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Abstract Areas used in open-pit mining often undergo sudden and extensive landscape changes, 

including habitat fragmentation. With mining activity predicted to expand, understanding the 

impacts of this habitat loss on wildlife is key to developing effective mitigation at new mine 

developments. Despite this, research into the impacts of open-pit mines in general, and on bat 

populations in particular, is largely lacking. Here, we investigated potential impacts of a recently re-

established open-pit mine in southwest Britain on bat activity in the surrounding landscape, using 

remote monitoring techniques. Distance from the mine site boundary was found to be an important 

predictor of bat species richness and activity levels, with the effect on richness extending to 

approximately 900m from the site and the effect on activity potentially extending beyond the 

sampling range (1,200m). The effect of distance from the site boundary on species richness also 

varied with the proportion of woodland cover. It appears that habitat loss within the mine site 

boundary may have reduced bat movement because of barrier effects. The study highlights the need 

for further research into the impacts of mines on bats.   
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Introduction 

The dramatic alteration of ecosystems by human populations, particularly since the industrial 

revolution, has significantly impacted global biodiversity (Steffen et al. 2011). The mining industry 

was crucial in industrialisation and remains so in today’s digital age, but the discovery, extraction 

and processing of minerals is environmentally disruptive, with impacts potentially persisting long 

after the closure of a mine (Bebbington et al. 2008; Spitz and Trudinger, 2008). Mining currently 

occurs on every continent other than Antarctica and exploration emphasis is now shifting toward 

areas that have been little explored or previously had restricted accessibility due to politics, 

legislation or infrastructure (Protocol on Environmental Protection to the Antarctic Treaty, 1991; 

Filho, 2003).  

As a result of this past and recent expansion, mining can be a major anthropogenic source of 

environmental degradation and habitat loss worldwide (Kutz, 2007). Surface mining (comprised of 

strip mining, open-pit mining and mountaintop-removal mining) accounts for over 80% of ore 

mined each year, and can lead to sudden and extensive land use change as it requires the removal of 

vegetation and overburden in order to access an ore deposit (Sonter et al. 2014; Ramani, 2012). 

Given that the extraction stage of mining typically lasts from 10 – 30 years, biodiversity within the 

development footprint of open pit mines often experiences ongoing habitat fragmentation and loss 

impacts (Newmont Mining Corporation, 2018). Even for highly mobile animals like bats, habitat 

loss can decrease roost availability, reduce foraging opportunities and destroy strategic flyways 

(Campbell et al. 1996; Bambini et al. 2011).  

Although bats make up one fifth of extant mammal species, many populations are now in decline 

with over 21 percent of species classified as Threatened or Near Threatened (IUCN, 2019). Due to 

their long lifespans and low reproductive output, any mining activity which reduces habitat 

availability to bats could result in population declines and populations will be slow to recover 

(Voigt and Kingston, 2016). However, there has been little investigation of potential impacts of 

mining on bat populations (Barclay, 2014).  In addition to habitat loss, the blasting, transportation 

and processing of materials during open-pit mining could result in acoustic disturbance effects 

(Manwar et al. 2016). For acoustic predators like bats, noise pollution could compromise foraging 

efficiency, and therefore reduce activity in the noisy areas (Senzaki et al. 2016).  However, 

relatively little is known about the effects of anthropogenic noise on bats, although studies suggest 

that species using passive listening to locate prey or those echolocating at low frequencies 



(<35kHz) are likely to experience greater disruption from anthropogenic noise (Schaub et al. 2008; 

Bunkley et al. 2015).  

To ameliorate impacts of disturbance and habitat loss within mining landscapes, habitat restoration 

is increasingly being used as a tool to slow or prevent biodiversity loss (Burgar et al. 2015). In 

addition to carrying out habitat restoration following mine closure, environmental enhancement is 

now frequently implemented while mining is still underway (Tischew and Kirmer, 2007). For local 

bat populations this ecological compensation includes habitat creation or enhancement to provide 

strategic flyways and additional foraging resources and the provision of bat boxes to offer roosting 

opportunities (although this only applies to species which roost within tree cavities or buildings or 

exhibit roost plasticity) (Nielsen and Kelly, 2016; Mering and Chambers, 2014). However, despite 

the emphasis on promoting best practice methodologies through Environmental Impact 

Assessments (but see Richardson et al. 2019), research investigating the impacts of open pit mines 

on bat populations is lacking (Voigt and Kingston, 2016; Carvalho, 2017). Understanding the extent 

of potential landscape level effects on species richness and bat activity will enable better 

management recommendations and ultimately more effective conservation of bat populations 

(Gorresen and Willig, 2004).  

Here, we exploited the opportunity to investigate the impacts of a recently re-established open pit 

mine on bat populations in the U.K. Although tungsten was discovered at the Drakelands site in 

Southwest England in 1867, historic mineral working only occurred from 1919-1920 and 1934-

1944. Mineral working was later re-established in 2014, and Drakelands is now one of only two 

mines with an annual tungsten concentrate production capacity of more than 3,000 tonnes outside of 

China (Wolf Minerals Ltd, 2018). Chemical pollution at the site is strictly controlled, with local 

water sources regularly checked for leached contaminants. Further, light pollution is regulated 

across the site, with many areas remaining unlit, and light levels along boundary vegetation kept 

below 4 lux (Gillingham, 2014). The mine processing plant emits noise 24 hours per day, the high 

frequency portion of this ranging from 12-40 kHz (measured using an Anabat ultrasonic detector 

(SD2 model, Titley Scientific, Lancashire, United Kingdom)) which falls within the auditory range 

of European bat species (Luo et al. 2014). High frequency noise attenuates relatively rapidly in an 

outdoor environment, therefore the range of ultrasonic noise emitted from the processing plant is 

likely to be fairly limited (Makarewicz, 1998). Other than blasting, which occurs during the 

daylight hours but may still have some impact on bats roosting in proximity to the extraction pit, the 

mine processing plant represents that most significant source of noise locally, with background 

noise levels in the surrounding area remaining low (West Virginia Department of Environmental 



Protection, 2006). Therefore, Drakelands represents an ideal study site to investigate the extent of 

potential impacts of habitat loss and noise on local bat populations at an open pit mine. In order to 

assess possible impacts, we used remote acoustic monitoring techniques to measure bat activity and 

species richness in relation to distance from the planning boundary of the mine site.  

 

Study area 

The study sampled the landscape surrounding Drakelands mine, in the county of Devon in 

Southwest Britain (8km2; 50°24'47"N, 4°00'58"W) (Fig. 1). The Drakelands area is largely 

composed of agricultural land, interspersed with patches of broadleaf woodland (20%) and a small 

proportion of conifer plantation (4%). The region has a maritime climate, with mean annual 

temperatures of 10.5°C and an annual rainfall of approximately 1000mm (ClimaTemps, 2017). 

Bordering Dartmoor National Park, Drakelands mine is situated adjacent to operating China clay 

mines and is located 2km from the nearest urban area. The extraction pit measures 850m x 450m, 

with the site footprint covering an area of approximately 4km2 (Wolf Minerals Ltd, 2018). 

Development of the site required the removal of vegetation and destruction of three roosts (one tree 

roost, two building roosts) used by low numbers of common pipistelle Pipistrellus pipistrellus 

(n=5), soprano pipistelle Pipistrellus pygmaeus (n=5), greater horseshoe Rhinolophus 

ferrumequinum (n=7) and brown long-eared Plecotus auritus (n=3), carried out under European 

Protected Species Licences. In order to compensate for the loss of bat habitats, extensive mitigation 

measures have been implemented across the site including habitat creation, the strengthening of 

commuting routes by thickening hedges, installation of bat boxes and buildings, and a sensitive 

lighting regime (SLR consulting, 2013). The majority of these measures are contained within the 

area of the planning boundary.  

 

Materials and methods 

Field procedure 

A series of 17 line transects was designed in order to evenly sample the landscape surrounding the 

Drakelands site (Fig. 2). Each transect consisted of 5 sampling locations, positioned at 

approximately 20, 300, 600, 900 and 1200 metres from the planning permission boundary of the 

mine. A maximum distance of 1200 metres was selected in order to minimise the potential 

confounding impacts of the nearby town on bat activity. The landscape to the north of the 

Drakelands site was not sampled, in order to avoid confounding impacts of near-by China clay pits. 

Acoustic monitoring was conducted at each transect point for a duration of five consecutive nights, 



using one of five static Anabat ultrasonic detectors (SD1 and SD2 model, Titley Scientific, 

Lancashire, United Kingdom). Detectors were placed in weatherproof boxes and elevated to 1m 

above ground level on a tripod, tilted upwards at an angle of approximately 45°, and set to record 

from 30 minutes before sunset until sunrise. In order to account for potential differences in 

sensitivity between the detectors a randomised schedule was determined, so that each of the transect 

sampling points were measured equally by each of the five detectors. All five sampling points 

within each transect were monitored simultaneously, to avoid bias due to differing environmental 

conditions between locations. Transects were completed in a random order, with four transects 

sampled from September - October 2016 and the remaining transects sampled from March - May 

2017; the selection of the sampling period was limited by funding constraints. The placement of 

each acoustic detector was recorded with a Garmin eTrex 10 GPS (Garmin Ltd, Southampton, 

United Kingdom), to determine the actual distance to the mine site. In order to investigate potential 

species differences in responses to the impacts of the mine resulting from different foraging 

ecologies, the proportion of woodland cover in the 100m buffer surrounding each monitoring point 

was calculated using the Centre for Ecology and Hydrology Land Cover Map 2015 (Rowland et al. 

2017) and ArcGIS 10.2.2 (ESRI, 2011). Environmental conditions were recorded for each night of 

sampling using the Global Forecast System (total precipitation, average temperature and average 

wind speed), as these factors influence levels of bat activity (Fischer et al. 2009).   

 

Data were visualised in AnalookW (Titley Scientific, Lancashire, United Kingdom), and 

echolocation calls were visually inspected and assigned to species or genus based on comparison to 

a reference library of known species and the echolocation parameters provided in the literature by 

Russ (2012). Echolocation calls assigned to Myotis and Plecotus were only identified to a genus 

level, as many of these calls are too similar for accurate species-level assignment (Kunz and 

Parsons, 2009). Echolocation calls for which confident identification was not possible were labelled 

‘unknown’, this was largely due to calls being too faint, and occasionally because the parameters of 

a call fell between those of two species. All echolocation calls of the same species identified within 

a one-minute period were classed as one ‘pass’. Species richness was calculated for each night of 

monitoring, consisting of the sum of the number of species detected (or genus for Myotis and 

Plecotus) and excluding those labelled ‘unknown’. Total activity was calculated for each night of 

monitoring as the sum of the number of passes of all species, including those labelled ‘unknown’, 

and while bat activity cannot confer abundance, the number of bat passes detected within a unit of 

time can be a useful measure for comparing the relative functional importance of locations within a 

study site (Ober and Hayes, 2008).  



 

Data analysis 

Statistical analyses were conducted in R Studio using R version 3.3.1 (R Core Team, 2018) and the 

ggplot2 package (Wickham, 2016) for graphics. All response variables were assessed for normality, 

homogeneity of variance and over dispersion using standard diagnostic procedures. Assumptions 

were checked and appropriate transformations were made to reduce residual variance where 

necessary (Grueber et al. 2011). Generalised Linear Mixed Models (GLMM) were constructed 

using the package “lme4” (Bates et al. 2015) to investigate whether distance from the mine site had 

an effect on species richness and total activity. Species richness models were fit using GLMMs by 

Laplace Approximation with a Poisson error distribution, BOBYQA optimization and a “log” link 

function using the package “lme4” (Bates et al. 2015). Activity models were fit using GLMMs by 

maximum likelihood, with a zero-inflated negative binomial distribution and a “log” link function 

using the package “glmmTMB” (Brooks et al. 2017).  

 

The global models contained the fixed effects of distance from the mine site (km), proportion of 

woodland cover, average wind speed (mph), total precipitation (mm), average temperature (°C) and 

an interaction between distance and woodland cover. All models contained the random effects of 

date (to account for temporal autocorrelation) and location (to account for pseudo-replication as 

multiple nights of monitoring were conducted at each location). Potential spatial autocorrelation 

was assessed for the variables of species richness and total activity using Moran’s I (Paradis et al. 

2004). Spatial autocorrelation was only found to be significant in species richness (Moran’s I: 

0.064; p<0.001), therefore the variable of ‘Transect ID’ was included as a random effect in all 

species richness models to account for this. Detector I.D. was not included in models, as 

preliminary analysis revealed that there was no significant differences in performance between 

detectors in the range of species detected or the total number of calls detected. Lunar phobia 

(changing foraging habitats or activity schedules as a result of moonlight) does not appear to affect 

behaviour in the six UK-resident bat species in which this phenomenon has been studied (Karlsson 

et al. 2002; Roeleke et al. 2018).  As a result, we did not anticipate that moonlight intensity would 

significantly effect on bat activity in our study and this parameter was not included in our analyses. 

Models were built using all possible combinations of predictors using the package “MuMIn” 

(Barton, 2017) and then ranked using Akaike’s Information Criterion corrected for small sample 

size (AICc), which penalizes models with many explanatory variables (Burnham and Anderson, 

2010). Each model was then given an Akaike weight (ΔAICc), and based on the difference in these 

values, the best fitting models were arrived at. Models for which ΔAICc ⩽2 were considered to 



have equivalent support and were validated by visual examination of residuals and q-q plots (Bolker 

et al. 2009). According to some model selection methods, the model containing the fewest 

parameters of those with equivalent support, would be the optimal model(s) (Busemeyer et al. 

2015). However, given that this is an ecological study with substantial noise, where more than one 

model received equivalent support the top-ranked models (ΔAICc ⩽2) were averaged to create a 

final model (Whittingham et al. 2006). Model averaging was performed by combining parameter 

estimates from different models in a weighted average to generate a predictive model, using the 

natural average method (Grueber et al. 2011). Confidence intervals were calculated for all 

parameters included in the final averaged model. Parameters for which the confidence intervals did 

not include zero were considered useful predictors of species richness and total activity. In order to 

investigate potential non-linear trends between the species richness and distance from the mine site, 

we ran simple generalised additive models within each tercile of woodland cover separately, using 

the package “mgcv” with a gaussian error distribution and identity link function (Wood, 2011).  



Results 

A total of 13,610 bat passes were recorded during the study, and this represented at least 11 species 

(see Supplementary Table 1 for the detection frequency of each species/ genus). Data were not 

obtained for 14% of sampling locations, due to equipment failure and livestock interference. 

In investigating the factors that influence species richness, two of the models generated were 

considered to have equivalent support (ΔAICc ⩽2) (Table 1). Following model averaging, 

confidence intervals indicated that distance to the mine site was an important predictor of species 

richness, with differing trends depending on the proportion of woodland cover (Supplementary 

Table 2). Within the lower and middle terciles of woodland cover species richness rose gradually 

with increasing distance from the mine site. However, within the upper tercile of woodland cover 

species richness increased more steeply with increasing distance (Fig. 3). Visual inspection of the 

generalised additive models reveals a non-linear trend within the upper tercile of woodland cover, 

with species richness rising sharply with increasing distance from the mine site, and plateauing at 

approximately 900m (Fig. 4). Other important predictors of species richness were precipitation, 

temperature and wind, with high levels of precipitation and wind correlating with lower richness, 

and high temperatures correlating with greater richness.  

 

In investigating the factors that influence total bat activity, four of the models generated were 

considered to have equivalent support (ΔAICc ⩽2) (Table 2). Following model averaging, 

confidence intervals indicated that distance to the mine site was an important predictor of total 

activity, with the level of activity increasing with distance (Supplementary Table 3; Fig. 5). Other 

important predictors of activity were precipitation, temperature and wind, with high levels of 

precipitation and wind correlating with lower activity, and high temperatures correlating with 

greater activity.  

 

Discussion 

An improved understanding of the impacts of open pit mines on bats is crucial for informed 

management strategies and to help maintain the social contract that exists between mining 

companies and society at large. There is currently very little information available on these impacts, 

and we partly address that paucity here. Using model averaging techniques we found that bat 

species richness and activity levels increased with distance from the Drakeland mine. The effect of 

distance from the mine site boundary on species richness depended on the woodland cover around 

the mine. Within areas of low and medium woodland cover species richness rose gradually with 



increasing distance from the mine site. However, within areas of relatively high woodland cover 

(mean value of 62%) species richness rose more steeply, from 1.9 at the mine site boundary to 3.4 at 

a distance of 900m. Given that the majority of the mitigation measures that have been implemented 

are contained within the site boundary, the impacts of the mining development on bat activity and 

species richness in the surrounding landscape may be somewhat softened. 

 

It is important to note that the interaction between species richness and woodland cover was not 

likely to be driven by differences in habitat quality among monitoring locations. The vast majority 

of monitoring points that were situated in low cover habitats were within grasslands that were used 

for the grazing of livestock, and not arable farming which is often associated with reduced bat 

activity and species richness (Vaughan et al. 1997a). All wooded areas were mature and 

predominantly broadleaf and furthermore, the wooded areas close to the mine site generally 

contained more water bodies, which should increase their quality for bat foraging (Vaughan, 

1997b). The largest woodland patch was also located close to the mine site boundary, although size 

of woodland patch is not necessarily correlated with the level of bat richness it supports (Law et al. 

1999; Estrada and Coates-Estrada, 2002). Thus, it seems distance from the mine and woodland 

cover are both important in determining species richness. 

 

The noise emitted from the mine processing plant may contribute towards the relatively low species 

richness observed in woodland habitats, close to the site boundary. Studies suggest that by masking 

insect generated sounds, noise pollution may reduce the foraging efficiency of both Plecotus auritus 

and Bechstein’s bat Myotis bechsteinii, which are thought to use passive listening to locate prey and 

are specialised to forage within woodland habitat (Anderson and Racey, 1993; Siemers and Swift, 

2006; Schaub et al. 2008). Avoiding areas that are degraded by noise and shifting foraging activity 

further from the site boundary would contribute to the increased species richness further from the 

site boundary within areas with high woodland cover. A field trial of the impacts of broadband noise 

at gas compressor stations found some bat activity was reduced to a radius of at least 80m from the 

plant suggesting noise is important for some bats (Bunkley et al. 2015). However, sound attenuates 

with distance and we still saw effects up to 900m from the mine. 

 

A more likely explanation for the patterns detected is that the decreased species richness close to the 

mine could be linked to the loss of foraging areas, roosting habitat and commuting routes within the 

site boundary, which would reduce movement of bats in the direction of the mine, generating a 

barrier effect (Fensome and Mathews, 2016). The susceptibility of bat species to barrier effects 



varies in accordance with foraging ecology and wing morphology. Long-thin-winged species 

adapted to fly within low clutter habitats are thought to be less impacted by habitat loss barriers, 

compared with manoeuvrable species with broad, short wings which forage close to environmental 

clutter (Norberg and Rayner, 1987; Meyer et al. 2008). Furthermore, studies investigating the 

barrier effects of roads indicate species that forage in open spaces are willing to cross busy 

highways, whereas clutter specialists rarely do (Kerth and Melber, 2009; Berthinussen and 

Altringham, 2012a; Berthinussen and Altringham, 2012b). While we cannot conclusively state that 

activity decreases were driven by elevated impacts of the mine on clutter specialists, our findings 

are consistent with the loss of foraging habitats creating barrier effects, especially given the patterns 

identified (i.e. the interaction between woodland cover and distance). If our interpretation of the 

patterns detected is correct, effects could be further compounded by impacts on home range size. 

The short, broad wings of high-clutter specialists impose increased costs on commuting, and 

therefore the home range of these species tend to be smaller (Norberg and Rayner, 1987; Safi and 

Kerth, 2004). The relatively small area of habitat loss within the study site is therefore likely to 

have a greater impact at the local level on high clutter specialists, and a lesser impact on low clutter 

specialists with greater mobility which may be more affected by landscape level factors at large 

spatial scales (Fuentes-Montemayor et al. 2013).  

 

Distance from the mine site boundary was also found to positively correlate with total nightly bat 

activity. As noted above, variation in habitat quality and noise pollution are unlikely to explain this 

pattern over the distances covered by our surveys. We suggest instead that habitat loss and 

commuting route disruption because of the mine site probably drives this effect. Consistent with 

this interpretation, large roads can act as barriers to bats with activity increasing by 23% 1,200 

meters from the road (Berthinussen and Altringham, 2012a). Here we focussed on total bat activity 

rather than species-level activity, but total activity was dominated by P. pipistrellus (78.1% of calls). 

Given that P. pipistrellus is a generalist and may less disrupted by human activity and habitat loss, 

the activity decrease toward the mine site boundary may well be greater for some individual 

species, but testing this requires additional data (Davidson-Watts et al. 2006; Richardson et al. 

2019).  

 

Finally, and consistent with many other studies, we found that that high wind speeds and rainfall 

resulted in reduced activity generally, while high temperatures correlated with higher species 

richness and activity (Taylor, 1963; Reichard et al. 2010; Voigt et al. 2011; Barros et al. 2014).  

These patterns are thought to be due to temperature related shifts in insect activity, variation in the 



energetic costs of thermoregulation, and sensory constraints on echolocation as a result of rainfall. 

Our study did not take place during the peak months of bat activity (June-August) (Russ et al. 

2006), but despite this, shifts in activity and species richness were still evident. The maternity 

season occurs during seasonal peak-activity and this may have generated other patterns too. For 

example, during lactation, female bats often adopt a bimodal (or in some cases trimodal) activity 

pattern, returning to the maternity roost to suckle offspring during the night (Maier, 1992; Swift, 

1980). This could result in elevated activity in the vicinity of maternity roosts, and, depending on 

the locations of the maternity roosts, potentially alter measured impacts of the mine on bat activity 

in the surrounding landscape.  

 

To conclude, our findings suggest that open pit mining reduces the activity of some bat species 

nearby, with negative impacts on species richness potentially extending up to 900m from the mining 

activity. We also identified a threefold reduction in total bat activity close to the mine. These trends 

were observed despite the extensive mitigation measures that have been implemented across the 

site. To our knowledge, this is the first attempt to quantify impacts of open pit mines on bat 

populations in the wider landscape. At new open-pit mining developments bat mitigation should 

seek to develop substantial commuting routes to connect isolated woodland habitat patches with the 

wider landscape and consider enhancing existing woodland habitats that are located within 1km of 

the mine site boundary. Additionally, during link-road construction underpasses created on existing 

commuting routes may reduce barrier effects for clutter-specialists that fly close to ground-level. 

Clearly, further research into the species-specific responses of bats to barrier effects is needed to 

better predict impacts in the wider landscape of new developments.  
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Tables   

TABLE 1 The two top-ranking species richness models for which ΔAICc ⩽ 2, which were included 

in model averaging. Also shown is the null model, which does not contain distance or woodland 

cover. Shown is the deviance (Dev), the number of model parameters (K), the Akaike’s Information 

Criterion (AICc), the difference in Akaike’s Information Criterion between each model and the top-

ranked model (ΔAICc) and the Akaike’s weight (wi). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 

name 

Model 

rank 

Structure of fixed effects (Response 

= species richness; random effects 

= date and location) 

Dev K AICc ΔAICc wi 

Model 1 1 Distance + woodland cover + wind 

+ precipitation + temperature 

1052.9 9 1071.4 0.0 0.51 

Model 2 2 Distance* woodland cover + wind 

+ precipitation + temperature 

1052.6 1

0 

1073.2 1.8 0.21 

Null  6 Temperature + precipitation + wind 1064.6 7 1078.9 7.5 0.01 



 

 

 

TABLE 2 The four top-ranking total activity models for which ΔAICc ⩽ 2, which were included in 

model averaging. Also shown is the null model, which does not contain distance or woodland cover. 

Shown is the deviance (Dev), the number of model parameters (K), the Akaike’s Information 

Criterion (AICc), the difference in Akaike’s Information Criterion between each model and the top-

ranked model (ΔAICc) and the Akaike’s weight (wi). 

 

 

  

Model 

name 

Model 

rank 

Response = Total activity; random 

effects = date and location 

Dev K AICc ΔAICc wi 

Model 3 1 Distance + precipitation + 

temperature + wind 

2589.4 9 2608.0 0.0 0.25 

Model 4 2 Distance + woodland cover + 

precipitation + temperature + wind 

2587.5 10 2608.2 0.2 0.22 

Model 5 3 Distance * woodland cover + 

precipitation + temperature + wind 

2586.8 11 2609.7 1.7 0.10 

Model 6 4 Distance + precipitation + 

temperature 

2593.3 8 2609.7 1.7 0.10 

Null 6 Temperature + precipitation + wind 2594.1 8 2610.6 3.2 0.07 



Figure captions 

FIG. 1 Map detailing the location of Drakelands mine in Southwest England, UK. 

 

FIG. 2 Map detailing the 17 line transects, positioned at 20, 270, 520, 770, and 1020 metres from the 

Drakelands mine site boundary. 

 

FIG. 3 The relationship between species richness and distance from the mine site, according to the 

proportion of woodland cover (predicted by Model 2, using averaged values of other fixed effects). 

Medians of each tercile of woodland cover are 0, 0.133, 0.576. As can be seen, more species were 

detected as sampling moved away from the mine site boundary. 

 

FIG. 4 Bat species richness as a function of distance from the mine site boundary. Simple 

generalised additive models were used to investigate potential non-linear trends between species 

richness and distance from the mine site, run separately within each tercile of woodland cover. 

Here, predictions for the three separate models are displayed on one graph to allow easy 

comparison. Medians of each tercile of woodland cover are 0, 0.133, 0.576.  In all models there was 

an increase in species richness to at least 1km from the mine site boundary. 

 

FIG. 5 The relationship between total activity and distance from the mine site (predicted by Model 

3, using averaged values of other fixed effects).  As the distance from the mine site boundary 

increased, there was an increase in total bat activity (the total number of passes recorded). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices  
 
TABLE 1 Summary table for number of bat passes per species, and detection frequency. 
 
Species Number of passes % of total passes % of nights detected 
P. pipistrellus 10,629 78.09 71.56 
P. pygmaeus 1,753 12.88 47.40 
P. nathusii 16 0.12 2.45 
R. ferrumequinum 101 0.74 18.04 
R. hipposideros  19 0.14 5.20 
B. barbastellus 42 0.31 7.34 
N. noctula 108 0.79 10.09 
N. leisleri 12 0.09 2.75 
E. serotinus 2 0.01 0.31 
Myotis species 776 5.70 44.34 
Plecotus species 20 0.15 5.20 
Unidentified 132 0.97 20.18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
TABLE 2 Model-averaged parameter estimates: effects of each parameter on species richness in the 
area surrounding Drakelands mine. Shown is the model-averaged means (Estimate), associated 
standard error (SE) and confidence intervals (5%, 95%). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Estimate SE Confidence interval (5, 95) 
(Intercept) † 0.571    0.092      0.419, 0.722 

Distance (km) 0.220     0.106      0.046, 0.394 
Proportion woodland 0.328     0.116      0.137, 0.519 
Distance: proportion 
woodland 

0.130     0.226      -0.243, 0.503 

Precipitation -0.580  0.162      -0.846, -0.313 
Temperature 0.465     0.114      0.276, 0.653 
Wind -0.331     0.116      -0.523, -0.139 



 
 
 
TABLE 3 Model-averaged parameter estimates: effects of each parameter on total activity in the 
area surrounding Drakelands mine. Shown is the model-averaged means (Estimate), associated 
standard error (SE) and confidence intervals (5%, 95%). 

 

 

Parameter Estimate SE Confidence interval (5, 95) 
(Intercept) † -1.487     1.018 -3.165, 0.192 

Distance (km) 0.868     0.439 0.144, 1.593 
Woodland cover 0.306     0.645 -0.702, 1.964 
Distance: woodland cover 0.178     0.712 -1.2678, 3.578 
Precipitation -0.506     0.131   -0.722, -0.290 
Temperature 0.444     0.099 0.281, 0.608 
Wind -0.049     0.034 -0.107, -0.009 
ZI Intercept -19.396  3051.995 -5054.175, 5015.383 


