
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Lisi, Nicola, Buonocore, Francesco, Dikonimos, Theodoros, Leoni, Enrico,
Faggio, Giuliana, Messina, Giacomo, Morandi, Vittorio, Ortolani, Luca, &
Capasso, Andrea
(2014)
Rapid and highly efficient growth of graphene on copper by chemical vapor
deposition of ethanol.
Thin Solid Films, 571(Part 1), pp. 139-144.

This file was downloaded from: https://eprints.qut.edu.au/77858/

c© Copyright 2014 Elsevier

This is the author’s version of a work that was accepted for publication in Thin Solid Films.
Changes resulting from the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may not be reflected in this
document. Changes may have been made to this work since it was submitted for publica-
tion. A definitive version was subsequently published in Thin Solid Films, [VOL 571, Part
1, (2014)] DOI:10.1016/j.tsf.2014.09.040

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1016/j.tsf.2014.09.040

https://eprints.qut.edu.au/view/person/Capasso,_Andrea.html
https://eprints.qut.edu.au/77858/
https://doi.org/10.1016/j.tsf.2014.09.040


 

Rapid and highly efficient growth of graphene on copper by chemical vapor 

deposition of ethanol 

Nicola Lisi†,*, Francesco Buonocore†, Theodoros Dikonimos†, Enrico Leoni†, Giuliana 

Faggio‡, Giacomo Messina‡, Vittorio Morandi||, Luca Ortolani||, and Andrea Capasso† 

†ENEA, Materials Technology Unit, Surface Technology Laboratory Casaccia Research 

Centre, 00123 Roma, Italy 

‡Dipartimento di Ingegneria dell'Informazione, delle Infrastrutture e dell'Energia Sostenibile 

(DIIES), Università “Mediterranea” di Reggio Calabria, 89122 Reggio Calabria, Italy 

||CNR-IMM Bologna, Via Gobetti, 101, 40129 Bologna, Italy 

*nicola.lisi@enea.it (Nicola Lisi) 

 

Abstract 

The growth of graphene by chemical vapor deposition on metal foils is a promising technique 

to deliver large-area films with high electron mobility. Nowadays, the chemical vapor 

deposition of hydrocarbons on copper is the most investigated synthesis method, although 

many other carbon precursors and metal substrates are used too. Among these, ethanol is a 

safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored 

the initial stages of the growth of graphene on copper from ethanol, investigating the 

produced material by electron microscopy, Raman and x-ray photoemission spectroscopy. A 

graphene film with high crystalline quality was found to cover the entire copper catalyst 

substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than 

methane and other commonly used precursors. 

 

1 Introduction 

Graphene, the 2D material par excellence [1], can be grown by the catalytic decomposition of 



a large variety of hydrocarbons and other carbon-containing gaseous/liquid precursors onto 

the surface of several metals [2]. The chemical vapor deposition (CVD) of methane (CH4) on 

copper is the most common synthesis scheme, in which graphene islands start to nucleate in 

isolated areas and then slowly merge forming a continuous film [3-6]. The accretion process 

leads to the formation of a polycrystalline graphene film and has a rather slow rate, in the 

order of a few µm per minute [5, 6]. Consequently, the complete coverage of a copper catalyst 

surface takes no less than several minutes [3], although shorter process times (with rapid 

heating/cooling phases) are regarded as mandatory for the production of graphene for 

consumer devices [7]. Among the alternative precursors, ethanol (C2H5OH) vapor is a 

sensible choice [8,9] due to its safety, low cost, and easy handling. Concerning the growth 

rate, ethanol seems to offer different and faster process kinetics. During CVD, the ethanol 

vapor [10] forms a weakly oxidizing environment [11, 12] that could improve the crystalline 

quality, as observed for carbon nanotubes [13]. Various research groups studied the graphene 

growth on copper by CVD of ethanol and other alcohol precursors, exploring temperature 

ranges lower than those usually reported for CVD of CH4. In particular, the 650-850°C and 

900°C ranges were investigated (respectively, for 5 and 30 min growth time) [8,9]. Recently, 

our group reported the growth of highly-crystalline, few-layer graphene by CVD of ethanol at 

high temperatures (1000-1070°C), using growth times typical of CH4-assisted growth (10-30 

min) [14]. Another recent paper reported a self-limiting growth of graphene from ethanol 

occurring after 5 min at 1000°C; however, this was achieved in copper foil enclosures 

(different from plain copper surfaces), specifically designed to reduce the gas partial pressure 

at the catalyst surface [15]. 

In the present work, we report on the formation of a graphene film onto a copper surface by 

using ethanol, assessing if and how ethanol really promotes a faster kinetics for graphene 

synthesis. In our experiments, we systematically varied the temperature, the growth time and 



the hydrogen dilution, investigating the coverage of the copper foil in the initial stage of the 

growth. We explored a synthesis time between 20 and 60 s in a high-temperature range (1000-

1070°C), varying the hydrogen flow from 0 to 100 sccm. 

 

2 Experimental 

2.1 Sample Preparation Our home-built reactor consists of a high vacuum fitted, 2m long 

quartz tube vessel, coaxial to a 0.65 m long furnace. Other details on the experimental set-up 

can be found elsewhere [14]. 25 µm thick copper foil (PHC Se-Cu58, 99.95% pure) were cut 

to the desired size and utilized as growth substrates. In the reaction chamber the growth 

substrates (hosted in a quartz boat) can be quickly removed from the furnace under vacuum-

tight conditions by means of a specially designed feed-through. The sample cooling is very 

rapid upon extraction in the cold part of the vessel, due to the intense thermal radiation and 

the low thermal mass of the boat. 

Ethanol was contained in a steel bubbler vessel kept at 0°C (about 1500 Pa equilibrium 

pressure) and pressurized in Ar at 3 bar, and let into the chamber by controlling the Ar carrier 

flow with a mass flow controller. After reaching the desired furnace temperature 

(1000/1070°C), the pressure was stabilized at 400 Pa by flowing 20 sccm of Ar and 20 sccm 

of H2. The ethanol-Ar flow was set to 20 sccm in all our growth experiments, thus the ethanol 

flow can be estimated to be 0.1 sccm. The quartz boat containing the samples was then 

inserted into the hot zone and annealed for 20 min at the growth temperature. Graphene was 

grown by switching to an the ethanol-Ar flow, and adding variable amounts of hydrogen (0, 1, 

10, 100 sccm). Depending on the flows and measuring the chamber pressure the ethanol 

partial pressure is simply calculated between 1-2 Pa. 

Such system allows performing short-duration growth experiments. The minimum process 

duration can be estimated by taking into account the time necessary to establish the gas flow 

(T1, ~15 s for a total flow of 20 sccm and a pressure of 400 Pa) and the time necessary to 



move the sample to the cold zone and stop the growth (T2, less than 15 s in our system). For 

all this, we did not explore CVD durations shorter than 20 s. 

After the synthesis, the graphene film grown on the back of each copper substrate was 

removed [14] and the samples were left floating onto diluted nitric acid bath (HNO3 70%, 1:3 

in H2O) for 2 h at room temperature. After the full etching of copper, the free-floating carbon 

film was scooped by using a thermally oxidized silicon wafer and transferred into a clean bath 

of distilled water to remove etching residues. Finally, the films were transferred onto Si/SiO2 

substrates (300 nm thermal oxide) for Raman spectroscopy and Scanning Electron 

Microscopy (SEM), and onto nickel grids for Transmission Electron Microscopy (TEM) 

examination.  

2.2 Sample Characterization. Raman scattering measurements were carried out at room 

temperature with an Instruments SA Ramanor U1000 double monochromator, equipped with 

an Olympus BX40 microscope for micro-Raman sampling and an electrically-cooled 

Hamamatsu R943-02 photomultiplier for photon-counting detection. The 514.5 nm (2.41 eV) 

line of an Ar+ ion laser (Coherent Innova 70) was used to excite Raman scattering. Using a 

×100 objective, the laser beam was focused to a diameter of approximately 1µm using a low 

laser power (below 1 mW). On each sample, the spectra were recorded at four different 

locations and averaged. Field Emission-SEM observations were done at low accelerating 

voltages (less than 1kV) with a LEO 1500 microscope with an in-line detector on as-grown 

and transferred samples. TEM characterization was carried out using a Tecnai F20 

microscope, operated at 120 kV to reduce the radiation damage to the graphene crystals. Just 

before the observation, each sample was rapidly heat-treated for 10 min over a hot plate at 

150 °C to reduce surface-adsorbed contaminants. X-ray photoemission spectroscopy (XPS) 

measurements were acquired with a VG ESCA MKII spectrometer, employing the MgKα X-

ray radiation at 1253.6 eV. 



 3 Results  

The samples were thoroughly characterized to assess the properties of the grown films (i.e., 

crystalline quality, domain size, thickness), and determine the overall coverage of the catalyst 

surface.  

3.1 Optical and Secondary Electron Microscopy. In Figure 1, an optical micrograph of a 

film grown for 20 s (1070°C, 0 sccm H2) and transferred onto Si/SiO2 (300 nm) substrate is 

reported. The graphene film appears homogenous and completely covers the substrate; only a 

few holes and tears (lighter areas) are visible. The parallel stripes in the film are due to the 

lamination process of the copper foils. The film morphology carries the memory of the copper 

substrate texture, as evidenced by the parallel stripes (due to the lamination process during 

foil manufacturing) and the polygonal shapes (footprints of the copper grains). Overall, the 

films grown for 20 and 60 s show the same microscopic features of those grown for 10 min or 

more [14, 16]. 

 
Figure 1 Optical micrograph of film grown for 20 s (1070°C, 0 sccm of H2) transferred onto a 

Si/SiO2 substrate at a) low and b) high magnification. Only a few tears appear in the film. 

Marks of the copper lamination (black double arrow) and of the copper grains (marked by 

while lines) are also visible. 



In Figure 2, SEM micrographs of two samples grown for less than 1 min are reported. The 

underlying copper substrate again shows sharp grain boundaries and crystal facets. A 

continuous graphene film covering the copper surface is visible. The film appears 

polycrystalline and with a high number of wrinkles, which forms during cooling after CVD 

due to the difference in thermal expansion between graphene and copper [17]. The film grown 

in 20 s shows similar features and again covers the entire surface. Surprisingly, darker islands 

aligned along the lamination direction of the copper foils (white double arrows) are visible in 

the film, suggesting that regardless of the short time some secondary nucleation already took 

place. In any of our CVD experiments (even with duration of only a few seconds), it was not 

possible to identify individually separated graphene domains, as reported for copper 

enclosures with ethanol [15] or for plain copper with methane [6] and ethylene [18]. 



 
Figure 2 SEM micrographs of graphene grown on copper at 1070°C with 100 sccm H2: a) 

growth for 60 s, b) and c) growth for 20 s. The white double arrows indicate the copper 

lamination direction. The dashed lines show the copper grain edges and boundaries. Graphene 

(G) wrinkles cover the entire surface. 

 

3.2 X-ray Photoelectron Spectroscopy. A graphene film is reported to provide a barrier that 

retards the oxidation of copper [19]. In order to further confirm the film coverage on our 

copper substrates after CVD, we heated a set of samples in air at 200°C for 30 min and then 

verified their state of oxidation. In Figure 3 three heated samples are presented: a copper foil 



with graphene grown for 10 min (Sample 1), a copper foil with graphene grown for 20 s 

(Sample 2), and a plain copper foil without graphene (Sample 3). The photographs of the 

samples show that Sample 1 and 2 retained the native metallic copper appearance regardless 

of the CVD time, indicating that the substrate surface was overall covered by graphene in 

both cases; instead, Sample 3 (only annealed in Ar/H2 without CVD of ethanol) clearly 

appears oxidated. 

 

Figure 3 Copper foils after CVD and post-treatment at 200°C in air. a) Photographs of 

Samples 1, 2, 3 (from top to bottom). b) XPS survey scans. c) XPS carbon 1s peak. Sample 

key: 1) 1070°C/10 min with H2/Ar:C2H5OH (10/10 sccm), 2) 1070°C/20 s with 

H2/Ar:C2H5OH (10/10 sccm), 3) only annealing 1070°C/20 min with H2/Ar (10/10 sccm) 

without ethanol flow.  

 

The surface of the samples before and after the annealing in air at 200°C was analyzed by 

XPS. The survey scans of the annealed samples (Figure 3b) show the presence of copper and 

carbon. The oxidation state of copper could be assessed by observing both the chemical shift 

of the Cu 2p3/2 line (Figure 3c) and the Auger parameters of the LMM transitions (box in 

Figure 3b). The surface of the bare Cu sample heated at 200°C is completely oxidized, with 

the prevalent formation of Cu2O. The shape of the line at higher binding energy suggests the 

presence of a weak CuO component too. Instead, the chemical shift and the Auger parameters 



of the graphene-covered Cu samples indicate the entirely metallic nature of the surface. The 

lack of oxidized Cu components in the graphene/Cu sample (within the intrinsic 0.1% atomic 

sensitivity of the XPS) points out that the Cu foil surface is covered by graphene. We 

conclude that the grown film represents a sufficient barrier for such a weak oxidative process, 

and that the coverage of the copper catalyst during CVD occurs in 20 s as it does in 10 min. A 

continuous graphene film is formed over the copper surface in 20 s and less, irrespective of 

the hydrogen dilution both at 1000°C and 1070°C. 

Figure 4 Raman spectra of graphene films grown for (a) 20 s and (b) 60 s at 1000°C (red 

curves) and 1070°C (blue curves). 

 

3.3 Raman Spectroscopy. The graphene films, transferred onto Si/SiO2 (300 nm), were 

further characterized by Raman spectroscopy. Figure 4 shows Raman spectra of the samples 

grown for 20 s (Fig.4a) and 60s (Fig.4b) at 1000°C and 1070°C for a hydrogen flow varying 

in the range 0-100 sccm. The main features are the G peak, centered at ∼1584 cm-1 and the 2D 

peak at ∼2700 cm-1; D (∼1350cm-1) and D' (∼1620 cm-1) peaks are also observed, indicating 



the presence of defects in the graphitic lattice, such as disordered carbon, edges and wrinkles 

[20, 21, 22]. Table 1 reports the ID/IG and IG/I2D intensity ratios corresponding to the Raman 

spectra of Figure 4 (the values are calculated by spectral fitting). 

t 

(s) 

ΦH2 

(sccm) 

ID/IG IG/I2D 

T=1000°C T=1070°C T=1000°C T=1070°C 

20 

0 0.71 0.28 0.90 1.20 

1 0.47 0.32 0.91 1.35 

10 0.58 0.26 0.69 1.02 

100 0.29 0.23 0.85 0.81 
 

  

60 

0 0.25 0.24 0.99 1.31 

1 0.55 0.20 1.20 1.43 

10 0.34 0.20 1.32 1.27 

100 0.21 0.10 1.25 1.67 

Table 1 Summary of the Raman intensity ratios for the grown films. 

 

Lower values of ID/IG are obtained for longer growth times (average value of 0.27 and 0.18 at 

1070°C for 20 and 60 s, respectively). It was demonstrated in previous studies that the ID/IG 

ratios reach considerably lower values when the growth time is extended up to 10 or 30 min 

[14, 23]. In our case, the film appears formed in either 20 or 60 s and so the graphene grains 

should have already grew until coalescence; therefore, the weakening of the D peak from 20 

to 60 s can be explained by the reduction of defective sites in the grains, which are annealed 

out and cured with time. As in the case of 10 and 30 min (reported in ref. 14), the films grown 

at 1000°C shows ID/IG higher than those obtained at 1070°C (Table 1). A lower temperature is 

expected to promote a higher nucleation density, thus leading to smaller grains; as a 

consequence the density of grain boundaries increases, as reflected in a more intense D band 

signal. The addition of a given flow of hydrogen (ΦH2) into the gas mixture is observed to 

reduce the ID/IG ratio of films grown in 60 s (especially at 1070°C), demonstrating an 



improved crystalline quality. The ID/IG ratios of the films grown for 20 s seem instead less 

dependent on the hydrogen flow. The size of graphene domains (La) can be evaluated from 

the ID/IG integrated intensity (i.e., area) ratio according to the general equation [24] 

 
where the laser line wavelength (λl) is expressed in nm. Figure 5 shows La as a function of 

ΦH2 at 1000 and 1070°C for the two growth times investigated. The graphene domain size was 

found to increase both with growth time and temperature. 

 

Figure 5 Graphene domain sizes of a function of ΦH2 for growths of 60 s (top) and 20 s 

(bottom). 

 

In general, the CVD from ethanol leads to fast growth of graphene with small La, which 

increases with time up to around 300 nm for a growth of 10 min [14].  
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Qualitative information about the thickness of CVD graphene films can be deduced from the 

G to 2D intensity ratio (IG/I2D) [25]. The IG/I2D values reported in Table 1 are typical of few-

layer graphene (1-4 layers). In particular, the ratios of the films grown for 20 s at 1000°C 

seem to indicate the presence of 1 to 2 layers (the IG/I2D ratio is minimum for the sample 

grown at 1000°C with ΦH2=10sccm). Overall, this shows that the growth is very fast and 

induces the nucleation and formation of secondary layers, as already seen by SEM (Figure 2). 

3.4 Transmission Electron Microscopy. TEM micrographs of the same sample, shown in 

Figure 6, reveal that the film is well formed and continuous on the microscopic scale. 

Analysis of the folded edges of the graphene films allows estimating the number of layers 

composing the membrane (see Fig. 6-b and 6-d), confirming that the graphene films are on 

average composed of one to a few layers. In all cases the film is crystalline, as also shown by 

the diffraction pattern analysis (inset of figures 6a and 6c). We deduced that the disorder (i.e. 

the small domains) related to the initial growth stages of the film masks the beneficial effects 

of hydrogen addition observed for longer growth durations [14]. 



 
Figure 6: TEM Characterization of the graphene films transferred on TEM grids. a) 

Micrograph of a film grown for 20 s at 1000°C with 10 sccm of hydrogen. Inset: electron 

diffraction pattern of the area, showing 0.213 nm and 0.123 nm ring reflections from 

polycrystalline graphene film. b) High-resolution image of a monolayer graphene fold. c) 

Micrograph of a film grown for 1 min at 1070°C with 100 sccm of hydrogen. Inset: electron 

diffraction pattern of the area, showing 0.213 nm and 0.123 nm ring reflections. d) High-

resolution image of a bilayer graphene fold. 

 

4 Discussion 

From the analysis of the experimental results, it appears that the CVD growth from ethanol is 

very rapid, and some insights in the chemistry of the growth process can be inferred. The 

mechanism and rate of graphene formation in CVD has been widely investigated in an 

extended range of conditions and for various precursors, and it has been proposed that 



graphene growth might entail the direct insertion of multi-carbon radicals [26, 27]. One of the 

quickest CVD syntheses with methane was reported by Li et al., who grew a continuous 

single layer of graphene in 2 min by using a CH4 flow of 7 sccm (6 Pa of pure methane) at 

1035°C [4]. In case of CVD of ethylene, the initial stages of the growth were studied in detail 

up to a temperature of 950°C, with a C2H4 flow of 7 sccm diluted in Ar/H2 (partial pressure of 

C2H4 of 2 Pa and total process pressure of 400 Pa) [18]: The time required to achieve the 

complete coverage of the copper surface was 5 minutes, comparable to that from CH4. When 

using other liquid precursors, reported growth times are 4 min for n-hexane [28], 15 min for 

benzene [29], and 60 min for toluene [27]. 

As for the CVD of ethanol, some studies on the nucleation and growth kinetics of graphene 

appeared in the last years. Zhao et al. stated that several minutes were necessary for the 

formation of a complete graphene film inside “ravioli-like” copper enclosures, with an 

ethanol flow of 10 sccm, a partial pressure of 1 Pa and a process pressure of 300 Pa [15]. The 

authors also claimed incidentally that on plain copper substrates a film formed in 30 s, in line 

with our findings. Another group also reported the CVD growth of graphene on plain copper 

from ethanol in 1 min at temperatures between 850-1000°C, indicating that slightly oxidized, 

polycrystalline films were grown [30]. However, this fast growth was achieved at atmospheric 

pressure with an ethanol partial pressure of about 5000 Pa. Our experimental results further 

confirm and prove that the growth of graphene from ethanol is generally quicker than the 

growth from hydrocarbons. It is well known in literature that high temperatures induce the 

thermal pyrolysis of ethanol. The main products of the thermal dissociation of ethanol are 

ethylene (C2H4) and water (H2O), while another dissociation path leads to one hydrogenated 

and one oxygen-containing carbon molecule [10]. In any case, during CVD the presence of an 

oxidizing agent can positively affect the growing carbonaceous film by removing amorphous 

carbon phases and preferentially etching defects, as for carbon nanotubes [13]. By contrast, 



the presence of molecular oxygen, even in trace quantities, is detrimental as it leads to the 

etching of graphene [31]. In our perspective, the role of the oxygen should be further 

investigated since it might also play a role in speeding up the growth rate of graphene. It is in 

fact known that, when interacting with methane at high temperature, oxidized copper is 

covered by carbon radicals much faster than clean copper [32]; similarly, the decomposition 

reaction of methanol is more efficient on a partially oxidized copper catalyst in respect to 

clean copper [33]. Clearly, above 1000°C (1273K) in vacuum, a copper surface is entirely 

free from oxides, either cuprous (Cu2O) or cupric (CuO), as predicted by the Cu/O2 phase 

diagram [34, 35]. This is also the case after our CVD process, as demonstrated by our XPS 

analysis in Figure 3, which excluded the presence of any copper oxides on the graphene/Cu 

substrate. However, during CVD the amount of H2O and CO released upon the dissociation of 

ethanol could instead suffice for the formation of a “temporary” Cu2O layer on the copper 

substrate [34], which would be almost immediately reduced by free hydrogen atoms [36]. 

This oxidation/dehydrogenation process could promote the adsorption of carbon radicals on 

the copper surface (as happens in ref. 32) and lead to the quick formation of a graphene film. 

This oxide-assisted growth mechanism should be evaluated in further experiments since, if 

proven, it could have vast relevance for those industrial processes seeking a fast, controlled 

and high-yield synthesis of graphene films.  

 

5 Conclusion 

We demonstrated that fully-formed graphene films can be grown by exposing copper foils to 

a low partial pressure of ethanol, of 2 Pa and less, in less than 20 seconds. In such fast growth 

by chemical vapor deposition of ethanol, hydrogen seems to not be indispensible and have a 

negligible effect on the crystalline quality of graphene, in contrast to classic several-minute 

growths. Overall, a fast and easy synthesis method for graphene is very interesting, as it might 



be potentially scalable to industrial production. The use of ethanol might also represent an 

advantage for high-end reactors, which can be simplified by eliminating hazardous gas lines 

and pressurized cylinders. 
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