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Bloch oscillations of backward volume magnetostatic spin waves
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We have used numerical micromagnetic simulations to propose a feasible candidate system in which Bloch
oscillations of spin waves could be observed experimentally. Our simulations demonstrate these phenomena for
backward volume magnetostatic spin waves (BVMSWs) in a film of yttrium-iron-garnet in a spatially varying
bias magnetic field comprising a sinusoidal and gradient contributions. Despite the complex character of the
BVMSW dispersion relation, the spin-wave packets are distinctly confined by the field gradient, while showing
only minor broadening over the simulation time.
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In 1929, Bloch made a surprising prediction that electrons
in a perfect crystal subject to a uniform electric field do not
propagate, but instead oscillate back and forth around a mean
position, in a phenomenon now known as Bloch oscillations
[1]. In the reciprocal space, this corresponds to oscillations of
an electron wave packet within an electron band due to re-
flection from the band gaps at the Brillouin-zone boundaries.
However, the period of the oscillations scales inversely with
the crystal’s lattice constant, making it too long compared
to the electron coherence time to be observable even in the
most perfect crystals. Only in 1992, when advances in the
nanotechnology facilitated fabrication of high-quality semi-
conductor superlattices, Bloch oscillations of electron wave
packets under a bias voltage were detected experimentally
[2,3]. At high electric fields, the electrons may also tunnel res-
onantly between neighboring bands, causing what is known as
Landau-Zener tunneling (breakdown) [4]. Such phenomena
are not unique to electrons in crystals and superlattices but
can occur for any waves in periodic media with a gradient
variation of their properties. This gradient plays the same
role for the waves as the accelerating electric field plays for
electrons. Optical [5–8], acoustic [9–11], and cold atom arrays
[12–14] have all been shown to support Bloch oscillations. In
systems with a strong spin-orbit coupling, Bloch oscillations
of electrons can also be induced by a gradient magnetic field
[15,16].

Despite the marked advances in the physics of Bloch
oscillations in general, Bloch oscillations of spin waves—
wavelike excitations of the magnetization in magnetically
ordered materials [17]—have not been observed so far. Pe-
riodically modulated magnetic media for spin-wave propa-
gation, known as magnonic crystals [18–20], form an active
research area in modern magnonics [21–24]. Strategies for the
realization of magnonic crystals include geometric patterning
[25,26], compositional modulation [27], modulated applied
magnetic field [28], or even heating [29]. In principle, any
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such magnonic crystal could either be produced with a gra-
dient of its characteristics, or one could induce the gradient,
e.g., by heating [30] or by applying a gradient bias magnetic
field [31–34]. However, the authors of Refs. [30–34] have only
studied the regime of small gradients, which are insufficient
to produce Bloch oscillations. On the theory side, Bloch
oscillations were proposed for exchange spin waves, which
have a parabolic dispersion relation [35–37]. In this case, the
wave equation is very similar to the Schrödinger equation
for a quantum-mechanical particle, with the bias magnetic
field playing the role of the potential [38]. This approach
is convenient theoretically and allows one to reproduce the
same physics as for the electron Bloch oscillations. However,
this exchange-dominated regime is somewhat remote from
the experiment, in which magneto-dipole and dipole exchange
spin waves are primarily studied [21,24,26,29–33]

Here, we use micromagnetic simulations [39] to demon-
strate feasibility of observation of Bloch oscillations of back-
ward volume magnetostatic spin waves (BVMSWs) in realis-
tic magnonic crystals. The latter are formed by applying a bias
magnetic field that is spatially nonuniform in the direction of
spin-wave propagation in a thin film [Fig. 1(a)] of yttrium-
iron-garnet (YIG). The field profile has two contributions: one
linear and one sinusoidal [40]. Our simulations demonstrate
Bloch oscillations for a realistic set of sample parameters and
experimental conditions. Furthermore, they reveal features of
these phenomena that are inherent to spin waves but are not
usually encountered for waves of other origins.

Let us begin by highlighting general features expected for
Bloch oscillations of spin waves. We consider a wave packet
with a central frequency ω0 that propagates in a magnonic
crystal under action of a static bias magnetic field H (x) that
depends linearly on coordinate x with a gradient G ≡ ∂H/∂x
[41]. The central frequency remains constant, i.e.,

ω0 = ω[k(x), H (x)] = const, (1)

where k(x) is the packet’s central Bloch wave number. We
assume that the latter follows the magnetic-field gradient
adiabatically, so as to ensure that the spin-wave dispersion
relation ω(k, H ) may still be introduced and is satisfied for
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FIG. 1. The geometry of the problem is shown schematically.
(a) Nonuniform magnetic field H (x), combining the gradient and
sinusoidal contributions, is applied to a uniform film of YIG along
the direction of spin-wave propagation. (b) The field corresponds to
the uniform FMR frequency (k = 0) in point x0 (field H0) and to
the first Brillouin-zone boundary (k = π/a) in point x1 (field H1),
for which the BVMSW dispersion is schematically shown. The spin-
wave wave packet is excited by a uniform microwave magnetic field
in point x0 and then bounces back and forth periodically between
points x0 and x1, thereby being confined to a region of size L =
x1 − x0.

each value of x. Differentiating Eq. (1), we obtain(
∂ω

∂k

)
H

dk +
(

∂ω

∂H

)
k

dH = 0, (2)

where the first and second terms may be interpreted as
changes in the kinetic and potential energy of the wave packet,
respectively. To conserve the frequency, the two changes must
be equal and opposite. Furthermore, we can write Eq. (2) as

dk

dt
= −G

(
∂ω

∂H

)
k

≡ F, (3)

which can be identified as the equation of motion of the wave
packet under action of the “effective force” F due to the
nonuniform magnetic field [11,42,43].

The Bloch oscillations occur due to the wave packet mak-
ing round trips within the Brillouin zone after being backscat-
tered from the points (both in the real and reciprocal spaces)
at which the frequency acquires its maximum and minimum
values for a particular band. For our case of BVMSWs, this
occurs when the wave number acquires values of 0 and π/a,
respectively, where a is the lattice constant of the magnonic
crystal. So, the period of Bloch oscillations TB is obtained by
integrating the equation of motion (3) as

TB = −
∫

dk

F
, (4)

where the integration is performed over one Brillouin zone.

FIG. 2. The magnonic dispersion relations are shown in the
reduced zone scheme for (a) the uniform and (b) periodically mod-
ulated 1-µm-thick films of YIG for a uniform bias magnetic field of
185 mT. The grayscale shows the results of the numerical simulations
(darker color corresponds to higher Fourier amplitude of spin waves),
while the dashed line shows the analytical dispersion calculated
using Eq. (6) and folded into the first Brillouin zone.

When F does not depend on x, it must also be independent
of k, due to Eq. (1). Then, the wave number is expected
to depend linearly on time, while Eq. (4) reduces to the
conventional form

TB = 2π/aF or ωB = aF, (5)

where ωB is the angular frequency of the Bloch oscilla-
tions. For instance, for exchange spin waves considered in
Refs. [35–37], F = −μ0γ G, where μ0 is the permeability
of free space, γ is the gyromagnetic ratio, while G < 0 for
waves with a positive group velocity. Similarly, for a quantum-
mechanical particle, we can associate H with the potential
energy, and then F = −h̄−1G, where h̄ is the Planck constant
and −G is the usual mechanical force.

In the general case of magneto-dipole (e.g. BVMSWs) and
dipole-exchange spin waves, F is a function of k. Indeed, we
may approximately consider the dispersion of BVMSWs in
a magnonic crystal by folding the dispersion for a uniform
sample

ω(k, H ) =
√

ωH

(
ωH + ωM

1 − exp(−kd )

kd

)
, (6)

where ωH = μ0γ H and ωM = μ0γ M, into into the first Bril-
louin zone of the magnonic crystal [Fig. 2(a)], and then
periodically translating it in the reciprocal space. Band gaps
emerge at Brillouin-zone boundaries [Fig. 2(b)]. Yet, within
the allowed bands, we can still approximate the effective force
in a gradient magnetic field by applying Eq. (3) to Eq. (6), to
obtain

F = −μ0γ G

ω0

(
ωH + ωM

1 − exp(−kd )

2kd

)
, (7)
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which can be converted into a function of either just x or
just k using Eqs. (1) and (6). This dependence of the force
on x (and therefore k) has important consequences. Firstly,
we expect the period of Bloch oscillations calculated from
Eq. (4) to depend on the magnonic band. Secondly, the dif-
ferent spectral components within the wave packet will have
slightly different values of TB, causing its broadening over
time. The same effects would also be observed if the gradient
of the magnetic field G was coordinate dependent. Finally, the
analytically complicated form of Eq. (7) makes it challenging
to generate analytical results in a closed form. So, we proceed
using numerical micromagnetic simulations instead.

Our simulations are performed using MUMAX software
[44]. A 6 mm × 1 μm × 1 μm (length × width × thickness)
stripe of a YIG-like material is discretized into 16 384 ×
1 × 1 cuboidal cells with dimensions of 375 nm × 1 μm ×
1 μm, respectively [45]. To simulate an infinite magnonic
crystal, two-dimensional (2D) periodic boundary conditions
are used in the length and width directions. We assume
the saturation magnetization of 200 kA/m, the exchange
stiffness of 4 pJ/m3, and zero magnetocrystalline anisotropy.
The assumed value of the Gilbert damping parameter is
0.0001, as in high-quality YIG samples [46,47]. The sample
is always magnetized along its length and therefore the di-
rection of spin-wave propagation (BVMSW geometry), with
equilibrium magnetization configuration established prior to
dynamical simulations. Fourier transform techniques [39] are
used to convert results of real space-time domain simulations
into reciprocal space and/or frequency domain to recover the
dispersion and other propagation characteristics of spin waves
in our sample.

Figure 2(a) shows the magnonic dispersion relation calcu-
lated from the results of dynamic simulations with a broad-
band excitation (both in frequency domain and reciprocal
space [39]) for a uniform bias magnetic field of 185 mT.
Although the bias field and sample are both uniform, we
use show the dispersion folded into the first Brillouin zone
corresponding to the same sample but spatially modulated by
an additional sinusoidal static magnetic field with a period
of 3 µm (“empty lattice”’ approximation). The dispersion for
the latter case is shown Fig. 2(b) for 10-mT amplitude of
the field modulation. Both dispersions begin (k = 0) from the
ferromagnetic resonance (FMR) frequency of about 8 GHz.
The group velocity is negative, and so, the magnonic bands are
ordered in frequency from top to bottom. The periodic sinu-
soidal modulation induces a large first band gap at frequency
of about 7 GHz, while the other (higher-order) band gaps are
significantly smaller, virtually negligible. Since the dispersion
flattens at large k values [Fig. 2(a)], the higher-order magnonic
bands also become increasingly flat [Fig. 2(b)].

To be observable, Bloch oscillations must have a period
smaller than the BVMSW lifetime in YIG, which is typically
on the order of hundreds of nanoseconds [46,47]. According
to Eqs. (4) and (5), this favors greater lattice constants and
field gradients. At the same time, the lattice constant must
remain much smaller than the size L of the region within
which the wave packet bounces back and forth (Fig. 1), so
that we could justify our approximation of an adiabatically
slow variation of the dispersion relation. To maintain the field
gradient, the increase in size L required to accommodate a

FIG. 3. The real space-time domain evolution of the BVMSW
wave packets is shown for a field gradient of 40 mT/mm ap-
plied to a magnonic crystal with a lattice constant of 3 µm. The
grayscale shows the results of the numerical simulations (darker
color corresponds to greater spin-wave amplitude), while the curves
are the analytical wave-packet trajectories calculated using Eq. (9)
for the field values of 262 and 305 mT. The vertical dashed lines and
the double-headed arrows indicate boundaries and sizes, respectively,
of the regions in which the wave packets are confined. The single-
headed arrows indicate parts of the sample serving as spin-wave
sources.

greater lattice constant needs to be matched by an increase
of the bias magnetic field. However, the strength of the field
(and therefore its gradients) achievable in the lab is limited.
As a compromise, we have run our simulations for the field
gradient G of 40 mT/mm, which should be feasible (albeit
challenging) experimentally. The results of the simulations
confirm that Bloch oscillations should be observable under
such experimental conditions.

The grayscale in Fig. 3 shows the numerically simulated
trajectories of spin-wave packets undergoing Bloch oscilla-
tions in our sample. To excite a BVMSW wave packet, we
drive our sample by a burst of uniform microwave magnetic
field with central frequency of 10 GHz, a Gaussian temporal
envelope of 10-MHz bandwidth, and amplitude of 0.01 mT.
The uniform microwave field couples to magnetic precession
only where the local FMR frequency [48,49] is close to that
of the microwave field, i.e., 10 GHz. In a process known
as Schlömann mechanism of spin-wave emission [38,48,49],
this part of the sample (shown as the leftmost single-headed
arrow in Fig. 3) then serves as a source of propagating spin
waves. The latter form a wave packet that propagates in the
direction of increasing bias magnetic field, due to the negative
dispersion of the BVMSWs. The wave packet is reflected from
the large band gap, which separates the first magnonic band
from the rest of the spectrum by a [Fig. 2(b)]. This leads to
Bloch oscillations setting up in the first band, which hosts a
single trajectory confined between lines 1 and 2 in Fig. 3.

The dispersion folding leads to spin-wave emission from
a few additional, spatially separated regions, each emitting
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wave packets in both directions (Fig. 3). As a result, each
higher-order magnonic band is also populated with a wave
packet. However, Landau-Zener tunneling through negligibly
small band gaps leads to a complete transmission of the wave
packets between adjacent bands [4,7,8,11,14,15]. This leads
to a cyclic motion of multiple wave packets across multiple
bands, i.e., all but the first one, evident from the multiple
trajectories confined between lines 3 and 4 in Fig. 3. This
represents an extreme case of Zener-Bloch oscillations [50], a
phenomenon combining Bloch oscillations and Landau-Zener
tunneling. The period of such Zener-Bloch oscillations is
equal to the sum of Bloch periods for the bands traversed by
the wave packet.

Let us have a closer look at the trajectories’ shape. They
can be calculated from the group velocity v ≡ ( ∂ω

∂k )H as

x(t ) =
∫

v(t )dt =
∫

v

F
dk, (8)

where t is time and we have used Eq. (3). If, in addition, the
force is constant, we obtain

x(t ) = [ω(k) − ω(k0)]/F and k(t ) = F (t − t0) + k0 (9)

from Eqs. (8) and (3), respectively [51]. Equations (9) mean
that the real space-time domain trajectory of a wave packet
driven by a constant force must follow the dispersion curve.
In our sample excited via the Schlömann mechanism, the
BVMSW wave packet is excited at t0 ≈ 300 ns with x0 ≈
1.7 mm for ω0 = 2π × 10 GHz and k0 = 0. Figure 3 shows
the trajectories plotted using Eq. (9) with an assumption of a
constant force F = −μ0γ G and with the field values of 262
and 305 mT used in Eq. (6), with the dispersion periodically
“folded” into the first Brillouin zone (empty lattice approxi-
mation). The field of 262 mT corresponds to point x0 at which
the wave packet is excited in the first magnonic band. The
field of 305 mT is the average over the entire sample, i.e.,
equal to the field at its center, x = 3 mm. Surprisingly, these
approximate analytical trajectories reproduce the numerical
data rather well. This is due to the width of the BVMSW band
being weakly dependent on the field value. These observations
are consistent with the linear dependence of the wave number
on time that are observed in the simulations, as shown in
Fig. 4.

In the frequency domain, the Bloch oscillations are ob-
served as a system of discrete levels, which are separated
by the Bloch frequency [11,13–15]. Indeed, the motion of
the wave packet is cyclic and therefore confined. Positions
of such confinement regions depend on the wave frequency
and are therefore different for different levels. So, the levels
are shifted in space along the field gradient, thereby forming
what is known as a “Wannier ladder” (Fig. 5). To resolve the
levels, the simulations are run over an increased duration and
with a microwave excitation of bandwidth spanning the whole
magnonic band spectrum. The levels are clearly detectable but
the relatively small Bloch frequency of just about 3.45 MHz
makes this task challenging.

In conclusion, we have used micromagnetic simulations
to demonstrate Bloch oscillations and Wannier-ladder spec-
trum for magneto-dipole spin waves in the backward vol-
ume geometry under rather realistic experimental conditions.

FIG. 4. The reciprocal space-time domain evolution of the
BVMSW wave packets is shown for a field gradient of 40 mT/mm
applied to a magnonic crystal with a lattice constant of 3 µm. The
darker grayscale corresponds to greater Fourier amplitude of spin
waves.

Scanning Brillouin light scattering microscopy and vector
network analyzer-based spin-wave spectroscopy appear to be
the best candidates to observe these phenomena in YIG-based
systems experimentally. The requirement of a uniformly large
gradient of the bias magnetic field appears to be the most

FIG. 5. The Wannier ladder is shown for a field gradient of
40 mT/mm applied to a magnonic crystal with a lattice constant
of 3 µm. The grayscale shows the results of the numerical sim-
ulations (darker color corresponds to greater Fourier amplitude
of spin waves), while the lines show the boundaries of the first
magnonic band (short dashed and dashed-dotted) and the whole
of the BVMSSW band (short dashed and dotted), calculated using
Eq. (6) for the characteristic values of the wave number, i.e., in the
empty lattice approximation. The inset is a zoomed image of the flat
region indicated in the main panel.
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stringent limitation. However, it could be overcome either
through magnet engineering [52] or using alternative ways to
create the required graded magnonic index [53]. These ideas
could be extended to other magnonic geometries, systems, and
concepts. Augmenting the graded magnonic index with a time
dependence [54,55] appears a particularly interesting avenue
for further research.
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toral Training in Metamaterials (Grant No. EP/L015331/1),
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