CONVEXITY OF BẺZIER NETS ON SUB-TRIANGLES

John A. Gregory and Jianwei Zhou

With minor revisions, November 1990.
To appear in CAGD.

Convexity of Bẻzier Nets on Sub-triangles

by

John A. Gregory and Jianwei Zhou

Department of Mathematics and Statistics, Brunei University, Uxbridge, UB8 3PH, England

Abstract: This note generalizes a result of Goodman[3], where it is shown that the convexity of Bèzier nets defined on a base triangle is preserved on sub-triangles obtained from a mid-point subdivision process. Here we show that the convexity of Bèzier nets is preserved on and only on sub-triangles that are "parallel" to the base triangle.

1.Introduction

Let T be a triangle, called the base triangle (see [1]), with vertices $\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}} \mathbf{a n d}_{\mathbf{3}}$. (Here, and elsewhere in the paper, we assume that triangles are non-degenerate, that is, their vertices are not colinear.) Then each point P of the plane determined by $\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{2}$ and \mathbf{V}_{3}.can be represented by its barycentric coordinates ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) with respect to the base triangle T as

$$
\begin{equation*}
\mathrm{P}=\mathrm{u} \mathrm{~V}_{1}+\mathrm{v} \mathrm{~V}_{2}+\mathrm{w} V_{3}, \quad \mathrm{u}+\mathrm{v}+\mathrm{w}=1 . \tag{1}
\end{equation*}
$$

Denote f_{n} as a set of $(\mathrm{n}+1)(\mathrm{n}+2) / 2$ values

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}}=\left\{\mathrm{f}_{\mathrm{ijk}} \in \mathrm{R} \mid \mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n} \quad \mathrm{i} \geq 0, \mathrm{j} \geq 0, \mathrm{k} \geq 0,\right\} . \tag{2}
\end{equation*}
$$

The Bernstein polynomial of f_{n} over T is then given by

$$
\begin{equation*}
\mathrm{B}\left(\mathrm{f}_{\mathrm{n}} ; \mathrm{u}, \mathrm{v}, \mathrm{w}\right)=\sum_{\mathrm{i}+j+\mathrm{j}=\mathrm{k}=\mathrm{n}} \mathrm{f}_{\mathrm{ijk}} \mathrm{~B}_{\mathrm{ijk}}^{\mathrm{n}}(\mathrm{u}, \mathrm{v}, \mathrm{w}) \tag{3}
\end{equation*}
$$

Where

$$
\begin{equation*}
B_{i j k}^{n}(u, v, w)=\frac{n!}{i!j!k!} u^{i} v^{j} w^{k} \tag{4}
\end{equation*}
$$

are Bernstein basis functions. If welet shiftoperators $\mathbf{E}_{\mathbf{1}}, \mathbf{E}_{\mathbf{2}} \mathbf{a n d} \mathbf{E}_{\mathbf{3}}$ with respect to T be defined by

$$
\begin{equation*}
E_{1} f_{i j \mathrm{j} k}=f_{i+1, j, k}, \quad E_{2} f_{i j \mathrm{j} k}=f_{i, j+1, k}, \quad E_{3} f_{i j k}=f_{i, j, k+1}, \tag{5}
\end{equation*}
$$

then the Bernstein polynomial can be represented symbolically as

$$
\begin{equation*}
B\left(f_{n} ; u, v, w\right)=\left(u E_{1}+v E_{2}+w E_{3}\right)^{n} f_{000} . \tag{6}
\end{equation*}
$$

Now we consider $(\mathrm{n}+1)(\mathrm{n}+2) / 2$ points of T with barycentric coordinates $(\mathrm{i} / \mathrm{n}, \mathrm{j} / \mathrm{n}, \mathrm{k} / \mathrm{n})$, namely,

$$
P_{i \mathrm{ijk}}=(\mathrm{i} / \mathrm{n}) \mathrm{V}_{1}+(\mathrm{j} / \mathrm{n}) \mathrm{V}_{2}+(\mathrm{k} / \mathrm{n}) \mathrm{V}_{3}, \mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n} .
$$

Connecting

$$
P_{i+1, j, k}, P_{i, j+1, k}, P_{i, j, k+1},
$$

we obtain a triangle, denoted $\mathrm{U}_{\mathrm{ijk}}$ for $\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}-1$. Similarly, a triangle $\mathrm{W}_{\mathrm{ijk}}$ is obtained for $\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}+1$ with

$$
P_{i-1, j, k}, P_{i, j-1, k}, P_{i, j, k-1}
$$

asits vertices. A piecewise linearfunction $L\left(f_{n} ; u, v, w\right)$, or $L\left(f_{n}\right)$ for short, isdefinedon T such that it satisfies

$$
\begin{equation*}
L\left(f_{n} ; P_{i j k}\right)=f_{i j k}, i+j+k=n, \tag{7}
\end{equation*}
$$

and is linear on each triangle $\mathrm{U}_{\mathrm{ijk}}$ or $\mathrm{W}_{\mathrm{ijk}}$. We call $\mathrm{L}\left(\mathrm{f}_{\mathrm{n}} ; \mathrm{u}, \mathrm{v}, \mathrm{w}\right)$ the Bėzier net of f_{n}.
The approximation theory of Bernstein polynomials and their applications inCAGD, Computer-aided Geometric Design, indicate that the Bėzier net $L\left(f_{n}\right)$ is closely related to $B\left(f_{n} ; u, v, w\right)$ and reflects certain features of $B\left(f_{n} ; u, v, w\right)$. As this note isconcerned with the convexity, we state the following results (see [1,2]):

Theorem 1 (i) If the Bėzier net $\mathrm{L}\left(\mathrm{f}_{\mathrm{n}} ; \mathrm{u}, \mathrm{v}, \mathrm{w}\right)$ is convex with respect to T , so is the Bernstein polynomial $\mathrm{B}\left(\mathrm{f}_{\mathrm{n}} ; \mathrm{u}, \mathrm{v}, \mathrm{w}\right)$.
(ii) The Bėzier net $\mathrm{L}\left(\mathrm{f}_{\mathrm{n}} ; \mathrm{u}, \mathrm{v}, \mathrm{w}\right)$ is convex with respect to T if and only if

$$
\left\{\begin{array}{l}
\mathrm{f}_{\mathrm{i}+2, \mathrm{j}, \mathrm{k}}+\mathrm{f}_{\mathrm{i}, \mathrm{j}+1, \mathrm{k}+1} \geq f_{\mathrm{i}+1, \mathrm{j}+1, \mathrm{k}}+\mathrm{f}_{\mathrm{i}+1, \mathrm{j}, \mathrm{k}+1} \tag{8}\\
\mathrm{f}_{\mathrm{i}, \mathrm{j}+2, \mathrm{k}}+\mathrm{f}_{\mathrm{i}+1, \mathrm{j}, \mathrm{k}+1} \geq f_{\mathrm{i}+1, \mathrm{j}+1, \mathrm{k}}+\mathrm{f}_{\mathrm{i}, \mathrm{j}+1, \mathrm{k}+1} \\
\mathrm{f}_{\mathrm{i}, \mathrm{j}, \mathrm{k}+2}+\mathrm{f}_{\mathrm{i}+1, \mathrm{j}+1, \mathrm{k}} \geq \mathrm{f}_{\mathrm{i}+1, \mathrm{j}, \mathrm{k}+1}+\mathrm{f}_{\mathrm{i}, \mathrm{j}+1, \mathrm{k}+1}
\end{array}\right.
$$

for $\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}-2$.
Using the shift operators, one may rewrite (8) as

$$
\begin{equation*}
\left(E_{i_{1}}-E_{i_{2}}\right)\left(E_{i_{1}}-E_{i_{3}}\right) f_{i j k} \geq 0, i+j+k=n-2 \tag{9}
\end{equation*}
$$

for any permutation $\left\{i_{1}, i_{2}, i_{3}\right\}$ of $\{1,2,3\}$.
Let V_{1}^{*}, V_{2}^{*} and V_{3}^{*} be the vertices of another triangle T^{*} in the same plane as T and let

$$
\begin{equation*}
\mathrm{P}=\mathrm{u}^{*} \mathrm{~V}_{1}^{*}+\mathrm{v}^{*} \mathrm{~V}_{2}^{*}+\mathrm{w}^{*} \mathrm{~V}_{3}^{*}, \mathrm{u}^{*}+\mathrm{v}^{*}+\mathrm{w}^{*}=1 \tag{10}
\end{equation*}
$$

define the barycentric coordinates $\left(\mathrm{u}^{*}, \mathrm{v}^{*}, \mathrm{w}^{*}\right)$ of P with respect to T^{*}. Assume that $\mathrm{V}_{\mathrm{i}}^{*}$ has barycentric coordinates $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right)$ with respect to T , that is,

$$
\begin{equation*}
V_{i}^{*}=u_{i} V_{1}+v_{i} V_{2}+w_{i} V_{3}, u_{i}+v_{i}+w_{i}=1 \tag{11}
\end{equation*}
$$

for $\mathrm{i}=1,2,3$. Then

$$
\left\{\begin{array}{l}
u=u^{*} u_{1}+v^{*} u_{2}+w^{*} u_{3} \tag{12}\\
v=u^{*} v_{1}+v^{*} v_{2}+w^{*} v_{3} \\
w=u^{*} w_{1}+v^{*} w_{2}+w^{*} w_{3}
\end{array}\right.
$$

A Bernstein polynomial on T^{*} is defined symbolically by

$$
\begin{equation*}
B\left(f_{n}^{*} ; u^{*}, v^{*}, w^{*}\right)=\left(u^{*} E_{1}^{*}+v^{*} E_{2}^{*}+w^{*} E_{3}^{*}\right)^{n} f_{000}^{*} \tag{13}
\end{equation*}
$$

Where

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}}^{*}=\left\{\mathrm{f}_{\mathrm{ijk}}^{*} \in \mathrm{R} \mid \mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}, \mathrm{i} \geq 0, \mathrm{j} \geq 0, \mathrm{k} \geq 0\right\} \tag{14}
\end{equation*}
$$

and E_{i}^{*} define the shift operators on T^{*}. We then have:
Theorem 2 (Chang and Davis[1]) Let

$$
\begin{equation*}
f_{i j k}^{*}=\left(u_{1} E_{1}+v_{1} E_{2}+w_{1} E_{3}\right)^{i}\left(u_{2} E_{1}+v_{2} E_{2}+w_{2} E_{3}\right)^{j}\left(u_{3} E_{1}+v_{3} E_{2}+w_{3} E_{3}\right)^{k} f_{000}, \tag{15}
\end{equation*}
$$

for $\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}$. Then $\mathrm{B}\left(\mathrm{f}_{\mathrm{n}}^{*} ; \mathrm{u}^{*}, \mathrm{v}^{*}, \mathrm{w}^{*}\right)$ is the Bernstein representation of $\mathrm{B}\left(\mathrm{f}_{\mathrm{n}} ; \mathrm{u}, \mathrm{v}, \mathrm{w}\right)$ with respect to
T^{*}.

Proof: From (12) and (15) we obtain, by equating coefficients,

$$
\begin{aligned}
& B\left(f_{n} ; u, v, w\right)=\left(u E_{1}+v E_{2}+w E_{3}\right)^{n} f_{000} \\
& \quad=\left[u^{*}\left(u_{1} E_{1}+v_{1} E_{2}+w_{1} E_{3}\right)+v^{*}\left(u_{2} E_{1}+v_{2} E_{2}+w_{2} E_{3}\right)+w^{*}\left(u_{3} E_{1}+v_{3} E_{2}+w_{3} E_{3}\right)\right]^{n} f_{000} \\
& \quad=\left(u^{*} E_{1}^{*}+v^{*} E_{2}^{*}+w^{*} E_{3}^{*}\right)^{n} f_{000}^{*}
\end{aligned}
$$

if and only if

$$
\mathrm{E}_{1}^{*_{i}^{*}} \mathrm{E}_{2}^{* j} \mathrm{E}_{3}^{{ }^{\mathrm{k}} \mathrm{f}_{000}^{*}=\left(\mathrm{u}_{1} \mathrm{E}_{1}+\mathrm{v}_{1} \mathrm{E}_{2}+\mathrm{w}_{1} \mathrm{E}_{3}\right)^{\mathrm{i}}+\left(\mathrm{u}_{2} \mathrm{E}_{1}+\mathrm{v}_{2} \mathrm{E}_{2}+\mathrm{w}_{2} \mathrm{E}_{3}\right)^{j}+\left(\mathrm{u}_{3} \mathrm{E}_{1}+\mathrm{v}_{3} \mathrm{E}_{2}+\mathrm{w}_{3} \mathrm{E}_{3}\right)^{\mathrm{k}} \mathrm{f}_{000} ~}
$$

Remark In the above proof we note the identities

$$
\begin{equation*}
\mathrm{E}_{\mathrm{i}}^{*}=\mathrm{u}_{\mathrm{i}} \mathrm{E}_{1}+\mathrm{v}_{\mathrm{i}} \mathrm{E}_{2}+\mathrm{w}_{\mathrm{i}} \mathrm{E}_{3}, \mathrm{i}=1,2,3, \tag{16}
\end{equation*}
$$

where, in symbolic manipulationinvolving theseoperators, indices in operator expressions must sum to n and the operator expressions are applied to $\mathrm{f}_{000}^{*}=\mathrm{f}_{000}$.

The set $\mathrm{f}_{\mathrm{n}}^{*}$ determines a new Bezier net $\mathrm{L}\left(\mathrm{f}_{\mathrm{n}}^{*} ; \mathrm{u}^{*}, \mathrm{v}^{*}, \mathrm{w}^{*}\right)$ which is a piecewise linear function on T^{*}. We call $L\left(f_{n}^{*}\right)$ the restricted Bezier net of $L\left(f_{n}\right)$ on T^{*}. Naturally, T^{*} is called a sub-triangle of T if $\mathrm{V}_{1}^{*}, \mathrm{~V}_{2}^{*}$ and V_{3}^{*}, the vertices of T^{*} are all inside or on the boundary of T . In this case $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} \geq 0, \mathrm{i}=1,2,3$.

Let T^{*} be a sub-triangle of T. Then if $B\left(f_{n} ; u, v, w\right)$ is convex with respect to T, so is $B\left(f_{n}^{*} ; u^{*}, v^{*}, w^{*}\right)$ with respect to T^{*}. One wouldask whetheror not asimilar result holds for the Bėzier nets. Grandine[4] showed a negative result but in [3], Goodman shows that if T^{*} is a sub-triangle obtained from a "mid-point" subdivision process, then the convexity of $\mathrm{L}\left(\mathrm{f}_{\mathrm{n}}\right)$ does guarantee the convexity of the restricted Bėzier net $\mathrm{L}\left(\mathrm{f}_{\mathrm{n}}^{*}\right)$ with respect to T^{*}. In the next section, we generalize this result and show that only a very limited class of sub-triangles have the property of preserving the convexity of Bėzier nets.

2. Main Result

Let T^{*} be a non-degenerate triangle that lies on the plane determined by the base triangle T. We say T^{*} is parallel to T if each of the edges of T^{*} is parallel to one of those of T. We now make the following definition:

Definition A non-degenerate sub-triangle T^{*} is called "Bėzier net convexity preserving" if, for all Bėzier nets $L\left(f_{n}\right)$ that are convex with respect to T, the restricted Bėzier nets $L\left(f_{n}^{*}\right)$ on T^{*} are also convex with respect to T^{*}

Noting the barycentric coordinate representation of the vertices of T^{*} with respect to T in (11), we have the following lemma.

Lemma The following statements are equivalent,
(i) T^{*} is parallel to T .
(ii) There exist a non-zero scalar ρ and a permutation $\left\{\mathfrak{i}_{1}, i_{2}, i_{3}\right\}$ of $\{1,2,3\}$ such that

$$
\begin{equation*}
\mathrm{V}_{\mathrm{i}_{1}}^{*}-\mathrm{V}_{\mathrm{i}_{2}}^{*}=\rho\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right), \quad \mathrm{V}_{\mathrm{i}_{3}}^{*}-\mathrm{V}_{\mathrm{i}_{1}}^{*}=\rho\left(\mathrm{V}_{3}-\mathrm{V}_{1}\right), \quad \mathrm{V}_{\mathrm{i}_{2}}^{*}-\mathrm{V}_{\mathrm{i}_{3}}^{*}=\rho\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) . \tag{17}
\end{equation*}
$$

(iii) None of the sets $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ and $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$ has all distinct members.

Figure. Examples of parallel triangles

This lemma is illustrated by the two examples of parallel triangles labelled as shown in the
figure. Property (ii) is simply a statement that the edges are parallel and property (iii) is a
restatement of this property in terms of the barycentric coordinates of

$$
\mathrm{V}_{\mathrm{i}}^{*}=\mathrm{u}_{\mathrm{i}} \mathrm{~V}_{1}+\mathrm{v}_{\mathrm{i}} \mathrm{~V}_{2}+\mathrm{w}_{\mathrm{i}} \mathrm{~V}_{3}, \quad \mathrm{i}=1,2,3
$$

Thus, in the examples $\mathrm{u}_{2}=\mathrm{u}_{3}, \mathrm{v}_{3}=\mathrm{v}_{1}$ and $\mathrm{w}_{1}=\mathrm{w}_{2}$.

We now present our main theorem:

Theorem 3 Let T^{*} be a non-degenerate sub-triangle of T . Then T^{*} is Bėzier net convexity preserving if and only if it is parallel to T .

Proof: Suppose T^{*} is parallel to T and let $\mathrm{L}\left(\mathrm{f}_{\mathrm{n}}\right)$ be any Bėzier net that is convex with respect to T. Comparing (16) and (11), it follows by statement (ii) of the lemma that there exist a non-zero scalar ρ and a permutation $\left\{i_{1}, i_{2}, i_{3}\right\}$ of $\{1,2,3\}$ such that

$$
\mathrm{E}_{\mathrm{i}_{1}}^{*}-\mathrm{E}_{\mathrm{i}_{2}}^{*}=\rho\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right), \mathrm{E}_{\mathrm{i}_{3}}^{*}-\mathrm{E}_{\mathrm{i}_{1}}^{*}=\rho\left(\mathrm{E}_{3}-\mathrm{E}_{1}\right), \mathrm{E}_{\mathrm{i}_{2}}^{*}-\mathrm{E}_{\mathrm{i}_{3}}^{*}=\rho\left(\mathrm{E}_{2}-\mathrm{E}_{3}\right) .
$$

Thus, by (16), we have for $\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}-2$

$$
\begin{aligned}
& \left(E_{i_{2}}^{*}-E_{i_{2}}^{*}\right)\left(E_{i_{2}}^{*}-E_{i_{3}}^{*}\right) f_{i_{j k}}^{*}=E_{1}^{*} E_{2}^{* j} E_{3}^{* k}\left(E_{i_{2}}^{*}-E_{i_{3}}^{*}\right)\left(E_{i_{2}}^{*}-E_{i_{3}}^{*}\right) f^{*} 000 \\
& =\rho^{2}\left(u_{1} E_{1}+v_{1} E_{2}+w_{1} E_{3}\right)^{i}\left(u_{2} E_{1}+v_{2} E_{2}+w_{2} E_{3}\right)^{j}\left(u_{3} E_{1}+v_{3} E_{2}+w_{3} E_{3}\right)^{k}\left(E_{1}-E_{2}\right)\left(E_{1}-E_{3}\right) f_{000} \\
& =\sum_{r+s+t=i} \sum_{\alpha+\beta+y=1} \sum_{\lambda+\mu+v=k} \rho^{2} B_{r s t}^{i}\left(u_{1}, v_{1}, w_{1}\right) B_{\alpha \beta \gamma}^{j}\left(u_{2}, v_{2} w_{2}\right) B_{\lambda \mu v}^{k}\left(u_{3}, v_{3}, w_{3}\right) \\
& \left(E_{1}-E_{2}\right)\left(E_{1}-E_{3}\right) f_{r+\alpha+\lambda, \delta+\beta+\mu, t+y+v}
\end{aligned}
$$

≥ 0.
Similarly,

$$
\left(E_{i_{2}}^{*}-E_{i_{1}}^{*}\right)\left(E_{i_{2}}^{*}-E_{i_{3}}^{*}\right) f_{\mathrm{i}_{\mathrm{j} k}^{*}}^{*} \geq 0, \quad\left(E_{i_{3}}^{*}-E_{i_{1}}^{*}\right)\left(E_{i_{3}}^{*}-E_{i_{2}}^{*}\right) f_{i j k}^{*} \geq 0 .
$$

We therefore conclude that $\mathrm{L}\left(\mathrm{f}_{\mathrm{n}}^{*}\right)$ is convex with respect to T^{*}.

We now suppose that T^{*}. is not parallel to T . By statement (iii) of the lemma, at least one of the sets $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ and $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$ has all distinct members. Without loss of
generality, we assume $u_{2}>u_{1}>u_{3} \geq 0$. Then we have

$$
\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)\left(\mathrm{u}_{1}-\mathrm{u}_{3}\right)<0 .
$$

Consider the situation where

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ij} \mathrm{j} \mathrm{k}}=\delta_{\mathrm{i}, \mathrm{n}-1}, \quad \mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}, \tag{18}
\end{equation*}
$$

that is, $\mathrm{f}_{\mathrm{n}, 0,0}=1$ and $\mathrm{f}_{\mathrm{ijk}}=0$ if $\mathrm{i} \leq-1$. Obviously, the Bezier net $\mathrm{L}\left(\mathrm{f}_{\mathrm{n}}\right)$ defined by (18) is convex with respect to T . Using (15) we obtain

$$
f_{i j k}^{*}=u_{1}^{i} u_{2}^{j} u_{3}^{k}, \quad i+j+k=n
$$

Hence for $\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}-2$ we have

$$
\left(E_{1}^{*}-E_{2}^{*}\right)\left(E_{1}^{*}-E_{3}^{*}\right) f_{i j k}^{*}=u_{i}^{i} u_{2}^{i} u_{3}^{k}\left(u_{1}-u_{2}\right)\left(u_{1}-u_{3}\right)
$$

and, particularly for $\mathrm{n} \geq 2$,

$$
\left(\mathrm{E}_{\mathrm{i}_{1}}^{*}-\mathrm{E}_{\mathrm{i}_{2}^{*}}^{*}\right)\left(\mathrm{E}_{\mathrm{i}_{1}}^{*}-\mathrm{E}_{\mathrm{i}_{3}}^{*}\right) \mathrm{f}_{0, \mathrm{n}-2,0}^{*}=\mathrm{u}_{2}^{\mathrm{n}-2}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)\left(\mathrm{u}_{1}-\mathrm{u}_{3}\right)<0 .
$$

Thus the restricted Bėzier net $L\left(f_{n}^{*}\right)$ is not convex with respect to T^{*}.

Acknowledgements: This work was supported by the ACME Directorate of the Science and Engineering Research Council and by Siemens AG.

References

[1] Chang, G. and P.J.Davis(1984), The convexity of Bernstein polynomials over triangles, J. Approximation Theory 40, 11-28.
[2] Dahmen, W. and C.A.Micchelli(1985), Convexity of multivariate Bernstein olynomials and box spline surfaces, Research Report RC 11176, T.J.Watson Research Center.
[3] Goodman, T.N.T.(1989),Convexity of Bėzier nets on triangulations, AA/899, Department of Mathematics and Computer Science, University of Dundee.
[4] Grandine, T.A.(1989), On convexity of piecewise polynomial functions on triangulations,

Computer Aided Geometric Design 6, 181-187.

