Submitted 1 April 2020
Accepted 20 June 2020
Published 12 August 2020

Corresponding authors
Matthew J. Silk,
matthewsilk@outlook.com
David J. Hodgson, d.j.
hodgson@exeter.ac.uk

Academic editor
Robert Toonen

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.9522

() Copyright
2020 Silk et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Perils and pitfalls of mixed-effects
regression models in biology

Matthew J. Silk"?, Xavier A. Harrison' and David J. Hodgson'

! Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
% Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK

ABSTRACT

Biological systems, at all scales of organisation from nucleic acids to ecosystems, are
inherently complex and variable. Biologists therefore use statistical analyses to detect
signal among this systemic noise. Statistical models infer trends, find functional
relationships and detect differences that exist among groups or are caused by
experimental manipulations. They also use statistical relationships to help predict
uncertain futures. All branches of the biological sciences now embrace the
possibilities of mixed-effects modelling and its flexible toolkit for partitioning
noise and signal. The mixed-effects model is not, however, a panacea for poor
experimental design, and should be used with caution when inferring or deducing the
importance of both fixed and random effects. Here we describe a selection of the
perils and pitfalls that are widespread in the biological literature, but can be avoided
by careful reflection, modelling and model-checking. We focus on situations where
incautious modelling risks exposure to these pitfalls and the drawing of incorrect
conclusions. Our stance is that statements of significance, information content

or credibility all have their place in biological research, as long as these statements
are cautious and well-informed by checks on the validity of assumptions.

Our intention is to reveal potential perils and pitfalls in mixed model estimation
so that researchers can use these powerful approaches with greater awareness and
confidence. Our examples are ecological, but translate easily to all branches of
biology.

Subjects Ecology, Evolutionary Studies, Zoology, Statistics
Keywords Data analysis, Random effect, Fixed effect, Autocorrelation, Hierarchical model,
Informative cluster size, Confounding by cluster, GLMM

INTRODUCTION

Linear mixed-effects models (LMMs) and generalised linear mixed effects models
(GLMMs) have, in recent decades, gained prevalence as statistical tools in biological
research. They have replaced blocked, split-plot and hierarchical analysis of variance as
the tool of choice for experimental biologists, and have helped countless surveyors of
natural systems to measure hierarchical partitions of variation, and to deal with
non-independence among their subjects. (G)LMMs are flexible, powerful, well-served
by popular statistical software, and relatively easy to build and interpret. However,
inevitably, they are also easy to get wrong. As peer reviewers, too often we see (G)LMM:s
being used naively and without validation.
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(G)LMMs differ from simple linear models (LMs) and generalised linear models
(GLMs) by incorporating random effects among the explanatory variables alongside
fixed effects (Gelman ¢ Hill, 2006; Bolker et al., 2009; Zuur, Hilbe & Ieno, 2013; Harrison
et al., 2018). Fixed effects represent variables with intercepts, means or slopes to be
estimated. Random effects describe experimental or survey units as members of groups,
with these groups drawn from a larger population of other, unmeasured groups.

For example, we might measure features of 10 populations of seabirds, but many hundreds
of other populations of seabirds will not be measured in our study. Fitting ‘population ID’
acknowledges that each population represents a different group, that observations
within a group are likely non-independent (i.e. seabirds in the same population will
likely be more similar to each other than to seabirds in other populations), and that we
have only measured a subsample of possible groups. The random effect components of
mixed effects models infer the variance associated with group membership (Gelman &
Hill, 2006; Schielzeth ¢» Nakagawa, 2013). Consequently, the use of random effects is
effective when measurements of a response variable within ‘groups’ or random effect
levels tend to be more similar to each other than to those in the wider population.

By inferring variance among groups rather than group-specific parameters, random effects
absorb fewer degrees of freedom than fixed effects and this is exploited in many analyses
to absorb real but ‘unwanted’ variation or covariance in the data (Bolker et al., 2009;
Harrison et al., 2018). In other analyses, such as those used in quantitative genetics, the
relative magnitudes of the variance components are of primary interest, because they
provide estimates for the variation in traits explained at different levels of a model’s
hierarchy.

The inclusion of random effects in biological regression models is often seen as a
panacea for dealing with difficult or structured datasets. One will often read statements
in papers that a grouping variable was ‘fitted as a random effect to control for
non-independence among groups.” However, if not used appropriately, (G)LMMs can
fail to achieve their purpose, or can yield false positive tests of importance of fixed
effects (Schielzeth & Forstmeier, 2008; Forstmeier, Wagenmakers & Parker, 2017; Arngqvist,
2020). The correct specification of random effects is essential to successful analysis, but
guidance is often couched in specialist statistical language, code or algebra and can be
hard to find. Here we use non-specialist language to highlight the risks of coupling
fixed and random effects naively in models. We explain seven common perils and
pitfalls (Table 1), use simple data simulations to demonstrate the risk of inappropriate
mixed-effect modelling, illustrate the problems caused by these pitfalls and show the reader
to diagnose them in their own data and models.

Mixed model basics

The fundamental assumption shared by simple linear models and mixed effects models is
that residual error for each measurement of the response variable is an independent draw
from a Normal distribution with mean zero and fixed variance. (G)LMMs are mixed
because they include both fixed and random effects, and linear because they describe the
relationship between the observed data and the explanatory variables as the additive
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Table 1 The perils of mixed modelling highlighted in this paper together with their potential consequences and solutions to avoid them.

Peril

Example

Consequences

Potential solutions

#1. Anticonservative
significance tests at
low sample size

#2. Pseudoreplicated
with group-level
predictors

#3. Too few levels of
a random effect

#4. Random
intercepts when
groups vary in
their response to a
treatment

#5a. Confounding
by cluster

#5b. Informative
cluster sizes

#6. Group means are
not normally
distributed

#7. Use of
categorical
random effects for
autocorrelated
data

Comparing crop yields in split-plot
experiments with few replicates

Infer the effect of maternal traits on
the performance of several offspring
per mother

Fitting sex as a random effect

Testing a relationship between body
size and competitive advantage in
multiple populations of the same
species

Multiple observation of foraging
behaviour are made at a succession
of sites to test the hypothesis that
foraging rates are associated with
disturbance levels. However, sites
have different mean levels of
disturbance. Both disturbance (fixed
effect) and site (random effect) are
used as explanatory variables

A model with offspring weight as a
response and maternal pathogen
load as an explanatory variable and
maternal ID as a random effect, if
high pathogen loads also cause
reduced litter sizes

An unmeasured variable causes
differences between sub-populations

Skewed differences in a trait between
sub-populations that are unexplained
by fixed effects

Region is used as a random effect to
control for spatial autocorrelation
when modelling abundance of a
species in response to a range of
habitat variables

p-value of Wald-like Chi-square test of
significance is too low, causing high
rates of Type I error

Increased Type I error if
pseudoreplication is not recognised
Increased Type I error if true
replication is small even if
pseudoreplication is recognised

Model degeneracy

Biased estimation of random effect
variance

Inaccurate estimation of random effect
variance

High error potential for questions
related to random effects (less
substantial for questions related to
fixed effects)

Increased Type I error rate when there
is variation in slopes between
different random effect levels. This is
regardless of any correlation between
the fixed and random effects

Biased estimates of fixed and random
effect parameters

Possibility of biased estimates for fixed
effect parameters if they are
correlated with the random effect
especially if the model only includes
random intercepts

Fixed effect estimates robust unless (a)
mis-specification of random effects is
extreme or (b) fixed effects are
correlated with random effects

Random effect estimates can become
less accurate and systematically
biased

Poorly fitting model (with inaccurate
predictions) and potential of
statistical errors unless scale of
random effect is correct

If better replication is not possible, use
corrections for small sample size and
accept that answers are
approximations

Move to statements of credibility based
on Bayesian analyses

Have a firm grasp of the design level at
which true replication occurs, and of
the correct mixed-model specification

If better replication of experimental
units is not possible, use corrections
for small sample size

Move to statements of credibility based
on Bayesian analyses with correct
specification of design hierarchy

Fit the variable as a fixed effect rather
than random effect

Use a Bayesian model with strong priors
for the size of the random effect
variance component. Such an
approach requires caution and an
ability to justify the inclusion of prior
knowledge

Use of random slopes model instead of
random intercepts only

Use within-group mean centring of
variables alongside a group-level
covariate

Fit cluster size as a covariate where
appropriate (see main text)

Joint modelling of the response variable

of interest and cluster size in a

multivariate model

Use non-Gaussian random effect
distributions (challenging, but made
available by use of Bayesian models)

Fit the variable as a fixed effect instead.

Take extra care to check for other
violations of mixed model
assumptions

Use correlograms to check for
covariance in the residuals of the
model to ensure that categorical
random effect is effective
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Figure 1 A mathematical and verbal representation of a simple mixed effects model. y is the response
variable, By is the global intercept (the expectation of y when all fixed effects are zero, and for members of
an average group in the random effect), x; is the measured value of the ith fixed explanatory variable, B; is
the additive expected change caused by the value of each of the fixed explanatory variables, y is a draw
from the distribution of category means for a normally distributed random effect (with mean of zero and
variance equal to the random effect variance), and ¢ is a draw from the normal distribution of residuals
(with mean of zero and variance equal to the residual variance).

Full-size k4] DOT: 10.7717/peerj.9522/fig-1

contribution of intercepts and linear slopes (of the fixed effects), and deviations from these
expectations caused by random effects and residual noise. The adjective Generalised in
GLMMs refers to the use of canonical link functions that help deal with non-normal
response variables. For both LMMs and GLMMs random effect group means are typically
assumed to be Normally distributed on the link scale, although other distributions can
be considered (described in more detail below). In general, the choice of whether a variable
should be included as a random effect or a fixed effect is best decided by the researcher
working on a problem based on a combination of question-driven and practical
considerations (Schielzeth ¢ Nakagawa, 2013; Harrison et al., 2018). We expand on other
practical considerations in subsequent sections.

As a verbal model, any LMM can be described as a response variable (y) being an
additive function of a global intercept, change caused by fixed effects, deviation caused by
membership of a random effect category, and any residual variation not explained by
the fixed or random effects. This is most elegantly described using statistical algebra
(Fig. 1; this will be the only mathematical equation we will present). A simple example of
LMM inference is provided in Fig. 2. While it is possible to fit mixed effect models in a
variety of software (e.g. SAS (SAS Institute Inc.); SPSS (IBM Corp.); STATA (StataCorp.
2017)), we focus on the fitting of LMMs and GLMMs in the R statistical environment
(R Core Team, 2019) using the packages Ime4 (Bates et al., 2015) and nlme (Pinheiro et al.,
2014). We, along with many of our biologist colleagues, enjoy the open source philosophy
and community spirit associated with R. It is also free and extremely powerful.

Perils and pitfalls

In this guide, we identify seven major risks of misuse of (G)LMMs. We explain each of
them in simple terms, discuss when they are most likely to cause problems and provide
solutions in the form of better-formulated models. Some of the problems stem from an
assumption that simple (G)LMM:s are a panacea for non-independent data and can be
used universally to model difficult datasets. However, complicated hierarchical designs
must be treated with appropriate caution, as (G)LMMs are not infallible if specified
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Figure 2 Simple examples of linear mixed models. In (A and B), offspring from six families (different
colours) are allocated to one of two treatments (a categorical fixed effect). In (A), a random intercepts
model, the treatment (fixed) effect is the slope of the line connecting each family cluster. The different
elevation of the lines for each family indicates their difference from the overall intercept as drawn from a
Normal distribution that represents a wider population of families. The random effect absorbs variation
in intercepts among the families, helping to reveal the independent, global influence of treatment (black
dashed line). In (B), a random slopes model reveals a global slope having absorbed variation among
families in both intercept and effect of treatment. In (C and D), the response variable is instead regressed
against a covariate (continuous fixed effect) measured, for each offspring, between zero and one.
The random intercepts model (C) reveals the global slope (black dashed line) of the relationship between
response and explanatory variables, having absorbed variation in the intercept among families.
The random slopes model in (D) reveals a global slope having absorbed variation among families in both
intercept and slope. The random intercepts model infers parallel changes caused by the fixed effect
among groups, while random-slopes allows the model to infer variation in slopes as well as intercepts.
Full-size Kal DOI: 10.7717/peerj.9522/fig-2

incorrectly (Arnqgvist, 2020). Further issues can arise because these hierarchical models are
amenable to the standard toolkit of significance tests, model simplification or multi-model
inference taught in undergraduate statistics modules. Analysts, taught by frequentists to
infer significance from p-values, commonly struggle to understand how to infer the
importance of fixed and random effects reported by (G)LMMs. There is no simple answer
here, but simple mistakes can be avoided. The perils and pitfalls we describe are focused on
attempts to infer the importance of fixed-effect explanatory variables, but most remain
relevant to attempts to understand the importance of hierarchical variance components.

Peril #1: (G)LMM p-values can be anti-conservative
A common worry for the frequentist statistician is the risk that the p-value of a test (i.e. the
probability of finding signal as extreme, or even more extreme, than the observed signal,
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supposing that the null hypothesis is true) might exceed 5% even when the null hypothesis
is true. This situation, also known as an inflated type I error rate or being anti-conservative,
risks the false conclusion of the importance of a fixed effect explanatory variable

(false positive) and has contributed to a replication crisis in some research fields
(Forstmeier, Wagenmakers ¢ Parker, 2017). Anti-conservative inference from (G)LMMs
can arise when sample sizes are small because maximum likelihood estimates of variance
components become biased. This problem is fixed by Restricted Maximum Likelihood
(REML) algorithms, which are the default settings for (G)LMM:s in most software.
However, REML models are not amenable to standard model simplification or tests of
significance. It is common practice to convert REML models to Maximum Likelihood and
simplify these using likelihood ratio tests. These tests follow chi-square distributions only
approximately. As sample size increases, the approximation improves, but for small
sample sizes the outcome tends to be anti-conservative. Neither can analysts safely fall
back on information theoretic approaches such as the well-known Akaike Information
Criterion to compare REML models. AIC is a function of the model’s likelihood and the
number of parameters estimated. However, REML likelihoods contain a nuisance factor
that is dealt with differently by different software, meanwhile the number of parameters
estimated is linked to the number of degrees of freedom associated with the random
effects, and that number is hard to define (Bolker et al., 2009). Adjustments for AIC
(such as AICc) that cope with small sample sizes are approximations and do not
completely deal with this problem.

Guidance on what qualifies as a small sample size is lacking (Gelman ¢ Hill, 2006), but
it is safe to assume that some datasets in biology will suffer from these issues. Small datasets
are also at risk from over-fitting of models, which can also lead to high rates of false
positives (Forstmeier, Wagenmakers ¢» Parker, 2017), and with more complex model
structures it can be more challenging to identify situations where overfitting is an issue.
These potential issues can arise regardless of the approach taken to statistical inference,
although they can be exacerbated by model simplification (Forstmeier ¢ Schielzeth, 2011,
Forstmeier, Wagenmakers & Parker, 2017).

A simple simulation illustrates how this issue arises in small datasets. Imagine a simple
treatment-control experiment that applies a treatment to half of the members of each of
six families. Here, family ID is the random intercept term, and the mean value for the
response variable for each family is drawn from a Normal distribution with mean = 0
and standard deviation = 1. We then simulate values for the response variable so that
the experimental treatment itself has no effect on values of the response variable
(mean = family mean and standard deviation = 1). Here, family ID is the dominant source
of variation in the response variable, and the null hypothesis is true and should be
accepted. We conducted a poorly replicated version of this experiment, in which only one
individual from each family is measured in each experimental group (treatment and
control). We then tested for statistical significance of the treatment effect using
mixed-effects models and: (a) by determining if the 95% confidence interval of the
treatment effect in the full model overlapped zero; (b) a likelihood ratio test that compared
Maximum Likelihood models with and without the fixed effect of treatment; and
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(c) a comparison of the AIC of the models with and without the treatment effect. We used
a sigma threshold of 0.05 for approach (b) and considered the effect of treatment to be
important for approach (c) when the AIC of the model including the fixed effect of
treatment was more than two AIC units less than the null model. All three approaches
produced high rates of false positives: in 122 out of 1,000 (12.2%) simulations, 105 out of
1,000 (10.5%) and 100 out of 1,000 (10%) respectively (with identical results from

nlme and Ime4). This is around double the 5% threshold desired by frequentists and
indicates a high false positive rate. The analysis is anti-conservative. The problem of
anti-conservatism fades with increasing sample sizes: when each of six families contribute
ten control and ten treated individuals, the error rates recorded were 5.9%, 5.7% and
3.3% (5.1% for nlme) respectively. Consequently, while this is a pitfall to be aware of when
using (G)LMMs in small datasets, it is likely to be less important with adequate replication.

Peril #2: (G)LMMs do not cure all types of pseudoreplication
Pseudoreplicated experimental designs are those in which fixed effects vary at a
hierarchical scale higher than the measured subject. If, for example whole families are
exposed to experimental treatment, and family members resemble each other beyond
the impact of treatment, then individual members of families do not represent
independent measures of the effect of treatment and should not be considered true
biological replicates. In an extreme situation where there are many non-independent
observations within each of a small number of random effect levels this could cause the
number of residual degrees of freedom (those used to infer residual variance) to greatly
exceed the number of experimental units to which treatments were applied (number of
families). While, traditionally, F-ratio tests would reveal this problem, likelihood ratio
tests hide it from the analyst because they use only the degrees of freedom associated
with the explanatory variables (Arngvist, 2020). AIC values also hide the problem by
providing no information on degrees of freedom at all. When (G)LMMs are fitted in

R this problem is managed by fitting fixed effects at the correct level of hierarchy.

This deals with the pseudoreplication pitfall but can result in poor replication of the fixed
effects if the number of random effect groups is low (Fig. 3). The model may struggle
to partition variance explained by the random effects from unexplained (residual)
variance. This results in a marked decline in the accuracy of model inference and increased
risk of encountering anti-conservative p-values from likelihood ratio tests (see “Peril #17)
with no way for the inexperienced analyst to check.

To demonstrate, we repeated our simulation from the previous section, but this time
applied experimental treatments to whole families (so that every individual in each family
was in the same experimental group). We simulated 600 observations in total, then in
separate analyses we divided observations among 6, 8, 10, 12, 15, 20 or 24 families
(with concomitant reduction in sample size per family, ranging from 100 to 25). Each
family was allocated either to the treatment or the control group. In this design, the
individuals in each family do not provide independent measures of the effect of treatment.
As before, we simulated treatment to have zero effect so the null hypothesis is true and
should be accepted. When the number of families was small we observed a high false
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Figure 3 The false positive rate for group-level variables in linear mixed-effect models with small
number of random effects using common forms of statistical inference. For each number of ran-
dom effect levels (x axis) we simulated 1,000 datasets containing no effect of an experimental treatment
applied at the group-level and recorded the number of times that a statistically significant effect of
treatment was recorded using model estimates and 95% confidence intervals from the full model (blue); a
Likelihood ratio test between the model with an effect of treatment and a null model (green); and
AAIC > 2 between the two models (yellow). All code for this example is provided in the Supplemental
Material. Full-size K] DOT: 10.7717/peerj.9522/fig-3

positive rate, even though the per-family sample size was large: the effect of treatment was
statistically significant in >10% of simulations, except when a t-test using the mean and
standard error of the treatment effect from the nlme model was used (Fig. 3). The false
positive rate then declined to approximately 5% in cases where there more families
were sampled (e.g. our simulation runs with 20 or 24 families). Our simulations therefore
demonstrate that caution is required in interpreting the statistical significance of
group-level explanatory variables when the number of random effect levels is small.

There are additional circumstances where using random effects to attempt to control
for non-independence may not be straightforward. Imagine an experiment where we
grow two genotypes of wheat in replicate planters containing varying, finite amounts of
phosphate to test a hypothesis about the performance of each genotype in different
conditions. You would be correct in assuming that measurements from within the same
feeding trial are not independent. One potential option here would be to fit planter ID as
a random effect to control for this. However, higher uptake by one genotype within an
experimental block means less phosphate available for the other, causing the performance
of each genotype within a planter to be negatively correlated. A standard ‘blocked’
(G)LMM with planter ID as a random effect would not control for this issue.
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The risk of anti-conservatism does not mean that (G)LMMs have no value in
pseudoreplicated designs. However, it does mean that the analyst must have a clear
understanding of the hierarchical design of the model, in particular whether fixed effects
are observation-level (apply uniquely to each observation in the dataset) or group-level
(apply uniquely to each level of the random effect) (Schielzeth ¢ Nakagawa, 2013).

It is also important to be aware of the number of independent experimental units, the
extent and nature of pseudoreplication and the ability of the statistical software to test
the importance of signal at the correct level of the design hierarchy. Experimental units,
that is those which can be claimed to be independent replicates of the experiment or survey
design, must be replicated sufficiently to provide confidence in their inference and to
avoid Type I errors (false positives).

Peril #3: too few random effect categories

The standard definition of a random effect is that it should describe membership of a
group that is part of a random sample of a larger population of groups. Random effect
hyperparameters infer the variance of means and slopes among groups. Inference of
any variance parameter requires several independent replicates and improves with
increasing sample size of the number of groups. Hence, accurate estimation of random
effects can only occur when several groups are represented in a dataset (Harrison, 2014,
2015; Harrison et al., 2018). In practice, however, mixed effects models are commonly used
to capture and absorb any non-independence due to group membership. When only
few groups have been measured, inference of random effect hyperparameters will be poor;
models might be degenerate; and there will be consequences for the correct inference

of fixed effect parameters and tests of their importance. For example fitting sex as a
random effect in a model implies the choice of calculating a variance using only two values:
we wouldn’t infer a simple standard deviation from a sample of two individuals, so we
shouldn’t use the (G)LMM algorithm to make the same crude inference. In general, it is
suggested to only fit a categorical variable as a random effect if it has 5-6 levels or more
(Bolker et al., 2009; Harrison, 2015).

We illustrate this problem in Fig. 4 using simple data simulations. A sample of 200
individuals is subdivided into between two and 40 groups. A single covariate has a
positive effect on our response variable. Full code for the example is provided in the
Supplemental Material. Estimates of random effect variance are biased small when there
are fewer than six or seven groups (Fig. 4A), with the greatest problems caused by
having only two or three groups. The inaccuracy of estimates of the random effect variance
shows an exponential decline. This means that models tend to underestimate the standard
error of the fixed-effect covariate’s slope when there are too few random effect levels
(Fig. 4B), indicating increased risk of Type I (false positive) errors when there are fewer
random effect levels.

Peril #4: effect of predictor varies among random effect categories
Many studies that use (G)LMMs use a random intercepts model, in which the random
effect measures or controls for variation among group means. However, there is no
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guarantee that this is a sufficient control for variation among groups, especially when
modelling a covariate whose effect may itself vary among groups (Schielzeth ¢ Forstmeier,
2008; Barr et al., 2013; Bell, Fairbrother ¢ Jones, 2018). The use of random slopes
models is advisable in these contexts (Barr et al., 2013). Random intercepts models risk
anti-conservative tests of importance, and typically predict responses of unsampled
groups worse than models that include random slopes (Bell, Fairbrother ¢ Jones, 2018).
To provide an ecological example, we simulated a relationship between oxidative stress
and parasite burden in 20 populations of wild amphibian (n = 20 frogs measured per
population), where parasite burden is a non-integer measure of genomic equivalents of a
parasite. We allowed both mean parasite burden (random intercepts) and the strength of
relationship between parasites and oxidative stress (random slopes) to vary by population.
We also randomly assigned populations to a two-level factor as either ‘treatment’ or
‘control’, so having no effect on parasite burden. We fitted a ‘maximal’ model with
Gaussian error structure allowing for an interaction between oxidative stress and
treatment, and containing either only random intercepts for population ID, or both
random intercepts and random slopes for oxidative stress given population. After 10,000
iterations, when fitting only random intercepts, the model erroneously estimated the
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code for this example is provided in the Supplemental Material.
Full-size &) DOT: 10.7717/peerj.9522/fig-5

treatment * oxidative stress interaction to be significant (95% confidence intervals not

crossing zero) in 30% of cases. Fitting a random slopes model reduced the incidence of
Type I (false positive) errors to 6.7%, far closer to the desired 5% rate. For further details
on this phenomenon, and a more detailed set of simulations, see Schielzeth ¢» Forstmeier
(2008). Clearly, not including random slopes results in elevated type I (false positive)

error rates.
An important risk of random intercepts models is that unusual groups can cause
false inference of whole-population effects. Imagine a test for a linear relationship between

body size and the size of a status signal in a hypothetical bird species consisting of 10
different subspecies. There is a positive body size-signal size relationship for only one of
these subspecies (Fig. 5A). A random intercepts model may conclude that there is a
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positive effect of body size on status signal size across all subspecies if the relationship in
that single subspecies is sufficiently strong (Fig. 5B). In contrast a random slopes model
that controls for differences in this relationship among subspecies is likely to detect no
overall effect, but also show that the slope for one subspecies was unusual. The difference
between the random slopes and random intercepts models does not occur because of
differences in their estimates of the effect of body size (Fig. 5C) but instead because the
random intercepts model consistently underestimates the standard error around this
estimate (Fig. 5D). Note that often random slopes models can return low estimates of
variance for the among-group slopes, but this is to be expected if there is only one group
with a strong relationship with the response. This is especially the case if the random
effects sample size is large. Measuring the ‘importance’ of random effects based on these
variance components is a contentious issue (Harrison et al., 2018), but random effects
shouldn’t automatically be immediately discounted/removed just because a variance
component appears negligible.

Peril #5: correlations between fixed and random effects, and
informative group sizes
Mixed models assume that values of fixed effect variables are independent of the groups
(clusters) used as levels of a random effect. When this assumption is violated, the
models suffer ‘confounding by cluster’ (Seaman, Paviou & Copas, 2014a). Confounding by
cluster will therefore be a potential problem when there is both within- and between-group
variation in the values of an explanatory variable. It can lead to misleading estimates
for fixed effect parameters and biased estimations of variance components (Neuhaus ¢
McCulloch, 2006). A number of potential solutions have been suggested (Seaman,
Pavlou & Copas, 2014a), although one of the most accessible and intuitive is to decompose
the effect of a fixed effect variable into between-group (and therefore group-level) and
within-group (observation-level) covariates (Neuhaus ¢ McCulloch, 2006). For example a
study determining the relationship between fitness and body size in a population made up
of multiple social groups could contain a group-level effect of mean body size, and an
individual-level effect that is group-mean centred, so that it describes the size of that
individual relative to other individuals in the group.

A similar problem can arise if the cluster/grouping size (number of samples for
each level of the random effect) is correlated with one or more fixed effect variables
(Seaman, Pavlou & Copas, 2014b). For example if modelling the association between
maternal stress (response variable) and offspring weight at fledging (explanatory variable)
in a passerine bird, clutch ID would typically be included to control for variation in
offspring weight among different breeding attempts (as might be caused by genetic
differences, parental effects or the shared environment). However, if females that are
more stressed tend to lay smaller clutches then the size of the cluster is informative.
Informative cluster sizes can result in biased inference, especially when fixed and random
effects are correlated (Neuhaus ¢~ McCulloch, 2011). This is a particular problem for
models that only include random intercepts, where failing to account for informative
cluster sizes can lead to biased estimates for the intercept. However, for most covariates
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model estimates are unaffected by the presence of informative cluster sizes (Neuhaus ¢
McCulloch, 2011). One potential solution for dealing with informative cluster sizes is by
including cluster size as a covariate, however this is not a sensible choice when cluster
size lies on the causal pathway linking a particular explanatory variable to a response
variable (Seaman, Pavlou ¢» Copas, 2014a): inclusion of the cluster size as a fixed covariate
risks masking the real influence of the main explanatory variable. Another more complex
approach is to jointly model the response variable of interest and cluster size (Dunson,
Chen & Harry, 2003; Chen, Zhang & Albert, 2011; Seaman, Pavlou & Copas, 2014a).

Peril #6: random effect category means are not normally distributed
In many situations random effect means or slopes deviate from a Normal distribution.
They might be clustered along the y-axis, or might be skewed or heavy-tailed. Skew

and kurtosis are rarely considered by biologists, but are important when comparing
variances among samples (Hosken, Buss ¢ Hodgson, 2018). Typically, the random

effect hyperparameter used in (G)LMMs is the standard deviation of a Normal
distribution. It is possible to specify alternative hyperparameters and allow random effects
to have non-Normal distributions (Zhang et al., 2008; Molenberghs et al., 2010, 2012;
Fabio, Paula ¢ de Castro, 2012) but this requires non-standard modelling algorithms.
In general, both LMMs and GLMM:s have been found to be impressively robust against
misspecification of the random effects distribution (McCulloch ¢ Neuhaus, 2011; Neuhaus,
McCulloch & Boylan, 2013; Schielzeth et al., 2020). The estimates of fixed effect parameters
for individual-level variables are particularly robust (McCulloch ¢ Neuhaus, 2011),
while estimation of random effects and variances is more susceptible to misspecification
(McCulloch & Neuhaus, 2011). However, when fixed effects are correlated with random
effects, and if other assumptions of mixed models are not met, then misspecification of the
random effects distribution can influence parameter estimates (Newhaus ¢» McCulloch,
2011). Diagnostic tools such as those found in the R package ‘sjPlot’ (Ludecke, 2019) allow
users to diagnose the validity of their assumption of normality of random effects, and
should be used where appropriate. While LMMs and GLMMs are typically robust to
misspecification, other approaches are available when these assumptions are violated,
for example the application of mixture models (Hamel, Yoccoz ¢ Gaillard, 2017). Direct
comparison of choices of random effect distributions can be made using Bayesian mixed
effects models coded in standard software such as JAGS (Plummer, 2003) or Stan
(Carpenter et al., 2017).

Peril #7: random effect categories used as a proxy for covariance
structure

It is not unusual for non-independence among residuals, caused by spatial, temporal

or phylogenetic autocorrelation, to be modelled using categorical random effects

(e.g. region, year or genus). Despite increased prevalence of regressions that explicitly
model covariance structures (Housworth, Martins & Lynch, 2004; Dormann et al., 2007;
Miller, Franklin & Aspinall, 2007; Hadfield ¢ Nakagawa, 2010; Ives & Helmus, 2011;
Rousset ¢ Ferdy, 2014), many researchers elect to control for these dependencies with
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Figure 6 An illustration of the appropriateness of categorical effects to control for autocorrelated data. In this example dataset, a response
variable measuring height varies according to temperature and there is spatial autocorrelation in the residual error at either a fine spatial scale (A) or
a broader spatial scale (D). Sampled individuals (small, semi-transparent black points) are associated with particular sites (white diamonds), with
10 individuals per site. Each site is associated with a particular region (centre marked with light grey square), with four sites sampled in each region
(all depicted in (A and D)). We fitted three models, each with height as the response variable and temperature as the explanatory variable: a
generalised least squares model with a spatial correlation structure (for comparison), an LMM with site as a random effect (comparison in blue) and
an LMM with region as a random effect (comparison in yellow). (B and E) show the difference between model estimates for the effect of temperature
between the LMMs and the model with spatial autocorrelation structure for the case with fine scale spatial autocorrelation and broader scale
autocorrelation respectively. (C and F) show the same comparison for standard error around those model estimates. All R code for this example is
provided in the Supplemental Material. Full-size K&l DOT: 10.7717/peerj.9522/fig-6

categorical variables as an alternative. While some coarse control for spatial (or temporal)
structure is better than none at all, the success of using a categorical random effect can vary
depending on the nature of the true covariance structure in the data. First, random effects
do not control for all types of non-independence and are useful only when there is positive
autocorrelation (i.e. measurements closer together in time or space tend to be more
similar). Second, the success of using a categorical proxy for a covariance structure will
depend on how the granularity of the effect used (e.g. site ID vs. region ID) compares with
the scale of any autocorrelation.

We demonstrate here that the success of categorical proxies for continuous covariation
depends on how the granularity of the random effect compares with the scale of any
autocorrelation. We simulated two Gaussian fields that influence the residual error in the
relationship between a single explanatory variable (Temperature) and single response
variable (Height). The first (Fig. 6A) varied at a much finer scale than the second (Fig. 6D).
We varied the slope of the relationship, so that we could examine the impact on model
performance at a various effect sizes. There were 320 measurements in total, occurring
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in eight regions that each contained four sites, with 10 individuals measured per site.

We fitted three models: one directly modelled spatial covariance in the residuals (using
Generalised Least Squares); one using site as a categorical random effect; and one using
region as a categorical random effect. For the model in which the spatial field varied at a finer
scale, model estimates from the models that used site as a random effect were in much closer
agreement with the explicitly spatial model (Fig. 6B) and much more precise (Fig. 6C)
than those that used region as a random effect. In contrast, when the scale of the spatial field
was broader, the accuracy and precision of model estimates was much more similar (Figs. 6E
and 6F). Biases in the accuracy and precision of model predictions will affect Type I

(false positive) and Type II (false negative) error rates. This helps illustrate the benefit of
selecting a categorical effect to control for spatial or temporal structure in the data that is as
well matched to the autocorrelation in the data as possible.

Detecting and resolving problems with mixed model estimation
The issues identified here can all be identified with adequate data checks and checks of
model fit (Zuur e» Ieno, 2016; Harrison et al., 2018).

First, we recommend having a clear idea of the structure and hierarchy of the model.
Identifying categorical variables with too few levels for random effect estimation can
help avoid Peril 3, while identifying the level of the hierarchy that fixed effect variables
apply at (observation-level vs group-level) can help identify situations where there is a
risk of Peril 2 having an impact. Similarly, a clear idea of the hypothesis and model
structure can help identify scenarios where a random slopes model might be more
appropriate than a random intercepts model (Peril 4).

Second, we emphasise the importance of data exploration (Zuur, Ieno ¢ Elphick, 2010).
Plots of the raw data can help identify unusual random effect categories (helping to
avoid Peril 6), small sample sizes (Peril 1) or confounding by cluster and informative
cluster sizes (both part of Peril 5). Similarly, raw data plots might help provide an initial
idea of the scale of any spatial or temporal structure to the data and so be informative in
deciding an appropriate random effect (Peril 7).

Third, we highlight the value of conducting full model checks (Zuur ¢ Ieno, 2016;
Harrison et al., 2018). Plots of residuals for each level of the random effect are important in
identifying heteroscedasticity in the residuals between levels of the random effect, or
relationships between residuals and fitted values that necessitate random slopes models
(Peril 4). Semi-variograms check the need for explicit modelling of covariance structures to
avoid Peril 7 (Fletcher & Fortin, 2018). The simplest method to assess the extent to which
the random effects distribution differs from normal (to avoid Peril 6) are quantile-
quantile plots. However, various other diagnostic tools are available (Drikvandi, Verbeke ¢
Molenberghs, 2017; Efendi et al., 2017). We demonstrate a comprehensive but simple
approach to model checking in the Supplemental Material. We provide code to allow
users to be confident in generating these checks themselves as well as using functions
provided by existing R packages. New R packages such as DHARMa (Hartig, 2020) are
making these model checks more available and accessible even for more complex GLMMs.
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There are also now R packages that make more sophisticated modelling approaches
available to a wider audience. For example brms (Biirkner, 2017) provides an interface to
the Bayesian statistical model fitting software Stan (Carpenter et al., 2017). Users can
exploit coding syntax similar to Ime4, and an array of model specifications are available
that deal with various pitfalls described here. Similarly, glmmTMB (Brooks et al., 2017)
provides software to facilitate the fitting of more complex error distributions and
correlation structures using similar syntax to Ime4.

(G)LMMs are reassuringly robust to some of the individual pitfalls we have described
here Schielzeth et al. (2020). However, there is very little understanding of the combined
impact of multiple violations of the core assumptions: there is plenty of scope for
simulation studies of the power and anticonservatism of mixed effects models. The pitfalls
described here exist and are prevalent in the biological literature, with little opportunity
for readers to check the validity of published models and results. Hence, raising awareness
of these potential pitfalls and considering them together can help researchers use
mixed models more assuredly and avoid pitfalls that impact on their statistical inference.

CONCLUSIONS

Mixed modelling approaches are firmly embedded as state-of-the-art for the analysis

of biological data. As these methods become available to a growing user base it is necessary
to reveal the perils and pitfalls associated with them (Arngvist, 2020). Often with biological
datasets it is not possible to meet the statistical assumptions of these models perfectly

and it may be necessary to make compromises in model design. We have provided guidance
on a set of typical perils and pitfalls by providing insights from the statistical literature and
illustrating key points using simulated case studies and examples. While (G)LMMs can
be robust to some of the perils we describe (Schicelzeth et al., 2020), there remains little
understanding of their combined impacts. Readers can only assess the quality of inference
from mixed effects models if their hierarchical structures, levels of true replication, and
checks of validity, are described clearly and honestly. This review will help readers be more
aware of some of the key perils in mixed model design and so improve statistical inference
when testing biological hypotheses. We hope that by providing an overview of these
perils, we can help researchers feel better informed and more confident that they are using
mixed modelling approaches to draw correct conclusions from their data.
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