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Abstract 

This paper presents the development of an algorithm-

selection framework supported by a new intuitive user 

interface for the generic optimisation tool, GenOpt. The 

framework consists of an algorithm-selection flowchart to 

help identify relevant algorithms depending on the nature 

of the problem, followed by an algorithm-selection matrix 

which evaluates the algorithms’ suitability based on the 

user requirements. The algorithm selection framework 

acts as a decision support system to allow the user to 

select the most appropriate and effective optimisation 

algorithm for a given problem. Such a procedure 

improves decision-making, limits the algorithm selection 

errors and helps the user to achieve solutions closer to the 

Pareto optimum. The selection framework is supported by 

a user interface, developed in C++ and compatible with 

GenOpt, that allows users who do not have prior coding 

knowledge to use GenOpt successfully. The developed 

interface presents the user with the most relevant 

optimisation algorithms from those available in the 

programme. It allows the user to easily modify 

algorithmic variables in a user-friendly environment. The 

novelty of the approach is reflected in the built-in 

knowledge and intelligence in the pre-selection of 

optimisation algorithms, which are tailored to specific 

user-defined problems. This, consequently, improves the 

overall optimisation results by allowing the user to better 

understand the optimisation algorithm and its variables. 

Introduction 

Careful consideration of multiple design parameters is 

required in order to design energy-efficient systems. 

Dynamic whole-building simulation programs can be 

used to model the impact of certain parameters on system 

performance, such as energy consumption and thermal 

losses (Crawley et al. 2000). However, the interactions 

between several design parameters can make optimisation 

a complex task, with many possible parameters whose 

relations with system performance may be difficult to 

understand (Wortmann and Nannicini, 2017). 

Optimisation algorithms can identify optimal parameters 

for a defined cost function, such as energy performance. 

 

Generic optimisation programmes, such as GenOpt, allow 

for automatic, multidimensional optimisation of system 

simulation models, which eventually leads to efficient 

system designs (Wetter, 2000). Such programmes allow 

customisation of optimisation algorithms and therefore 

can be used as an optimisation algorithm development 

environment.  Algorithm selection and tuning have a huge 

impact on the optimisation performance both on the 

optimality of the solutions and the speed of convergence. 

Problem Statement 

Generic Optimisation program GenOpt’s documentation 

includes guidance on selecting the optimisation 

algorithms and setting their parameters, but such guidance 

is not integrated into the optimisation programme 

graphical user interface. Therefore, the user needs to pick 

and choose the optimisation algorithm and determine their 

relevance to the simulation model based on prior 

knowledge or external literature. Once the user selects the 

relevant algorithm, the algorithm set-up processes are not 

direct but involve finding the appropriate programme 

file(s) and changing the relevant codes. Most practitioners 

neither have the expertise in optimisation algorithms 

needed to make an informed decision nor the 

programming knowledge to amend the command codes 

with the selected optimisation algorithm.  

Optimisation Processes 

Optimal selection of optimisation algorithms depends 

upon the type of optimisation problems.   

Non-linear Optimisation 

Non-linear optimisation problems can be classified into 

three main categories: one-dimensional unconstrained 

problems, multidimensional unconstrained problems, and 

multi-dimensional constrained problems (Antoniou and 

Lu, 2007). One-dimensional optimisation methods can be 

classified into search methods and approximation 

methods. In search methods, a lower and an upper interval 

boundary is established and then repeatedly reduced 

based on functional evaluations until a reduced boundary 

interval which is sufficiently small is obtained. The centre 

of such lower interval is then assumed to be the optimum. 

Search methods can be used for any function and 

differentiation is not necessary, unlike the approximation 

methods, where an approximation of the function, 

represented as a low-order – usually second- or third-

order – polynomial is assumed. The objective function is 

then analysed with elementary calculus, leading to an 

approximate value of the function domain. The interval is 

reduced, and the process is repeated until an adequately 

precise value of the function domain is found. In one-

dimensional optimisation methods, the function is 
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required to be continuous and differentiable. Multi-

dimensional optimisation methods are analogous to one-

dimensional, but they sometimes can be inefficient. 

Multi-dimensional optimisation algorithms 

simultaneously consider multiple, potentially conflicting, 

objective functions (Wortmann and Nannicini, 2017). A 

problem with multiple objectives may not have a clear-cut 

solution. This is because the set of all non-dominated 

solutions, known as the Pareto front, may be infinite in 

size and difficult to accurately represent. It is impossible 

to improve an objective value for a non-dominant solution 

without losing in other objective values. Therefore, the 

application of multi-dimensional optimisation methods is 

limited to problems where gradient information is 

unavailable or difficult to obtain. 

Heuristic Optimisation 

Heuristic optimisation is a problem-solving method used 

to increase speed by sacrificing precision. (Gabbar, 2016). 

Metaheuristic optimisation is a higher-level heuristic with 

the purpose of identifying or generating an adequate 

solution to an optimisation problem when incomplete or 

flawed information is available or when there is limited 

computation capacity. They sample a group of solutions 

that are too large to be thoroughly sampled using 

conventional methods. Metaheuristics make assumptions 

about the optimisation problems, and so they may be 

useful for a variety of problems (Osman and Kelly, 1996; 

Dey, 2017). Metaheuristics, unlike optimisation 

algorithms and iterative methods, do not guarantee that a 

globally optimal solution can be generated in all 

problems. Many metaheuristics apply a form of stochastic 

optimisation, meaning that the solution relies on a set of 

randomly generated variables. By searching through a 

wide range of possible solutions, metaheuristics can often 

find reasonable solutions with minimal computational 

effort compared to optimisation algorithms, iterative 

methods, and simple heuristics. 

 

Specific heuristic methods do not always perform 

effectively with alternative problem domains without 

considerable modification (Drake et al., 2020). The term 

“hyper-heuristic” can be defined as a high-level 

automated search methodology that explores a search 

space of low-level heuristics or heuristic components, to 

solve computationally difficult problems. Hyper-

heuristics operate on a search space of heuristics rather 

than problem solutions themselves (Burke et al., 2013). 

This feature provides the potential for increasing the level 

of generality of search methodologies. These can be used 

to solve more complex real-world problems. Because the 

search strategy components of a hyper-heuristic only 

consider problem domain-independent information, 

hyper-heuristic methods can be easily applied in various 

problem domains given that the problem-specific 

algorithm components are accessible to the user. 

Fitness Landscape  

Fitness Landscape is a type of model that is used in both 

biology and social science to visualise the relationship 

between genotypes and reproductive success (Marks, 

Gerrits and Marx, 2019). Similarly, in optimisation, 

fitness landscape is used to describe and analyse the 

geometry of the search space from the point of view of 

local search algorithms, such as evolutionary algorithms 

(EAs) or single solution based local search (Leprêtre et 

al., 2019). The fitness landscape produces an image that 

represents the search space and helps design optimisation 

algorithms. It shows a representation of the problem 

structure using a set of metric features to measure and 

compare the search difficulty of various possible 

representations, local search operators, or objective 

functions. Fitness Landscape Analysis (FLA) helps the 

user to better understand the problem type that is being 

solved in practice rather than using mathematical test 

functions as often used in benchmarks (Waibel et al., 

2019). Usage of such a technique for system energy 

optimisation can improve system design as it increases the 

emphasis on relevant design parameters.  

Generic Optimisation Program 

Overview 

GenOpt is a generic optimisation program developed for 

system optimisation by Lawrence Berkeley National 

Laboratory. For a given system, GenOpt finds the user-

selected values or parameters that can minimise the 

objective function, ultimately leading to the best 

operation of the system (Wetter, 2001). The objective 

function can be calculated by an external simulation 

program and integrated into GenOpt by modifying a 

configuration file of simulation program output 

comprised of a text-based input and output. To carry out 

the optimisation, GenOpt automatically generates the 

input files for the simulation program based on input 

template files specific to the program being used. GenOpt 

then starts the simulation program, checks for potential 

errors, reads the value of the minimised function and 

determines the input parameters for the next run. GenOpt 

repeats this process iteratively until a minimum is 

identified, displaying the results onto the graphical user 

interface during the optimisation process. GenOpt and the 

external simulation program exchange data solely through 

text files. GenOpt automatically creates the new input 

files for the simulation program based on input template 

files. To generate these template files, the user must copy 

the simulation input files and replace the numerical values 

of the independent variables, which will be modified with 

keywords. The keywords are then converted to the 

corresponding numerical values and the simulation input 

files are generated. GenOpt can write text input for any 

given simulation program using this method. The user 

may specify how to start the simulation program in a 

configuration file and indicate where in that file GenOpt 

can locate the cost function’s current value. This allows 

any external program to be coupled with GenOpt without 

either program needing to be modified or recompiled. The 

only requirement is that the external program must use 

text files to read its input and write the cost function value 

and any potential error messages. 



GenOpt Optimisation Algorithms 

The following optimisation algorithms are implemented 

in GenOpt: 

• Generalised Pattern Search algorithms (GPS) with 

o Hooke-Jeeves (GPSHJ) 

o Coordinate Search algorithm (GPSCS) 

• Particle Swarm Optimisation algorithms (PSO) 

• A hybrid global optimisation algorithm that uses 

Particle Swarm Optimisation for global 

optimisation, and Hooke-Jeeves for the local 

optimisation (GPSPSOCCHJ). 

• Discrete Armijo Gradient algorithm (DAG). 

• Nelder and Mead’s Simplex algorithm. 

• Golden Section and Fibonacci. 

The algorithms that can be used for parametric studies 

include: 

• Mesh generator to evaluate a function on all points 

that belong to a mesh with equidistant or logarithmic 

spacing between the mesh points. 

• Parametric search where only one independent 

variable is varied at a time. 

Methodology  

Algorithm Selection 

The GenOpt user manual describes the best algorithm 

selection process based on the type of problem in the form 

of text (Wetter, 2016). To better understand the algorithm 

selection process, the different problems were classified 

by their type and their recommended algorithm tabulated 

as shown in Table 1. The problem type can be classified 

as follows: 

• Problems with Continuous Variables (Pc) 

o One dimensional 

o Multi-dimensional and continuously 

differentiable  

o Multi-dimensional and not continuously 

differentiable 

• Problems with Continuous Variables with inequality 

constraints (Pcg) 

• Problems with Discrete Variables (Pd) 

• Problems with Continuous and Discrete Variables 

(Pcd) 

• Problems with Continuous and Discrete Variables 

with inequality constraints (Pcdg) 

 

 

Problem Type Optimisation Algorithm Abbr. 

Pc with n > 1 

continuously 

differentiable 

Hybrid algorithm - 

GPS implementation of the 

Hooke-Jeeves algorithm 

GPSHJ 

Discrete Armijo Gradient DAG 

Pc with n > 1 

Not continuously 

differentiable 

Hybrid algorithm - 

GPS implementation of the 

Hooke-Jeeves algorithm 

GPSHJ 

Particle Swarm Optimisation PSO 

Pcg with n > 1 

Hybrid algorithm - 

GPS implementation of the 

Hooke-Jeeves algorithm 

GPSHJ 

Pc with n = 1 

Golden Section Interval 

Division 

- 

Fibonacci Division - 

Parametric - 

Pcg with n = 1 

Golden Section Interval 

Division 

- 

Fibonacci Division - 

Parametric - 

Pd Particle Swarm Optimisation PSO 

Pcd and Pcdg 
Hybrid algorithm - 

Particle Swarm Optimisation PSO 

Table 1: Algorithms classified by problem type 

 

Apart from the problems with discrete variables (Pd), 

more than one optimisation algorithm can be used. The 

flowchart shown in Figure 1 has, therefore, been 

generated based on the literature to facilitate the selection 

of the recommended algorithms (Cacabelos et al., 2016). 

As illustrated in the flowchart for problems with discrete 

variables (Pd) and for problems with continuous and 

discrete variables with or without inequality constraints 

(Pcd, Pcdg), the possible solution(s) can be found directly 

whereas, for problems with continuous variables, several 

factors must be taken into consideration. One of the main 

factors is whether the input parameters are one-

dimensional (n=1) or multi-dimensional (n>1). For a 

problem with continuous variables in one dimension (Pc 

with n=1) the solution is independent from the constraints 

whereas, for a problem with continuous variables in 

multi-dimensions (Pc with n>1), the solution depends 

both on the constraints and the differentiability of the cost 

function. The Generalised Pattern Search algorithms with 

implemented Coordinate Search algorithms are not 

included as Coordinate Search can only converge to 

optimal values when the cost function is smooth (Wetter 

and Wright, 2003). The Nelder and Mead’s Simplex 

algorithm was not included because its usage is not 

recommended if the cost function has large 

discontinuities.



Input 
Parameter(s)

Hybrid Algorithm
PSO

PSO

Dimension

Constraints

N = 1 N > 1

Golden Section
Fibonacci
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Hybrid Algorithm
GPSHJ
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Hybrid Algorithm
GPSHJ

PSO

Hybrid Algorithm
GPSHJ
DAG
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No
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Figure 1: GenOpt Recommended Algorithm Flowchart 

 

Selection Matrix 

For the problems Pc, Pcg, Pcd, and Pcdg, several 

optimisation algorithms have been recommended and can 

be used. Selecting the right optimisation algorithm 

requires a certain level of knowledge and experience. For 

a user without significant understanding of the 

optimisation algorithms, the selection process can be a 

challenging task. Therefore, a selection matrix has been 

created (Table 2) to facilitate the selection of the 

optimisation algorithms from the groups of two or three 

algorithms recommended in Figure 1. The criteria and 

presented weights for evaluating different available 

algorithms were adapted from the systematic approach for 

the selection of optimisation algorithms (Entneret al., 

2019). In the algorithm selection matrix, the GenOpt 

algorithms are stated in the rightmost columns and the 

user requirements are presented in rows. Each algorithm 

has been scored based its suitability for each of the set 

user requirements. It has been evaluated according to the 

authors’ theoretical knowledge and practical experience 

using a five-point Likert scale, with a score of 1 meaning 

the algorithm does not fulfil the criterion and 5 meaning 

it fulfils the criterion. 

 

 

Table 2: Algorithm Selection Matrix
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Rating Weight User Requirement

2.6 0.13 Convergence to optimum value 5 0.65 4 0.52 3 0.39 4 0.52 5 4.00 4 0.52 4 0.52

3.4 0.17 Low computational time 2 0.34 4 0.68 3 0.51 3 0.51 5 0.85 5 0.85 2 0.34

0.6 0.03 Generation of alternative designs 5 0.15 5 0.15 4 0.12 4 0.12 4 0.12 3 0.09 4 0.12

2.0 0.10 Ease of use 3 0.30 5 0.50 4 0.40 4 0.40 5 0.50 5 0.50 5 0.50

1.4 0.07 Algorithm customisation 2 0.14 5 0.35 3 0.21 3 0.21 4 0.28 3 0.21 5 0.35

3.4 0.17 Applicability range 5 0.85 4 0.68 3 0.51 4 0.68 4 0.68 3 0.51 4 0.68

3.4 0.17 Low integration effort 3 0.51 3 0.51 4 0.68 4 0.68 5 0.85 5 0.85 3 0.51

2.6 0.13 Comprehensibility 3 0.39 5 0.65 4 0.52 4 0.52 5 0.65 5 0.65 5 0.65

0.6 0.03 Trade-off decision support 5 0.15 3 0.09 4 0.12 4 0.12 4 0.12 3 0.09 4 0.12

20 1 < << Total Score >>> 3.48 4.13 3.46 3.76 8.05 4.27 3.79

AlgorithmsKey

0 – Not relevant

1 – Optional

2 – Relevant

3 – Required

4 – Essential



The weight of each criterion is derived from the rating 

specified by the user (highlighted in yellow) on a scale of 

0 (not relevant) to 4 (essential). Once the user finds the 

suitable algorithms based on the type of problem from 

Figure 1, the selection matrix in Table 2 allows the user 

to evaluate such algorithms and identify the 

recommended choice from the algorithm list based on the 

overall rating. The overall rating is a sum of scores based 

on user needs (evaluated on a scale of 0 to 4 and converted 

to weights) and conducted algorithmic evaluations. 

 

The following definitions of user requirements are 

considered:  

• Convergence to optimum value: The ability to 

consistently converge toward near-optimal values 

• Low computational time: The ability to find 

acceptable solutions for the user within an 

acceptable time frame. 

• Generation of new design alternatives: The ability to 

find new design alternatives not generated through 

small variations of the initial system configuration. 

• Ease of use: Minimising effort needed to prepare the 

algorithm for the problem, including the selection 

process for the algorithmic parameter values and the 

user’s interaction with the algorithm. 

• Algorithm customisation: The ability and the ease of 

making changes to the algorithm to increase the 

application range or modify parts of the algorithm. 

• Applicability range: The effort needed to apply the 

algorithm to the whole problem range, including 

lower or higher dimensional variants of the problem 

or problems with slightly modified constraints. 

• Low integration effort: The effort required to 

integrate the algorithm into the system and to 

establish connections with the necessary external 

tools, such as databases, computing resources, and 

software libraries. 

• Comprehensibility: The ease of understanding the 

process of solution creation and representation 

without expert knowledge. 

• Trade-off decision support: The ability to investigate 

various objectives and constraint values with the 

same or slightly changed algorithm. 

GenOpt User Interface 

Once the user has decided on the optimisation algorithm, 

the algorithm section on the command file must be 

structured in a specified format in order to invoke the 

algorithm. Invoking the algorithm and specifying 

optimisation settings, such as parameters, requires coding. 

To facilitate the process, a GenOpt user interface was 

developed on C++ as shown in Figure 2. Based on the 

number of parameters and the constraints, the user 

interface identifies the type of the optimisation problem 

and lists the algorithms which can solve it. Once the user 

selects the algorithm, the user interface automatically 

uploads the recommended typical values for each 

parameter. 

 

 

Figure 2: Developed user interface 

 

 



The user can amend the initially set parameters according 

to their own preference. The settings, including all data 

displayed on the user interface, can also be saved in a file 

and can be uploaded if the user wants to repeat the 

optimisation in the future. 

The detailed structure and data exchange between the user 

interface, the GenOpt program, and the simulation 

software are illustrated in Figure 3. According to the 

selected values, the user interface will generate the 

command file, initialisation file, configuration file and 

simulation template file to enable the GenOpt to start the 

optimisation.  

 

Figure 3: GenOpt user interface architecture 

Results 

Algorithm Selection Process 

The established algorithm selection framework allows the 

user to identify possible algorithm(s) based on the type of 

problem, evaluate the algorithms based on the user’s own 

requirements, and integrate the selected algorithm into 

GenOpt without the need for coding. 

Case Study 

The introduced GenOpt user interface has been used to 

solve Unit Commitment (UC) and Economic Load 

Dispatch (ELD) problems (Khunkitti et al., 2019; 

Dewangan, Jain and Huddar, 2015).  In UC and ELD 

problems, optimised short-term scheduling of electrical 

power generation is obtained. Electricity generation and 

power system providers must meet the varying demand 

for electricity while minimising the total fuel cost of the 

generation units over a study period of typically a day. 

There are two related optimisation problems: UC, which 

is the process of deciding when and which generation 

units to start up and shut down, and ELD, the process of 

deciding the setpoint output of each generation unit at 

each time-point. UC and ELD problems are subject to 

many constraints that must be satisfied. A model which 

represents the objective function of both UC and ELD 

problems has been derived and coded using C++. The 

model reads its inputs and writes its outputs to text files. 

When the optimisation starts, the user interface 

automatically generates the text files needed to run the 

GenOpt and calls it to start the optimisation. During the 

optimisation, GenOpt generates the input parameters and 

sends it to the UC and ELD model input file and GenOpt 

launches the model to evaluate the cost function. GenOpt 

reads the cost function from the UC and ELD output file 

once it has been evaluated. Based on the value of the 

output of the model, GenOpt will determine the input 

parameters for the next run. The process is repeated 

iteratively and, in each iteration, GenOpt generates a new 

set of input parameters to the UC and ELD model until a 

minimum of the cost function is found.  

The independent variables of the UC are discrete, the ELD 

are continuous and their numbers are equal to and greater 

than one. The problem is subject to a number of equality 

and inequality constraints. Then, only algorithms which 

can solve problems with multiple discrete and continuous 

variables (n>1) and that accept constraints, can be used. 

Based on the selections and data entered into the user 

interface shown in Figure 2, the interface will provide the 

user with a list of the relevant GenOpt optimisation 

algorithms that can solve this problem. Accordingly, 

either PSO or GPSPSOCCHJ (hybrid) can be used. The 

user can then use the proposed selection matrix table to 

select the most appropriate algorithm out of these two. In 

this problem, the preferences are set as shown in Table 3. 

User Requirement Rating 

Convergence to optimum value 4 

Low computational time 3 

Generation of alternative designs 1 

Ease of use 2 

Algorithm customisation 0 

Applicability range 2 

Low integration effort 0 

Comprehensibility 1 

Trade-off decision support 3 

Table 3: Selection preferences 

By applying these ratings to Table 2, the score for the 

hybrid algorithm (GPSPSOCCHJ) was 4.06 and for PSO 

was 3.81. After the user selects the preferred optimisation 

algorithm, the recommended values of the algorithm’s 

parameters and settings will be displayed. These values 

can be easily amended through the user interface. 

Evolutionary algorithms, such as the PSO and hybrid 

algorithms, are popular and effective optimisation 

algorithms used in building design optimisation 

(Machairas, Tsangrassoulis and Axarli, 2014). Therefore, 

the same procedure applies to the selection, evaluation, 

and optimisation of cost functions generated by building 

simulation software.    

Discussion 

Algorithm(s) Selection 

From the flowchart in Figure 1, it can be determined that 

for Problems with Discrete Variables (Pd) only the 

Particle Swarm Optimization (PSO) algorithm can be 

used. In contrast, for Problems with Continuous Variables 

(Pc, Pcg) and Problems with Continuous and Discrete 

Variables (Pcd, Pcdg) several algorithmic options are 

available. The flowchart (Figure 1) is effective in 

selecting suitable algorithms from those already 

integrated in GenOpt. As GenOpt allows users to 

implement their own algorithms, the introduction of the 

user’s own algorithm will increase the possible solutions 

User Interface

Log Output

Configuration file, Initialisation 
file, Simulation template file, 

Command file

GenOpt

Simulation 
Software

Log file

OutputInput file

Configuration 
file Error

F(x)

Independent Variable



for certain types of problems, therefore making the use of 

the algorithm selection flowchart impractical.    

Selection Matrix 

The selection matrix allows the user to evaluate the 

algorithms found in Figure 1 based on the user’s needs. 

The evaluation is based on two main elements: the user 

requirement and the ability of the algorithm to fulfil that 

requirement. Although the selection matrix has been 

designed specifically with GenOpt in mind, the concept 

can be applied to the selection of algorithms for any 

optimisation program that consists of the same or similar 

optimisation algorithms. When the UC and ELD 

problems (case study) are evaluated using the established 

weightage and the user specified weightage, the score 

changes and, therefore, the preferred solution changes, as 

shown in Table 4.    

 Algorithms 

 Hybrid PSO 

Established Weightage 3.48 3.76 

User own Weightage 4.06 3.81 

 Table 4: Score comparison 

The pre-established weightage prioritises low 

computational time, applicability range, and low 

integration effort, whereas the user’s own weightage 

focuses largely on the convergence to an optimum value. 

This variation affects the suitability of the algorithm. The 

scale range used to evaluate the algorithm range is 

sufficient to distinguish the suitability of the different 

optimisation algorithms, but having a larger scale range 

could increase the precision and overall accuracy. To 

validate the developed approach, the total cost and the 

average execution time was analysed by varying the 

demand for electricity eight times, as illustrated in Table 

5. For the same number of iterations and similar settings, 

the GPSPSOCCHJ was able to achieve a lower fuel cost 

but a much higher average execution time when compared 

to the PSO.  

 Demand for 

Electricity 

Optimal Fuel Cost 

GPSPSOCCHJ PSO 

1 177 2392.17 2577.39 

2 507 5599.16 6337.52 

3 650 7530.05 8076.81 

4 800 9291.55 9731.17 

5 989 116960.00 454359.00 

6 939 11058.00 11403.60 

7 776 8925.48 9921.67 

8 355 4474.11 4831.72 

Total Cost 166230.50 507238.88 

Average Execution Time 755252ms 202351ms 

Table 5: Results for eight time slots 

GenOpt User Interface 

The GenOpt user interface combines the GenOpt 

optimisation program with both simulation programs and 

other optimisation algorithms. The user interface 

presented in Figure 2 enables the user to input information 

required to optimise the cost function. The default values 

of all control parameters are provided, and they can be 

easily changed. The interface consists of four main 

panels: a selection panel to select the optimisation 

program and algorithm, an algorithm control panel to 

adjust the algorithm parameters, an illustration panel to 

display the set points of all units stacked at each time slot 

and a cost panel displaying the total cost at each time slot. 

Additionally, there are option buttons to load the data 

required for the optimisation, to start the optimisation, and 

stop the optimisation. 

Conclusion 

GenOpt can effectively perform optimisation of non-

linear problems given the correct optimisation algorithm 

is chosen, and the right variables and parameters are 

inserted. The described algorithm selection framework 

allows the user to take the most appropriate and effective 

approach and acts as a decision support system. Although 

algorithm(s) selection and evaluation criterion concepts 

are implemented from earlier work, the novelty of this 

research lies in the development of a user-informed 

decision-making process and the development of a 

valuable new tool. The developed user interface allows 

the users to insert and amend algorithmic variables in an 

interactive, user-friendly environment without the need 

for coding. This enhances the overall simulation results 

by enabling the user to better understand the simulation 

model behaviour, the optimisation algorithm, and its 

variables. Optimisation is vital for a variety of 

engineering systems, but not all system operators and 

professionals have the necessary coding skills to use 

generic optimisation software, such as GenOpt. 

Therefore, having a user-friendly interface, such as the 

one developed, will allow future GenOpt users to apply it 

more effectively, potentially widening applicability and 

stakeholder audience. The established process of 

evaluating and implementing optimisation algorithms in 

GenOpt using the developed tool and selection matrix 

contributes to the knowledge of performing optimisation. 

Further work will include the development of a rule-based 

approach to fine-tune the optimisation algorithm’s 

parameters in relation to the problem type.  
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