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Abstract

The Myriapoda, composed of millipedes and centipedes, is a fascinating but poorly under-

stood branch of life, including species with a highly unusual body plan and a range of unique

adaptations to their environment. Here, we sequenced and assembled 2 chromosomal-level

genomes of the millipedes Helicorthomorpha holstii (assembly size = 182 Mb; shortest scaf-

fold/contig length needed to cover 50% of the genome [N50] = 18.11 Mb mainly on 8 pseudo-

molecules) and Trigoniulus corallinus (assembly size = 449 Mb, N50 = 26.78 Mb mainly on

17 pseudomolecules). Unique genomic features, patterns of gene regulation, and defence

systems in millipedes, not observed in other arthropods, are revealed. Both repeat content

and intron size are major contributors to the observed differences in millipede genome size.

Tight Hox and the first loose ecdysozoan ParaHox homeobox clusters are identified, and a

myriapod-specific genomic rearrangement including Hox3 is also observed. The Argonaute

(AGO) proteins for loading small RNAs are duplicated in both millipedes, but unlike in insects,

an AGO duplicate has become a pseudogene. Evidence of post-transcriptional modification

in small RNAs—including species-specific microRNA arm switching—providing differential

gene regulation is also obtained. Millipedes possesses a unique ozadene defensive gland

unlike the venomous forcipules found in centipedes. We identify sets of genes associated

with the ozadene that play roles in chemical defence as well as antimicrobial activity. Macro-

synteny analyses revealed highly conserved genomic blocks between the 2 millipedes and

deuterostomes. Collectively, our analyses of millipede genomes reveal that a series of

unique adaptations have occurred in this major lineage of arthropod diversity. The 2 high-

quality millipede genomes provided here shed new light on the conserved and lineage-

specific features of millipedes and centipedes. These findings demonstrate the importance

of the consideration of both centipede and millipede genomes—and in particular the recon-

struction of the myriapod ancestral situation—for future research to improve understanding

of arthropod evolution, and animal evolutionary genomics more widely.
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Background

Arthropoda comprises the myriapods (millipedes and centipedes), crustaceans (shrimps,

crabs, and lobsters), chelicerates (spiders, scorpions, and horseshoe crabs), and insects. Collec-

tively, these taxa account for the majority of described terrestrial and aquatic animal species on

earth (Fig 1A). While crustaceans, chelicerates, and insects have been the focus of intense

research, the myriapods are comparatively much less studied, despite their great diversity and

important ecological roles. In particular, arthropod genomic and transcriptomic information

is highly uneven, with a heavy bias toward the crustaceans, chelicerates, and insects [1–2]. Yet

myriapods display many interesting biological characteristics, including a multisegmented

trunk supported by an unusually large number of legs.

Centipede is Latin for “100 feet,” but centipedes have between 30 and 354 legs, and no spe-

cies has exactly 100 legs [5]. In contrast, millipede is Latin for “1,000 feet,” and while millipedes

include the “leggiest” animal on Earth, no species has as many as 1,000 legs, with the true num-

ber varying between 22 and 750 legs [6]. Myriapods were among the first arthropods to invade

the land from the sea, during an independent terrestrialisation from early arachnids and

insects, which occurred during the Silurian period approximately 400 million years ago [7].

Today, the Myriapoda consists of approximately 16,000 species, all of which are terrestrial [8].

Currently, just 2 myriapod genomes are available: the centipede Strigamia maritima [9] and a

draft genome of the millipede Trigoniulus corallinus [10]. Consequently, the myriapods, and

particularly the millipedes, present an excellent opportunity to improve understanding of

arthropod evolution and genomics.

Millipedes compose the class Diplopoda, a highly diverse group containing more than

12,000 described species [11]. Millipedes are important components of terrestrial ecosystems,

especially regarding their roles in the breakdown of organic plant materials and nutrient recy-

cling. In contrast to centipedes, which have one pair of legs per body segment, individual body

segments are fused in pairs in millipedes, resulting in a series of double-legged segments

(diplo-segments). The typical millipede body plan consists of the head, the collum (the first

posterior segment next to the head which is legless, from the Latin for “neck”), and trunk (the

remaining length of the body, with varying numbers of diplo-segments) [12]. The primary

Fig 1. Millipede phylogenetic position and life cycle. (A) Schematic diagram showing the phylogeny of myriapods, crustaceans, and insects; (B) life

cycle of the orange rosary millipede,Helicorthomorpha holstii (based on [3] and our observations); (C) life cycle of the rusty millipede, Trigoniulus
corallinus (based on [4]).

https://doi.org/10.1371/journal.pbio.3000636.g001
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defence mechanisms of millipedes are their tough exoskeletons and their ability to curl up into

a tight coil, while a unique secondary defence system in some species involves emitting toxic

liquids or gases from the ozadene gland, via ozopores located on each side of the posterior por-

tion of diplo-segments termed “metazonites” [13].

The orange rosary millipedeHelicorthomorpha holstii (Polydesmida) and the rusty milli-

pede T. corallinus (Spirobolida) were chosen in this study to represent 2 major lineages from

among the 16 orders of millipede. Both species originate in Asia but are now cosmopolitan

species with large distributions worldwide.H. holstii undergoes development with a fixed

number of legs and segments that increases at every stadium after each molt, and it completes

7 juvenile stadia before reaching sexual maturity at stadium VIII (adult) (Fig 1B). Conversely,

T. corallinus undergoes development with a variable number of new segments and legs added

during the initial molts, with no further segments developing after reaching stadium X (adult)

(Fig 1C).

Here, we present 2 high-quality de novo reference genomes close to the chromosome-level

assembly, for the orange rosary millipedeH. holstii and the spirobolid rusty millipede T. coral-
linus (Table 1). With reference to these genomes, we reveal the basis of a unique defence sys-

tem, alongside novel features of the genome and gene regulation in millipedes, that are not

observed in other arthropods. The genomic resources we develop expand the known gene rep-

ertoire of myriapods and provide a genetic toolkit for furthering understanding of their unique

adaptations and evolutionary pathways.

Results and discussion

Evolution of millipede genomic composition and size

Genomic DNA (gDNA) was extracted from single individuals of 2 species of millipedes: the

orange rosary millipedeH. holstii (Fig 1B) and the rusty millipede T. corallinus (Fig 1C).

gDNA was sequenced using Illumina short-read and 10X Genomics linked-read sequencing

platforms (S1 Table). Hi-C libraries were also constructed for both species and sequenced on

the Illumina platform (S1 Fig). Both genomes were first assembled using short reads, followed

by scaffolding with Hi-C data. TheH. holstii genome assembly is 182 Mb with a shortest scaf-

fold/contig length needed to cover 50% of the genome (N50) of 18.11 Mb (Table 1, S2 Table).

This high physical contiguity is matched by a high completeness, with a 97.2% complete

Benchmarking Universal Single-Copy Ortholog (BUSCO) score for eukaryotic genes

Table 1. Comparison of myriapod genome assembly quality.

Common name Coastal centipede Orange rosary millipede Rusty millipede Rusty millipede

Species name Strigamia maritima Helicorthomorpha holstii Trigoniulus corallinus Trigoniulus corallinus
Accession number GCA_000239455.1 JAAFCF000000000 JAAFCE000000000 PRJNA260872

Assembly size 176,210,797 181,201,347 448,558,750 416,979,918

Scaffold N50 139,451 18,119,263 26,787,286 N/A

Number of scaffolds 14,739 7,137 9,127 N/A

Contig N50 24,745 335,075 184,856 955

Number of contigs 24,080 16,022 27,543 1,233,936

Gap content (N) 1.48% 1.95% 1.42% 0.4%

Number of genes 15,461 23,013 21,361 N/A

Complete BUSCOs 96.7% 97.7% 97.2% 46.2%

Reference [9] This study This study [10]

Abbreviations: BUSCO, Benchmarking Universal Single-Copy Ortholog; N50, shortest scaffold/contig length needed to cover 50% of the genome; N/A, Not available

https://doi.org/10.1371/journal.pbio.3000636.t001
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(Table 1). The T. corallinus genome is 449 Mb with a scaffold N50 of 26.7 Mb and 96.7%

BUSCO completeness (Table 1, S2 Table). There were 23,013 and 21,361 gene models pre-

dicted for theH. holstii and T. corallinus genome assemblies, respectively (Table 1). The major-

ity of sequences assembled for theH. holstii and T. corallinus genomes are contained on 8 and

17 pseudomolecules, respectively (S1 Fig). A total of 4 out of 7 pseudomolecules forH. holstii
and 11 out of 17 pseudomolecules for T. corallinus contain telomeric repeats (S1 Data), illus-

trating that these genome assemblies represent the first close to chromosomal-level genomes

available for myriapods.

Transposable elements (TEs) are almost ubiquitous components of eukaryotic genomes,

often accounting for a large proportion of an organism’s genome [14]. Among metazoans,

arthropods are a particular focus for TE research. However, myriapods are the only major

branch of Arthropoda for which knowledge of TEs remains extremely poor. Here, we exam-

ined the repeat content of 1 centipede and 2 millipede genomes to perform the first compara-

tive investigation of TEs in the Myriapoda. As for other major arthropod groups [15], we find

considerable variation in the total genomic contribution and composition of TEs among myr-

iapod genomes. TE content accounts for 19% to 47% of the total assembled genome among

the 3 available myriapod genomes, with total repeat content (including more simple repeat cat-

egories) varying between 19% and 55% (“Repeat Content” of Fig 2; S1 Text, S3 Table). In the

millipede T. corallinus, repeats account for more than half of all gDNA, representing 55% (245

Mb) of the total assembled genome size (S2 Data). This finding is of interest since the genome

of T. corallinus is more than double the size of either of the other 2 myriapod genomes at 449

Mb, compared with 182 Mb inH. holstii and 176 Mb in S.maritima (“Repeat Content” of Fig

2). In contrast, repeat content is 40% (70 Mb) in the centipede S.maritima and just 19% (35

Mb) in the millipede H. holstii, demonstrating considerable variation among myriapod line-

ages (S2 Data). TE expansions, particularly of long interspersed nuclear elements (LINEs) and

DNA elements, appear to have played a role in genome size expansion in T. corallinus. How-

ever, given that genome size remains approximately 28% greater in T. corallinus after exclusion

of all annotated repeats, it is evident that additional explanations must underlie the greater

genome size for T. corallinus (i.e., T. corallinus: 449 Mb genome − 245 Mb repeat content = 204

Mb;H. holstii: 182 Mb genome − 35 Mb repeat content = 147 Mb). We find that variation in

genome size is further accounted for by a considerably greater total for coding regions in T.

corallinus (sum of coding regions = 212 Mb), due primarily to an expansion in intron size,

compared toH. holstii (sum of coding regions = 78 Mb) (S4 Table). Thus, we find that both

repeat content and intron size are major contributors to the observed differences in millipede

genome size.

Homeobox gene organisation rearrangement

The most celebrated feature of millipedes is their many body segments and accompanying

extreme number of legs. Homeobox genes are an ideal candidate to study body plan evolution,

including segment number, as they are conserved gene expression regulators in animals. To

understand whether the 3 myriapod lineages considered here share a similar number of

homeobox genes, we compared their homeobox gene content to that of all available insect

genomes. We found that the 3 myriapod genomes have undergone 3 lineage-specific duplica-

tions of common homeobox genes (Otx, Barhl, Irx) (S2 Fig). These data suggest that millipede

genomes have not undergone massive homeobox gene duplications comparable to that which

have occurred in the centipede genome.

Hox gene clusters are renowned for their role in the developmental patterning of the ante-

roposterior axis of animals. In bothH. holstii and T. corallinus genomes, intact Hox clusters
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containing orthologues of most arthropod Hox genes were recovered (except for theHox3
gene), and we show that these are expressed during early developmental stages (Fig 3, S3 and

S4 Figs). In theH. holstii genome, noHox3 orthologues could be identified, and 2Hox3 genes

were located together on a different scaffold to the Hox cluster scaffold in T. corallinus. This

situation mirrors that observed previously in the genome of the centipede S.maritima [9]

(Fig 3).

Segmentation and tagmosis (the formation of tagmata through fusion and modification of

several individual segments) are considered to be key drivers for the evolutionary success of

arthropod adaptive radiations [16]. Changes in Hox gene evolution are linked to these pro-

cesses [17]. In particular,Hox3 has been an important player in arthropod evolution. For

example, Hox3 has undergone tandem duplication to form the 3 copies bicoid, zen, and z2 in

dipterans, and it has duplicated extensively in lepidopterans to take up novel roles [18]. Unlike

the fast evolving Hox3 genes documented in these insects, the homeodomain sequences of

Hox3 duplicates in both the centipede S.maritima and the millipede T. corallinus are con-

served [19] (S5 Fig). In both the centipede Lithobius atkinsoni and the millipede Glomeris

Fig 2. TE content, genomic locality, and estimates of accumulation history for sequenced members of the Myriapoda. Phylogenetic relationships

among taxa are indicated on the left-hand side of the figure, alongside schematics of each myriapod species. From left to right: (i) pie charts scaled in

proportion to assembled genome size, illustrating the relative contribution to myriapod genomes from each major repeat class; (ii) stacked bar charts

illustrating the proportion of each repeat class found in genic (�2 kb from an annotated gene) versus intergenic regions (>2 kb from an annotated

gene) for each myriapod species, expressed as a percentage of the total assembled genome; (iii) repeat landscape plots illustrating TE accumulation

history for each myriapod genome, based on Kimura distance-based copy divergence analyses, with sequence divergence (CpG adjusted Kimura

substitution level) illustrated on the x-axis, percentage of the genome represented by each TE type on the y-axis, and transposon type indicated by the

colour chart on the right-hand side. The underlying data of this figure can be found in S8 Data. CpG, region of DNA where a cytosine nucleotide is

followed by a guanine nucleotide; LINE, long interspersed nuclear element; LTR, long terminal repeat; SINE, short interspersed nuclear element; TE,

transposable element; tRNA, transfer RNA.

https://doi.org/10.1371/journal.pbio.3000636.g002
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marginata,Hox3 appears to have a typical Hox-like role [20,21]. In our transcriptomic analy-

ses, both theHox3A andHox3B genes were found to be expressed at higher levels early in

development compared to latter developmental stages, whileHox3A is expressed in the egg

stage, andHox3B is expressed in both the egg and stadium II (S4 Fig). Future investigations on

the spatiotemporal expression ofHox3 genes in myriapod embryos will be helpful to examine

further whether they have typical Hox-like roles. SinceH. holstii contains noHox3 orthologues

while both T. corallinus and S.maritima have 2Hox3 genes outside their Hox clusters, we con-

clude that the genomic “relaxation” ofHox3 from intact tight Hox clusters appears to have

occurred in the ancestor of all myriapods (Fig 3).

The ParaHox cluster is the paralogous sister of the Hox cluster and contains an array of 3

Antennapedia (ANTP)-class homeobox genes: Gsx/ind, Xlox/Pdx, and Cdx/cad. Together,

these genes are responsible for patterning the brain and endoderm formation in bilaterians

[22]. In general, the genomic linkage of ParaHox cluster genes has been lost in all investigated

ecdysozoans [23]. However, we identify a loosely linked ParaHox cluster of Gsx and Cdx in the

millipede T. corallinus, representing the first identified ecdysozoan ParaHox cluster (Fig 3).

ParaHox genes are expressed mainly during early development, and Gsx is also expressed dur-

ing a late developmental stage (S4 Fig). Given that ParaHox clustering has been identified in

the lophotrochozoans and deuterostomes [22,23], our data provide evidence that arthropod

and ecdysozoan ancestors contained clustering of ParaHox genes, rather than having disinte-

grated ParaHox clusters as previously thought.

Similar to the situation in S.maritima, the Eve orthologue is closely linked to the Hox clus-

ters in both millipede genomes. In addition, in the millipede genomes examined here we iden-

tified the linkage of other ANTP-class homeobox gene members to Hox-Eve, including the

genes Abox, Exex, Dll, Nedx, En, Unpg, Ro, and Btn (S6 Fig). Other homeobox gene clusters

were also identified and compared, including the NK cluster and the Irx cluster (S6 Fig).

Whether this situation represents a difference in genome quality between the 2 millipede

genomes (N50 = 26.7 Mb and 18.1 Mb) and the centipede genome [9] (N50 = 139 kb) or a true

difference in genomic content between millipede and centipede lineages remains to be tested

following improvements to centipede genomic resources.

In both millipedes, homeobox genes are generally expressed early in development rather

than during later developmental stages. Nevertheless, homeobox genes inH. holstii generally

Fig 3. Homeobox gene clusters. (A) Hox and ParaHox gene cluster genomic organisations in millipedes and other arthropods. (B) Synteny

comparisons between Hox gene scaffolds. Mindots = Minimum number of genes required to define a syntenic block.

https://doi.org/10.1371/journal.pbio.3000636.g003
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have higher expression levels in stadium II than in the egg stage, while the situation is reversed

in T. corallinus (S4 Fig). Whether these differences in observed expression patterns represent

distinctions in the developmental modes between polydemids and spirobolids remains to be

tested by comparison to additional millipede genomes.

Collectively, the earlier examples of homeobox gene organisation highlight the importance

of the novel genomic resources presented here to (1) reconstruct the arthropod ancestral situa-

tion, by providing novel interpretations of lineage-specific modifications, and (2) understand

functional constraints acting in extant lineages, such as the relaxation inHox3 and Xlox in the

ecdysozoan Hox and ParaHox clusters. As additional high-quality genomic resources become

available for a wider sampling of myriapod lineages, it will become possible to test the patterns

identified here more generally.

Conserved and divergent microRNA regulation and machinery

To understand how post-transcriptional regulators have evolved in myriapods, small RNA

transcriptomes were obtained from eggs, juveniles, and adults ofH. holstii and T. corallinus
(S5 Table). Using stringent criteria to annotate microRNAs supported by small RNA reads, a

total of 59 and 58 conserved microRNAs were identified in the genomes ofH. holstii and T.

corallinus, respectively (S4–S6 Data). This number is comparable to the 58 microRNAs identi-

fied in the centipede S.maritima [9]. In addition to conserved microRNAs, 43 and 10 novel

lineage-specific microRNAs could further be identified in millipedes H. holstii and T. coralli-
nus, respectively, with only one conserved in both species (S8 Fig, S4, S5 and S6 Data). No

homologue of miR-125, a member of the ancient bilaterian miR-100/let-7/miR-125 cluster,

could be identified in the centipede S.maritima [9, 24]. However, miR-125 could be identified

in both millipede genomes, suggesting a lineage-specific loss in the centipede (Fig 4A). In addi-

tion, our 2 high-quality millipede genomes allowed us to reveal the presence of conserved

microRNA clusters, including miR-100-let-7-125, miR-263-96, miR-283-12, miR-275-305,

miR-317-277-34, miR-71-13-2, miR-750-1175, and miR-993-10-iab4/8, as observed in most

arthropods (S4 Data). Previously, miR-283 has been identified in pancrustaceans only, but it

could be identified in the 2 millipede genomes presented here (S4 Data). Moreover, miR-96

and miR-2001 could be identified in the 2 millipedes, but not in S.maritima (S4 Data). These

examples highlight the importance of having multiple high-quality myriapod genomes to

properly understand the comparative evolution of post-transcriptional regulators, which will

ultimately allow us to address fundamental questions regarding the evolution of microRNA

Fig 4. MicroRNAs in millipedes. (A) Genomic organisation of miR-100/let-7/miR-125 clusters in various animals; (B) luciferase assays showing the

repression activities of Hox genes by miR-iab-8 in both millipedes. The underlying data of this figure can be found in S8 Data.

https://doi.org/10.1371/journal.pbio.3000636.g004
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regulation and associated machinery. In Drosophila melanogaster, the iab-4/iab-8 locus

encodes bi-directionally transcribed microRNAs that regulate the function of flanking Hox

transcription factors. We show that bi-directional transcription, temporal and spatial expres-

sion patterns and Hox regulatory function of the iab-4/iab-8 locus are conserved between fly

and the beetle Tribolium castaneum. Computational predictions suggest iab-4 and iab-8

microRNAs can target common sites, and cell-culture assays confirm that iab-4 and iab-8

function overlaps on Hox target sites in both fly and beetle. However, we observe key differ-

ences in the way Hox genes are targeted. For instance, abd-A transcripts are targeted only by

iab-8 in Drosophila, whereas both iab-4 and iab-8 bind to Tribolium abd-A. Our evolutionary

and functional characterization of a bi-directionally transcribed microRNA establishes the iab-

4/iab-8 system as a model for understanding how multiple products from sense and antisense

microRNAs target common sites.

Comparing conserved microRNAs between the 2 millipedes considered here, and all avail-

able insect genomes with small RNA sequencing data, we found multiple cases of microRNAs

undergoing microRNA arm switching (S2 Text, S9 Fig and S4 Data). Two cases including iab-

8 and miR-2788 are further analysed in detail in S2 Text, S10 and S11 Figs. Given the swapping

of arm usage and the separate genes targeted by the different arms, governance of microRNA

arm switching could operate under multiple mechanisms and present an additional and poten-

tially underappreciated means of adaptation.

We further explored how conserved microRNAs may modulate gene regulatory networks

among arthropod lineages. In insects, the bidirectionally transcribed microRNA iab-4/iab-8

locus is renowned for regulating the functions of its flanking Hox genes in the genomic cluster

[25]. In both the millipedes H. holstii and T. corallinus, the microRNA iab-4/iab-8 locus is

located between Hox genes abd-A and abd-B, similar to the situation in insects. Using a cell-

based dual-luciferase reporter assay to test Hox gene targets targeted by iab-8 in the 2 milli-

pedes, we found that the posterior Hox genes can be down-regulated in the 2 millipedes (abd-

A and abd-B byH. holstii iab-8, abd-A, abd-B and Ubx by T. corallinus iab-8) as found in

insects (Fig 4B). These data further establish that the regulation of Hox genes Ubx and abd-A
is partially performed by the microRNA iab-8 in the most recent common ancestor of insects

and myriapods. The gain and loss of transcription of Hox genes, such as alternation of Ubx
expression has been linked to the evolutionary transition to the hexapod limb pattern [26].

Whether the evolution of iab4/8 Hox targets as demonstrated here could be a plausible mecha-

nism to generate the diversity of morphology of myriapods is an exciting question that remains

to be further tested.

Another informative candidate to improve understanding of animal evolution are the small

RNAs and their associated machineries. Small RNAs represent an additional set of conserved

gene expression regulators in animals, and their study can reveal hidden layers of gene regula-

tion. For example, mature microRNAs are 21–23 nucleotide noncoding RNAs that regulate

gene expression and translation, usually binding onto the 30 untranslated regions (UTRs) of

target mRNAs to achieve post-transcriptional inhibition, either by suppressing translation or

inducing mRNA degradation [27, 28] (Fig 5A). Despite the finding that the biogenesis path-

ways of microRNAs and other small RNAs are relatively conserved in animals, modifications

of small RNA machinery has been found to alter small RNA regulation and thus contribute to

the rewiring of genetic networks; for example, the placozoan Trichoplax adhaerens has lost the

Piwi, Pasha, andHen1 genes, and no microRNAs are known to be produced [29].

All genes responsible for small RNA machinery were identified in the 2 millipede genomes

generated here, along with an unusual duplication of the Argonaute (Ago) gene, while the

other biogenesis components (Dgcr8, Drosha, Exportin-5, TRBP) remain the same (Fig 5A,

S12, S13 and S14 Figs). In insects, it is well known that there are also 2 Ago forms, and in the
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fruit fly Drosophila melanogaster, the dominant arm of the precursor microRNA can be sorted

into Ago1 to direct translational repression. Meanwhile, the other microRNA arm, as well as

small-interfering RNA (siRNA), can be sorted into Ago2 to direct transcriptional degradation

[30–34]. However, phylogenetic analyses suggest that the Ago duplication in millipedes is line-

age specific and does not share the same origin as the duplication event that occurred in insects

(S12 Fig). In addition, one Ago in T. corallinus (which we named Ago2) appears to have

become a pseudogene, as a consequence of a sequence insertion resulting in multiple stop

codons (Fig 5B). To test that this finding was not due to a genome sequencing error, or muta-

tion in a single individual, we carried out PCR and Sanger sequencing on 3 additional individ-

uals and confirmed this insertion mutation across all individuals (Fig 5C). The Ago copy inH.

holstii retains an open reading frame and so is likely to be functional, but it is currently unclear

what the evolutionary significance of the duplication event is.

The ozadene: Millipede chemical defence

Many millipedes possess ozadene glands, which are specialised secretory integumental sacs

arranged segmentally along the body. Ozadenes synthesize, store, and exude a diverse cocktail

of chemicals, including alkaloids, quinones, phenols, and cyanogenic compounds [35, 36].

Ozadenes are considered primarily to be an anti-predator adaptation, since their secretions

Fig 5. Argonaute duplication in millipedes. (A) Schematic diagram showing the biogenesis pathway of microRNAs (upper) and a table

summarising the number of gene copies contained in each millipede genome (lower); (B) schematic diagram showing the duplicates of

the Ago gene in the 2 genomes. Conserved domains of AGO—ArgoN (red), ArgoL (blue), PAZ (green), and PIWI (orange). Inverted

triangles, in TcoAGO2, indicate the position of multiple stop codons found in the corresponding gene sequence. Scale bar = 500

nucleotides. (C) Confirmation of the TcoAGO2 pseudogene. PCR and Sanger sequencing were carried out on gDNA collected from 3

Trigoniulus corallinus individuals that were not used for genome sequencing. Ago, Argonaute; gDNA, genomic DNA; miRNA,

microRNA; UTR, untranslated region.

https://doi.org/10.1371/journal.pbio.3000636.g005

PLOS BIOLOGY Millipede genomes reveal unique adaptations during myriapod evolution

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000636 September 29, 2020 9 / 24

https://doi.org/10.1371/journal.pbio.3000636.g005
https://doi.org/10.1371/journal.pbio.3000636


include paralyzing agents, repellents, toxins, and sticky substances that provide physical pro-

tection, but they have also been suggested to be provide a defence against pathogenic microbes

[35]. However, little fine-scale analysis of ozadene genetics has been undertaken. Conse-

quently, we used the millipede genomic resources generated here to further investigate the

functional genomics of the ozadene.

Ozadene glands are divided into 3 main types based on their morphology and the chemicals

that they produce: glomerid-, julid-, and polydesmid-type ozadenes [35]. The polydesmid-type

ozadene, such as that found inH. holstii, is a complex structure consisting of a large membra-

nous sac, a narrow valved duct leading to a reaction chamber, and an ozopore that opens onto

the body surface (certain segments only from the 5th to 19th segment) [35, 37]. Many polydes-

mid millipedes are known to secrete cyanogenic compounds such as hydrogen cyanide as a

chemical defence [36]. Genes involved in the biosynthetic pathway of cyanide—including

CYP3201B1, mandelonitrile oxidase (MOX), α-hydroxynitrile (HNL), and β-glucosidase, as

well as rhodanese, which is involved in its detoxification—were identified in theH. holstii
genome (Fig 6A, S7 Data). This represents one of the most complete sets of cyanogenic path-

way genes identified in a single millipede species to date. Surprisingly, despite an absence of

reports demonstrating the capability of polydesmid millipedes to synthesize quinones as

defensive chemicals, quinone orthologues were also identified in the genome ofH. holstii (Fig

6B, S7 Data). However, due to the size of the gland as well as the availability of animals, mass

spectrometry was not carried out on the gland ofH. holstii.
Julid-type ozadene glands of the type found in T. corallinus are relatively simple structures

in comparison to polydesmid-type ozadenes [12, 35] (Fig 6C). Spirobolid millipedes, including

T. corallinus, are well known to secrete quinones, including benzoquinone and hydroquinone,

as chemical defence [35,36]. Orthologues of phenoloxidase (PO), quinone oxidase (QO), vitel-

logenin-like (VTG), quinone-less arylsulfatase b (ARSB), and quinone-less multidrug resis-

tance protein (MRP) were identified in the T. corallinus genome (Fig 6B, S7 Data). Strikingly, a

total of 2,125 peptides were identified by mass spectrometry in the T. corallinus ozadene gland,

with VTG peptide being the most abundant (S7 Data). The function of this VTG peptide is

unknown. Further, a total of 119 proteins were identified to possess antibacterial, antifungal,

or antiviral properties (S15 Fig), corroborating results from other studies suggesting that milli-

pede ozadenes also play an important antimicrobial role [42–44]. Consequently, our data add

weight to the assertion that one of the main functions of the millipede ozadene, at least in T.

corallinus, is to provide defence against pathogenic microorganisms, in addition to providing a

defence mechanism against predators.

Conserved synteny among myriapod and deuterostome genomes

Conservation of large-scale gene linkage has been reported between the centipede S.maritima
and the amphioxus Branchiostoma floridae at a higher level than with any insect, providing evi-

dence that the last common ancestor of arthropods retained significant synteny with the last

common ancestor of bilaterians [9]. To understand the genomic rearrangement patterns

among diplopods and chilopods, we performed conserved synteny analyses between the 2 mil-

lipede genomes sequenced here and the centipede S.maritima. As expected, a greater level of

conserved synteny blocks were detected between the 2 millipedes than between the millipede

and the centipede, while greater large-scale gene linkage was observed between T. corallinus
and S.maritima than betweenH. holstii and S.maritima (S16 Fig). To specifically test for the

presence of conserved syntenic blocks between millipede genomes and deuterostomes, as

observed for the centipede genome S.maritima, we also compared syntenic relationships

between the 3 myriapod genomes to those of a variety of deuterostome genomes, including
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human, amphioxus, tunicate, and sea urchin (S17, S18, S19 and S20 Figs). As shown in Fig 7,

syntenic blocks could be detected between both millipede genomes and deuterostome

genomes. These data highlight the importance of millipede genomes as a reference for the

reconstruction of animal evolutionary history.

Conclusions

The 2 chromosomal-level millipede genomes provided in this study considerably expand our

genomic understanding of myriapods, a diverse and ecologically important invertebrate group

with a key phylogenetic position among the arthropods. Compared to the single available

genome for their closest relatives—the centipedes—our findings highlight that millipede

genomes have retained distinct ancestral features (e.g., synteny to human) and have undergone

unique changes in their genomic machinery (e.g.,Hox3, Xlox, AGO proteins, microRNAs).

We also show that millipede genomes display considerable variability in their repeat content

and genome size, and we begin to unravel the genomic bases of some of their morphological

adaptations. Future research focussing on understanding arthropod evolution—and, in partic-

ular, the reconstruction of the myriapod ancestral situation for comparison to other clades—

will require further genomic resources for both centipedes and millipedes.

In Drosophila melanogaster, the iab-4/iab-8 locus encodes bi-directionally transcribed

microRNAs that regulate the function of flanking Hox transcription factors. We show that bi-

Fig 6. Chemical defence in millipedes. Schematic diagram of the metabolic pathways of (A) HCN and benzaldehyde and (B) quinone in millipedes.

The pathways are drawn based on previous studies [38–41]. (C) The ozadene defensive gland of the millipede T. corallinus. HCN, hydrogen cyanide.

https://doi.org/10.1371/journal.pbio.3000636.g006
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Fig 7. Synteny comparisons of myriapod (millipedes Helicorthomorpha and Trigoniulus and centipede Strigamia) and

deuterostome genomes. Note that different degrees of syntenic regions could be detected between millipede genomes and

deuterostome genomes, and between the centipede genome to deuterostome genomes.

https://doi.org/10.1371/journal.pbio.3000636.g007
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directional transcription, temporal and spatial expression patterns and Hox regulatory func-

tion of the iab-4/iab-8 locus are conserved between fly and the beetle Tribolium castaneum.

Computational predictions suggest iab-4 and iab-8 microRNAs can target common sites, and

cell-culture assays confirm that iab-4 and iab-8 function overlaps on Hox target sites in both

fly and beetle. However, we observe key differences in the way Hox genes are targeted. For

instance, abd-A transcripts are targeted only by iab-8 in Drosophila, whereas both iab-4 and

iab-8 bind to Tribolium abd-A. Our evolutionary and functional characterization of a bi-direc-

tionally transcribed microRNA establishes the iab-4/iab-8 system as a model for understand-

ing how multiple products from sense and antisense microRNAs target common sites.

In Drosophila melanogaster, the iab-4/iab-8 locus encodes bi-directionally transcribed

microRNAs that regulate the function of flanking Hox transcription factors. We show that bi-

directional transcription, temporal and spatial expression patterns and Hox regulatory func-

tion of the iab-4/iab-8 locus are conserved between fly and the beetle Tribolium castaneum.

Computational predictions suggest iab-4 and iab-8 microRNAs can target common sites, and

cell-culture assays confirm that iab-4 and iab-8 function overlaps on Hox target sites in both

fly and beetle. However, we observe key differences in the way Hox genes are targeted. For

instance, abd-A transcripts are targeted only by iab-8 in Drosophila, whereas both iab-4 and

iab-8 bind to Tribolium abd-A. Our evolutionary and functional characterization of a bi-direc-

tionally transcribed microRNA establishes the iab-4/iab-8 system as a model for understand-

ing how multiple products from sense and antisense microRNAs target common sites.

Materials and methods

Animal husbandry

Adult T. corallinus were captured locally in an agricultural garden of New Asia College of The

Chinese University of Hong Kong. Species identity was confirmed by DNA Sanger sequencing

of the mitochondrial cytochrome oxidase subunit I (COI) gene, with a pair of universal prim-

ers, LCO1490 and HCO2198 [45]. Millipedes were collected under the soft and humid soil of

decaying organic matter in a grass field and kept in a 39 cm (width) × 52 cm (length) × 27 cm

(depth) plastic aquarium at room temperature. The aquarium was filled with slightly moist-

ened gardening soil as the base substrate. Hydrated dried sphagnum moss was provided as a

source of water. Dried leaves collected together with the millipedes were first boiled and then

transferred on top of the soil. Apple slices were provided occasionally with a small quantity of

Zoo Med’s Repti Calcium powder. Distilled water was sprayed in a 2-day interval to maintain

soil humidity.

AdultH. holstii were collected locally in a garden of Sin Hang Ho College of The Chinese

University of Hong Kong. Species identity was confirmed by DNA Sanger sequencing of the

mitochondrial COI gene, as described earlier for T. corallinus. Millipedes were captured on the

surface of tree trunks or the rocky substrate and were subsequently kept in a 40 cm (width) ×
57 cm (length) × 15 cm (depth) plastic aquarium at room temperature. The provision of sub-

strate and food source was the same as described for T. corallinus. In addition, several auto-

claved rocks were placed in the aquarium to mimic the environment of their original

collection sites. Unlike T. corallinus,H. holstii requires a drier environment, therefore distilled

water was sprayed at a 4-day interval to provide adequate moisture.

Genome sequencing

gDNA was extracted from male T. corallinus and maleH. holstii excluding the digestive tract,

using a PureLink Genomic DNA Mini Kit (Invitrogen) following the manufacturer’s protocol.

Extracted gDNA was subjected to quality control using gel electrophoresis. Qualifying samples
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were sent to Novogene and to Dovetail Genomics for library preparation and sequencing. In

addition, a Chicago library was prepared by Dovetail Genomics using the method described

by Putnam and colleagues [46]. Briefly, approximately 500 ng of high–molecular-weight

gDNA (mean fragment length = 55 kb) was reconstituted into artificial chromatin in vitro and

fixed with formaldehyde. Fixed chromatin was digested with DpnII, the 50 overhangs were

filled in with biotinylated nucleotides, and then free blunt ends were ligated. After ligation,

crosslinks were reversed, and the DNA was purified from the protein. Purified DNA was

treated to remove biotin that was not internal to ligated fragments. The DNA was then sheared

to approximately 350 bp mean fragment size, and sequencing libraries were generated using

NEBNext Ultra enzymes and Illumina-compatible adapters. Biotin-containing fragments were

isolated using streptavidin beads before PCR enrichment of each library. Libraries were

sequenced on an Illumina HiSeq X platform. Dovetail HiC libraries were prepared in a similar

manner as described previously [47]. Briefly, for each library, chromatin was fixed with form-

aldehyde in the nucleus, and then extracted fixed chromatin was digested with DpnII, 50 over-

hangs were filled in with biotinylated nucleotides, and free blunt ends were ligated. After

ligation, crosslinks were reversed and the DNA purified from protein. Purified DNA was

treated to remove biotin that was not internal to ligated fragments. The DNA was then sheared

to approximately 350 bp mean fragment size, and sequencing libraries were generated using

NEBNext Ultra enzymes and Illumina-compatible adapters. Biotin-containing fragments were

isolated using streptavidin beads before PCR enrichment of each library. Details of the

sequencing data can be found in S1 Table.

Transcriptome sequencing

Transcriptomes of multiple developmental stages of each species were sequenced at Novogene.

Total RNA from different tissues was isolated using TRIzol reagent (Invitrogen) according to

the manufacturer’s instructions and quality controlled using a Nanodrop spectrophotometer

(Thermo Scientific), gel electrophoresis, and Agilent 2100 Bioanalyzer (Agilent RNA 6000

Nano Kit). Qualifying samples underwent library construction and sequencing at Novogene;

polyA-selected RNA sequencing libraries were prepared using TruSeq RNA Sample Prep Kit

version 2. Insert sizes and library concentrations of final libraries were determined using an

Agilent 2100 Bioanalyzer instrument (Agilent DNA 1000 Reagents) and real-time quantitative

PCR (TaqMan Probe), respectively. Small RNA (<200 nt) was isolated using the mirVana

miRNA isolation kit (Ambion) according to the manufacturer’s instructions. Small RNA was

dissolved in the elution buffer provided in the mirVana miRNA isolation kit (Thermo Fisher

Scientific) and submitted to Novogene for HiSeq Small RNA library construction and 50 bp

single-end (SE) sequencing. Details of the sequencing data can be found in S5 Table.

Sequencing data pre-processing

For Illumina sequencing data, adapters were trimmed, and reads were filtered using the fol-

lowing parameters with custom scripts carried out by the sequencing company: “-n 0.1” (if N

accounted for 10% or more of reads) and “-l 4 -q 0.5” (if the quality value is lower than 4 and

accounts for 50% or more of reads). FastQC was run for quality control [48]. If adapter con-

tamination was identified, adapter sequences were removed using Minion [49]. Adapter trim-

ming and quality trimming was then performed with Cutadapt version 1.10 [50].

Estimation of genome characteristics

For each species, k-mers of the Illumina PE library of 200 bp and 170 bp insert size ofH. holstii
and T. corallinus were counted using Jellyfish version 2.2.5 with k-mers = 31 [51], and
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estimation of genome size, repeat content, and heterozygosity were analysed based on a kmer-

based statistical approach using GenomeScope [52]. Kraken was used to estimate the percent-

age of reads originating from bacterial contamination [53], and 1.45% and 0.52% sequencing

reads were marked as bacteria and removed from H. holstii and T. corallinus, respectively.

H. holstii and T. corallinus genome assembly

Chromium WGS reads were separately used to make a de novo assembly using Supernova

(version 2.1.1), with the command “—maxreads = 231545066” for T. corallinus and “—max-

reads = 100000000” forH. holstii. The de novo assembly, shotgun reads, Chicago library reads,

and Dovetail HiC library reads were used as input data for HiRise, a software pipeline designed

for using proximity ligation data to scaffold genome assemblies [46]. An iterative analysis was

conducted. First, Shotgun and Chicago library sequences were aligned to the draft input

assembly using a modified SNAP read mapper (http://snap.cs.berkeley.edu). The separation of

Chicago read pairs mapped within draft scaffolds was analysed by HiRise to produce a likeli-

hood model for genomic distance between read pairs, and the model was used to identify and

break putative misjoins, to score prospective joins, and to make joins above a threshold. After

aligning and scaffolding Chicago data, Dovetail HiC library sequences were aligned and scaf-

folded following the same method. After scaffolding, shotgun sequences were used to close

gaps between contigs.

Gene model prediction

Raw sequencing reads of the transcriptomes were pre-processed with Trimmomatic (version

0.33; with parameters “ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 SLIDINGWINDOW:4:5

LEADING:5 TRAILING:5 MINLEN:25”) [54]. The genome sequences were first cleaned and

masked by Funannotate [55]. The soft masked assembly was then aligned to RNA sequencing

data using Trinity [56] and PASA [57]. The PASA gene models were then used to train Augus-

tus in “funannotate predict” step following manufacturer-recommended options for eukary-

otic genomes (https://funannotate.readthedocs.io/en/latest/tutorials.html#non-fungal-

genomes-higher-eukaryotes). Several prediction sources—including GeneMark [58], high-

quality Augustus predictions (HiQ), PASA [57], Augustus [59], GlimmerHMM [60], and snap

[61]—were then passed to EVidenceModeler (EVM) [57] with EVM Weights {‘GeneMark’: 1,

‘HiQ’: 2, ‘pasa’: 6, ‘proteins’: 1, ‘Augustus’: 1, ‘GlimmerHMM’: 1, ‘snap’: 1, ‘transcripts’: 1}, and

the final annotation files were generated.

TE annotation

Repetitive elements were identified using an in-house pipeline. Firstly, elements were identi-

fied using RepeatMasker version 4.0.8 [62] with the Arthropoda RepBase [63] repeat library.

Low-complexity repeats were ignored (-nolow), and a sensitive (-s) search was performed. Fol-

lowing this, a de novo repeat library was constructed using RepeatModeler version 1.0.11 [62],

including RECON version 1.08 [64] and RepeatScout version 1.0.5 [65]. Novel repeats identi-

fied by RepeatModeler were analysed with a “BLAST, Extract, Extend” process to characterise

elements along their entire length [66]. Consensus sequences and classification information

for each repeat family were generated. The resulting de novo repeat library was utilised to

identify repetitive elements using RepeatMasker. Repetitive element association with genomic

features was determined using BedTools version 2.26.0 [67]. “Genic” repetitive elements were

defined as those overlapping loci annotated as genes ± 2 kb and identified using the BedTools

window function. All plots were generated using Rstudio version 1.2.1335 8 with R version

3.5.1 [68] and ggplot2 version 3.2.1 [69].
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Gene family analysis

Gene family sequences were first retrieved from the 2 millipede genomes using tBLASTn [70].

The identity of each putatively retrieved gene was then tested by comparison to sequences in

the NCBI nr database using BLASTx. For homeobox genes, sequences were retrieved with

BLASTp using homeodomain sequences retrieved from HomeoDB [71]. For phylogenetic

analyses of gene families, DNA sequences were translated into amino acid sequences and

aligned to other members of the respective gene family, gapped sites were removed from align-

ments using MEGA, and phylogenetic trees (maximum likelihood, maximum parsimony, and

neighbor joining) were constructed using MEGA [72] and IQTree [73].

Synteny analyses

Synteny blocks between genomes of the 2 millipedes, centipede S.maritima [9], humanHomo
sapiens (NCBI Assembly GCF_000001405.38), amphioxus B. floridae [74], sea urchin Strongy-
locentrotus purpuratus (NCBI_Assembly GCA_000002235.4), and tunicate Ciona intestinalis
[75] were computed using SyMAP version 4.2 (Synteny Mapping and Analysis Program) [76],

with the parameter “mask_all_but_genes” set to 1 to mask the non-genic sequences and

“Mindots” (the minimum number of anchors required to define a synteny block) set between

2 and 7.

Ozadene mass spectrometry and analyses

Ozadene glands were isolated from adult T. corallinus under a dissecting stereomicroscope in

1X phosphate-buffered saline (Gibco, Life Technologies) with forceps, and protein samples

were dissolved in sample buffer (7 M urea, 2 M thiourea, 0.1 M DTT) and alkylated with 5

mM iodoacetamide for 30 minutes in the dark at room temperature given the light- and tem-

perature-sensitive reagents. Following this, sequencing-grade trypsin (Promega) was added to

each sample at a 1:20 ratio and incubated overnight at 37 ˚C. The digests were then mixed with

the same volume of SCX buffer (20 mM KH2PO4/50% acetonitrile [ACN; pH 3.0]) and loaded

onto an SCX spin column (Thermo Fisher Scientific). Peptides were eluted with 1M KCl in 10

mM KH2PO4/25% ACN (pH 3.0) and dried in a SpeedVac. Then the SCX cleaned-up samples

were re-suspended in 0.1% trifluoroacetic acid and fractionated into 4 fractions with increas-

ing ACN concentrations (7.5%, 12.5%, 17.5%, 50%) using a high-pH reversed-phase fraction-

ation kit (Thermo Fisher Scientific). The nano-LC separation was performed using a Dionex

UltiMate 3000 RSLC nano system. Following this, 1 μg of peptide was loaded onto a 25-cm-

long, 75-μm-internal-diameter C18 column and eluted at a constant flow rate of 0.3 μL/min

with a linear gradient from 2% to 35% of ACN over 2 hours. Eluted peptides were analysed

using an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific). Sur-

vey scans (MS) and data-dependent scans (MS/MS) were acquired in the Orbitrap Fusion

Lumos Tribrid Mass Spectrometer (Thermo Fisher Scientific) with a mass resolution of 60,000

and 15,000, respectively. MS scan range was from 375 to 1,500 m/z. The AGC targets for MS

and MS/MS were 4e5 and 5e4, respectively; the maximum injection times for MS and MS/MS

were 50 ms and 250 ms, respectively. Precursor isolation windows were set to 1.6 m/z. Data

were analysed by Proteome Discoverer version 2.4 with SEQUEST as a search engine. The

searching parameters were as follows: oxidation of methionine (+15.9949 Da) and carbamido-

methylation of cysteine (+57.0215 Da) was set as dynamic modification; precursor-ion mass

tolerance, 10 ppm; fragments-ion mass tolerance, 0.02 Da. Proteins were quantified utilizing

the precursor ion quantification module of Proteome Discoverer. The Enzyme Commission

Numbers (EC Number) of the proteins were assigned using EggNOG-Mapper 1.0.3 with Egg-

NOG 5.0; protein families were classified with InterProScan 5.40–77.0.
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Small RNA analyses

Adaptor sequences were trimmed from small RNA sequencing reads, and Phred quality scores

less than 20 were removed. Processed reads of length 18 bp to 27 bp were then mapped to

respective genomes using the mapper.pl module of the mirDeep2 package [77]. To identify

known microRNAs, predicted millipede microRNA hairpins were compared against metazoan

microRNA precursor sequences from miRBase [78] using BLASTn (e-value < 0.01) [70].

Those microRNAs with no significant sequence similarity to any of the microRNAs in miR-

Base were checked manually. Novel microRNAs were defined when they fulfilled the criteria

of microRNAs [79] (MirGeneDB 2.0, https://mirgenedb.org/information).

The expression levels of different arms of a microRNA were calculated based on the number

of sequencing reads mapped to the respective arm region in the predicted microRNA hairpin

by bowtie. To compare arm usage among various insects and millipedes, all published small

RNA sequencing data sets for insects with a genome available were used. miRNA hairpins from

both miRBase [78] and InsectBase [80] were used for read mapping and counting. The micro-

RNAs with either arm with absolute counts>50 were included in the arm switching analysis.

The formula ω = 5p� (5p + 3p), in which 5p and 3p refer to the number of predicted 5p arms

and 3p arms, respectively, was adopted as the measure of arm selection value. The arm selection

value, ω, ranged from 0 to 1, with smaller values indicating the tendency of 3p preference and

larger values indicating the tendency of 5p preference. We adopted<0.3 as the value of 3p dom-

inance and>0.7 as the value of 5p dominance [24, 25]. To define the arm preference of a micro-

RNA from a species with multiple sRNA sequencing samples, the arm dominance was decided

by majority of the dominance observed in all samples (more than 70% of total samples).

To validate the preference of microRNA 5p and 3p arms, candidate microRNA hairpins

with 100–300 bp sequence flanks were amplified from respective gDNA and cloned into a

pAC5.1 vector (Invitrogen) (primer information is shown in S6 Table). Also, the binding site

(perfect complementary to mature microRNA) of each arm was cloned into a psicheck-2 vec-

tor (Promega) (primer information is shown in S6 Table). All constructs were sent to Beijing

Genomics Institute (BGI)–Hong Kong for sequencing for confirmation of their identities

before use. Drosophila S2 cells (DRSCs) were kept in Schneider Drosophilamedium (Life

Technologies) with 10% (v/v) heat-inactivated foetal bovine serum (Gibco, Life Technologies)

and 1:100 penicillin-streptomycin (Gibco, Life Technologies) at 23 ˚C. The psicheck-2 vector

with binding sites of each microRNA arm (500 ng) and pAC5.1-microRNA (100 ng) were co-

transfected into DRSCs using Effectene (Qiagen). Forty-eight hours after transfection, lucifer-

ase activities were measured using the Dual-Luciferase Reporter Assay System (Promega) and

a Tecan Infinite M200 luminometer. The Renilla firefly luciferase activity ratios were calcu-

lated and normalized to control that DRSCs were transfected with the respective psicheck-

2-binding site alone. Subsequently, the relative luciferase activity of the 5p binding site to the

3p binding site was calculated. Three biological replicates were carried out for each test.

For microRNA-target validation, the 30 UTRs of predicted target genes were amplified and

subcloned into a psicheck-2 vector (primer information is shown in S6 Table). Cell transfec-

tion and dual-luciferase reporter assays were carried out as described previously in DRSCs

using the psicheck-2-30UTR and pAC5.1-microRNA [25, 81]. The Renilla firefly luciferase

activity ratios were calculated and normalized to control that DRSCs were transfected with the

respective psicheck-2-30UTR alone.

Supporting information

S1 Fig. Hi-C information of two millipede genome assemblies. Hi-C information ofH. hol-
stii (a) and T. corallinus (b). The x- and y-axes give the mapping positions of the first and
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second read in the read pair, respectively, grouped into bins. The colour of each square gives

the number of read pairs within that bin. White vertical and black horizontal lines have been

added to show the borders between scaffolds. Scaffolds less than 1 Mb are excluded.

(PDF)

S2 Fig. Homeobox gene information. Specific gains of homeobox genes between myriapods

and insects (a) and between centipede and millipedes (b). A total of 108 and 105 homeobox

genes could be identified in the genomes ofH. holstii and T. corallinus, respectively, which is

comparable to the 112 homeobox genes that could be identified in the centipede S.maritima [9].

(PDF)

S3 Fig. Syntenic analyses of Hox gene scaffolds in various arthropods.

(PDF)

S4 Fig. Heatmap showing expression level of homeobox genes during H. holstii and T. cor-
allinus development.

(PDF)

S5 Fig. Amino acid alignment of the bilaterian Hox3 and Xlox genes.

(PDF)

S6 Fig. Homeobox genes arrangement. (a) Schematic diagram showing the ANTP-class

homeobox gene arrangement in the 2 millipede genomes; (b) schematic diagram showing the

homeobox gene clusters in the myriapod genomes. (c) Schematic diagram showing the

homeobox genes in the 2 millipede genomes. Details of the genomic locations and sequences

of all these homeobox genes can be found in S3 Data. Gene tree can be found in S7 Fig. Hh,H.

holstii; Sm, S.maritima; Tc, T. corallinus.
(PDF)

S7 Fig. Phylogenetic tree of Homeobox genes. The sequence alignment can be found in S8

Data.

(PDF)

S8 Fig. Conserved sequences between the novel microRNA identified in H. holistii and T.

corallinus.
(PDF)

S9 Fig. MicroRNA arm switching. Cases of microRNAs undergone arm switching in insect and

millipede genomes (a). Red boxes represent 5p arm dominance, blue boxes represent 3p arm

dominance, yellow boxes represent cases for which microRNA dominant arm cannot be deter-

mined based on the cut-off set up in this study, and grey boxes represent multiple copies of micro-

RNAs in respective genomes and so cases of arms usage are not determined; (b) microRNA arm

switching cases of let-7 (left) and miR-277 (right) in insects. The red and blue colour represent

the 5p arm and 3p arm, respectively. Data underlying this figure can be found in S8 Data.

(PDF)

S10 Fig. iab-8 microRNA arm switching. (a) Differential arm target repression ability by dif-

ferent arthropod species of miR-iab-8. Bars represent mean with SEM; t test was used to deter-

mine significant difference between 5p and 3p. �p< 0.05; (b–d) predicted number of targets

and their GO of miR-iab-8-5p and miR-iab-8-3p in fly and millipedes. The underlying data of

this figure can be found in S8 Data. Dme, D.melanogaster; GO, gene ontology; Hho,H. holistii;
Tco, T. corallinus.
(PDF)
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S11 Fig. miR-2788 microRNA arm switching. (a–b) Small RNA read counts of miR-2788 in

different developmental stages in millipedeH. holstii and in TcA cell line of beetle Tribolium
castaneum; (c–d) luciferase activity showing the differential arm target (i.e., miR-2788-5p and

-3p sensor) repression ability between miR-2788 carrying different flanking sequence ofH.

holstii and T. castaneum. Bars represent mean with SEM; (e–f) predicted number of targets

and their GO of miR-2788-5p and miR-2788-3p in beetle T. castaneum and millipedeH. hol-
stii. The underlying data of this figure can be found in S8 Data. FA, adult female; GO, gene

ontology; J17, juvenile; MA, adult male; S1–S7, stadia I–VII; TcA, TcA cell line.

(PDF)

S12 Fig. Phylogenetic tree of AGO proteins. Alignments of protein sequences were made

with MUSCLE and the tree built with MEGA 7.0, with 1,000 bootstrap replicates. Maximum

likelihood (black), maximum parsimony (red), and neighbour joining (blue) algorithm were

adopted, and corresponding high-confidence bootstrap values are shown. The sequence align-

ment can be found in S8 Data. AGO, Argonaute.

(PDF)

S13 Fig. Phylogenetic tree of DGCR8. Alignments of protein sequences were made with

MUSCLE and the tree built with MEGA 7.0, with 1,000 bootstrap replicates. Maximum likeli-

hood (black), maximum parsimony (red) and neighbour joining (blue) algorithm were

adopted, and corresponding high-confidence bootstrap values are shown. The sequence align-

ment can be found in S8 Data.

(PDF)

S14 Fig. Phylogenetic tree of Dicer and Drosha. Alignments of protein sequences were made

with MUSCLE and the tree built with MEGA 7.0, with 1,000 bootstrap replicates. Maximum

likelihood (black), maximum parsimony (red) and neighbour joining (blue) algorithm were

adopted, and corresponding high-confidence bootstrap values are shown. The sequence align-

ment can be found in S8 Data.

(PDF)

S15 Fig. Antimicrobial properties of peptides in ozadene of T. corallinus.
(PDF)

S16 Fig. Syntenic blocks between millipede and centipede genomes.

(PDF)

S17 Fig. Syntenic blocks between myriapod and human genomes.

(PDF)

S18 Fig. Syntenic blocks between myriapod and amphioxus B. floridae genomes.

(PDF)

S19 Fig. Syntenic blocks between myriapod and sea urchin S. purpuratus genomes.

(PDF)

S20 Fig. Syntenic blocks between myriapod and sea squirt C. intestinalis genomes.

(PDF)

S1 Table. Genome sequencing data information.

(DOCX)

S2 Table. Genome size prediction by GenomeScope.

(DOCX)
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S3 Table. Comparison of TEs in the 3 myriapod genomes.

(DOCX)

S4 Table. Comparison of the gene sizes in the 3 myriapod genomes.

(DOCX)

S5 Table. Transcriptome sequencing data information of H. holstii and T. corallinus.
(DOCX)

S6 Table. Sequence information of primers used in this study.
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S1 Text. TEs. TE, transposable element.
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S2 Text. MicroRNAs.
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S3 Data. Homeobox gene sequences annotated in the 2 millipede genomes and their

expression levels.
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S4 Data. The microRNA contents, arm usage, and predicted gene targets.
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S5 Data. H. holstii microRNA structures.
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S6 Data. T. corallinus microRNA structures.

(PDF)

S7 Data. Chemical defence involving genes in millipede genomes and list of proteins iden-

tified in the T. corallinus ozadene gland.

(XLSX)

S8 Data. Numerical data underlying Figs 2 and 4B, S9b, S10a and S11a–S11d Figs, and
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