TR/04/90

March 1990

CONVEXITY OF BÉZIER NETS ON SUB-TRIANGLES

John A. Gregory and Jianwei Zhou

With minor revisions, November 1990. To appear in CAGD.

Convexity of Bézier Nets on Sub-triangles

by

John A. Gregory and Jianwei Zhou

Department of Mathematics and Statistics, Brunei University,

Uxbridge, UB8 3PH, England

Abstract: This note generalizes a result of Goodman[3], where it is shown that the convexity of Bèzier nets defined on a base triangle is preserved on sub-triangles obtained from a mid-point subdivision process. Here we show that the convexity of Bèzier nets is preserved on and only on sub-triangles that are "parallel" to the base triangle.

1.Introduction

Let T be a triangle, called the base triangle (see [1]), with vertices V_1,V_2 and V_3 . (Here, and elsewhere in the paper, we assume that triangles are non-degenerate, that is, their vertices are not colinear.) Then each point P of the plane determined by V_1,V_2 and V_3 .can be represented by its barycentric coordinates (u,v,w) with respect to the base triangle T as

(1)
$$P = uV_1 + vV_2 + wV_3, u+v+w = 1.$$

Denote f_n as a set of (n+1)(n+2)/2 values

(2) $f_{n} = \{ f_{ijk} \in R \mid i+j+k = n \ i \ge 0, j \ge 0, k \ge 0, \}.$

-1-

The Bernstein polynomial of $f_n \mbox{ over } T$ is then given by

(3)
$$B(f_{n}; u, v, w) = \sum_{i+j+k=n} f_{ijk} B_{ijk}^{n}(u, v, w) ,$$

Where

(4)
$$B_{ijk}^{n}(u,v,w) = \frac{n!}{i!j!k!}u^{i}v^{j}w^{k}$$

are Bernstein basis functions. If we let shift operators $E_1, E_2 and E_3$ with respect to T be defined by

(5)
$$E_1 f_{ijk} = f_{i+1,j,k}$$
, $E_2 f_{ijk} = f_{i,j+1,k}$, $E_3 f_{ijk} = f_{i,j,k+1}$,

then the Bernstein polynomial can be represented symbolically as

(6)
$$B(f_n; u, v, w) = (uE_1 + vE_2 + wE_3)^n f_{000} .$$

Now we consider (n+1)(n+2)/2 points of T with barycentric coordinates (i/n,j/n,k/n), namely,

$$P_{iik} = (i/n)V_1 + (j/n)V_2 + (k/n)V_3$$
, $i + j + k = n$.

Connecting

$$P_{i+1,j,k}$$
 , $P_{i,j+1,k}$, $P_{i,j,k+1}$,

we obtain a triangle, denoted U_{ijk} for i+j+k=n-l. Similarly, a triangle W_{ijk} is obtained for i+j+k=n+l with

$$\boldsymbol{P}_{i-1,j,k}$$
 , $\boldsymbol{P}_{i,j-1,k}$, $\boldsymbol{P}_{i,j,k-1}$

as its vertices. A piecewise linear function $L(f_n; u, v, w)$, or $L(f_n)$ for short, is defined on T such that it satisfies

(7)
$$L(f_n; P_{ijk}) = f_{ijk}, i + j + k = n,$$

and is linear on each triangle U_{ijk} or W_{ijk} . We call $L(f_n; u, v, w)$ the Bezier net of f_n .

The approximation theory of Bernstein polynomials and their applications in CAGD, Computer-aided Geometric Design, indicate that the Bezier net $L(f_n)$ is closely related to $B(f_n; u, v, w)$ and reflects certain features of $B(f_n; u, v, w)$. As this note is concerned with the convexity, we state the following results (see [1,2]): <u>Theorem 1</u> (i) If the Bezier net $L(f_n; u, v, w)$ is convex with respect to T, so is the Bernstein polynomial $B(f_n; u, v, w)$.

(ii) The Bezier net $L(f_n; u, v, w)$ is convex with respect to T if and only if

(8)
$$\begin{cases} f_{i+2,j,k} + f_{i,j+1,k+1} \ge f_{i+1,j+1,k} + f_{i+1,j,k+1} & , \\ f_{i,j+2,k} + f_{i+1,j,k+1} \ge f_{i+1,j+1,k} + f_{i,j+1,k+1} & , \\ f_{i,j,k+2} + f_{i+1,j+1,k} \ge f_{i+1,j,k+1} + f_{i,j+1,k+1} & , \end{cases}$$

for i+j+k=n-2.

Using the shift operators, one may rewrite (8) as

(9)
$$(E_{i_1} - E_{i_2})(E_{i_1} - E_{i_3})f_{ijk} \ge 0, \quad i+j+k=n-2,$$

for any permutation $\{i_1, i_2, i_3\}$ of $\{1, 2, 3\}$.

Let V_1^*, V_2^* and V_3^* be the vertices of another triangle T^{*} in the same plane as T and let

(10)
$$P = u^* V_1^* + v^* V_2^* + w^* V_3^*, u^* + v^* + w^* = 1,$$

define the barycentric coordinates (u^*, v^*, w^*) of P with respect to T^{*}. Assume that V_i^* has barycentric coordinates (u_i, v_i, w_i) with respect to T, that is,

(11)
$$V_i^* = u_i V_1 + v_i V_2 + w_i V_3$$
, $u_i + v_i + w_i = 1$

for i=l, 2, 3. Then

(12)
$$\begin{cases} u = u^* u_1 + v^* u_2 + w^* u_3 , \\ v = u^* v_1 + v^* v_2 + w^* v_3 , \\ w = u^* w_1 + v^* w_2 + w^* w_3 . \end{cases}$$

A Bernstein polynomial on T^{*} is defined symbolically by

(13)
$$B(f_n^*; u^*, v^*, w^*) = (u^* E_1^* + v^* E_2^* + w^* E_3^*)^n f_{000}^* ,$$

Where

(14)
$$f_n^* = \left\{ f_{i\,jk}^* \in R \ \left| i+j+k = n, i \ge 0, \, j \ge 0, \, k \ge 0 \right\} \right\}$$

and E_i^* define the shift operators on T^* . We then have:

 $\frac{\text{Theorem 2}}{(15)} \quad (\text{Chang and Davis[1]}) \text{ Let} \\ f_{ijk}^* = (u_1 E_1 + v_1 E_2 + w_1 E_3)^i (u_2 E_1 + v_2 E_2 + w_2 E_3)^j (u_3 E_1 + v_3 E_2 + w_3 E_3)^k f_{000},$

for i+j+k=n. Then $B(f_n^*; u^*, v^*, w^*)$ is the Bernstein representation of $B(f_n; u, v, w)$ with respect to T^* .

Proof: From (12) and (15) we obtain, by equating coefficients,

$$B(f_{n}; u, v, w) = (uE_{1} + vE_{2} + wE_{3})^{n} f_{000}$$

= $[u^{*}(u_{1}E_{1} + v_{1}E_{2} + w_{1}E_{3}) + v^{*}(u_{2}E_{1} + v_{2}E_{2} + w_{2}E_{3}) + w^{*}(u_{3}E_{1} + v_{3}E_{2} + w_{3}E_{3})]^{n} f_{000}$
= $(u^{*}E_{1}^{*} + v^{*}E_{2}^{*} + w^{*}E_{3}^{*})^{n} f_{000}^{*}$

if and only if

$$E_{1}^{*i}E_{2}^{*j}E_{3}^{*k}f_{000}^{*} = (u_{1}E_{1} + v_{1}E_{2} + w_{1}E_{3})^{i} + (u_{2}E_{1} + v_{2}E_{2} + w_{2}E_{3})^{j} + (u_{3}E_{1} + v_{3}E_{2} + w_{3}E_{3})^{k}f_{000}.$$

Remark In the above proof we note the identities

(16)
$$E_i^* = u_i E_1 + v_i E_2 + w_i E_3, \ i = 1,2,3,$$

where, in symbolic manipulation involving these operators, indices in operator expressions must sum to n and the operator expressions are applied to $f_{000}^* = f_{000}$.

The set f_n^* determines a new Bezier net $L(f_n^*; u^*, v^*, w^*)$ which is a piecewise linear function on T^* . We call $L(f_n^*)$ the restricted Bezier net of $L(f_n)$ on T^* . Naturally, T^* is called a sub-triangle of T if V_1^*, V_2^* and V_3^* , the vertices of T^* are all inside or on the boundary of T. In this case $u_i v_i w_i \ge 0$, i = 1, 2, 3.

Let T^* be a sub-triangle of T. Then if $B(f_n; u, v, w)$ is convex with respect to T, so is $B(f_n^*; u^*, v^*, w^*)$ with respect to T^* . One would ask whether or not a similar result holds for the Bezier nets. Grandine[4] showed a negative result but in [3], Goodman shows that if T^* is a sub-triangle obtained from a "mid-point" subdivision process, then the convexity of $L(f_n)$ does guarantee the convexity of the restricted Bezier net $L(f_n^*)$ with respect to T^* . In the next section, we generalize this result and show that only a very limited class of sub-triangles have the property of preserving the convexity of Bezier nets.

2. Main Result

Let T^* be a non-degenerate triangle that lies on the plane determined by the base triangle T. We say T^* is parallel to T if each of the edges of T^* is parallel to one of those of T. We now make the following definition:

<u>Definition</u> A non-degenerate sub-triangle T^* is called "Bezier net convexity preserving" if, for all Bezier nets $L(f_n)$ that are convex with respect to T, the restricted Bezier nets $L(f_n^*)$ on T^* are also convex with respect to T^*

Noting the barycentric coordinate representation of the vertices of T^* with respect to T in (11), we have the following lemma.

Lemma The following statements are equivalent,

- (i) T^* is parallel to T.
- (ii) There exist a non-zero scalar ρ and a permutation $\{i_1, i_2, i_3\}$ of $\{1, 2, 3\}$ such that

(17)
$$V_{i_1}^* - V_{i_2}^* = \rho(V_1 - V_2), \quad V_{i_3}^* - V_{i_1}^* = \rho(V_3 - V_1), \quad V_{i_2}^* - V_{i_3}^* = \rho(V_2 - V_3).$$

(iii) None of the sets $\{u_1, u_2, u_3\}, \{v_1, v_2, v_3\}$ and $\{w_1, w_2, w_3\}$ has all distinct members.

Figure. Examples of parallel triangles

This lemma is illustrated by the two examples of parallel triangles labelled as shown in the

figure. Property (ii) is simply a statement that the edges are parallel and property (iii) is a

restatement of this property in terms of the barycentric coordinates of

$$V_i^* = u_i V_1 + v_i V_2 + w_i V_3$$
, $i = 1, 2, 3$.

Thus, in the examples $u_2 = u_3$, $v_3 = v_1$ and $w_1 = w_2$.

We now present our main theorem:

<u>Theorem 3</u> Let T^* be a non-degenerate sub-triangle of T. Then T^* is Bezier net convexity preserving if and only if it is parallel to T.

<u>Proof:</u> Suppose T^* is parallel to T and let $L(f_n)$ be any Bézier net that is convex with respect to T. Comparing (16) and (11), it follows by statement (ii) of the lemma that there exist a non-zero scalar ρ and a permutation $\{i_1, i_2, i_3\}$ of $\{1, 2, 3\}$ such that

$$E_{i_1}^* - E_{i_2}^* = \rho(E_1 - E_2), E_{i_3}^* - E_{i_1}^* = \rho(E_3 - E_1), E_{i_2}^* - E_{i_3}^* = \rho(E_2 - E_3).$$

Thus, by (16), we have for i+j+k=n-2

$$\begin{split} & \left(E_{i_{2}}^{*}-E_{i_{2}}^{*}\right)\!\!\left(E_{i_{2}}^{*}-E_{i_{3}}^{*}\right)\!\!f_{ijk}^{*}=E_{1}^{*i}E_{2}^{*j}E_{3}^{*k}\!\left(E_{i_{2}}^{*}-E_{i_{3}}^{*}\right)\!\!\left(E_{i_{2}}^{*}-E_{i_{3}}^{*}\right)\!\!f^{*}000\\ &=\rho^{2}\!\left(u_{1}E_{1}+v_{1}E_{2}+w_{1}E_{3}\right)^{i}\!\left(u_{2}E_{1}+v_{2}E_{2}+w_{2}E_{3}\right)^{j}\!\left(u_{3}E_{1}+v_{3}E_{2}+w_{3}E_{3}\right)^{k}\!\left(E_{1}-E_{2}\right)\!\!\left(E_{1}-E_{3}\right)\!\!f_{000}\\ &=\sum_{r+s+t=i}\sum_{\alpha+\beta+y=l}\sum_{\lambda+\mu+\nu=k}\rho^{2}B_{rst}^{i}\left(u_{1},v_{1},w_{1}\right)\!B_{\alpha\beta\gamma}^{j}\left(u_{2},v_{2}w_{2}\right)\!B_{\lambda\mu\nu}^{k}\!\left(u_{3},v_{3},w_{3}\right)\\ &\qquad \left(E_{1}-E_{2}\right)\!\!\left(E_{1}-E_{3}\right)\!\!f_{r+\alpha+\lambda,\delta+\beta+\mu,t+y+\nu}\\ &\geq 0. \end{split}$$

Similarly,

$$\left(E_{i_2}^* - E_{i_1}^*\right)\!\!\left(E_{i_2}^* - E_{i_3}^*\right)\!\!f_{ijk}^* \ge 0\,, \ \left(E_{i_3}^* - E_{i_1}^*\right)\!\!\left(\!E_{i_3}^* - E_{i_2}^*\right)\!\!f_{ijk}^* \ge 0\,.$$

We therefore conclude that $L(f_n^*)$ is convex with respect to T*.

We now suppose that T^* . is not parallel to T. By statement (iii) of the lemma, at least one of the sets $\{u_1, u_2, u_3\}$, $\{v_1, v_2, v_3\}$ and $\{w_1, w_2, w_3\}$ has all distinct members. Without loss of

generality, we assume $u_2 > u_1 > u_3 \ge 0$. Then we have

$$(u_1 - u_2)(u_1 - u_3) < 0.$$

Consider the situation where

(18) $f_{ijk} = \delta_{i,n-1}$, i + j + k = n,

that is, $f_{n,0,0} = 1$ and $f_{ijk}=0$ if $i \le -1$. Obviously, the Bezier net $L(f_n)$ defined by (18) is convex with respect to T. Using (15) we obtain

$$f_{ijk}^{*} = u_{1}^{i}u_{2}^{j}u_{3}^{k}, \ i+j+k = n$$

Hence for i+j+k=n-2 we have

$$(E_1^* - E_2^*)(E_1^* - E_3^*)f_{ijk}^* = u_1^i u_2^i u_3^k (u_1 - u_2)(u_1 - u_3)$$

and, particularly for $n \ge 2$,

$$\left(E_{i_{1}}^{*}-E_{i_{2}}^{*}\right)\left(E_{i_{1}}^{*}-E_{i_{3}}^{*}\right)f_{0,n-2,0}^{*}=u_{2}^{n-2}\left(u_{1}-u_{2}\right)\left(u_{1}-u_{3}\right)<0.$$

Thus the restricted Bezier net $L(f_n^*)$ is not convex with respect to T*.

Acknowledgements: This work was supported by the ACME Directorate of the Science and Engineering Research Council and by Siemens AG.

References

- Chang, G. and P.J.Davis(1984), The convexity of Bernstein polynomials over triangles, J. Approximation Theory 40, 11-28.
- [2] Dahmen, W. and C.A.Micchelli(1985), Convexity of multivariate Bernstein olynomials and box spline surfaces, Research Report RC 11176, T.J.Watson Research Center.
- [3] Goodman, T.N.T.(1989), Convexity of Bezier nets on triangulations, AA/899, Department of Mathematics and Computer Science, University of Dundee.

[4] Grandine, T.A.(1989), On convexity of piecewise polynomial functions on triangulations,

Computer Aided Geometric Design 6, 181-187.

-7-