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Abstract: This note generalizes a result of Goodman[3], where it is shown          

that the convexity of Bèzier nets defined on a base triangle is preserved on          

sub-triangles obtained from a mid-point subdivision process. Here we show          

that the convexity of Bèzier nets is preserved on and only on sub-triangles          

that are "parallel" to the base triangle.  

 
1.Introduction 

 

 Let T be a triangle, called the base triangle (see [1]), with vertices V1,V2andV3. (Here, 

and elsewhere in the paper, we assume that triangles are non-degenerate, that is, their vertices 

are not colinear.) Then each point P of the plane determined by V1,V2andV3.can be    

represented by its barycentric coordinates (u,v,w) with respect to the base triangle T as 

 
(1)  P = ,wVvVuV 321 ++   u+v+w = 1. 

 
 

Denote fn as a set of (n+1)(n+2)/2 values 
 

(2)  { }.0,k0,j0,inkjiRff ijkn ≥≥≥=++∈=  
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The Bernstein polynomial of fn over T is then given by 
 
 (3)                     ∑

=++

=
nkji

n
ijkijkn ,w)v,(u,Bfw)v,u,;B(f  

Where 

(4)          kjin
ijk wvu

k!j!i!
n!w)v,(u,B =  

          

are Bernstein basis functions. If we let shift operators E1, E2 and E3 with respect to T be defined 
by 

 
(5)  ,ffE,ffE,ffE 1kj,i,ijk3k1,ji,ijk2kj,1,iijk1 +++ ===  

 

then the Bernstein polynomial can be represented symbolically as 
 

(6)   .f)wEvE(uEw)v,u,;B(f 000
n

321n ++=
 

Now we consider (n+l)(n+2)/2 points of T with barycentric coordinates (i/n,j/n,k/n), 

namely, 
 

.nkji,(k/n)V(j/n)V(i/n)VP 321ijk =++++=  
 

Connecting 
 
   ,P,P,P 1kj,i,k1,ji,kj,1,i +++

 

we obtain a triangle, denoted  for i+j+k=n-l. Similarly, a triangle  is obtained for  ijkU ijkW
 

i+j+k=n+l with 
 

 1kj,i,k1,ji,kj,1,i P,P,P −−−

as its vertices. A piecewise linear function ( ) ( )nn fLor,wv,u,;fL  for short, is defined on T such 

that it satisfies 
 

(7)  ( ) ,nkji,fP;fL ijkijkn =++=   

and is linear on each triangle  We call .WorU ijkijk ( )wv,u,;fL n  the Bėzier net of  .fn

 

The approximation theory of Bernstein polynomials and their applications in CAGD, 

 Computer-aided Geometric Design, indicate that the Bėzier net L  is closely related to  )f( n

w)v,u,;B(fn  and reflects certain features of . As this note is concerned with the  )wv,u,;B(fn

convexity, we state the following results (see [1,2]): 
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Theorem 1   (i) If the Bėzier net L(fn;u,v,w) is convex with respect to T, so is the Bernstein  
polynomial . w)v,u,;B(fn

(ii) The Bėzier net  is convex with respect to T if and only if w)v,u,;L(fn
 

(8)   
⎪
⎩

⎪
⎨

⎧

+≥+

+≥+

+≥+

+++++++

+++++++

+++++++

,ffff

,ffff

,ffff

1k1,ji,1kj,1,ik1,j1,i2kj,i,

1k1,ji,k1,j1,i1kj,1,ik2,ji,

1kj,1,ik1,j1,i1k1,ji,kj,2,i

 
for i+j+k=n-2. 

 
Using the shift operators, one may rewrite (8) as 

  
(9)  ( )( ) ,2nkji,0fEEEE ijkiiii 3121

−=++≥−−  
 

for any permutation { } { }.1,2,3ofi,i,i 321  
 
 be the vertices of another triangle  in the same plane as T and let *

3
*
2

*
1 VandV,VLet *T

 
(10)  P=  ,1wvu,VwVvVu ****

3
**

2
**

1
* =++++

 
define the barycentric coordinates ( )*** w,v,u  of P with respect to . Assume that   *T hasV*

i

barycentric coordinates  with respect to T, that is, )w,v,(u iii

 
(11)    1wvu,VwVvVuV iii3i2i1i

*
i =++++=

 
for i=l, 2, 3. Then 

  

(12)   
⎪
⎩

⎪
⎨

⎧

++=

++=

++=

.wwwvwuw

,vwvvvuv

,uwuvuuu

3
*

2
*

1
*

3
*

2
*

1
*

3
*

2
*

1
*

  
A Bernstein polynomial on is defined symbolically by *T
 

(13)  ( ) ( ) ,fEwEvEuw,v,u;fB *
000

n*
3

**
2

**
1

*****
n ++=  

 
Where 

 

(14)  { }0k0,j0,in,kjiRff *
jki

*
n ≥≥≥=++∈=  

 

and define the shift operators on  We then have: *
iE .T*

 
Theorem 2 (Chang and Davis[l]) Let 
(15)      ( ) ( ) ( ) ,fEwEvEuEwEvEuEwEvEuf 000

k
332313

j
322212

i
312111

*
ijk ++++++=  
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for i+j+k=n. Then ( )****
n w,v,u;fB  is the Bernstein representation of B( ;u,v,w) with respect 

to 
nf

.T*  
 
 

Proof:  From (12) and (15) we obtain, by equating coefficients, 
  

( ) ( ) 000
n

321n fwEvEuEwv,u,;fB ++=  
             

 
( ) ( ) ([ ] 000

n
332313

*
322212

*
312111

* fEwEvEuwEwEvEuvEwEvEuu ++++++++= )

   =  ( ) *
000

n*
3

**
2

**
1

* fEwEvEu ++
 

if and only if 
 
 

( ) ( ) ( ) .fEwEvEuEwEvEuEwEvEufEEE 000
k

332313
j

322212
i

312111
*
000

k*
3

j*
2

i*
1 ++++++++=  

 
 
Remark In the above proof we note the identities 

 
(16)   ,1,2,3i,EwEvEuE 3i2i1i

*
i =++=

 

where, in symbolic manipulation involving these operators, indices in operator expressions must  

sum to n and the operator expressions are applied to  .ff 000
*
000 =

 

      The set determines a new Bezier net 

*
nf ( )****

n w,v,u;fL  which is a piecewise linear function  

on  We call .T* ( )*
nfL  the restricted Bezier net of L(fn) on  Naturally,  is called a  .T* *T

sub-triangle of T if  the vertices of  are all inside or on the boundary of T.  ,VandV,V *
3

*
2

*
1

*T

In this case  1,2,3.i0,wvu ii,i, =≥

Let  be a sub-triangle of T. Then if *T ( )wv,u,;fB n  is convex with respect to T, so is  

( )****
n w,v,u;fB with    respect to   One would ask whether or not a similar result holds for the 

Bėzier nets. Grandine[4] showed a negative result but in [3], Goodman shows that if  is a  
.T*

*T

sub-triangle obtained from a "mid-point" subdivision process, then the convexity of L(fn) does 
guarantee  the convexity of the restricted Bėzier net ( )*

nfL  with respect to . In the next 
section, we generalize this result and show that only a very limited class of sub-triangles have  

*T

the property of preserving the convexity of Bėzier nets. 
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2. Main Result 

 

 Let  be a non-degenerate triangle that lies on the plane determined by the base triangle *T

T. We say is parallel to T if each of the edges of is parallel to one of those of T. We now  *T *T

make the following definition: 

 
 

Definition A non-degenerate sub-triangle  is called "Bėzier net convexity preserving" if, for  *T

all Bėzier nets L(fn) that are convex with respect to T, the restricted Bėzier nets ( )*
nfL  on are  *T

also convex with respect to  *T
 
 

Noting the barycentric coordinate representation of the vertices of with respect to T in  *T

(11), we have the following lemma. 
 
 

Lemma The following statements are equivalent,  

(i) is parallel to T.  *T

(ii) There exist a non-zero scalar ρ  and a permutation { }321 i,i,i  of {1,2,3} such that 
 

(17)    ).VV(VV),VV(VV),VV(VV 32
*
i

*
i13

*
i

*
i21

*
i

*
i 321321

−=−−=−−=− ρρρ
 

(iii) None of the sets { } { } { }321321321 w,w,wandv,v,v,u,u,u  has all distinct members. 
 
 

 
 

Figure. Examples of parallel triangles 
 
 

This lemma is illustrated by the two examples of parallel triangles labelled as shown in the 
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figure. Property (ii) is simply a statement that the edges are parallel and property (iii) is a  



restatement of this property in terms of the barycentric coordinates of 
 
   1,2,3.i,VwVvVuV 3i2i1i

*
i =++=

 
Thus, in the examples .wwandvv,uu 211332 ===  

. 
We now present our main theorem: 

 

Theorem 3 Let  be a non-degenerate sub-triangle of T. Then is Bėzier net convexity  *T *T

preserving if and only if it is parallel to T. 

 

 

Proof: Suppose  is parallel to T and let L(f*T n) be any Bėzier net that is convex with respect to  

T.  Comparing  (16)  and (11),  it  follows  by  statement  (ii) of the  lemma  that there exist a  

non-zero scalar ρ  and a permutation { }321 i,i,i  of {1,2,3} such that 

 
).Eρ(EEE),Eρ(EEE),Eρ(EEE 32

*
i

*
i13

*
i

*
i21

*
i

*
i 321321

−=−−=−−=−  
 

Thus, by (16), we have for i+j+k=n-2 
 
       ( )( ) ( )( ) 000fEEEEEEEfEEEE **

i
*
i

*
i

*
i

k*
3

j*
2

i*
1

*
ijk

*
i

*
i

*
i

*
i 32323222

−−=−−  

     = ( ) ( ) ( ) ( )( ) 0003121
k

332313
j

322212
i

312111
2 fEEEEEwEvEuEwEvEuEwEvEuρ −−++++++  

     = ( ) ( ) ( )333
k
λµν222

j
αβγ111

i
rst

2

kvµλitsr lyβα

w,v,uBwv,uBw,v,uBρ∑∑ ∑
=++=++ =++

 

( )( ) νytµ,βδλ,αr3121 fEEEE ++++++−−  
     .0≥

 
Similarly, 

 
( )( ) ( )( ) .0fEEEE,0fEEEE *

ijk
*
i

*
i

*
i

*
i

*
ijk

*
i

*
i

*
i

*
i 23133212

≥−−≥−−   
 

We therefore conclude that L ( )*
nf  is convex with respect to T*. 

 
 

W ow suppose that . is not parallel to T. By statement (iii) of the lemma, at least one  e n

of the sets { }, and 

*T

321 u,u,u { }321 v,v,v { }321 w,w,w  has all distinct members. Without loss 
of  

generality, we assume  Then we have 0.uuu 312 ≥>>
 

( )( ) 0.uuuu 3121 <−−  

Consider the situation where  
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(18)  ,nkji,f 1n,iijk =++δ= −  

that is,  and                                                f1fn,0,0 = ijk=0 if  1i −≤ . Obviously, the Bezier net ( )nfL  defined by (18) is convex 

with respect to T. Using (15) we obtain 
 
   nkji,uuuf k

3
j
2

i
1

*
ijk =++=

 
Hence for i+j+k=n-2 we have 

 
  ( )( ) ( )( )3121

k
3

i
2

i
i

*
ijk

*
3

*
1

*
2

*
1 uuuuuuufEEEE −−=−−  

 
and, particularly for n  2, ≥

 
( )( ) ( )( ) 0.uuuuufEEEE 3121

2n
2

*
2,0n0,

*
i

*
i

*
i

*
i 3121

<−−=−− −
−  

 

Thus the restricted Bėzier net ( )*
nfL  is not convex with respect to T*. 
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