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Abstract 1

The battle between microbes and their viruses is ancient and ongo- 2

ing. CRISPR immunity, the first and, to-date, only form of adaptive 3

immunity found in prokaryotes, represents a flexible mechanism to re- 4

call past infections while also adapting to a changing pathogenic envi- 5

ronment. Critical to the role of CRISPR as an adaptive immune mech- 6

anism is its capacity for self versus non-self recognition when acquiring 7

novel immune memories. Yet, CRISPR systems vary widely in both 8

how and to what degree they can distinguish foreign from self-derived 9

genetic material. We document known and hypothesized mechanisms 10

that bias the acquisition of immune memory towards non-self targets. 11

We demonstrate that diversity is the rule, with many widespread but 12

no universal mechanisms for self vs. non-self recognition. 13

Distinguishing Self from Non-Self During the 14

CRISPR Immune Response 15

Viruses of microbes severely impact their hosts’ population and evolution- 16

ary dynamics [1, 2], and, as a result, prokaryotes have evolved a number 17

of anti-viral defense systems, some quite complex [3, 4, 5, 6]. Among the 18

best-studied classes of host defense systems are the CRISPR immune sys- 19

tems, which can acquire novel and highly specific immune “memory” (in the 20

form of short DNA fragments called “spacers”; see Glossary) and then use 21

this memory to degrade matching viral genetic material [7, 8]. Typically, 22

immunity proceeds in three steps (1) spacer acquisition (sometimes called 23

‘adaptation’ in the literature) [8, 9], (2) biogenesis of short guide RNAs 24

(crRNAs) corresponding to the host’s spacer repertoire [10, 11, 12], (3) 25

targeting and degradation of the matching sequence on the invading genome 26

(the “protospacer”) [8, 10, 11, 12]. During this multi-stage process the host 27

cell must successfuly identify foreign genetic material and distinguish these 28
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potential targets from self genetic material, or else risk costly autoimmunity 29

and inefficient clearance of viral pathogens. 30

Therefore, CRISPR’s capacity for self versus non-self recognition is criti- 31

cal to its role as an adaptive immune mechanism. All immune systems face 32

a fundamental trade-off between pathology induced by the pathogen and 33

pathology associated with autoimmunity. Unlike innate immune systems, the 34

inherent flexibility of adaptive immune systems makes autoimmunity a recur- 35

ring threat, thus favoring the evolution of continuously acting mechanisms 36

to avoid self-targeting during the lifetime of an organism. In the vertebrate 37

adaptive immune system, numerous mechanisms are well understood to pre- 38

vent autoimmunity through both biased (i.e., against non-self) acquisition 39

of immunity and biased targeting [13]. Similarly, CRISPR may differentiate 40

self from non-self at multiple stages of immunity. Indeed, non-self recognition 41

in CRISPR immunity has been demonstrated during spacer acquisition (dis- 42

cussed below, e.g., [14]) and target degradation (via mechanisms that prevent 43

cleavage of self targets, e.g., [15]). In principle non-self recognition could also 44

occur during crRNA maturation if self-targeting sequences were not allowed 45

to fully mature (in a process akin to thymic selection in vertebrate adaptive 46

immune systems [13]), though to our knowledge this has not been observed. 47

The details of CRISPR immunity, and specific protein machinery involved, 48

are quite variable across systems (see Box 1 for an overview), leading to cor- 49

responding variability in the mechanisms of non-self recognition employed by 50

different CRISPR systems. 51
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Box 1 - The unity and diversity of CRISPR defense systems

CRISPR arrays are loci on the host genome where memories (spacers) are

stored [7], and the CRISPR-associated (Cas) proteins are the machinery

responsible for both the acquisition of novel memories and the use of current

memories in immune defense [16]. All CRISPR systems share the same

core acquisition genes, cas1 and cas2, though the acquisition process may

differ in many details between systems (with some systems using additional

acquisition proteins [17, 18], and some even acquiring spacers from RNA

[19]; see [20, 21] for in-depth reviews of the mechanics of spacer acquisition).

In contrast, the Cas targeting machinery, or “effector” module, is highly

variable among system types, and is used as the basis for classifying systems

[16, 22]. Systems are grouped into two classes on the basis of whether their

effector module consists of a single Cas protein (e.g., Cas9 in type II systems

or Cas12 in type V systems) or complex of Cas proteins (e.g., the Cascade

complex and Cas3 in type I systems). Below the class level, systems can

be classified into at least 6 types and 33 subtypes, though the majority of

systems belong to types I, II and III, with type I being the most prevalent

among sequenced genomes [17, 16, 22]. System types and subtypes have

important functional differences (e.g., RNA targeting in type VI systems

[23, 24, 25]) that influence their capacity for self vs. non-self recognition

(main text).

52

Here we focus on mechanisms of self vs. non-self recognition during 53

CRISPR spacer acquisition, as these create a heritable non-self bias passed 54

down through a lineage (though see [26, 27] for examples of recognition during 55

targeting). 56

To what degree and by what mechanisms does CRISPR distinguish self 57

from non-self during the acquisition of novel immune memories? These ques- 58

tions are not easily answered, as measuring preference for non-self spacer 59

acquisition is challenging in natural, and even many experimental, systems. 60
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Acquisition of self-targeting spacers is typically toxic for individual cells, as it 61

programs the CRISPR system to cleave the self genome [28]. These instances 62

- even if they incur a major cost of carrying the system - are hard to detect 63

due to the strong negative selection that causes these individuals to be rapidly 64

purged from the population (Fig 1). To avoid the confounding effects of se- 65

lection inherent to population-level studies, much of the experimental work 66

we discuss below estimates the rate of acquisition of self-targeting spacers by 67

tracking engineered or mutant systems that are unable to degrade targets, 68

so that self-targeting carries no cost (e.g., [29, 30]). 69

We group mechanisms for non-self recognition into two broad categories, 70

(1) those resulting directly from a biased substrate preference by the Cas 71

acquisition machinery and (2) those resulting indirectly from other aspects 72

of the host’s ecological or evolutionary dynamics. We demonstrate that di- 73

versity is the rule, with many widespread but no universal mechanisms for 74

self vs. non-self recognition during spacer acquisition (Table 1). 75

Non-Self Recognition Due to Substrate Pref- 76

erence 77

If the Cas acquisition machinery preferentially associates with foreign genetic 78

material, a strong non-self spacer acquisition bias may result. In order for 79

the Cas machinery to demonstrate this type of substrate preference, there 80

must be some signal recognized by Cas proteins that is enriched in foreign 81

sequences. In cases where no pre-existing spacers targeting the foreign se- 82

quence exist (“naive acquisition”), these signals must result from some generic 83

difference between the host genome and the genomes of mobile genetic el- 84

ements. Alternatively, if the host already has a fully or partially matching 85

spacer towards the foreign sequence, it may leverage this information to ac- 86

quire additional spacers (“primed acquisition”). 87
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Established Description System Types
Mechanisms:

Replicon Counting
[14, 31, 32]

The spacer acquisition machinery pref-
erentially associates with double-strand
breaks, including at collapsed replication
forks. Viruses and high-copy plasmids
present many more centers of replication
than the host genome.

Type I and some
type II systems

Synergy with RM
Systems [33, 34]

Spacers are acquired from the frag-
mented byproducts of restriction en-
zymes. Since RM systems can differen-
tiate self from non-self, CRISPR inherits
this bias.

Type II systems
(Potentially other
types)

Priming [35, 36, 37] Pre-existing partial or complete match-
ing between a spacer and protospacer
leads to a sharp increase in spacer ac-
quisition from sites in the same genome.
This allows immunity to be rapidly up-
dated during host-virus coevolution.

Type I and II sys-
tems

aInduction [38] The cas genes are up-regulated during in-
fection or periods of elevated risk of in-
fection. Induction is particularly relevant
when infection is infrequent.

Variable (Depends
on genomic back-
ground)

Speculative
Mechanisms:

Transcription de-
pendent spacer ac-
quisition [19, 39, 31]

Viral genes are highly expressed during
infection. This promotes acquisition in
systems that acquire spacers from RNA
and also potentially those that acquire
spacers from DNA.

Some type III, and
possibly type I and
type VI systems

Protospacer prefer-
ence [40, 41]

If host has purged potential sites of
spacer acquisition from genome, then
self-targeting will be less likely.

Type I and II sys-
tems (Potentially
other types)

aHorizontal transfer
of spacers [42, 43,
44, 45]

Recombination occurs between arrays
and entire arrays can be transferred hori-
zontally. Presumably self-targeting spac-
ers have already been selected against at
this stage.

General to all sys-
tems (Depends on
rate of horizontal
transfer)

a Mechanisms arising from features of the host’s physiology or ecology rather than any
explicit substrate preference of the Cas acquisition machinery.

Table 1: (Key Table) Mechanisms of self vs. non-self recognition during
spacer acquisition.
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Naive Spacer Acquisition 88

What signals generically distinguish parasitic mobile genetic elements from 89

host sequences? Parasites of all kinds often live and reproduce in large num- 90

bers within a given host. Thus, though not perfect signals, sequence mul- 91

tiplicity and replication may serve as indicators of mobile genetic elements. 92

Indeed, some CRISPR systems prefer to acquire spacers from actively repli- 93

cating sequences within the cell, and this can lead to a strong bias towards 94

non-self acquisition [14, 32]. 95

Working with the E. coli type I-E system, Levy et al. [14] demonstrated a 96

preference by CRISPR for free DNA ends during acquisition. Because stalled 97

replication forks frequently produce double-strand breaks in the DNA (i.e., 98

free ends), and because high-copy viruses and plasmids will present many 99

more of these replication forks in the cell than the host genome [14], a strong 100

non-self acquisition bias results [14]. Furthermore, when a break occurs, the 101

RecBCD machinery is recruited and processively degrades the DNA until 102

it reaches a Chi site, producing even more substrate for spacer acquisition. 103

Mobile genetic elements like plasmids and viruses typically lack these Chi 104

sites, meaning that degradation will continue along their genomes, further 105

compounding the resulting non-self bias. Levy et al. [14] estimate a 100- to 106

1000-fold preference for plasmid over host DNA during acquisition in their 107

system. 108

Preference for free DNA ends may be a rather general feature of spacer 109

acquisition, and has been experimentally observed in multiple Streptococcus 110

type II-A systems [32, 37]. Similarly, the Pyrococcus furiosus acquisition 111

module, encoded alongside type I-G and type III-B effector modules, ap- 112

pears to preferentially acquire spacers from regions that are expected to be 113

especially prone to double-strand breaks [31]. 114

Nevertheless, Wei et al. [30] working with the Streptococcus thermophilus 115

DGCC7710 type II-A CRISPR1 locus found that spacers were acquired as 116

frequently from the host genome as a plasmid, indicating no non-self bias. 117
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This is a particularly confusing result as the type II-A CRISPR3 locus from 118

the same strain was recently shown to have a preference for free DNA ends 119

[37]. It is possible that the CRISPR1 and CRISPR3 loci of S. thermophilus 120

are functionally quite different (after all, they do have different acquisition 121

rates [46]). More likely, we think, is that the identity of the substrate used 122

in each experiment influences the outcome. Specifically, the plasmid used by 123

Wei et al. [30] is thought to have relatively low copy number (∼ 3 copies per 124

cell [30], in contrast to the high burst-size lytic phages used by others [37]). 125

We would expect only a weak preference for plasmid-derived spacers in this 126

case, because the number of plasmid replicons is similar to the number of 127

host replicons. Following this logic, we predict that the more rapidly a virus 128

or plasmid reproduces inside the cell, the more replicons it will produce, 129

and thus the more prone it will be to spacer acquisition. Thus, we might 130

expect large, low-copy plasmids and lysogenic phage to coexist for a longer 131

period of time with an active CRISPR system than high copy plasmids or 132

lytic viruses. Similarly, rapidly replicating hosts that are effectively polyploid 133

would be more prone to self-targeting than slow-growing hosts [47, 48, 49]. 134

In fact, this could partially explain why CRISPR is more prevalent among 135

organisms we expect to be slower-growing (e.g., extremophiles, some archaea, 136

anaerobes [50, 51]). Related to this point, we might expect CRISPR to be 137

less effective at acquiring immunity towards mobile genetic elements that 138

employ rolling-circle replication (which have only a single replication fork 139

per genome and may reproduce serially) [52]. For example, in a type II-A 140

system spacers were not acquired from staphylococcal phage φ12γ3 while 141

it underwent rolling-circle replication, but were only acquired during early 142

stages of infection [32]. On the other hand, contrary to our expectation, it 143

seems that in some plasmids rolling-circle replication may promote spacer 144

acquisition, likely due to a dependence on DNA nicking at the origin of 145

replication [31]. 146

CRISPR may also be able to directly leverage expression level as a sig- 147
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nal of growth rate. During infection, many viruses subvert host transcrip- 148

tional processes so that host genes are down-regulated even as viral genes 149

are transcribed at a high rate [53]. In these cases, systems that acquire spac- 150

ers directly from RNA [19] might favor non-self protospacers. Acquisition 151

from RNA has only been experimentally observed in certain type III sys- 152

tems where the cas acquisition machinery is fused to a reverse transcriptase 153

[19], but bioinformatic evidence suggests that RNA-targeting type VI sys- 154

tems may also acquire spacers directly from RNA [54, 23, 24, 25]. Even in 155

systems that acquire spacers from DNA, spacer-acquisition hot-spots have 156

been observed in highly expressed genes [39, 31]. It has been hypothesized 157

that transcription may make the DNA physically more accessible to the Cas 158

machinery [39], or may cause double-strand breaks [31]. 159

CRISPR’s preference for free DNA ends may also bias acquisition towards 160

non-self in an entirely growth-independent manner via a synergy with innate 161

immune systems, specifically restriction-modification (RM) systems. These 162

systems degrade mobile genetic elements and may provide substrates for 163

spacer acquisition [33, 34]. RM systems have been shown to increase the 164

rate of spacer acquisition [33] and also tend to co-occur with CRISPR when 165

looking broadly across species [55]. A CRISPR-RM synergy would allow 166

spacer acquisition to benefit from the strong non-self recognition capacity of 167

RM systems (based on methylation patterns), and might be quite general, as 168

the vast majority of prokaryotes encode at least one RM system [56, 55]. 169

Finally, we note that if the Cas acquisition machinery prefers specific 170

motifs present in only some subsets of potential spacers [41], then selection 171

against these sequences on the host genome may lead to a non-self acquisition 172

bias. Under this mechanism, the non-self signal is not specifically enriched 173

in non-self sequences in general (as discussed above), but rather depleted in 174

the host (via the strong selective pressure imposed by self-targeting). Ac- 175

quisition biases are well documented, with many systems requiring a 2- to 176

8-bp system-specific protospacer adjacent motif (PAM) directly upstream 177
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of the protospacer [57, 40, 58]. Even among protospacers with the appro- 178

priate PAM there is evidence for strong acquisition biases on the basis of 179

motifs internal to the protospacer [39, 59, 41], and single mutations in the 180

protospacer can drastically alter these biases [60]. Motif-avoidance in the 181

host genome will not be possible in the case of short or degenerate motifs 182

(i.e., most PAMs), but may be feasible in the case of longer, less abundant 183

motifs (similar to the avoidance of restriction sites seen on some genomes 184

[61]). Even in this case, viruses are also likely to be under strong pressure 185

to purge preferred motifs (e.g., PAM avoidance in viruses [62]), limiting the 186

ability of this mechanism to differentiate non-self sequences. Thus while the 187

principle behind motif-depletion is quite general (any host can evolve in such 188

a way), its non-self biasing effects are likely to be somewhat weaker than the 189

other substrate preferences discussed above. 190

Primed Spacer Acquisition 191

By far the most specific and reliable indicator of a non-self sequence is that 192

the host already has a spacer targeting that sequence (assuming selection 193

has purged all self-targeting spacers from the population, Fig 1). While this 194

specific type of information is useless when the host encounters a completely 195

new mobile element, preexisting immune memory can be extremely useful in 196

the context of an ongoing coevolutionary arms race. For example, viruses 197

frequently coevolve with their hosts to overcome CRISPR immune targeting 198

[63, 64, 65, 66]. A single mutation in the viral protospacer or PAM can be 199

enough to completely prevent CRISPR targeting [63, 40, 58]. How does the 200

host keep up during fast-paced coevolutionary dynamics? Many CRISPR 201

systems, it turns out, are able to quickly update their immune targeting 202

when a foreign sequence encodes a protospacer that has a partial or complete 203

match in the host’s CRISPR array [36, 35, 67, 20]. Such “priming” can lead 204

to strongly biased acquisition from already-recognized enemies. 205

Mechanistically, priming relies on CRISPR’s preference for free DNA ends 206
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[14, 32]. DNA fragments produced by CRISPR’s immune activity become the 207

substrates for spacer integration by the Cas acquisition machinery [68, 37]. 208

Perfect spacer-protospacer matches stimulate the most efficient primed spacer 209

acquisition [69], but even partial matches may lead to low rates of degradation 210

and stimulate the acquisition of spacers [70, 37]. 211

Priming is a widespread phenomenon, and has been observed experimen- 212

tally to be acting in type I-B [71, 72], I-C [60], I-E [36, 35, 67], I-F [73], and 213

type II-A [37] CRISPR systems. Bioinformatic evidence has suggested that 214

type II-C systems may also be capable of priming [74]. Type III systems 215

tend to be quite tolerant of mismatches during targeting [75], and thus are 216

less likely to require priming to overcome pathogen coevolution [21], perhaps 217

explaining why priming has not been observed in these systems to-date. 218

Despite the generality of this mechanism across type I and II CRISPR sys- 219

tems, some important differences exist. There are particular strand and spa- 220

tial biases of primed acquisition that vary between systems, likely resulting 221

from the fact that the type I endonuclease Cas3 moves along the DNA pro- 222

cessively whereas the type II endonuclease Cas9 remains associated with the 223

free ends [37]. These differences are also seen in terms of PAM-dependence, 224

where priming in the type II-A system is reliant on the presence of an intact 225

PAM sequence, which is required for endonuclease activity to produce a frag- 226

mented substrate for acquisition [37]. In contrast, PAM-independent priming 227

has been observed in a type I-E system, where recognition of a protospacer 228

target lacking an appropriate PAM leads to recruitment of Cas3 in such a 229

way that endonuclease activity is inhibited. Following recruitment, Cas3 230

acts as a molecular motor and moves processively along the DNA strand, po- 231

tentially promoting spacer uptake in regions quite distant from the original 232

protospacer match [76, 77]. 233

Finally, how effective is priming as a mechanism for self versus non-self 234

recognition? In one type I-F study system, priming led to strongly biased ac- 235

quisition towards non-self (500-fold over naive acquisition), but promiscuous 236
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tolerance of partial matches lead to an elevated number of self-acquisition 237

events, so that the absolute number of self-targeting spacers was approxi- 238

mately the same in naive and primed states [39]. Thus priming may cause 239

strongly non-self biased acquisition, but it may simultaneously not affect, or 240

may even increase, the absolute rate of self-targeting by the spacer acquisition 241

machinery. 242

Non-Self Biases Related to Host Physiology 243

and Ecology 244

So far we have discussed a number of ways in which the Cas spacer acquisi- 245

tion machinery may respond preferentially to non-self sequences. Even in the 246

absence of such a preference, environmental cues may lead to non-self biased 247

spacer content in the host CRISPR array. In general, we expect these mecha- 248

nisms to be weaker than many of the preference-based mechanisms discussed 249

above, but they may still be of ecological or evolutionary importance. 250

Expression of the cas Genes 251

Though not often discussed explicitly as a means of self vs. non-self recog- 252

nition, cas genes are often up-regulated in response to infection, or under 253

conditions where infection is likely to occur [38]. This amounts to a form of 254

temporal biasing, limiting acquisition events to periods where foreign DNA 255

is likely to be present in the cell. Across systems and host species, though, 256

patterns of expression are variable [38]. The cas genes can be up-regulated in 257

response to various stimuli that may correspond to increased infection risk, 258

including nutrient concentrations [78, 79, 80], temperature [81], and host 259

density [82, 83]. Systems may even be up-regulated as a direct response to 260

viral contact or ongoing infection [38, 84]. For a comprehensive discussion of 261

CRISPR regulation, a large and active research area in itself, see Patterson 262
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et al. [38]. How CRISPR is regulated so that the host can dynamically con- 263

trol infection risk is still something of a mystery, but promising new methods 264

to quickly and accurately measure the expression of cas genes in a range of 265

genetic backgrounds and ecological scenarios are being developed [80]. 266

We expect the conditions associated with induction to be correlated with 267

the risk of infection, and these indicators likely vary across environments 268

and taxa. Induction will be particularly important for the self vs. non-self 269

recognition when viral (or plasmid) infection is a rare occurrence, since at all 270

other times the only substrate for spacer acquisition will be the host genome. 271

Therefore, if pathogen exposure varies in time, hosts can maximize their ca- 272

pacity for self vs. non-self recognition by employing a strategy that combines 273

induction with various mechanisms to bias the Cas acquisition machinery’s 274

substrate preference (discussed earlier). Possibly of note, cas genes are typ- 275

ically found as a single operon [17], and often are co-transcribed (e.g., [80]). 276

This implies a temporal coupling of the Cas acquisition and effector com- 277

plexes, consistent with the idea that at times of increased infection the host 278

will want to both use and add to its spacer repertoire. 279

Horizontal Transfer of Immune Memory 280

Horizontally transferred spacers, if coming from a closely related strain, are 281

likely to target non-self. This conclusion follows from the assumption that 282

the standing spacer diversity in a population has already experienced strong 283

selection against self-targeting spacers (Fig 1). This line of logic also suggests 284

that spacers acquired via horizontal transfer will be particularly beneficial to 285

their hosts (Box 2). Such a mechanism will only be relevant to individu- 286

als if horizontal transfer of immunity is very frequent, which appears to be 287

the case. CRISPR arrays are extremely labile [85, 43], and spacers can be 288

transferred via recombination between arrays [42]. Homology between spac- 289

ers and viral genomes may actually help these arrays propagate themselves 290

via transduction [45]. In fact, it has even been proposed that repeats are 291
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highly conserved across systems specifically to aid in the horizontal transfer 292

of spacers between arrays through homologous recombination [44]. Clearly, 293

these spacers will only be useful if they come from individuals that share 294

viral pathogens (typically in the same species), though in general we expect 295

horizontal transfer to be most common among closely related organisms (e.g., 296

[86]). 297
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Box 2 - The fitness of acquired spacers

CRISPR immunity is often referred to as “Lamarkian” [87], but this is

an anachronistic and controversial term [88], with no clear translation

into contemporary molecular biology. It is clear, all else being equal, that

spacer acquisition will favor locally abundant mobile genetic elements, as

there will be many opportunities for acquisition from these sequences. This

abundance-bias, independent of any non-self bias, may prove to be either

adaptive or maladaptive depending on the mobile element concerned. In

the case of phage, acquisition from locally-abundant pathogens is likely

to represent a fitness benefit. At the same time, we expect beneficial

plasmids or beneficial genes on those plasmids specific to an environment

to be locally enriched in that environment (due to selection; [89]), meaning

that CRISPR may be more likely to target these sequences, ultimately

leading to a loss in relative fitness as compared to CRISPR-lacking strains

(e.g., [90]). Thus a preference for spacer acquisition from locally abundant

mobile genetic elements does not necessarily lead to a consistent change in

fitness, but may amplify preexisting costs or benefits of CRISPR immunity.

This is further complicated by the fact that CRISPR does not necessarily

prevent horizontal gene transfer over longer timescales [91].

A slightly different line of logic applies to spacers gained via horizontal

transfer. Beneficial spacers are likely to have undergone positive selection,

and costly spacers will have been selected against. Thus we expect benefi-

cial spacers to be enriched in the population, and therefore more likely to

be transferred than costly ones. Since spacers themselves have been “pre-

screened” in this case, we expect horizontal transfer to yield spacers that are

not only strongly biased towards non-self (i.e., are not harmful), but also

that specifically target the most common pathogens in a given environment

(i.e., confer the greatest fitness benefit).

298
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Concluding Remarks 299

CRISPR systems employ a diverse set of mechanisms for non-self recog- 300

nition during spacer acquisition, and some of these mechanisms are quite 301

widespread. No mechanism, though, is universal (Table 1), and even those 302

that are widespread show a great deal of variability in their details across 303

systems. Included in this diversity are some organisms that are able to cir- 304

cumvent the issue of self-targeting induced mortality entirely. In certain 305

highly polyploid archaea, the presence of many chromosomal copies appears 306

to allow for rapid template-based repair, and this in turn abolishes the cost 307

of self-targeting spacers under natural conditions [92]. Even so, an inability 308

to recognize non-self could still negatively impact the efficiency with which 309

infections are cleared. 310

Despite the enormous diversity of CRISPR systems, there are some com- 311

monalities across mechanisms for non-self recognition, specifically that many 312

rely on CRISPR’s preference for free DNA ends (Fig 2). This dependency is 313

obvious in some cases, such as CRISPR’s synergy with RM systems and in the 314

context of certain priming mechanisms, but free ends may also contribute to 315

transcription-dependent spacer acquisition. This suggests that DNA ends are 316

a universal signal of infection that can promote recognition of non-self DNA 317

across host taxonomic domains and across classes of mobile genetic elements 318

(e.g., plasmids, viruses). If this is true, we might expect other infection- 319

response mechanisms to also specifically target free DNA ends, including 320

mechanisms controlling the induction or targeting activity of CRISPR im- 321

mune systems, as well as response mechanisms found in completely distinct 322

classes of prokaryotic antiviral defense systems. 323

Glossary 324

• Cas: The CRISPR-associated protein machinery that is involved in 325

acquisition of novel spacers, crRNA processing, and immune targeting. 326

16



• CRISPR Array: The genomic location at which CRISPR immune 327

memories (spacers) are stored. 328

• crRNA: A short RNA produced from a transcribed and processed 329

CRISPR array. The crRNAs guide the Cas effector proteins to a specific 330

target. 331

• Thymic Selection: A key step during T-cell maturation in the ver- 332

tebrate thymus that promotes functional immunity while reducing au- 333

toimmunity. In order to be retained, developing T-cells must show 334

at least minimal binding to an MHC molecule (promoting immunity) 335

but not excessive binding to MHC-presented self-antigens (reducing 336

autoimmunity). 337

• PAM: A protospacer adjacent motif is found directly upstream of the 338

protospacer in many systems; typical length is 2-8nt. 339

• Protospacer: The target sequence matching a spacer from which 340

that spacer was originally derived (e.g., the target sequence on a vi- 341

ral genome). 342

• RM: Restriction-modification systems are a nearly ubiquitous class of 343

innate immune systems in prokaryotes that differentiate self from non- 344

self using DNA methylation patterns. 345

• Spacer: An individual CRISPR immune memory. Typically, spacers 346

are about 30 bp corresponding to some matching target on a viral or 347

plasmid genome. 348

• Lamarkian Inheritance: A theory of inheritance attributed to Jean- 349

Baptiste Lamark that proposed that organisms pass on physical changes 350

acquired during their lifetime to their offspring. The precise definition 351

of “Lamarkism” and its relevance (if any) to modern biology have been 352

hotly debated. 353
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Figure Legends

Figure 1: Observed frequencies of self-targeting spacers can lead to underes-
timates of the actual rate of autoimmunity. When acquisition is unbiased,
strong selection against self-targeting spacers will purge them from the popu-
lation. When acquisition is biased, self-targeting spacers will not be acquired
in the first place. In both cases, the population will end up with very few
self-targeting spacers. Thus, even CRISPR systems that lack a mechanism
for self vs. non-self recognition may appear to prefer non-self spacers on the
basis of population-level immune diversity.

Figure 2: Multiple mechanisms for non-self recognition may rely on the pro-
duction of excess free DNA ends by mobile genetic elements. Drawn is a
schematic of a host cell infected by multiple plasmids. Regions expected to
experience a high rate of double-strand break formation are indicated by red
rectangles.
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