRSA exposed to neat hydrogel, silver 
hydrogels and product A from duplicate experiments.  

80x102mm (300 x 300 DPI)  
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Figure 9. Photographs of a: control wound, b: wound treated with 5 mM silver hydrogel, c: the wound seen 
through the transparent 5 mM silver hydrogel, d: the 5 mM silver hydrogel after being removed from a 

wound.  
80x18mm (300 x 300 DPI)  
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Figure 1. A schematic representation of polymerization of AMPS monomer with gamma 

irradiation.  Silver ions were reduced to form SNP which were infused in the crosslinked 

polymeric network 

 

Figure 2. The appearance of the radiated hydrogel pads darkened with increasing silver 

concentration. a: neat hydrogel, b: 2.5 mM silver hydrogel, c: 5 mM silver hydrogel, d: 10 

mM silver hydrogel. 

 

Figure 3. SEM images of a neat hydrogel, b: 5 mM silver hydrogel and c: 10 mM silver 

hydrogel. 

 

Figure 4. TEM images from immersion solutions of silver hydrogels and histograms of size 

distribution from the respective TEM images. a: 2.5 mM silver hydrogel, b: 5 mM silver 

hydrogel and c: 10 mM silver. d: TEM images of selected single crystals of SNP released 

from 5 mM silver hydrogel. 

 

Figure 5. The swelling behaviors of the neat hydrogel, silver hydrogels and product A 

immersed in simulated body fluid solution at 35 ºC from triplicate experiments. 

 

Figure 6. The cumulative release of silver from silver hydrogels after immersion in simulated 

body fluid solution at 35 ºC from triplicate experiments. a: cumulative release of silver (ppm), 

b: % cumulative release of silver. 

 

Figure 7. The cytotoxicity of the neat hydrogel, nanosilver hydrogels and product A on 

Normal Human Dermal Fibroblast cells from triplicate experiments. 

 

Figure 8. Bacterial survival curves of a: P. aeruginosa and b: MRSA exposed to neat 

hydrogel, silver hydrogels and product A from duplicate experiments.  

 

Figure 9. Photographs of a: control wound, b: wound treated with 5 mM silver hydrogel, c: 

the wound seen through the transparent 5 mM silver hydrogel, d: the 5 mM silver hydrogel 

after being removed from a wound. 
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