
Decision Support in Algorithm Selection for Generic Optimisation

Vishak Dudhee1, Fathi Abugchem1, Vladimir Vukovic1

1Teesside University, Middlesbrough, United Kingdom

Abstract

This paper presents the development of an algorithm-

selection framework supported by a new intuitive user

interface for the generic optimisation tool, GenOpt. The

framework consists of an algorithm-selection flowchart to

help identify relevant algorithms depending on the nature

of the problem, followed by an algorithm-selection matrix

which evaluates the algorithms’ suitability based on the

user requirements. The algorithm selection framework

acts as a decision support system to allow the user to

select the most appropriate and effective optimisation

algorithm for a given problem. Such a procedure

improves decision-making, limits the algorithm selection

errors and helps the user to achieve solutions closer to the

Pareto optimum. The selection framework is supported by

a user interface, developed in C++ and compatible with

GenOpt, that allows users who do not have prior coding

knowledge to use GenOpt successfully. The developed

interface presents the user with the most relevant

optimisation algorithms from those available in the

programme. It allows the user to easily modify

algorithmic variables in a user-friendly environment. The

novelty of the approach is reflected in the built-in

knowledge and intelligence in the pre-selection of

optimisation algorithms, which are tailored to specific

user-defined problems. This, consequently, improves the

overall optimisation results by allowing the user to better

understand the optimisation algorithm and its variables.

Introduction

Careful consideration of multiple design parameters is

required in order to design energy-efficient systems.

Dynamic whole-building simulation programs can be

used to model the impact of certain parameters on system

performance, such as energy consumption and thermal

losses (Crawley et al. 2000). However, the interactions

between several design parameters can make optimisation

a complex task, with many possible parameters whose

relations with system performance may be difficult to

understand (Wortmann and Nannicini, 2017).

Optimisation algorithms can identify optimal parameters

for a defined cost function, such as energy performance.

Generic optimisation programmes, such as GenOpt, allow

for automatic, multidimensional optimisation of system

simulation models, which eventually leads to efficient

system designs (Wetter, 2000). Such programmes allow

customisation of optimisation algorithms and therefore

can be used as an optimisation algorithm development

environment. Algorithm selection and tuning have a huge

impact on the optimisation performance both on the

optimality of the solutions and the speed of convergence.

Problem Statement

Generic Optimisation program GenOpt’s documentation

includes guidance on selecting the optimisation

algorithms and setting their parameters, but such guidance

is not integrated into the optimisation programme

graphical user interface. Therefore, the user needs to pick

and choose the optimisation algorithm and determine their

relevance to the simulation model based on prior

knowledge or external literature. Once the user selects the

relevant algorithm, the algorithm set-up processes are not

direct but involve finding the appropriate programme

file(s) and changing the relevant codes. Most practitioners

neither have the expertise in optimisation algorithms

needed to make an informed decision nor the

programming knowledge to amend the command codes

with the selected optimisation algorithm.

Optimisation Processes

Optimal selection of optimisation algorithms depends

upon the type of optimisation problems.

Non-linear Optimisation

Non-linear optimisation problems can be classified into

three main categories: one-dimensional unconstrained

problems, multidimensional unconstrained problems, and

multi-dimensional constrained problems (Antoniou and

Lu, 2007). One-dimensional optimisation methods can be

classified into search methods and approximation

methods. In search methods, a lower and an upper interval

boundary is established and then repeatedly reduced

based on functional evaluations until a reduced boundary

interval which is sufficiently small is obtained. The centre

of such lower interval is then assumed to be the optimum.

Search methods can be used for any function and

differentiation is not necessary, unlike the approximation

methods, where an approximation of the function,

represented as a low-order – usually second- or third-

order – polynomial is assumed. The objective function is

then analysed with elementary calculus, leading to an

approximate value of the function domain. The interval is

reduced, and the process is repeated until an adequately

precise value of the function domain is found. In one-

dimensional optimisation methods, the function is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/334955205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

required to be continuous and differentiable. Multi-

dimensional optimisation methods are analogous to one-

dimensional, but they sometimes can be inefficient.

Multi-dimensional optimisation algorithms

simultaneously consider multiple, potentially conflicting,

objective functions (Wortmann and Nannicini, 2017). A

problem with multiple objectives may not have a clear-cut

solution. This is because the set of all non-dominated

solutions, known as the Pareto front, may be infinite in

size and difficult to accurately represent. It is impossible

to improve an objective value for a non-dominant solution

without losing in other objective values. Therefore, the

application of multi-dimensional optimisation methods is

limited to problems where gradient information is

unavailable or difficult to obtain.

Heuristic Optimisation

Heuristic optimisation is a problem-solving method used

to increase speed by sacrificing precision. (Gabbar, 2016).

Metaheuristic optimisation is a higher-level heuristic with

the purpose of identifying or generating an adequate

solution to an optimisation problem when incomplete or

flawed information is available or when there is limited

computation capacity. They sample a group of solutions

that are too large to be thoroughly sampled using

conventional methods. Metaheuristics make assumptions

about the optimisation problems, and so they may be

useful for a variety of problems (Osman and Kelly, 1996;

Dey, 2017). Metaheuristics, unlike optimisation

algorithms and iterative methods, do not guarantee that a

globally optimal solution can be generated in all

problems. Many metaheuristics apply a form of stochastic

optimisation, meaning that the solution relies on a set of

randomly generated variables. By searching through a

wide range of possible solutions, metaheuristics can often

find reasonable solutions with minimal computational

effort compared to optimisation algorithms, iterative

methods, and simple heuristics.

Specific heuristic methods do not always perform

effectively with alternative problem domains without

considerable modification (Drake et al., 2020). The term

“hyper-heuristic” can be defined as a high-level

automated search methodology that explores a search

space of low-level heuristics or heuristic components, to

solve computationally difficult problems. Hyper-

heuristics operate on a search space of heuristics rather

than problem solutions themselves (Burke et al., 2013).

This feature provides the potential for increasing the level

of generality of search methodologies. These can be used

to solve more complex real-world problems. Because the

search strategy components of a hyper-heuristic only

consider problem domain-independent information,

hyper-heuristic methods can be easily applied in various

problem domains given that the problem-specific

algorithm components are accessible to the user.

Fitness Landscape

Fitness Landscape is a type of model that is used in both

biology and social science to visualise the relationship

between genotypes and reproductive success (Marks,

Gerrits and Marx, 2019). Similarly, in optimisation,

fitness landscape is used to describe and analyse the

geometry of the search space from the point of view of

local search algorithms, such as evolutionary algorithms

(EAs) or single solution based local search (Leprêtre et

al., 2019). The fitness landscape produces an image that

represents the search space and helps design optimisation

algorithms. It shows a representation of the problem

structure using a set of metric features to measure and

compare the search difficulty of various possible

representations, local search operators, or objective

functions. Fitness Landscape Analysis (FLA) helps the

user to better understand the problem type that is being

solved in practice rather than using mathematical test

functions as often used in benchmarks (Waibel et al.,

2019). Usage of such a technique for system energy

optimisation can improve system design as it increases the

emphasis on relevant design parameters.

Generic Optimisation Program

Overview

GenOpt is a generic optimisation program developed for

system optimisation by Lawrence Berkeley National

Laboratory. For a given system, GenOpt finds the user-

selected values or parameters that can minimise the

objective function, ultimately leading to the best

operation of the system (Wetter, 2001). The objective

function can be calculated by an external simulation

program and integrated into GenOpt by modifying a

configuration file of simulation program output

comprised of a text-based input and output. To carry out

the optimisation, GenOpt automatically generates the

input files for the simulation program based on input

template files specific to the program being used. GenOpt

then starts the simulation program, checks for potential

errors, reads the value of the minimised function and

determines the input parameters for the next run. GenOpt

repeats this process iteratively until a minimum is

identified, displaying the results onto the graphical user

interface during the optimisation process. GenOpt and the

external simulation program exchange data solely through

text files. GenOpt automatically creates the new input

files for the simulation program based on input template

files. To generate these template files, the user must copy

the simulation input files and replace the numerical values

of the independent variables, which will be modified with

keywords. The keywords are then converted to the

corresponding numerical values and the simulation input

files are generated. GenOpt can write text input for any

given simulation program using this method. The user

may specify how to start the simulation program in a

configuration file and indicate where in that file GenOpt

can locate the cost function’s current value. This allows

any external program to be coupled with GenOpt without

either program needing to be modified or recompiled. The

only requirement is that the external program must use

text files to read its input and write the cost function value

and any potential error messages.

GenOpt Optimisation Algorithms

The following optimisation algorithms are implemented

in GenOpt:

• Generalised Pattern Search algorithms (GPS) with

o Hooke-Jeeves (GPSHJ)

o Coordinate Search algorithm (GPSCS)

• Particle Swarm Optimisation algorithms (PSO)

• A hybrid global optimisation algorithm that uses

Particle Swarm Optimisation for global

optimisation, and Hooke-Jeeves for the local

optimisation (GPSPSOCCHJ).

• Discrete Armijo Gradient algorithm (DAG).

• Nelder and Mead’s Simplex algorithm.

• Golden Section and Fibonacci.

The algorithms that can be used for parametric studies

include:

• Mesh generator to evaluate a function on all points

that belong to a mesh with equidistant or logarithmic

spacing between the mesh points.

• Parametric search where only one independent

variable is varied at a time.

Methodology

Algorithm Selection

The GenOpt user manual describes the best algorithm

selection process based on the type of problem in the form

of text (Wetter, 2016). To better understand the algorithm

selection process, the different problems were classified

by their type and their recommended algorithm tabulated

as shown in Table 1. The problem type can be classified

as follows:

• Problems with Continuous Variables (Pc)

o One dimensional

o Multi-dimensional and continuously

differentiable

o Multi-dimensional and not continuously

differentiable

• Problems with Continuous Variables with inequality

constraints (Pcg)

• Problems with Discrete Variables (Pd)

• Problems with Continuous and Discrete Variables

(Pcd)

• Problems with Continuous and Discrete Variables

with inequality constraints (Pcdg)

Problem Type Optimisation Algorithm Abbr.

Pc with n > 1

continuously

differentiable

Hybrid algorithm -

GPS implementation of the

Hooke-Jeeves algorithm

GPSHJ

Discrete Armijo Gradient DAG

Pc with n > 1

Not continuously

differentiable

Hybrid algorithm -

GPS implementation of the

Hooke-Jeeves algorithm

GPSHJ

Particle Swarm Optimisation PSO

Pcg with n > 1

Hybrid algorithm -

GPS implementation of the

Hooke-Jeeves algorithm

GPSHJ

Pc with n = 1

Golden Section Interval

Division

-

Fibonacci Division -

Parametric -

Pcg with n = 1

Golden Section Interval

Division

-

Fibonacci Division -

Parametric -

Pd Particle Swarm Optimisation PSO

Pcd and Pcdg
Hybrid algorithm -

Particle Swarm Optimisation PSO

Table 1: Algorithms classified by problem type

Apart from the problems with discrete variables (Pd),

more than one optimisation algorithm can be used. The

flowchart shown in Figure 1 has, therefore, been

generated based on the literature to facilitate the selection

of the recommended algorithms (Cacabelos et al., 2016).

As illustrated in the flowchart for problems with discrete

variables (Pd) and for problems with continuous and

discrete variables with or without inequality constraints

(Pcd, Pcdg), the possible solution(s) can be found directly

whereas, for problems with continuous variables, several

factors must be taken into consideration. One of the main

factors is whether the input parameters are one-

dimensional (n=1) or multi-dimensional (n>1). For a

problem with continuous variables in one dimension (Pc

with n=1) the solution is independent from the constraints

whereas, for a problem with continuous variables in

multi-dimensions (Pc with n>1), the solution depends

both on the constraints and the differentiability of the cost

function. The Generalised Pattern Search algorithms with

implemented Coordinate Search algorithms are not

included as Coordinate Search can only converge to

optimal values when the cost function is smooth (Wetter

and Wright, 2003). The Nelder and Mead’s Simplex

algorithm was not included because its usage is not

recommended if the cost function has large

discontinuities.

Input
Parameter(s)

Hybrid Algorithm
PSO

PSO

Dimension

Constraints

N = 1 N > 1

Golden Section
Fibonacci

Parametric

Hybrid Algorithm
GPSHJ

Cost Function

Hybrid Algorithm
GPSHJ

PSO

Hybrid Algorithm
GPSHJ
DAG

Yes

No

Continuously
Differentiable

Not Continuously
Differentiable

Discrete (Pd)

Continuous &
Discrete (Pcd, Pcdg)

Continuous (Pc, Pcg)

Figure 1: GenOpt Recommended Algorithm Flowchart

Selection Matrix

For the problems Pc, Pcg, Pcd, and Pcdg, several

optimisation algorithms have been recommended and can

be used. Selecting the right optimisation algorithm

requires a certain level of knowledge and experience. For

a user without significant understanding of the

optimisation algorithms, the selection process can be a

challenging task. Therefore, a selection matrix has been

created (Table 2) to facilitate the selection of the

optimisation algorithms from the groups of two or three

algorithms recommended in Figure 1. The criteria and

presented weights for evaluating different available

algorithms were adapted from the systematic approach for

the selection of optimisation algorithms (Entneret al.,

2019). In the algorithm selection matrix, the GenOpt

algorithms are stated in the rightmost columns and the

user requirements are presented in rows. Each algorithm

has been scored based its suitability for each of the set

user requirements. It has been evaluated according to the

authors’ theoretical knowledge and practical experience

using a five-point Likert scale, with a score of 1 meaning

the algorithm does not fulfil the criterion and 5 meaning

it fulfils the criterion.

Table 2: Algorithm Selection Matrix

H
y
b
ri

d
 A

lg
o
ri

th
m

G
P

S
H

J

D
A

G

P
S

O

G
o
ld

en
 S

ec
ti

o
n

F
ib

o
n
ac

ci

P
ar

am
et

ri
c

Rating Weight User Requirement

2.6 0.13 Convergence to optimum value 5 0.65 4 0.52 3 0.39 4 0.52 5 4.00 4 0.52 4 0.52

3.4 0.17 Low computational time 2 0.34 4 0.68 3 0.51 3 0.51 5 0.85 5 0.85 2 0.34

0.6 0.03 Generation of alternative designs 5 0.15 5 0.15 4 0.12 4 0.12 4 0.12 3 0.09 4 0.12

2.0 0.10 Ease of use 3 0.30 5 0.50 4 0.40 4 0.40 5 0.50 5 0.50 5 0.50

1.4 0.07 Algorithm customisation 2 0.14 5 0.35 3 0.21 3 0.21 4 0.28 3 0.21 5 0.35

3.4 0.17 Applicability range 5 0.85 4 0.68 3 0.51 4 0.68 4 0.68 3 0.51 4 0.68

3.4 0.17 Low integration effort 3 0.51 3 0.51 4 0.68 4 0.68 5 0.85 5 0.85 3 0.51

2.6 0.13 Comprehensibility 3 0.39 5 0.65 4 0.52 4 0.52 5 0.65 5 0.65 5 0.65

0.6 0.03 Trade-off decision support 5 0.15 3 0.09 4 0.12 4 0.12 4 0.12 3 0.09 4 0.12

20 1 < << Total Score >>> 3.48 4.13 3.46 3.76 8.05 4.27 3.79

AlgorithmsKey

0 – Not relevant

1 – Optional

2 – Relevant

3 – Required

4 – Essential

The weight of each criterion is derived from the rating

specified by the user (highlighted in yellow) on a scale of

0 (not relevant) to 4 (essential). Once the user finds the

suitable algorithms based on the type of problem from

Figure 1, the selection matrix in Table 2 allows the user

to evaluate such algorithms and identify the

recommended choice from the algorithm list based on the

overall rating. The overall rating is a sum of scores based

on user needs (evaluated on a scale of 0 to 4 and converted

to weights) and conducted algorithmic evaluations.

The following definitions of user requirements are

considered:

• Convergence to optimum value: The ability to

consistently converge toward near-optimal values

• Low computational time: The ability to find

acceptable solutions for the user within an

acceptable time frame.

• Generation of new design alternatives: The ability to

find new design alternatives not generated through

small variations of the initial system configuration.

• Ease of use: Minimising effort needed to prepare the

algorithm for the problem, including the selection

process for the algorithmic parameter values and the

user’s interaction with the algorithm.

• Algorithm customisation: The ability and the ease of

making changes to the algorithm to increase the

application range or modify parts of the algorithm.

• Applicability range: The effort needed to apply the

algorithm to the whole problem range, including

lower or higher dimensional variants of the problem

or problems with slightly modified constraints.

• Low integration effort: The effort required to

integrate the algorithm into the system and to

establish connections with the necessary external

tools, such as databases, computing resources, and

software libraries.

• Comprehensibility: The ease of understanding the

process of solution creation and representation

without expert knowledge.

• Trade-off decision support: The ability to investigate

various objectives and constraint values with the

same or slightly changed algorithm.

GenOpt User Interface

Once the user has decided on the optimisation algorithm,

the algorithm section on the command file must be

structured in a specified format in order to invoke the

algorithm. Invoking the algorithm and specifying

optimisation settings, such as parameters, requires coding.

To facilitate the process, a GenOpt user interface was

developed on C++ as shown in Figure 2. Based on the

number of parameters and the constraints, the user

interface identifies the type of the optimisation problem

and lists the algorithms which can solve it. Once the user

selects the algorithm, the user interface automatically

uploads the recommended typical values for each

parameter.

Figure 2: Developed user interface

The user can amend the initially set parameters according

to their own preference. The settings, including all data

displayed on the user interface, can also be saved in a file

and can be uploaded if the user wants to repeat the

optimisation in the future.

The detailed structure and data exchange between the user

interface, the GenOpt program, and the simulation

software are illustrated in Figure 3. According to the

selected values, the user interface will generate the

command file, initialisation file, configuration file and

simulation template file to enable the GenOpt to start the

optimisation.

Figure 3: GenOpt user interface architecture

Results

Algorithm Selection Process

The established algorithm selection framework allows the

user to identify possible algorithm(s) based on the type of

problem, evaluate the algorithms based on the user’s own

requirements, and integrate the selected algorithm into

GenOpt without the need for coding.

Case Study

The introduced GenOpt user interface has been used to

solve Unit Commitment (UC) and Economic Load

Dispatch (ELD) problems (Khunkitti et al., 2019;

Dewangan, Jain and Huddar, 2015). In UC and ELD

problems, optimised short-term scheduling of electrical

power generation is obtained. Electricity generation and

power system providers must meet the varying demand

for electricity while minimising the total fuel cost of the

generation units over a study period of typically a day.

There are two related optimisation problems: UC, which

is the process of deciding when and which generation

units to start up and shut down, and ELD, the process of

deciding the setpoint output of each generation unit at

each time-point. UC and ELD problems are subject to

many constraints that must be satisfied. A model which

represents the objective function of both UC and ELD

problems has been derived and coded using C++. The

model reads its inputs and writes its outputs to text files.

When the optimisation starts, the user interface

automatically generates the text files needed to run the

GenOpt and calls it to start the optimisation. During the

optimisation, GenOpt generates the input parameters and

sends it to the UC and ELD model input file and GenOpt

launches the model to evaluate the cost function. GenOpt

reads the cost function from the UC and ELD output file

once it has been evaluated. Based on the value of the

output of the model, GenOpt will determine the input

parameters for the next run. The process is repeated

iteratively and, in each iteration, GenOpt generates a new

set of input parameters to the UC and ELD model until a

minimum of the cost function is found.

The independent variables of the UC are discrete, the ELD

are continuous and their numbers are equal to and greater

than one. The problem is subject to a number of equality

and inequality constraints. Then, only algorithms which

can solve problems with multiple discrete and continuous

variables (n>1) and that accept constraints, can be used.

Based on the selections and data entered into the user

interface shown in Figure 2, the interface will provide the

user with a list of the relevant GenOpt optimisation

algorithms that can solve this problem. Accordingly,

either PSO or GPSPSOCCHJ (hybrid) can be used. The

user can then use the proposed selection matrix table to

select the most appropriate algorithm out of these two. In

this problem, the preferences are set as shown in Table 3.

User Requirement Rating

Convergence to optimum value 4

Low computational time 3

Generation of alternative designs 1

Ease of use 2

Algorithm customisation 0

Applicability range 2

Low integration effort 0

Comprehensibility 1

Trade-off decision support 3

Table 3: Selection preferences

By applying these ratings to Table 2, the score for the

hybrid algorithm (GPSPSOCCHJ) was 4.06 and for PSO

was 3.81. After the user selects the preferred optimisation

algorithm, the recommended values of the algorithm’s

parameters and settings will be displayed. These values

can be easily amended through the user interface.

Evolutionary algorithms, such as the PSO and hybrid

algorithms, are popular and effective optimisation

algorithms used in building design optimisation

(Machairas, Tsangrassoulis and Axarli, 2014). Therefore,

the same procedure applies to the selection, evaluation,

and optimisation of cost functions generated by building

simulation software.

Discussion

Algorithm(s) Selection

From the flowchart in Figure 1, it can be determined that

for Problems with Discrete Variables (Pd) only the

Particle Swarm Optimization (PSO) algorithm can be

used. In contrast, for Problems with Continuous Variables

(Pc, Pcg) and Problems with Continuous and Discrete

Variables (Pcd, Pcdg) several algorithmic options are

available. The flowchart (Figure 1) is effective in

selecting suitable algorithms from those already

integrated in GenOpt. As GenOpt allows users to

implement their own algorithms, the introduction of the

user’s own algorithm will increase the possible solutions

User Interface

Log Output

Configuration file, Initialisation
file, Simulation template file,

Command file

GenOpt

Simulation
Software

Log file

OutputInput file

Configuration
file Error

F(x)

Independent Variable

for certain types of problems, therefore making the use of

the algorithm selection flowchart impractical.

Selection Matrix

The selection matrix allows the user to evaluate the

algorithms found in Figure 1 based on the user’s needs.

The evaluation is based on two main elements: the user

requirement and the ability of the algorithm to fulfil that

requirement. Although the selection matrix has been

designed specifically with GenOpt in mind, the concept

can be applied to the selection of algorithms for any

optimisation program that consists of the same or similar

optimisation algorithms. When the UC and ELD

problems (case study) are evaluated using the established

weightage and the user specified weightage, the score

changes and, therefore, the preferred solution changes, as

shown in Table 4.

 Algorithms

 Hybrid PSO

Established Weightage 3.48 3.76

User own Weightage 4.06 3.81

 Table 4: Score comparison

The pre-established weightage prioritises low

computational time, applicability range, and low

integration effort, whereas the user’s own weightage

focuses largely on the convergence to an optimum value.

This variation affects the suitability of the algorithm. The

scale range used to evaluate the algorithm range is

sufficient to distinguish the suitability of the different

optimisation algorithms, but having a larger scale range

could increase the precision and overall accuracy. To

validate the developed approach, the total cost and the

average execution time was analysed by varying the

demand for electricity eight times, as illustrated in Table

5. For the same number of iterations and similar settings,

the GPSPSOCCHJ was able to achieve a lower fuel cost

but a much higher average execution time when compared

to the PSO.

 Demand for

Electricity

Optimal Fuel Cost

GPSPSOCCHJ PSO

1 177 2392.17 2577.39

2 507 5599.16 6337.52

3 650 7530.05 8076.81

4 800 9291.55 9731.17

5 989 116960.00 454359.00

6 939 11058.00 11403.60

7 776 8925.48 9921.67

8 355 4474.11 4831.72

Total Cost 166230.50 507238.88

Average Execution Time 755252ms 202351ms

Table 5: Results for eight time slots

GenOpt User Interface

The GenOpt user interface combines the GenOpt

optimisation program with both simulation programs and

other optimisation algorithms. The user interface

presented in Figure 2 enables the user to input information

required to optimise the cost function. The default values

of all control parameters are provided, and they can be

easily changed. The interface consists of four main

panels: a selection panel to select the optimisation

program and algorithm, an algorithm control panel to

adjust the algorithm parameters, an illustration panel to

display the set points of all units stacked at each time slot

and a cost panel displaying the total cost at each time slot.

Additionally, there are option buttons to load the data

required for the optimisation, to start the optimisation, and

stop the optimisation.

Conclusion

GenOpt can effectively perform optimisation of non-

linear problems given the correct optimisation algorithm

is chosen, and the right variables and parameters are

inserted. The described algorithm selection framework

allows the user to take the most appropriate and effective

approach and acts as a decision support system. Although

algorithm(s) selection and evaluation criterion concepts

are implemented from earlier work, the novelty of this

research lies in the development of a user-informed

decision-making process and the development of a

valuable new tool. The developed user interface allows

the users to insert and amend algorithmic variables in an

interactive, user-friendly environment without the need

for coding. This enhances the overall simulation results

by enabling the user to better understand the simulation

model behaviour, the optimisation algorithm, and its

variables. Optimisation is vital for a variety of

engineering systems, but not all system operators and

professionals have the necessary coding skills to use

generic optimisation software, such as GenOpt.

Therefore, having a user-friendly interface, such as the

one developed, will allow future GenOpt users to apply it

more effectively, potentially widening applicability and

stakeholder audience. The established process of

evaluating and implementing optimisation algorithms in

GenOpt using the developed tool and selection matrix

contributes to the knowledge of performing optimisation.

Further work will include the development of a rule-based

approach to fine-tune the optimisation algorithm’s

parameters in relation to the problem type.

Acknowledgement

This work is partly funded by EU Horizon 2020

eDREAM project (01/01/2018-31/12/2020) under grant

agreement No. 774478. The authors wish to acknowledge

the European Commission for their support.

References

Antoniou, A. and Lu, W. (2007) Practical

Optimization. Boston: Springer.

Burke, E.K. et al. (2013) 'Hyper-heuristics: a survey of

the state of the art', Journal of the Operational

Research Society, 64(12), pp. 1695-1724. doi:

10.1057/jors.2013.71.

Cacabelos, A. et al. (2016) 'Integration of the free

software GenOpt for a thermal engineering

course', Computer Applications in Engineering

Education, 24(3), pp. 356-364. doi:

10.1002/cae.21713.

Crawley, D.B. et al. (2001) 'EnergyPlus: creating a new-

generation building energy simulation

program', Energy & Buildings, 33(4), pp. 319-331.

doi: 10.1016/S0378-7788(00)00114-6.

Dewangan, S.K., Jain, A. and Huddar, A.P. (2015) 'A

Traditional Approach to Solve Economic Load

Dispatch Problem Considering the Generator

Constraints', IOSR Journal of Electrical and

Electronics Engineering, 10(2), pp. 27-32.

Dey, N. (2017) Advancements in Applied Metaheuristic

Computing. Hershey: IGI Global.

Drake, J.H. et al. (2020) 'Recent advances in selection

hyper-heuristics', European Journal of Operational

Research, 285(2), pp. 405-428. doi:

10.1016/j.ejor.2019.07.073.

Gabbar, H. (2016) Smart Energy Grid Engineering. 1st

edn. San Diego, CA, USA: Elsevier Science.

Khunkitti, S. et al. (2019) 'An Improved DA-PSO

Optimization Approach for Unit Commitment

Problem', Energies, 12(12), pp. 2335. doi:

10.3390/en12122335.

Leprêtre, F. et al. (2019a) 'Fitness landscapes analysis

and adaptive algorithms design for traffic lights

optimisation on SIALAC benchmark', Applied Soft

Computing Journal, 85, pp. 105869. doi:

10.1016/j.asoc.2019.105869.

Leprêtre, F. et al. (2019b) 'Fitness landscapes analysis

and adaptive algorithms design for traffic lights

optimisation on SIALAC benchmark', Applied Soft

Computing Journal, 85, pp. 105869. doi:

10.1016/j.asoc.2019.105869.

Machairas, V., Tsangrassoulis, A. and Axarli, K. (2014)

'Algorithms for optimisation of building design: A

review', Renewable and Sustainable Energy Reviews,

31, pp. 101-112.

Marks, P., Gerrits, L. and Marx, J. (2019) 'How to use

fitness landscape models for the analysis of collective

decision-making: a case of theory-transfer and its

limitations', Biology & Philosophy, 34(1), pp. 1-15.

doi: 10.1007/s10539-018-9669-4.

Osman, I.H. and Kelly, J.P. (1996) Meta-heuristics: an

overview.

Waibel, C. et al. (2019) 'A comparison of building energy

optimisation problems and mathematical test

functions using static fitness landscape

analysis', Journal of Building Performance

Simulation, 12(6), pp. 789-811. doi:

10.1080/19401493.2019.1671897.

Wetter, M. (2000) 'Design optimisation with

GenOpt', Building Energy Simulation User

News, 21(19-28).

Wetter, M. (2001) 'GenOpt-A generic optimisation

program', Seventh International IBPSA Conference,

Rio de Janeiro.

Wetter, M. (2016) GenOpt(R), generic optimisation

program, User Manual, Version 3.1.1. Berkeley, CA:

University of California: Lawrence Berkeley

National Laboratory.

Wetter, M. and Wright, J. (2003) 'Comparison of a

generalised pattern search and a genetic algorithm

optimisation method', Proceedings of the 8-th IBPSA

Conference.

Wortmann, T. and Nannicini, G. (2017) 'Introduction to

architectural design optimisation', in 'Introduction to

architectural design optimization'City

Networks. Springer, pp. 259-278.

