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Abstract 30 

Gliomas encompass highly invasive primary central nervous system (CNS) tumours of 31 

glial cell origin with an often-poor clinical prognosis. Of all gliomas, glioblastoma is the 32 

most aggressive form of primary brain cancer. Current treatments in glioblastoma are 33 

insufficient due to the invasive nature of brain tumour cells, which typically results in local 34 

tumour recurrence following treatment. The latter represents the most important cause 35 

of mortality in glioblastoma and underscores the necessity for an in-depth understanding 36 

of the underlying mechanisms. Interestingly, increased synthesis and secretion of 37 

several proteolytic enzymes within the tumour microenvironment, such as matrix 38 

metalloproteinases, lysosomal proteases, cathepsins and kallikreins for extracellular-39 

matrix component degradation may play a major role in the aforementioned glioblastoma 40 

invasion mechanisms. These proteolytic networks are key players in establishing and 41 

maintaining a tumour microenvironment that promotes tumour cell survival, proliferation, 42 

and migration. Indeed, the targeted inhibition of these proteolytic enzymes has been a 43 

promisingly useful therapeutic strategy for glioblastoma management in both preclinical 44 

and clinical development. We hereby summarize current advances on the biology of the 45 

glioblastoma tumour microenvironment, with a particular emphasis on the role of 46 

proteolytic enzyme families in glioblastoma invasion and progression, as well as on their 47 

subsequent prognostic value as biomarkers and their therapeutic targeting in the era of 48 

precision medicine.  49 
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Introduction 53 

Gliomas are central nervous system (CNS) tumours of glial cell-origin. Glioblastoma multiforme 54 

(GBM), or simply glioblastoma in particular, is the most advanced stage of gliomas and 55 

represents the most prevailing type of primary brain tumour in adults. Glioblastoma is 56 

characterized by high oxygen deprivation within the centre of the tumour mass leading to 57 

extensive necrosis, as well as high vascular proliferation and  increased infiltrative capacity of 58 

tumour cells [1]. Glioblastoma is also characterized by a diffuse infiltration of isolated cells 59 

migrating beyond the tumour margins. This renders surgical resection ineffective as these cells 60 

remain near the surgical margins and inexorably represent a major cause of recurrence after 61 

surgery. The current standard of care for glioblastoma consists of surgical resection of the 62 

tumour along with the combination of the alkylating agent Temozolomide as adjuvant 63 

chemotherapy and radiotherapy treatment. However, despite achieving surgical resection 64 

coupled to these follow-up treatment modalities in most tumours, the median survival of 65 

glioblastoma is currently only 15 months [2].  66 

Among a plethora of reported interactions [3] it has been well-established that both 67 

tumour and stromal cells in glioblastoma can interact within the tumour microenvironment 68 

(TME) via the expression of proteolytic enzymes (or proteases) that degrade the extracellular 69 

matrix (ECM) components, accounting for increased migration and aggressiveness. A number 70 

of proteases may play decisive roles in this process. The most relevant protease families in 71 

glioblastoma development/progression include the Metzincin superfamily of proteases [matrix 72 

metalloproteinases (MMPs) and Adamalysins]; the kallikrein-related peptidases (KLKs) and 73 

the lysosomal peptidases (cathepsins). Here we are focusing on these specific families of 74 

proteases as there have been many preclinical studies linking them to glioblastoma 75 

progression with a promise of translating such findings into clinical practice. Although multiple 76 

studies have attributed potential oncogenic roles to several peptidases belonging to the 77 

aforementioned families, a more in-depth understanding of their interplay and involvement in 78 

GBM progression is essential. To address this literature gap, herein, we provide a detailed 79 

overview of the invasive characteristics of the glioblastoma microenvironment in the context of 80 

extracellular proteolysis and further elaborate on existing preclinical and clinical evidence that 81 

examines the value of extracellular proteases as putative therapeutic targets and/or 82 

diagnostic/prognostic biomarkers.  83 

 84 

Glioblastoma: the most aggressive form of human gliomas 85 

Gliomas are a category of CNS tumours arising in the non-neural component of the brain, 86 

primarily occupied by glial cells. Glial cells are divided into three main populations: astrocytes 87 

(the most abundant cell type), oligodendrocytes, and microglial cells. Although gliomas may 88 
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theoretically arise from any of the above-mentioned glial cell populations, the vast majority is 89 

believed to arise from astrocytes and thus, are termed “astrocytomas”. The latter are classified 90 

into grades according to their histological characteristics: the non-malignant grades I (Pilocytic) 91 

and II (Low-grade, well-differentiated), and the malignant grades III (Anaplastic) and IV 92 

(Glioblastoma Multiforme) [4]. Glioblastoma multiforme (GBM) represents the most advanced 93 

stage of gliomas and the most common malignant brain tumour [4]. It mainly develops in the 94 

supra-tentorial region (brain hemispheres) of adult individuals and displays wide molecular and 95 

morphological heterogeneity [5-7]. In most cases, glioblastomas are considered as primary 96 

tumours, thus arising rapidly de novo without observing the development of premalignant 97 

grade I-III lesions. Secondary glioblastomas, which are associated with better survival, arise 98 

at a more stepwise fashion, such as from lower grade astrocytomas [8]. Histological hallmarks 99 

of glioblastoma include cellular atypia and anaplasia (cellular abnormality and 100 

dedifferentiation), increased cell density, areas of necrosis, microvascular proliferation and, 101 

importantly, diffuse and widespread infiltration of single glioblastoma cells into the surrounding 102 

parenchyma [2].  103 

Glioblastomas are classified into three subtypes according to their morphology and 104 

molecular signature: classical, pro-neural, and mesenchymal. The classical subtype, the most 105 

proliferative of the three, is characterized by amplification of the epidermal growth factor 106 

receptor (EGFR), expression of EGFR variant III (EGFRvIII), molecular alterations affecting 107 

Notch, Sonic hedgehog (SHH) and Retinoblastoma (RB) pathways, and finally, loss of 108 

chromosome 10q, which contains the gene encoding for the phosphatase and tensin homolog 109 

(PTEN) protein [9]. The pro-neural subtype, accounting for nearly all secondary glioblastomas, 110 

displays molecular alterations in the platelet-derived growth factor A (PDGFRA), the isocitrate 111 

dehydrogenase 1 and 2 (IDH1/2), and the tumour protein 53 (TP53) genes; and is generally 112 

associated with better survival. Finally, the mesenchymal subtype, the most invasive of all 113 

phenotypes, is characterized by mutations in the neurofibromatosis type 1 (NF1) and PTEN 114 

genes, and by alterations affecting the NF-κB pathway. A fourth molecular signature called 115 

‘neural’ used to be considered as a relevant subtype for glioblastoma but has been eventually 116 

abandoned. This subtype displayed normal astrocyte phenotype, and low molecular alteration 117 

rates, but it was demonstrated to be the outcome of non-malignant cell contamination [10]. 118 

Overall, glioblastoma cells carry multiple and different mutations at recurrence, resulting from 119 

clonal and sub-clonal evolution [11]. 120 

Current standard treatments for glioblastoma consist of combination of chemotherapy 121 

with one of the most conventional alkylating agents, the Temozolomide, and radiotherapy, 122 

following surgical resection of the tumour [12]. However, the diffuse infiltration of glioblastoma 123 

cells into the surrounding tissue makes the complete surgical removal an impossible task, thus 124 

the surgical resection is never curative, and combined Temozolomide and radiotherapy 125 
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treatments only allow for the mild prolongation of the disease-free survival [13]. So far, several 126 

promising biomarkers for both diagnosis and prognosis have been identified in glioblastoma 127 

including the expression levels of MMP-9; presence of EGFRvIII; mutations in IDH1/2 and 128 

PTEN genes; methylation status of O-6-Methylguanine-DNA Methyltransferase (MGMT) gene 129 

promoter; loss of heterogeneity of chromosome 10q and 19q; and the levels of some miRNAs 130 

like miR-128 [14]. Identification of more specific biomarkers in the future, especially in liquid 131 

and solid biopsies would allow for better diagnostic and prognostic management of 132 

glioblastoma patients. 133 

 134 

The invasive nature of the glioblastoma tumour microenvironment 135 

In the brain, the normal ECM is enriched in hyaluronic acid, tenascin and lecticans, whereas 136 

fibronectin and fibrillar collagen are relatively low, which together confer a characteristic soft 137 

brain consistency [15]. The blood-brain barrier is formed by endothelial cells surrounded by 138 

the basement membrane and embedded pericytes. This capillary network is surrounded by 139 

astrocytes that provide the cellular link to neuronal cells [16]. During glioma progression, high 140 

dysregulation of the ECM composition is observed with glioblastoma cells expressing their own 141 

pro-invasive matrix, for instance, increased levels of tenascin and vitronectin [15, 17]. 142 

Contrarily, there is an apparent reduction of fibronectin expression in glioblastoma, which 143 

further promotes cancer cell invasion [18]. Moreover, there is an increase in the synthesis and 144 

degradation of hyaluronic acid, which allows for accumulation of low molecular weight 145 

hyaluronic acid thus facilitating invasion [19]. In addition, collagen is upregulated during glioma 146 

development and progression, despite being rare in the normal brain microenvironment [20]. 147 

In brain tumours, collagen acts as a scaffold that provides adhesion sites for cancer cell 148 

migration, as well as a reservoir for ECM components and growth factors that serve as ligands 149 

for diverse signalling pathways. In particular, glioma cells produce their own collagen, 150 

particularly type IV collagen, instead of type I collagen, which contributes to high tumour cell 151 

invasiveness [21]. In aggregate, such ECM alterations and increased density during 152 

progression of glioblastoma cells can dramatically increase their invasive properties [22]. The 153 

aforementioned ECM modifications that follow the invasive nature of glioblastoma clearly 154 

indicate the underlying involvement of distinct proteolytic networks, which create a unique ECM 155 

landscape to facilitate acquisition of critical hallmarks in glioblastoma progression. 156 

The progression of anaplastic glioma towards glioblastoma is sparked by vascular 157 

occlusion, which occurs within the tumour and induces severe hypoxia and necrosis [23]. 158 

Tumour cells migrate away from the hypoxic regions, creating a moving cellular wave from the 159 

central necrotic area towards the tumour edge (infiltrating edge). These cells, referred to as 160 
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pseudopalisading cells, have been encountered and exclusively described in glioblastoma 161 

tumours. They overexpress and secrete pro-angiogenic factors, such as VEGF, hypoxia-162 

inducible factor 1 (HIF-1) and interleukin 8 (IL-8) [1], which contribute to microvascular 163 

proliferation (endothelial hyperplasia), characteristic of grade IV gliomas. These cells migrate 164 

in the white matter zone of the brain, via myelinated axon tracts and the perivascular space.  165 

In the infiltrating edge, both pseudopalisading cells and tumour-associated macrophages 166 

(TAMs) co-exist, with the latter secreting pro-invasive cytokines and growth factors. The newly 167 

formed vasculature is leaky and poorly developed with abnormal basement membrane 168 

composition. During migration in the perivascular space, tumour cells are able to detach the 169 

astrocyte end-feet from blood vessels, contributing to the subsequent detachment of pericytes, 170 

and as such, the overall disruption of the blood-brain barrier [24]. Distinct proteolytic networks 171 

in the TME seem to play pivotal roles in forming and regulating this unique invasive pattern in 172 

glioblastomas, as will be later described in more detail in this review article. 173 

Indeed, a plethora of peptidases have been shown to play a critical role in glioblastoma 174 

progression and tumour invasion, especially in the context of forming proteolytic networks, or 175 

cascades. Glioblastoma and stromal cells interact within the TME via the expression and 176 

activity of a variety of proteolytic enzymes, such as metzincins peptidases (MMPs, ADAMs, 177 

ADAMTS), KLKs and cathepsins. These enzymes act from the first stage of cell invasion 178 

observed in progression from anaplastic glioma toward glioblastoma. During this process, cells 179 

anchor to the ECM via a panel of surface ligands including integrin receptors and the ECM is 180 

degraded by the proteolytic networks, thus assisting in cell migration [25]. However, 181 

glioblastoma cell invasion is not exclusively dependent on proteolytic degradation, because 182 

cancer cells adopt an alternative mode of migration, in which adhesion forces are low, and the 183 

cells migrate via squeezing movement mediated by actin contractility [25]. This alternative 184 

mode of cancer cell migration may harbour translational and clinical significance in 185 

glioblastoma treatment, and it could represent a major limitation to the therapeutic targeting of 186 

proteases in glioblastoma, as will be elaborated throughout this review article. 187 

 188 

Metzincin proteolytic enzymes in glioblastoma 189 

Family of Metzincin endopeptidases 190 

The Metzincin family belongs to the metalloproteinase family of endopeptidases, which is one 191 

of the five families of zinc endopeptidases (the others being: serine, threonine, aspartic, and 192 

cysteine), and named after the conserved Met residue at the active site, as well as the use of 193 

a zinc ion for their enzymatic activity. Matrix metalloproteinases (MMPs) and Adamalysins 194 

(ADAMs and ADAMTS) are protein subfamilies belonging to the broad Metzincin family. The 195 



Page | 7 
 

26 human MMPs can be categorized by their structural features and preferential substrates. 196 

They share three common domains: the pro-domain, the catalytic domain, and the hemopexin-197 

like C-terminal (Hpx) domain linked to the catalytic site (Fig. 1A). MMPs can either be localized 198 

in the cell surface or be secreted. The pro-MMP (or zymogen) inactive protein can become 199 

active after the proteolytic removal of the pro-domain in the intracellular and extracellular space 200 

[26]. Secreted MMPs can be further classified according to their preferential ECM substrates. 201 

For instance, interstitial collagenases (MMP-1, -8 and -13) mainly target fibrillar collagens (type 202 

I, II and III), while gelatinases (MMP-2 and -9), also called type IV collagenases, mainly target 203 

basement membrane collagens, gelatine, and elastin. Stromelysins (MMP-3, -10 and -11) are 204 

unable to degrade collagens, but instead target several ECM proteins, such as proteoglycans, 205 

fibronectins, and laminins. Finally, matrilysins (MMP-7 and -26) target similar substrates as 206 

stromelysins, but do not contain the Hpx domain [27] (Fig.1A). MMPs are also able to cleave 207 

inactivated forms of other MMPs (pro-MMPs), as well as pro-forms of growth factors, resulting 208 

in their subsequent activation. MMPs that are localized to the cell surface (MMP-14, -15, -16, 209 

17, 24, -25) are activated during their trafficking to the cell membrane [27]. In the extracellular 210 

space, MMPs are susceptible to inhibition by tissue inhibitors of metalloproteinases (TIMPs). 211 

TIMPs can bind to the active site of proteases to form a complex that will be recognized and 212 

engulfed by macrophages [28]. MMPs are further activated when secreted without their 213 

respective inhibitors, therefore, cell compartmentalization is critical for the tight regulation of 214 

their activity. MMPs function in a variety of physiological processes that require a specific ECM 215 

(re)arrangement, as well as in multiple pathological processes, such as inflammation, 216 

autoimmunity, and cancer. In the brain, they significantly contribute to tissue formation, 217 

neuronal network remodelling and blood-brain barrier integrity. Importantly, MMPs are involved 218 

in most brain diseases with a neuro-inflammatory component (i.e. Alzheimer’s and Parkinson’s 219 

diseases) and in CNS cancers [16]. MMPs implicated in cancer progression are mainly 220 

expressed in the tumour cells, but also in the tumour-associated stromal cells. 221 

The subfamily of Adamalysins contains the Disintegrin and metalloproteinases 222 

(ADAMs) membrane-bound proteins, which primarily exert functions in the pericellular space. 223 

ADAM family members contain several conserved domains: the pro-domain; the MMP domain 224 

responsible for a sheddase activity (which is not functional in every ADAMs); a disintegrin 225 

domain  for integrin binding and cell adhesion; a cysteine-rich domain for cell adhesion via 226 

interaction with syndecan; a cytoplasmic domain which serves as phosphorylation site domain; 227 

and an EGF-like domain with unknown function [29] (Fig.1A). ADAMs support cell proliferation 228 

and apoptosis via growth factor shedding, but also participate in cell adhesion, migration, and 229 

signalling [30]. Another subfamily of Adamalysins, represented by the ADAM via 230 

thrombospondin motif (ADAMTS) proteins, are generally secreted and soluble proteins 231 

containing a thrombospondin domain that allows them to interact with adhesion molecules 232 
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such as integrin receptors. Unlike ADAMs, ADAMTSs, do not contain the EGF-like, 233 

transmembrane, and cytoplasmic domains (Fig.1A). They also exhibit proteolytic activity, 234 

similar to other members of the family, and, as such, they mainly target ECM proteins [31]. 235 

Role of metzincin endopeptidases in glioblastoma progression 236 

Both ECM remodelling and degradation mediated by MMP-induced proteolytic cleavage play 237 

a major role in cancer cell invasion. MMP-14 disrupts fibrillar collagen, therefore inducing its 238 

rearrangement in the pericellular space and contributing to cancer cell invasion [25]. ADAMs 239 

have similar and complementary mechanisms of action in cancer progression with MMPs. 240 

Notably, they suppress apoptosis induction via the shedding of Fas ligand from the cell surface 241 

[32], cleave E-cadherin [33], and activate EGFR ligands [34]. In general, there is evidence 242 

demonstrating that both MMPs and ADAMs together contribute to cancer progression and are 243 

part of podosome-related proteases. In actin-rich podosomes of migrating cells, the scaffold 244 

protein Tks5/FISH binds to ADAMs where MMP-2, -9 and -14 are present and promote 245 

invasion via direct ECM degradation [35].  246 

In glioma, the expression of multiple MMPs (MMP-1, -2, -7, -9, -11, -12, -14, -15 and -247 

19) has been shown to be positively correlated with glioma grades [36], while 11 MMPs (MMP-248 

1, -2, -7, -8, -9, -10, -11, -14, -15, -19 and -23)  have been shown to be significantly 249 

overexpressed in glioblastoma [37] (Table 1). Apart from MMP-15 and -19, the overexpression 250 

of these MMPs is correlated with poor survival. It is worth noting that the expression of furin, 251 

an enzyme that activates MMPs, is strongly associated with poor overall survival in 252 

glioblastoma [2], with the furin inhibition in astrocytoma cells leading to reduction in cell 253 

migration [38]. In general, more than half of human MMPs are correlated with glioblastoma 254 

progression, with MMP-2 and -9, being the most significant ones.  255 

MMP-9 in glioblastoma progression 256 

MMP-9, among all MMPs, has been considerably involved in glioblastoma progression. MMP-257 

9 is considered a significant prognostic factor, since its overexpression correlates with 258 

increased invasive glioma grades [39]. Low MMP-9 expression is associated with favourable 259 

outcome and response to Temozolomide treatment [40]. Overexpression of MMP-9 triggers 260 

proliferation in glioblastoma cell lines, while its blockade decreases the volume, weight, 261 

microvessel density, and proliferation activity in mouse tumours [41]. Several mechanisms of 262 

regulation have been suggested for MMP-9 activation in glioblastoma, including the uPA/uPAR 263 

system. Urokinase plasminogen activator (uPA), a serine protease, is upregulated in high-264 

grade gliomas [42], and converts plasminogen into plasmin, with better efficacy when anchored 265 

to its receptor uPAR. Plasmin, in turn, is responsible for both MMP and uPA activation [2]. uPA 266 
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is also capable of directly activating MMP-9 via proteolytic cleavage, which in turn, degrades 267 

fibronectin and therefore leads to glioblastoma progression [43] (Fig.2A). 268 

MMP-9 is also a component of several intracellular signalling pathways. In 269 

glioblastoma, MMP-9 expression is positively correlated with EGF and EGFR expression. 270 

MMP-9 and EGFR are both present in the cerebrospinal-fluid (CSF) of patients and their levels 271 

decline after tumour resection. MMP-9 transcription is stimulated by EGFR and EGFRvIII in 272 

glioblastoma, with signalling pathways involved such as PI3K/AKT (PKB), STAT3/5, NFk-B, 273 

ERK and Sonic hedgehog (SHH) [44-46]. MMP-9 can cleave several ECM components, 274 

preferentially type IV collagen, gelatine, and elastin; but also, regulates cell-ECM interactions: 275 

MMP-9 is able to act on cell motility via direct cleavage of CD44, a surface glycoprotein 276 

involved in cell-ECM interactions via binding to several ECM ligands, mainly hyaluronic acid. 277 

Shedding of CD44 by MMP-9 releases its extracellular portion and contributes to cell migration 278 

and invasion [47] (Fig.2B). In an in vitro model of glioblastoma carrying PTEN mutation, 279 

deficiency of the PTEN phosphatase activity leads to hyaluronic acid-induced phosphorylation 280 

of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) 1/2. These 281 

signals further lead to increased invasion via MMP-9 expression [48].  282 

Finally, MMP-9 has been shown to function as a mediator of neo-angiogenesis. In 283 

glioblastoma, MMP-9 is expressed in proliferative endothelial cells [49] where it can degrade 284 

basement membrane, clearing up the space for endothelial cell migration and therefore 285 

supporting neo-vasculature formation (Fig.2C). This is further supported by the fact that MMP-286 

9 expression is correlated with VEGF expression in glioblastoma, which is the most crucial 287 

regulator of angiogenesis. Proliferation and migration of endothelial cells via VEGF in 288 

glioblastoma is dependent on the binding of VEGF to VEGFR-2, which is upregulated [50]. 289 

MMP-9 expression, induced by the hypoxia factor HIF-1, leads to increased VEGF action by 290 

acting on its bioavailability within the extracellular space [51] (Fig.2C). MMP-9 is also 291 

expressed by cells resembling vascular smooth muscle cells and pericytes, and contributes to 292 

their proliferation in glioblastoma [52].  293 

MMP-2 and -14 in glioblastoma progression 294 

Similar to MMP-9, MMP-2 also plays a prominent role in glioblastoma progression, mainly 295 

through ECM and cell-adhesion proteolytic degradation (Fig.2B). MMP-2 is localized in the 296 

tumour neo-vasculature in glioblastoma [49], and is mainly expressed in endothelial cells and 297 

pseudopalisading cells surrounding the peri-necrotic areas. High MMP-2 expression is 298 

associated with advanced tumour grade and poor survival. Interestingly, the hepatocyte growth 299 

factor (HGF), which is co-expressed with MMP-2 and c-MET (the receptor of HGF) is also 300 

associated with shorter survival in glioblastoma [53]. MMP-2 and HGF are both activated by 301 

plasmin in the extracellular space (Fig.2A) and c-MET in glioblastoma is associated with 302 
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endothelial cell proliferation, migration, and aberrant vascularization [54]. Similar to MMP-9, 303 

MMP-2 is also induced by hypoxia, but is mostly expressed within the pseudopalisading area 304 

compared to endothelial cells [55]. Angiopoietin-2 (Ang-2), a protein which is upregulated in 305 

the infiltrative area of glioblastoma, interacts with avb1 integrin. This interaction triggers several 306 

intracellular signalling relays, which include: FAK, ERK1/2 and c-jun N-terminal kinase (JNK) 307 

and leads to MMP-2 expression, hence collectively contributing to increased angiogenesis and 308 

invasion [56] (Fig.2C).  309 

MMP-2 is responsible for activation of growth factors via two major mechanisms. It can 310 

directly cleave and activate the latent forms of TGFb1 and TGFb2, but can also release, via 311 

proteolytic cleavage, VEGF, bFGF and TGFa that are sequestered to the ECM, making them 312 

bioavailable within the extracellular space [57].  MMP-2 proteolytically degrades collagen with 313 

the help of integrin binding and its expression is also mediated via collagen binding to collagen 314 

receptors. Activation of MMP-2 and subsequent invasion in glioblastoma is upregulated after 315 

binding of Discoidin domain receptor 1 (DDR1)a, overexpressed in glioblastoma, to collagen 316 

[58] (Fig.2B). MMP-2 also mediates pro-oncogenic intracellular signalling via indirect 317 

interaction with integrins. In glioblastoma, MMP-2 is activated on the cell surface by a protein 318 

complex that includes the vitronectin-binding integrin avb3, which is mostly prevalent in the 319 

invasive edge and newly formed blood vessels in glioblastoma [59].  Furthermore, MMP-2 can 320 

form a multi-protein complex with integrin avb1, which upregulates IL-6 expression, activation 321 

of STAT3 and expression of c-Myc and cyclin D1, leading to cancer cell survival signalling [60].  322 

MMP-14 (MT1-MMP) is another endopeptidase whose expression is associated with 323 

increased VEGF expression in glioblastoma [50]. Co-expression of MMP-14 and MMP-19 is a 324 

predictive survival factor in glioblastoma patients [61]. MMP-14 is predominantly expressed by 325 

TAMs in glioblastoma and acts mainly by activating MMP-2 after cleavage of its pro-domain. 326 

MMP-14 expression in TAMs is induced through activation of Toll-like receptors (TLRs) and 327 

ensuing activation of the p38 MAPK pathway in glioblastoma cells [62] (Fig.2A). Importantly, 328 

in glioblastoma, endothelial cells undergo an endothelial-to-mesenchymal transition (EMT) 329 

during which the cells acquire a ‘fibroblast-like’ phenotype while maintaining their original 330 

endothelial functions. In those cells, MMP-14, whose expression is mediated by c-MET 331 

activation, mediates direct cleavage of vascular endothelial (VE)-cadherin [54], contributing to 332 

increased vascular permeability. 333 

Other Metzincins in glioblastoma progression 334 

Other members of the MMP family, have also been found to be implicated in glioblastoma 335 

progression and invasion to a lesser extent. These include: MMP-1 via the MAPK pathway 336 

[63], MMP-3 via the NF-kB pathway [64], MMP-7 and ADAM-9 via the ERK pathway [65, 66] 337 

and MMP-12 and ADAM-9 via tenascin-C [67, 68]. MMP-1 is upregulated in glioblastoma along 338 
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with the protease-activated receptor 1 (PAR1) and their co-expression is predictive of poor 339 

prognosis. MMP-1 acts by cleaving PAR1, thus inducing its activation and contributing to 340 

glioblastoma progression [69]. Expression of MMP-1, -11 and -19 have been positively 341 

correlated with glioma grades and potentially constitute diagnostic markers in glioblastoma 342 

[70]. MMP-11 expression in glioblastoma is localized in endothelial cells, whereas MMP-1 and 343 

MMP-19 are expressed in the cytoplasm of glioblastoma cells, with MMP-19 strongly 344 

expressed in the invasive edge. Likewise, MMP-26 expression positively correlates with glioma 345 

grades in patients and its overexpression in vitro results in increased invasion ability and 346 

microvessel density [71, 72]. Finally, invasion in glioblastoma is also mediated by MMP-13, 347 

whose expression is at least in part the result of the integrin-liked kinase (ILK)-mediated 348 

activation of the ROCK1/fascin-1 pathway [73]. Its downregulation promotes inhibition of 349 

glioblastoma stem cells invasion capacity in vitro [74]. Interestingly, the implication of 350 

endopeptidases, both ADAMs and MMPs, has been correlated with EGFR activation in 351 

multiple contexts in glioma: e.g. ADAM-17 during the transition to mesenchymal subtype [75, 352 

76] and MMP-1 in invasion of glioma cell lines [63].  353 

Similar to MMPs, ADAMs and ADAMTSs also play prominent roles in glioblastoma 354 

progression. ADAMTS-5 is overexpressed in glioblastoma cell lines in vitro and in glioblastoma 355 

patients, and may contribute to invasion as it is able to degrade brevican, a member of the 356 

lectican family overexpressed in glioblastoma ECM [77]. ADAM-9 has been positively 357 

correlated with advanced glioma grades [78]. In addition, hypoxia induces ADAM-17 358 

expression in glioblastoma and contributes to the invasion and malignant phenotype via the 359 

EGFR/PI3K/AKT pathway activation [79]. ADAM-17 inhibition hampers tumour growth in mice 360 

whereas its overexpression induces TGF-α and VEGF secretion [79]. Finally, ADAMs, which 361 

are membrane-bound, exert a sheddase activity on the surrounding membrane-bound pro-362 

growth factors, resulting in the release of their activated form in the extracellular milieu 363 

(Fig.2A).  For instance, ADAM-12 is overexpressed by glioblastoma cells and associated with 364 

increased proliferation activity via the shedding of heparin-binding factor EGF (HB-EGF) [30].  365 

Overall, MMP-9, but also MMP-1, -2, -7, 11, and -14, represent very attractive 366 

biomarkers and therapeutic targets for glioblastoma: first, they can serve to anticipate the 367 

survival and identify the grade; secondly, they are significantly overexpressed and involved in 368 

the disease progression. Of note, these biomarkers have been essentially assessed in solid 369 

biopsies from patients, except for MMP-9, whose level was also detected in the CSF [44]. On 370 

the other hand, some other MMPs seem to be promising but do not necessarily fit all four 371 

above-mentioned characteristics. Some ADAM/ADAMTSs seem to represent interesting 372 

targets, but for most of them, their potential as biomarkers needs further elucidation, although 373 

ADAM-9 and -17 should be useful at least as solid biopsy diagnostic biomarkers (Table1).  374 
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Kallikrein protein family in glioblastoma 375 

Kallikreins (KLKs) and the kallikrein-kinin system 376 

The kallikrein-kinin system is involved in vascular permeability, inflammatory response, 377 

thrombosis and blood coagulation [80]. The kallikrein family is a family of secreted serine 378 

proteases [81] encompassing the human tissue kallikrein-related peptidases (KLKs). KLKs are 379 

expressed by a variety of tissues; one of the most well established is the prostate-specific 380 

antigen (PSA), also termed KLK3, which has broadly been used as a biomarker for prostate 381 

cancer [82]. KLKs share a common structural motif: they contain a signal peptide and a pro-382 

domain and are activated after proteolytic cleavage. KLKs have a single active site comprised 383 

of a triad of serine, aspartic and histidine residues as also found in the active site of trypsin 384 

[83] (Fig.1B). It is known that KLKs convert kininogens to kinins. KLKs are implicated in a 385 

variety of  pathophysiological processes, including cancer [84]. Physiologically, KLKs are 386 

involved in inflammatory response, skin desquamation, enamel formation, and semen 387 

liquefaction. Of note, they act on PAR receptors and can modulate signalling pathways, 388 

degradation of the ECM, cleavage of junction proteins, and EMT, thereby playing a critical role 389 

in cancer invasion and migration [85]. 390 

 391 

KLKs in glioblastoma progression 392 

Growing evidence suggests that KLK deregulation and overexpression in a variety of 393 

malignancies have uncovered their potential as cancer biomarkers [82]. KLKs are significant 394 

mediators of cancer progression, for instance via releasing growth factors from the ECM 395 

network [86], including the IGF active form [87]. In addition, KLK4 and 5 mediate activation of 396 

HGF via direct cleavage and activation of its potent activator, pro-HGF activator (pro-HGFA) 397 

[88]. Accumulating evidence also suggests the involvement of KLKs in the central nervous 398 

system (CNS) normal physiology and pathological processes [89]. KLKs are notably implicated 399 

in CNS-mediated diseases such as Alzheimer’s disease and multiple sclerosis (KLK6) [85]; 400 

bipolar disease (KLK8) and intracranial tumours (KLK6 and 8) [90, 91]. To date, KLK6, KLK7 401 

and KLK9, which are preferentially expressed in the CNS [92], have demonstrated prognostic 402 

value in glioblastoma.  403 

KLK6 is highly expressed in the brain and its expression is upregulated in glioblastoma 404 

compared to lower-grade brain tumours, such as meningiomas. KLK6 expression is correlated 405 

with higher tumour grades and histologic types in intracranial tumours, with poor post-surgical 406 

survival in glioblastoma patients [90]. In the brain, KLK6 plays major roles in normal CNS 407 

functions in different cell types, mainly through its interaction with PAR1 (which can also be 408 

activated by thrombin). KLK6 activates the ERK1/2 pathway through activation of PAR1 to 409 

modulate the myelination process in normal oligodendrocytes [93]. In astrocytes, KLK6 can 410 
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modulate inflammation and plasticity through activation of PAR1, which results in cellular 411 

stellation, nuclear translocation of b catenin, cellular aggregation, and IL-6 secretion [94]. In 412 

glioblastoma, KLK6 also cleaves and activates PAR1 and PAR1 is significantly upregulated in 413 

patients (Fig.2A). This interaction induces resistance to apoptosis and to cytotoxic agents via 414 

increased level of Bcl and inhibition of Bim [95]. Recently a specific inhibitor, which prevents 415 

activation of PAR1 at thrombin (and thrombin-like protease) cleavage site, resulted in 416 

decreased proliferation and improved survival in vivo in glioblastoma [96]. This inhibitor was 417 

not designed to block KLK6-mediated activation of PAR1; however, this study highly supports 418 

that the KLK6/PAR1 pathway could be a potential target in glioma.  419 

 Likewise KLK6, KLK7 and KLK9 expressions have been shown to be associated with 420 

poor patient prognosis and poor survival in glioblastoma [97]. Another study has suggested 421 

that KLK7 overexpression in glioblastoma cell lines significantly enhanced invasiveness in an 422 

in vitro Matrigel assay [91]. It is also worth noting that KLK genes are arranged tandemly on 423 

chromosome 19q (19q13.33) and that gain of 19q chromosome is a poor prognostic factor in 424 

glioblastoma while loss of chromosome 19q is associated with better survival [98].  425 

Overall, KLK6 seems to be an ideal biopsy biomarker for glioblastoma patients as it 426 

can anticipate both grade and survival. For KLK7 and KLK9, there is a lack of evidence in 427 

respect of their potential use in diagnosis. Finally, studies investigating the effect of kallikrein 428 

inhibition in glioblastoma still remains to be elucidated before this type of therapeutic approach 429 

may be considered in clinics (Table 1).  430 

 431 

Cathepsin peptidases in glioblastoma 432 

Cathepsin peptidases 433 

Cathepsins belong to an extensive family of peptidases, which are mostly active in endosomes 434 

and lysosomes in normal conditions and are involved in antigen presentation and processing, 435 

activation of proteins, lysosomal death pathway, autophagy, and aging. They are distributed in 436 

different families of proteases: cysteine, serine, and aspartyl proteases. Cathepsins have a 437 

heterogeneous panel of substrates, mainly within the extracellular space, which includes the 438 

Bcl2 homolog, various chemokines, transmembrane receptors, adhesion proteins and ECM 439 

components [99]. Most cathepsins have a main endopeptidase activity. However, some have 440 

both an endo- and an exopeptidase activity, which is the case for cathepsin B, while others are 441 

exclusively exopeptidases (e.g. cathepsins X/Z and C) [100]. Cysteine cathepsins belong to 442 

the papain family of cathepsin proteases. They are synthetized as inactive pro-enzymes 443 

(Fig.1B). Upon cleavage of the N-terminal signal peptide in the endoplasmic reticulum and 444 
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glycosylation in the Golgi apparatus, the pro-peptide is targeted to the lysosome. Proteolytic 445 

cleavage of the pro-enzyme is then required for activation and is initiated by acidic pH in 446 

lysosomes. In the extracellular compartment, cysteine cathepsins only remain weakly active at 447 

neutral pH, except for cathepsin S [101]. Cathepsins play a role in many diseases such as 448 

cancer, as well as neurodegenerative, inflammatory, and cardiovascular disorders [99]. 449 

Cysteine cathepsins comprise CatB, L, K, S, and X. They contain three conserved residues 450 

(cysteine, histidine, and asparagine) within their single active site (Fig.1B). CatB and L are 451 

expressed in several tissues including the brain, whereas CatK and S display more restricted 452 

expression. For instance, CatL is expressed in astrocytes, neurons, and microglial cells, while 453 

CatK is mainly expressed by hematopoietic and epithelial cells. CatB can be activated by 454 

autocatalytic cleavage of the pro-domain, or by CatD, or by other proteases such as uPAR and 455 

elastases [102]. In addition to normal protein secretion, CatB secretion occurs via shedding of 456 

membrane vesicles and exosomes [103]. CatD is a bilobed protein belonging to the family of 457 

aspartyl proteases, with two critical aspartic residues, one on each lobe, belonging to its active 458 

sites (Fig.1B). In the brain, in addition to ECM degradation, CatD is responsible for specific 459 

cleavage and processing of myelin and other brain-associated proteins, conversion of pro-460 

collagen into collagen and activation of the inhibitors of cysteine proteases [104]. Cathepsins 461 

and MMPs have been shown to be part of a common proteolytic network. Indeed, CatB has 462 

been found to proteolytically activate uPA and MMPs, but also to inhibit TIMP-1 [105-107]. In 463 

addition, CatK has been shown to activate MMP-9 through proteolytic cleavage [108], 464 

subsequently promoting cancer progression and metastasis. 465 

 466 

CatB and K in glioblastoma progression 467 

Both CatB expression and enzymatic activity are correlated with high tumour invasion and 468 

grading in glioblastoma. CatB in glioblastoma is relocated from the lysosomal compartment to 469 

the cell membrane and is expressed in invasive tumour areas [109, 110]. Moreover, it has 470 

been demonstrated that CatB contributes to glioblastoma invasiveness and angiogenesis both 471 

in vivo and in vitro via MMP-9 and VEGF upregulation, hence this protease represents a 472 

potential therapeutic target [111]. Other studies have shown that simultaneous downregulation 473 

of CatB, MMP-9 and uPAR decreases cancer cell-ECM adhesion via reducing the active 474 

integrins, consequently inhibiting cell migration [112]. Another study demonstrated that CatB 475 

and uPAR upregulation results in activation of cycline/CDK via phosphorylation of ERK, 476 

ensuing the parallel induction of c-Myc and the downregulation of p27 (an inhibitor of CDK) 477 

[113]. In addition, the concomitant expression of CatB and uPAR induces angiogenesis by 478 

upregulation of VEGF expression through the JAK/STAT signalling pathway [114].  479 

CatB is active and highly expressed throughout the entire tumour by glioblastoma cells 480 

and glial cells. On the contrary, CatK is less active, and expressed by glioblastoma cells and 481 
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glioma stem cells (GSCs) that are restricted to the peri-vascular area [115]. Among the GSCs, 482 

CXCR4-expressing cells are attracted by the chemoattractant stromal-derived factor-1a (SDF-483 

1a), which is contained in the perivascular niche and secreted by endothelial and stromal cells. 484 

CatK is responsible for the cleavage and inactivation of SDF-1a. Such inactivation promotes 485 

the release of GSCs out of the niche, which further induces loss of stemness and increased 486 

sensitivity to radiation and chemotherapy. Therefore, upregulation of CatK could serve as a 487 

strategy to enhance therapeutic efficacy in glioblastoma. Other cathepsins might be able to 488 

inactivate SDF-1a, like CatB for example, which is highly present in tumour endothelial cells in 489 

GBM [116, 117]. Moreover, CatK might be involved in the tumorigenic mechanisms similar to 490 

other cysteine cathepsins. For the above-mentioned reasons, it might be more tempting to 491 

target SDF-1a directly, instead of CatK.  492 

 493 

Other cathepsins in glioblastoma progression 494 

Cathepsin D (CatD), an aspartyl protease, is a potential biomarker for glioblastoma, and its 495 

expression positively correlates with high histological grade, poor prognosis and 496 

leptomeningeal dissemination [104]. CatD is a major component of lysosomes and a high 497 

number of lysosomes are found at the plasma membrane of GBM cells, when compared with 498 

normal astrocytes. Inhibition of lysosome exocytosis prevents glioblastoma cell invasion in a 499 

3D model and reduce the number of lysosomes on the cell surface, mediated by inhibition of 500 

CatD exocytosis [118] (Fig.2C). CatS, which is a cysteine cathepsin, is not expressed in normal 501 

glial cells, neurons, or endothelial cells, but is expressed in glioblastoma cells. Moreover, CatS 502 

expression is higher in glioblastoma compared to lower-grade glioma cells and inhibition of 503 

CatS in vitro reduces the invasion of glioblastoma cells [119]. CatS has also been suggested 504 

as a prognostic factor in glioblastoma [120]. Contrarily, other studies argue against the 505 

involvement of CatS in glioblastoma invasion [121], suggesting that its role in glioblastoma 506 

progression needs to be further elucidated. In GBM tissue samples, CatZ (or X), another 507 

cysteine cathepsin, can be found highly expressed in peri-arteriolar GSC niches but also in 508 

GBM cells and endothelial cells throughout the entire tumour. CatZ/X expression is also 509 

associated with poor prognosis and thus constitutes a potential prognosis factor [115, 122]. 510 

 Serine cathepsins (A and G) have not been shown to be overexpressed or be 511 

responsible for invasion in glioblastoma. However, the absence of CatG in glioblastoma cells 512 

could support tumour progression as was recently discussed. CatG is not expressed in 513 

glioblastoma cells and low expression is found in endothelial cells within the tumour 514 

microvasculture [123]. GSCs do not contain CatG, which normally cleaves MHC class I in 515 

immune cells. Cleavage of MHC class I molecule renders the cells recognizable to natural killer 516 
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cells. Increasing the levels of CatG in glioblastoma cells, using lactoferrin, could thus be an 517 

interesting therapeutic strategy in glioblastoma as this would enhance immune recognition and 518 

elimination of tumour cells [124].  519 

In aggregate, CatB, L, D, S and Z/X are upregulated in glioblastoma. CatB, D, S, and 520 

Z/X display promising features, both as biopsy biomarkers and therapeutic targets (Table 1). 521 

Finally, there is some supporting evidence that CatL could be used as a biomarker to anticipate 522 

response to radiotherapy.   523 

 524 

  Strategies for therapeutic targeting of proteolytic enzymes in glioblastoma  525 

   MMP-targeted therapies in glioblastoma 526 

Small molecule MMP inhibitors (MPIs) have been previously developed for contextually 527 

impeding proteolysis-driven cancer progression. The mechanisms of their action are divided 528 

into different categories. The peptidomimetic inhibitors (i.e. Batimastat and Marimastat) mimic 529 

the structure of collagen at the MMP cleavage site and, as such, act as competitive inhibitors. 530 

On the other hand, non-peptidomimetic inhibitors (i.e. Tanomastat and Prinomastat) mimic the 531 

3D conformation of the MMP active site [26]. In addition, chemically modified tetracyclines 532 

have been used to inhibit MMP activity via zinc binding. Other specific molecules that have 533 

been developed to inhibit specific MMPs (MMP-2 and -9) have also been suggested for 534 

therapies, such as CGS-27023A and SB-3CT [26].  535 

Two drugs that function as MMPs inhibitors, Marimastat and Prinomastat have both 536 

revealed promise in treating glioblastoma. Marimastat is a broad spectrum metzincin inhibitor, 537 

which ultimately was shown to have limited impact on progression-free and overall survival. In 538 

a recent study, the use of Marimastat in combination with Temozolomide and radiation resulted 539 

in downregulation of MMP-14 via the parallel downregulation of microRNA374 and induction 540 

of cell cycle arrest. Of note, Marimastat specifically inhibits the growth of cancer cells but not 541 

that of normal astrocytes [125]. However, in Phase II trial, the use of Marimastat with 542 

Temozolomide in anaplastic glioma not only showed very limited improvement of 543 

chemotherapy efficacy compared to standard treatment, but also generated additional joint 544 

toxicity [126]. Prinomastat, on the other hand, is a relatively specific MPI that targets MMP-2, 545 

-3, -9, -13 and -14, which all together highly contribute to angiogenesis and invasion observed 546 

in glioblastoma as mentioned above. Prinomastat-treated gliomas in mice are smaller in 547 

tumour size, have lower rates of proliferation and are less invasive compared to untreated 548 

gliomas [127].  This drug has been associated with high toxicity and lack of efficacy during 549 

phase III clinical trials [128], hence, its potential applicability is currently set aside. 550 
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Other molecules that are more selective MPIs have also been tested in glioma models. 551 

MMI-166, a third-generation MPI that selectively inhibits MMP-9, -2 and -14, reduces invasion 552 

and angiogenesis in vitro and hinders tumour growth in mice [129]. Moreover, synthetic MPIs 553 

that specifically target the gelatinases MMP-2 and -9 reduce glioblastoma cell invasion. For 554 

instance, inhibitors such as the N-O-isopropyl sulfonamido-based hydroxamate compounds 555 

(code CGS-27023A) were found to reduce MMP-2 at mRNA and protein levels. In combination 556 

with Temozolomide, they also reduce invasiveness and cell viability in vitro and importantly, 557 

they work at low concentrations, which would help to reduce toxicity [130]. Recent technologies 558 

for improved therapies have now been suggested for MMPs. Nanoparticles (NPs) are shown 559 

to affect MMP expression and activity in vivo and in vitro. Carbon-based NPs seem to have 560 

inhibitory effects on MMPs, but the factors by which these effects are modulated are not yet 561 

fully understood [131]. Alternatively, delivery of Marimastat to the TME by lysolipid-containing 562 

thermosensitive liposomes (LTSLs) has also been tested for their high vascular permeability 563 

[132]. These LTSLs deliver their content only after heat treatment at 42 oC. The treatment at 564 

the in vivo and in vitro level allowed MMP-2 and -9 inhibition as well as reduction of metastasis 565 

and angiogenesis in lung cancer models. These models may constitute a potential novel 566 

treatment for glioblastoma. 567 

Strategies to inhibit MMPs in glioblastoma are still under investigation. The most recent 568 

studies have revealed several novel inhibitors of MMPs while simultaneously highlighting a 569 

better understanding of their transcriptional regulation. The transcription factor NFE2L2 is 570 

upregulated in Temozolomide-resistant glioblastoma cells and responsible for MMP-2 571 

expression via direct binding to its promoter region. The use of Diosgenin to inhibit NFE2L2 572 

effectively reduced Temozolomide resistance in glioblastoma cells, via reduction of MMP-2 573 

expression level, increased apoptosis, and decreased migration [133]. Another study revealed 574 

that the ectopic expression of the transcription factor brain and muscle ARNT-like 1 (BMAL1) 575 

could be used to decrease AKT phosphorylation level and MMP-9 expression and thus, inhibit 576 

migration and proliferation of glioblastoma cells [134]. Sinomenine hydrochloride, a bioactive 577 

alkaloid, is able to decrease invasion of glioblastoma cells through activation of autophagy and 578 

suppression of NFkB activation with subsequent decrease in MMP-2/MMP-9 level [135]. At 579 

last, the actin-related protein 10 (ARP10) has been shown to inhibit MMP-14 auto-proteolytic 580 

processing, and consequently MMP-2 activation, in addition to trigger autophagy-mediated cell 581 

death [136]. These recent studies confirm that MMPs still represent promising targets in 582 

glioblastoma and that investigations elucidating their mediated mechanisms would still be 583 

beneficial for development of novel therapeutics.   584 

To sum up, small molecule MMP inhibitors (MPIs) have been previously developed, 585 

and some of them have been tested in glioblastoma patients. Nonetheless, MPIs so far have 586 

shown limited efficacy in clinical trials for improving the survival potential. This could be partly 587 
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explained by the tumour suppressive roles that MMPs have been shown to display during 588 

specific time-windows of tumour progression. For instance, MMP-9 is responsible for a rapid 589 

increase of angiogenesis at early stage of tumour progression during which it degrades 590 

basement membrane components. However, the resulting products of basement membrane 591 

cleavage by MMP-9 can have an anti-angiogenesis effect. This has been demonstrated for 592 

tumstatin, a cleavage product of MMP-9, which hampers tumour development during the later 593 

stage of progression [137]. In addition, several protective effects against cancer have been 594 

found for MMPs in different types of cancer. For example, MMP-12 in melanoma has a clear 595 

anti-angiogenesis effect via stimulation of angiostatin [138]. MMP-19 in nasopharyngeal 596 

carcinoma is downregulated and its transfection in nude mice suppresses tumour formation 597 

[139]. MMP-8 is a good prognosis factor in breast cancer and has been found responsible for 598 

promoting decreased invasion [140]. In prostate cancer, MMP-26, which has pro-apoptotic 599 

functions, is highly expressed at early stage and decreases during cancer progression [141]. 600 

Nevertheless, it is unclear if these MMPs also have tumour-suppressive effects in 601 

glioblastoma, but lessons should be learned from their application in other types of cancer, and 602 

careful considerations should be made for avoiding similar drawbacks in the glioblastoma 603 

therapeutics field. 604 

 605 

KLK inhibitors as a potential therapeutic strategy in glioblastoma 606 

KLK-targeted therapies have also been suggested in certain types of cancer, supporting their 607 

potential role as therapeutic targets for glioma. For instance, it has been suggested that PSA 608 

should be targeted in prostate cancer. PSA has been shown to be involved in prostate cancer 609 

progression by stimulating cell proliferation in vitro and cancer growth in vivo [142]. Several 610 

peptide-based or small molecule inhibitors for PSA have been developed and tested in vitro 611 

and in vivo [142]. Other KLKs represent interesting therapeutic targets in cancer as well. For 612 

instance, inhibition of KLK7, which is upregulated in pancreatic cancer, resulted in decreased 613 

proliferation and migration in vitro [143]. A high number of KLK inhibitors with different 614 

molecular mechanisms of action are already available [144].  615 

Regarding glioblastoma, there is an evident lack of preclinical studies related to the 616 

inhibition of kallikreins. Therefore, such studies need to be further conducted for suggesting 617 

KLKs as potential therapeutic targets in glioblastoma. As mentioned above, in glioblastoma, 618 

KLK6 promotes resistance to apoptosis [95]; KLK7 overexpression promotes increased 619 

invasion in vitro [91]; and both, along with KLK9, are associated with poor survival in patients 620 

[97]. These results make kallikreins attractive candidates for glioblastoma therapeutics, yet the 621 

effect of their inhibition in vitro and in vivo needs to be elucidated. Moreover, the potential 622 

protective role of KLKs during cancer progression must be considered, as in the case of MMPs. 623 

For instance, KLK8 is known to be a good prognosis marker in ovarian cancer. Importantly, 624 
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degradation of fibronectin induced by KLK8 is responsible for suppression of cell motility via 625 

suppression of integrin signalling [145]. Thus, the ability of proteases to degrade the ECM can 626 

confer protective role in cancer, even though these cases remain rare so far. Overall, KLK6 627 

and KLK7 are the most promising targets for glioblastoma treatment among all known KLKs.  628 

Cathepsin inhibitors as a potential therapeutic strategy in glioblastoma 629 

Inhibition of cathepsin peptidases in cancer has also been investigated. KGP94 is a small 630 

inhibitor of CatL and has been tested in vitro in breast and prostate cell lines [146]. This study 631 

showed that CatL has pro-migratory effects on these cells and this can be mediated both by 632 

increased lysosomal exocytosis and increased CatL intracellular level; importantly, this effect 633 

can be prevented by KGP94. Inhibition of cathepsins in glioblastoma could represent an 634 

effective targeted chemotherapeutic approach. Indeed, as mentioned above, CatB seems to 635 

highly support glioma progression and CatD seems to promote invasion of glioblastoma cells 636 

via lysosomal exocytosis [118]. Recent studies investigating CatB inhibition in glioblastoma 637 

have demonstrated encouraging results. CatB/MMP-2-induced invasion in glioblastoma has 638 

been successfully inhibited in vitro by caffeine through the ROCK/FAK/ERK pathway, which 639 

was also accompanied by augmentation of TIMP1 expression [147]. Additionally, CatB was 640 

shown to be a direct target of inhibition by miR140 and this inhibition resulted in decreased 641 

temozolomide-resistance and cell migration in vitro and in vivo [148].  642 

Recently, a study demonstrated that CatD level is upregulated in radioresistant 643 

glioblastoma cells. Inhibition of CatD in those cells led to a decrease in autolysosome formation 644 

and autophagy level, which were associated with increased radiosensitivity. CatD seems to 645 

act on autophagy level by impeding fusion between autophagosomes and lysosomes. This 646 

study revealed that CatD is a promising target in glioblastoma treatment with irradiation [149]. 647 

Interestingly, other lysosomal cysteine cathepsins seem to represent promising targets within 648 

the same context. Glioma cells that undergo irradiation display increased invasiveness and 649 

migration, a phenomenon which represents limitations in clinics. The increased invasion 650 

observed in glioma cell lines undergoing X-ray treatment are accompanied by an augmentation 651 

of CatL level and inhibition of CatL successfully leads to decreased invasion in those cells 652 

[150]. In addition, CatB was recently shown to be the most upregulated protease after 653 

irradiation of glioblastoma cell lines. Its inhibition successfully increased radiosensitivity via 654 

hampering the Homologous Recombination DNA repair system [151]. Finally, inhibition of CatS 655 

is also supported in glioblastoma treatment. CatS inhibition results in induction of autophagy 656 

and apoptosis through inhibition of the PI3K/AKT/mTOR pathway with parallel activation of the 657 

JNK pathway [152]. 658 

A range of cysteine cathepsin inhibitors exists and demonstrates efficacy in many 659 

cancer types, other than glioblastoma [100]. For instance, several small molecule inhibitors 660 
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against CatD have been demonstrated to inhibit proliferation in breast cancer cell lines [153]. 661 

Along the same lines, cathepsin inhibitors could show a promising effect in future glioblastoma 662 

therapeutic trials. Similarly to the other protease families discussed here, cathepsins may also 663 

have putative protective roles in the cancer setting, but the evidence is rare so far. As 664 

discussed earlier, CatG could be a protective protease in glioblastoma [124]; regardless, this 665 

protease is not regarded as a therapeutic target for the time being. 666 

Of note, the levels and regulation of endogenous cathepsin inhibitors seem to have an 667 

impact on cathepsin-mediated glioblastoma cell invasion, which further justifies the use of 668 

synthetized cathepsin inhibitors in glioblastoma patients. For instance, expression of cystatin 669 

C, one of the most potent endogenous cathepsin inhibitors, decreases during glioblastoma 670 

malignant progression. Transfection of cystatin C expression plasmid in glioblastoma cells led 671 

to decreased invasion potential [154]. Along the same lines, in glioblastoma clinical samples, 672 

the endogenous inhibitor stefin B (stefB) is detected in the core of the tumour and not at the 673 

edge where invasion occurs [116]. Additionally, the ratio between cathepsins and StefB is 674 

altered in a spheroid invasion model with the CatB and the CatL-to-stefB ratio higher in the 675 

invading cells [121]. In light of these findings, (re)establishing cathepsin inhibition as a strategy 676 

for glioblastoma treatment appears to be a relevant therapeutic approach.  677 

 678 

Conclusion and future perspectives 679 

Treating glioblastoma remains highly challenging nowadays for several reasons. Firstly, the 680 

blood-brain barrier permeability and tumour cell permeability should be taken into 681 

consideration for any targeted therapeutic approach. This barrier remains a major obstacle in 682 

glioblastoma treatment since it prevents small molecules from reaching the CNS parenchyma, 683 

and also contains active transporters that reject external components. In contrast, the blood-684 

brain barrier in the necrotic core of the tumour is poorly formed and leaky, and thereby, more 685 

permeable. However, the portion located at the edge of the tumour, where invasion occurs, is 686 

quite intact, and typically, fully operational, limiting the capacity of penetration by therapeutic 687 

molecules. Therefore, there is an urgent need for targeted drugs, specifically designed to cross 688 

the intact blood-brain barrier at this microanatomical location [2]. 689 

The second challenge is to find relevant and specific molecular targets to treat 690 

glioblastoma and not normal brain cells or nerves. Under this point of view, targeting proteases 691 

seems to be a promising pharmacological strategy as these molecules are secreted, and are 692 

typically active within the extracellular milieu, implying that targeting these molecules would 693 

not necessarily lead to the suppression of normal healthy cells but instead re-establish a more 694 
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physiological microenvironment. However, many such drugs that simultaneously target 695 

multiple members of these families, have been tested in glioblastoma, and although showing 696 

promise in Phase II, they have failed in Phase III clinical trials [155]. This failure could be 697 

explained in part by the wide targeting spectrum of these inhibitors, as already explained 698 

above. Indeed for example, the non-specific inhibition of multiple MMPs within the glioblastoma 699 

tumour microenvironment could equally target proteases with tumour-promoting and tumour-700 

suppressive properties, thus counter-eliminating any chance of giving beneficial modifications 701 

in the tumour microenvironment during the treatment approach [156]. As such, it is important 702 

to understand the complete biology of these proteases including their impact on invasion at 703 

each step of glioblastoma progression. This would allow us to determine which specific MMPs 704 

should be targeted for the highest clinical benefits. In addition, it is crucial to understand the 705 

physiological roles of these proteases (not necessarily linked to their proteolytic activity), to 706 

avoid chemotherapy-induced side effects. 707 

Extracellular proteolysis is generally constituted as a network of interlinked 708 

mechanisms, usually involving multiple members of the same family, or multiple members from 709 

multiple families, a phenomenon that has been described by many studies as a “proteolytic 710 

cascade”. Therefore, it should be considered that targeting one of them could have a severe 711 

impact on several other proteolytic enzymes that are part of the same cascade of events. For 712 

example, CatB, MMP-9 and uPAR act together in glioblastoma on regulating cell-ECM 713 

adhesion, integrin levels on the surface of tumour and stromal cells, and overall, cell invasion 714 

[112]. In addition, CatB can be activated by CatD and uPAR in addition to an observed auto-715 

catalytic cleavage [102]. uPAR, in turn, converts plasminogen to plasmin, and the latter is 716 

responsible for subsequent MMP activation [43]. To make matters even more complicated, 717 

certain of these MMPs have been shown to not only contribute to the activation of fellow 718 

members of the MMP family, but also to the activation of certain KLK members [84, 157]. A 719 

reverse interplay has also been reported in certain contexts. For example, KLK7 can activate 720 

and produce a specific form of MMP-9 that lacks the Hpx domain [158]. The above described 721 

complexities clearly indicate that obtaining a detailed understanding of the proteolysis 722 

landscape, including the perpetual and looping complexities of the regulatory networks within, 723 

is critical for the development of the most effective and less toxic targeted therapies in glioma, 724 

or glioblastoma. 725 

Finally, there is an urgent need for specific biomarkers in glioblastoma, for better 726 

stratification of patients in personalized medicine and predictive biomarkers for therapeutic 727 

response. As highlighted in this review, most of the MMPs have been shown to be overly 728 

upregulated and/or associated with cancer aggressiveness in glioblastoma, as also have a few 729 

members of the ADAMs/ADAMTS, KLKs, and cathepsins. Among these potential biomarkers 730 

for glioblastoma, studies conducted so far have collectively shown that certain proteases would 731 
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be only relevant as prognostic biomarkers (e.g. MMP-3, KLK7, CatB, see Table 1), while others 732 

would be exclusively useful as diagnostic biomarkers, to help in determining the grade of the 733 

tumour (e.g. MMP-19, ADAM9, ADAM7, CatD, see Table 1). Finally, some are shown to have 734 

potential in both diagnostic and prognostic purposes (e.g. MMP-9, MMP-2, MMP-12, KLK6, 735 

CatS, see Table 1). However, only one of these peptidases, MMP-9, for both liquid and solid 736 

biopsies, may be considered as a validated prognostic biomarker nowadays although is not 737 

yet routinely used to diagnose glioblastoma [39]. The main reason is that this biomarker is not 738 

considered as a therapeutic decision-maker (MGMT promotor methylation state being the only 739 

one widely regarded as such currently). However, the concept of a multi-panel of biomarkers 740 

from liquid and solid biopsies that would represent several peptidases alone or with other 741 

proteins, could serve as a refined prognostic/diagnostic tool for glioblastoma personalized 742 

care.  743 

 744 

References 745 

[1] Y. Rong, D.L. Durden, E.G. Van Meir, D.J. Brat, 'Pseudopalisading' necrosis in 746 
glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and 747 
angiogenesis, J Neuropathol Exp Neurol 65(6) (2006) 529-39. 748 
[2] A. Shergalis, A. Bankhead, 3rd, U. Luesakul, N. Muangsin, N. Neamati, Current Challenges 749 
and Opportunities in Treating Glioblastoma, Pharmacol Rev 70(3) (2018) 412-445. 750 
[3] S. De Vleeschouwer, G. Bergers, Glioblastoma: To Target the Tumor Cell or the 751 
Microenvironment?, in: S. De Vleeschouwer (Ed.), Glioblastoma, Codon Publications 752 
Copyright: The Authors., Brisbane (AU), 2017. 753 

[4] I. Paw, R.C. Carpenter, K. Watabe, W. Debinski, H.W. Lo, Mechanisms regulating glioma 754 
invasion, Cancer Lett 362(1) (2015) 1-7. 755 
[5] D. Friedmann-Morvinski, E.A. Bushong, E. Ke, Y. Soda, T. Marumoto, O. Singer, M.H. 756 
Ellisman, I.M. Verma, Dedifferentiation of neurons and astrocytes by oncogenes can induce 757 
gliomas in mice, Science 338(6110) (2012) 1080-4. 758 
[6] H.S. Phillips, S. Kharbanda, R. Chen, W.F. Forrest, R.H. Soriano, T.D. Wu, A. Misra, J.M. 759 
Nigro, H. Colman, L. Soroceanu, P.M. Williams, Z. Modrusan, B.G. Feuerstein, K. Aldape, 760 
Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease 761 
progression, and resemble stages in neurogenesis, Cancer Cell 9(3) (2006) 157-73. 762 
[7] M. Davis, Gliobastoma: overview of disease and treatment, Clin J Oncol Nurs 20(5): S2–763 
S8 doi:10.1188/16.CJON.S1.2-8 (2016). 764 
[8] H. Ohgaki, P. Kleihues, The definition of primary and secondary glioblastoma, Clin Cancer 765 
Res 19(4) (2013) 764-72. 766 
[9] R.G. Verhaak, K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C.R. Miller, L. 767 
Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O'Kelly, P. Tamayo, B.A. Weir, S. 768 
Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. 769 
Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. 770 
Meyerson, G. Getz, C.M. Perou, D.N. Hayes, Integrated genomic analysis identifies clinically 771 
relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, 772 
and NF1, Cancer Cell 17(1) (2010) 98-110. 773 
[10] Q. Wang, B. Hu, X. Hu, H. Kim, M. Squatrito, L. Scarpace, A.C. deCarvalho, S. Lyu, P. Li, 774 
Y. Li, F. Barthel, H.J. Cho, Y.H. Lin, N. Satani, E. Martinez-Ledesma, S. Zheng, E. Chang, 775 
C.E.G. Sauvé, A. Olar, Z.D. Lan, G. Finocchiaro, J.J. Phillips, M.S. Berger, K.R. Gabrusiewicz, 776 
G. Wang, E. Eskilsson, J. Hu, T. Mikkelsen, R.A. DePinho, F. Muller, A.B. Heimberger, E.P. 777 



Page | 23 
 

Sulman, D.H. Nam, R.G. Verhaak, Tumor evolution of glioma intrinsic gene expression 778 
subtype associates with immunological changes in the microenvironment, Cancer Cell 32(1) 779 
(2017) 42-56.e6. 780 
[11] H. Kim, S. Zheng, S.S. Amini, S.M. Virk, T. Mikkelsen, D.J. Brat, J. Grimsby, C. Sougnez, 781 
F. Muller, J. Hu, A.E. Sloan, M.L. Cohen, E.G. Van Meir, L. Scarpace, P.W. Laird, J.N. 782 
Weinstein, E.S. Lander, S. Gabriel, G. Getz, M. Meyerson, L. Chin, J.S. Barnholtz-Sloan, R.G. 783 
Verhaak, Whole-genome and multisector exome sequencing of primary and post-treatment 784 
glioblastoma reveals patterns of tumor evolution, Genome Res 25(3) (2015) 316-27. 785 
[12] W. Wick, M. Weller, M. Weiler, T. Batchelor, A.W. Yung, M. Platten, Pathway inhibition: 786 
emerging molecular targets for treating glioblastoma, Neuro Oncol 13(6) (2011) 566-79. 787 
[13] R. Stupp, W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J. Taphoorn, K. 788 
Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. 789 
Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer, R.O. Mirimanoff, 790 
Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N Engl J Med 791 
352(10) (2005) 987-96. 792 
[14] M.G. McNamara, S. Sahebjam, W.P. Mason, Emerging biomarkers in glioblastoma, 793 
Cancers (Basel) 5(3) (2013) 1103-19. 794 
[15] A.C. Bellail, S.B. Hunter, D.J. Brat, C. Tan, E.G. Van Meir, Microregional extracellular 795 
matrix heterogeneity in brain modulates glioma cell invasion, Int J Biochem Cell Biol 36(6) 796 
(2004) 1046-69. 797 
[16] R.G. Rempe, A.M.S. Hartz, B. Bauer, Matrix metalloproteinases in the brain and blood-798 
brain barrier: Versatile breakers and makers, J Cereb Blood Flow Metab 36(9) (2016) 1481-799 
507. 800 
[17] P.G. Gritsenko, O. Ilina, P. Friedl, Interstitial guidance of cancer invasion, J Pathol 226(2) 801 
(2012) 185-99. 802 
[18] J. Sabari, D. Lax, D. Connors, I. Brotman, E. Mindrebo, C. Butler, I. Entersz, D. Jia, R.A. 803 
Foty, Fibronectin matrix assembly suppresses dispersal of glioblastoma cells, PLoS One 6(9) 804 
(2011) e24810. 805 
[19] Y. Akiyama, S. Jung, B. Salhia, S. Lee, S. Hubbard, M. Taylor, T. Mainprize, K. Akaishi, 806 
W. van Furth, J.T. Rutka, Hyaluronate receptors mediating glioma cell migration and 807 
proliferation, J Neurooncol 53(2) (2001) 115-27. 808 
[20] H. Dong, L. Luo, S. Hong, H. Siu, Y. Xiao, L. Jin, R. Chen, M. Xiong, Integrated analysis 809 
of mutations, miRNA and mRNA expression in glioblastoma, BMC Syst Biol 4 (2010) 163. 810 
[21] K.B. Pointer, P.A. Clark, A.B. Schroeder, M.S. Salamat, K.W. Eliceiri, J.S. Kuo, 811 
Association of collagen architecture with glioblastoma patient survival, J Neurosurg 126(6) 812 
(2017) 1812-1821. 813 
[22] T. Mammoto, A. Jiang, E. Jiang, D. Panigrahy, M.W. Kieran, A. Mammoto, Role of collagen 814 
matrix in tumor angiogenesis and glioblastoma multiforme progression, Am J Pathol 183(4) 815 
(2013) 1293-1305. 816 
[23] R. Sawaya, M. Yamamoto, O.J. Ramo, M.L. Shi, A. Rayford, J.S. Rao, Plasminogen 817 
activator inhibitor-1 in brain tumors: relation to malignancy and necrosis, Neurosurgery 36(2) 818 
(1995) 375-80; discussion 380-1. 819 
[24] S. Watkins, S. Robel, I.F. Kimbrough, S.M. Robert, G. Ellis-Davies, H. Sontheimer, 820 
Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells, 821 
Nat Commun 5 (2014) 4196. 822 
[25] P. Friedl, K. Wolf, Tube travel: the role of proteases in individual and collective cancer cell 823 
invasion, Cancer Res 68(18) (2008) 7247-9. 824 
[26] C. Gialeli, A.D. Theocharis, N.K. Karamanos, Roles of matrix metalloproteinases in cancer 825 
progression and their pharmacological targeting, Febs j 278(1) (2011) 16-27. 826 
[27] N. Johansson, M. Ahonen, V.M. Kahari, Matrix metalloproteinases in tumor invasion, Cell 827 
Mol Life Sci 57(1) (2000) 5-15. 828 
[28] R. Visse, H. Nagase, Matrix metalloproteinases and tissue inhibitors of 829 
metalloproteinases: structure, function, and biochemistry, Circ Res 92(8) (2003) 827-39. 830 



Page | 24 
 

[29] N. Rocks, G. Paulissen, M. El Hour, F. Quesada, C. Crahay, M. Gueders, J.M. Foidart, A. 831 
Noel, D. Cataldo, Emerging roles of ADAM and ADAMTS metalloproteinases in cancer, 832 
Biochimie 90(2) (2008) 369-79. 833 
[30] T. Kodama, E. Ikeda, A. Okada, T. Ohtsuka, M. Shimoda, T. Shiomi, K. Yoshida, M. 834 
Nakada, E. Ohuchi, Y. Okada, ADAM12 is selectively overexpressed in human glioblastomas 835 
and is associated with glioblastoma cell proliferation and shedding of heparin-binding 836 
epidermal growth factor, Am J Pathol 165(5) (2004) 1743-53. 837 
[31] S. Porter, I.M. Clark, L. Kevorkian, D.R. Edwards, The ADAMTS metalloproteinases, 838 
Biochem J 386(Pt 1) (2005) 15-27. 839 
[32] M. Schulte, K. Reiss, M. Lettau, T. Maretzky, A. Ludwig, D. Hartmann, B. de Strooper, O. 840 
Janssen, P. Saftig, ADAM10 regulates FasL cell surface expression and modulates FasL-841 
induced cytotoxicity and activation-induced cell death, Cell Death Differ 14(5) (2007) 1040-9. 842 
[33] T. Maretzky, K. Reiss, A. Ludwig, J. Buchholz, F. Scholz, E. Proksch, B. de Strooper, D. 843 
Hartmann, P. Saftig, ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell 844 
adhesion, migration, and beta-catenin translocation, Proc Natl Acad Sci U S A 102(26) (2005) 845 
9182-7. 846 
[34] U. Sahin, G. Weskamp, K. Kelly, H.M. Zhou, S. Higashiyama, J. Peschon, D. Hartmann, 847 
P. Saftig, C.P. Blobel, Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six 848 
EGFR ligands, J Cell Biol 164(5) (2004) 769-79. 849 
[35] D.F. Seals, E.F. Azucena, Jr., I. Pass, L. Tesfay, R. Gordon, M. Woodrow, J.H. Resau, 850 
S.A. Courtneidge, The adaptor protein Tks5/Fish is required for podosome formation and 851 
function, and for the protease-driven invasion of cancer cells, Cancer Cell 7(2) (2005) 155-65. 852 
[36] C. Hagemann, J. Anacker, R.I. Ernestus, G.H. Vince, A complete compilation of matrix 853 
metalloproteinase expression in human malignant gliomas, World J Clin Oncol 3(5) (2012) 67-854 
79. 855 
[37] P.A. Pullen NA, Perry MM, Jaworski DM, Leveson KF, Arthur DJ, Current insights into 856 
matrix metalloproteinases and glioma progression: transcending the degradation boundary., 857 
Metalloproteinases in medecine 2018 (2018) 13-30. 858 
[38] J. Mercapide, R. Lopez De Cicco, D.E. Bassi, J.S. Castresana, G. Thomas, A.J.P. Klein-859 
Szanto, Inhibition of furin-mediated processing results in suppression of astrocytoma cell 860 
growth and invasiveness, Clin Cancer Res 8(6) (2002) 1740-6. 861 
[39] Q. Xue, L. Cao, X.Y. Chen, J. Zhao, L. Gao, S.Z. Li, Z. Fei, High expression of MMP9 in 862 
glioma affects cell proliferation and is associated with patient survival rates, Oncol Lett 13(3) 863 
(2017) 1325-1330. 864 
[40] Q. Li, B. Chen, J. Cai, Y. Sun, G. Wang, Y. Li, R. Li, Y. Feng, B. Han, J. Li, Y. Tian, L. Yi, 865 
C. Jiang, Comparative Analysis of Matrix Metalloproteinase Family Members Reveals That 866 
MMP9 Predicts Survival and Response to Temozolomide in Patients with Primary 867 
Glioblastoma, PLoS One 11(3) (2016) e0151815. 868 
[41] C. Sun, Q. Wang, H. Zhou, S. Yu, A.R. Simard, C. Kang, Y. Li, Y. Kong, T. An, Y. Wen, F. 869 
Shi, J. Hao, Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo, 870 
Neurosci Bull 29(1) (2013) 83-93. 871 
[42] M. Yamamoto, R. Sawaya, S. Mohanam, A.K. Bindal, J.M. Bruner, K. Oka, V.H. Rao, M. 872 
Tomonaga, G.L. Nicolson, J.S. Rao, Expression and localization of urokinase-type 873 
plasminogen activator in human astrocytomas in vivo, Cancer Res 54(14) (1994) 3656-61. 874 
[43] Y. Zhao, C.E. Lyons, Jr., A. Xiao, D.J. Templeton, Q.A. Sang, K. Brew, I.M. Hussaini, 875 
Urokinase directly activates matrix metalloproteinases-9: a potential role in glioblastoma 876 
invasion, Biochem Biophys Res Commun 369(4) (2008) 1215-20. 877 
[44] X.C. Chen, X.T. Wei, J.H. Guan, H. Shu, D. Chen, EGF stimulates glioblastoma metastasis 878 
by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism, Oncotarget 879 
8(39) (2017) 65969-65982. 880 
[45] G. Choe, J.K. Park, L. Jouben-Steele, T.J. Kremen, L.M. Liau, H.V. Vinters, T.F. 881 
Cloughesy, P.S. Mischel, Active matrix metalloproteinase 9 expression is associated with 882 
primary glioblastoma subtype, Clin Cancer Res 8(9) (2002) 2894-901. 883 
[46] L. Chang, D. Zhao, H.B. Liu, Q.S. Wang, P. Zhang, C.L. Li, W.Z. Du, H.J. Wang, X. Liu, 884 
Z.R. Zhang, C.L. Jiang, Activation of sonic hedgehog signaling enhances cell migration and 885 



Page | 25 
 

invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 886 
kinase/AKT signaling pathway in glioblastoma, Mol Med Rep 12(5) (2015) 6702-10. 887 
[47] C. Chetty, S.K. Vanamala, C.S. Gondi, D.H. Dinh, M. Gujrati, J.S. Rao, MMP-9 induces 888 
CD44 cleavage and CD44 mediated cell migration in glioblastoma xenograft cells, Cell Signal 889 
24(2) (2012) 549-59. 890 
[48] M.J. Park, M.S. Kim, I.C. Park, H.S. Kang, H. Yoo, S.H. Park, C.H. Rhee, S.I. Hong, S.H. 891 
Lee, PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in 892 
U87MG glioblastoma cells through focal adhesion kinase dephosphorylation, Cancer Res 893 
62(21) (2002) 6318-22. 894 
[49] J.S. Rao, M. Yamamoto, S. Mohaman, Z.L. Gokaslan, G.N. Fuller, W.G. Stetler-895 
Stevenson, V.H. Rao, L.A. Liotta, G.L. Nicolson, R.E. Sawaya, Expression and localization of 896 
92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas, Clin Exp Metastasis 897 
14(1) (1996) 12-8. 898 
[50] C. Munaut, A. Noel, O. Hougrand, J.M. Foidart, J. Boniver, M. Deprez, Vascular 899 
endothelial growth factor expression correlates with matrix metalloproteinases MT1-MMP, 900 
MMP-2 and MMP-9 in human glioblastomas, Int J Cancer 106(6) (2003) 848-55. 901 
[51] R. Du, K.V. Lu, C. Petritsch, P. Liu, R. Ganss, E. Passegue, H. Song, S. Vandenberg, 902 
R.S. Johnson, Z. Werb, G. Bergers, HIF1alpha induces the recruitment of bone marrow-903 
derived vascular modulatory cells to regulate tumor angiogenesis and invasion, Cancer Cell 904 
13(3) (2008) 206-20. 905 
[52] P.A. Forsyth, H. Wong, T.D. Laing, N.B. Rewcastle, D.G. Morris, H. Muzik, K.J. Leco, R.N. 906 
Johnston, P.M. Brasher, G. Sutherland, D.R. Edwards, Gelatinase-A (MMP-2), gelatinase-B 907 
(MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different 908 
aspects of the pathophysiology of malignant gliomas, Br J Cancer 79(11-12) (1999) 1828-35. 909 
[53] R.K. Ramachandran, M.D. Sorensen, C. Aaberg-Jessen, S.K. Hermansen, B.W. 910 
Kristensen, Expression and prognostic impact of matrix metalloproteinase-2 (MMP-2) in 911 
astrocytomas, PLoS One 12(2) (2017) e0172234. 912 
[54] M. Huang, T. Liu, P. Ma, R.A. Mitteer, Jr., Z. Zhang, H.J. Kim, E. Yeo, D. Zhang, P. Cai, 913 
C. Li, L. Zhang, B. Zhao, L. Roccograndi, D.M. O'Rourke, N. Dahmane, Y. Gong, C. Koumenis, 914 
Y. Fan, c-Met-mediated endothelial plasticity drives aberrant vascularization and 915 
chemoresistance in glioblastoma, J Clin Invest 126(5) (2016) 1801-14. 916 
[55] D.J. Brat, A.A. Castellano-Sanchez, S.B. Hunter, M. Pecot, C. Cohen, E.H. Hammond, 917 
S.N. Devi, B. Kaur, E.G. Van Meir, Pseudopalisades in glioblastoma are hypoxic, express 918 
extracellular matrix proteases, and are formed by an actively migrating cell population, Cancer 919 
Res 64(3) (2004) 920-7. 920 
[56] B. Hu, M.J. Jarzynka, P. Guo, Y. Imanishi, D.D. Schlaepfer, S.Y. Cheng, Angiopoietin 2 921 
Induces Glioma Cell Invasion by Stimulating Matrix Metalloprotease 2 Expression through the 922 
αvβ1 Integrin and Focal Adhesion Kinase Signaling Pathway, Cancer Res 66(2) (2006) 775-923 
83. 924 
[57] J.E. Rundhaug, Matrix metalloproteinases and angiogenesis, J Cell Mol Med 9(2) (2005) 925 
267-85. 926 
[58] R. Ram, G. Lorente, K. Nikolich, R. Urfer, E. Foehr, U. Nagavarapu, Discoidin domain 927 
receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix 928 
metalloproteinase-2, J Neurooncol 76(3) (2006) 239-48. 929 
[59] E.I. Deryugina, M.A. Bourdon, G.X. Luo, R.A. Reisfeld, A. Strongin, Matrix 930 
metalloproteinase-2 activation modulates glioma cell migration, J Cell Sci 110 ( Pt 19) (1997) 931 
2473-82. 932 
[60] D. Kesanakurti, C. Chetty, D.H. Dinh, M. Gujrati, J.S. Rao, Role of MMP-2 in the regulation 933 
of IL-6/Stat3 survival signaling via interaction with alpha5beta1 integrin in glioma, Oncogene 934 
32(3) (2013) 327-40. 935 
[61] L. Wang, J. Yuan, Y. Tu, X. Mao, S. He, G. Fu, J. Zong, Y. Zhang, Co-expression of MMP-936 
14 and MMP-19 predicts poor survival in human glioma, Clin Transl Oncol 15(2) (2013) 139-937 
45. 938 
[62] D.S. Markovic, K. Vinnakota, S. Chirasani, M. Synowitz, H. Raguet, K. Stock, M. Sliwa, S. 939 
Lehmann, R. Kalin, N. van Rooijen, K. Holmbeck, F.L. Heppner, J. Kiwit, V. Matyash, S. 940 



Page | 26 
 

Lehnardt, B. Kaminska, R. Glass, H. Kettenmann, Gliomas induce and exploit microglial MT1-941 
MMP expression for tumor expansion, Proc Natl Acad Sci U S A 106(30) (2009) 12530-5. 942 
[63] M. Anand, T.E. Van Meter, H.L. Fillmore, Epidermal growth factor induces matrix 943 
metalloproteinase-1 (MMP-1) expression and invasion in glioma cell lines via the MAPK 944 
pathway, J Neurooncol 104(3) (2011) 679-87. 945 
[64] J. Mercapide, R. Lopez De Cicco, J.S. Castresana, A.J. Klein-Szanto, Stromelysin-946 
1/matrix metalloproteinase-3 (MMP-3) expression accounts for invasive properties of human 947 
astrocytoma cell lines, Int J Cancer 106(5) (2003) 676-82. 948 
[65] N. Mu, J. Gu, N. Liu, X. Xue, Z. Shu, K. Zhang, T. Huang, C. Chu, W. Zhang, L. Gong, H. 949 
Zhao, B. Jia, D. Gao, L. Shang, W. Zhang, Q. Guo, PRL-3 is a potential glioblastoma 950 
prognostic marker and promotes glioblastoma progression by enhancing MMP7 through the 951 
ERK and JNK pathways, Theranostics 8(6) (2018) 1527-1539. 952 
[66] C.F. Huang, S.F. Yang, H.L. Chiou, W.H. Hsu, J.C. Hsu, C.J. Liu, Y.H. Hsieh, Licochalcone 953 
A inhibits the invasive potential of human glioma cells by targeting the MEK/ERK and ADAM9 954 
signaling pathways, Food Funct 9(12) (2018) 6196-6204. 955 
[67] S. Sarkar, R.K. Nuttall, S. Liu, D.R. Edwards, V.W. Yong, Tenascin-C stimulates glioma 956 
cell invasion through matrix metalloproteinase-12, Cancer Res 66(24) (2006) 11771-80. 957 
[68] S. Sarkar, F.J. Zemp, D. Senger, S.M. Robbins, V.W. Yong, ADAM-9 is a novel mediator 958 
of tenascin-C-stimulated invasiveness of brain tumor-initiating cells, Neuro Oncol 17(8) (2015) 959 
1095-105. 960 
[69] Y. Zhang, H. Zhan, W. Xu, Z. Yuan, P. Lu, L. Zhan, Q. Li, Upregulation of matrix 961 
metalloproteinase-1 and proteinase-activated receptor-1 promotes the progression of human 962 
gliomas, Pathol Res Pract 207(1) (2011) 24-9. 963 
[70] J. Stojic, C. Hagemann, S. Haas, C. Herbold, S. Kuhnel, S. Gerngras, W. Roggendorf, K. 964 
Roosen, G.H. Vince, Expression of matrix metalloproteinases MMP-1, MMP-11 and MMP-19 965 
is correlated with the WHO-grading of human malignant gliomas, Neurosci Res 60(1) (2008) 966 
40-9. 967 
[71] Y. Deng, W. Li, Y. Li, H. Yang, H. Xu, S. Liang, L. Zhang, Y. Li, Expression of Matrix 968 
Metalloproteinase-26 promotes human glioma U251 cell invasion in vitro and in vivo, Oncol 969 
Rep 23(1) (2010) 69-78. 970 
[72] J.G. Guo, C.C. Guo, Z.Q. He, X.Y. Cai, Y.G. Mou, High MMP-26 expression in glioma is 971 
correlated with poor clinical outcome of patients, Oncol Lett 16(2) (2018) 2237-2242. 972 
[73] M. Louca, A. Zaravinos, T. Stylianopoulos, V. Gkretsi, ILK silencing inhibits migration and 973 
invasion of more invasive glioblastoma cells by downregulating ROCK1 and Fascin-1, Mol Cell 974 
Biochem  (2020). 975 
[74] A. Inoue, H. Takahashi, H. Harada, S. Kohno, S. Ohue, K. Kobayashi, H. Yano, J. Tanaka, 976 
T. Ohnishi, Cancer stem-like cells of glioblastoma characteristically express MMP-13 and 977 
display highly invasive activity, Int J Oncol 37(5) (2010) 1121-31. 978 
[75] C. Zhang, X. Han, X. Xu, Z. Zhou, X. Chen, Y. Tang, J. Cheng, N.F. Moazzam, F. Liu, J. 979 
Xu, W. Peng, F. Du, B. Zhang, Z. Song, J. Zeng, A. Gong, FoxM1 drives ADAM17/EGFR 980 
activation loop to promote mesenchymal transition in glioblastoma, Cell Death Dis 9(5) (2018) 981 
469. 982 
[76] J. Sun, D.M. Li, J. Huang, J. Liu, B. Sun, D.L. Fu, G.S. Mao, The correlation between the 983 
expression of ADAM17, EGFR and Ki-67 in malignant gliomas, Eur Rev Med Pharmacol Sci 984 
21(20) (2017) 4595-4599. 985 
[77] J. Held-Feindt, E.B. Paredes, U. Blomer, C. Seidenbecher, A.M. Stark, H.M. Mehdorn, R. 986 
Mentlein, Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and 987 
metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human 988 
glioblastomas, Int J Cancer 118(1) (2006) 55-61. 989 
[78] X. Fan, Y. Wang, C. Zhang, L. Liu, S. Yang, Y. Wang, X. Liu, Z. Qian, S. Fang, H. Qiao, 990 
T. Jiang, ADAM9 Expression Is Associate with Glioma Tumor Grade and Histological Type, 991 
and Acts as a Prognostic Factor in Lower-Grade Gliomas, Int J Mol Sci 17(9) (2016). 992 
[79] X. Zheng, F. Jiang, M. Katakowski, Y. Lu, M. Chopp, ADAM17 promotes glioma cell 993 
malignant phenotype, Mol Carcinog 51(2) (2012) 150-64. 994 



Page | 27 
 

[80] C.M. Costa-Neto, P. Dillenburg-Pilla, T.A. Heinrich, L.T. Parreiras-e-Silva, M.G. Pereira, 995 
R.I. Reis, P.P. Souza, Participation of kallikrein-kinin system in different pathologies, Int 996 
Immunopharmacol 8(2) (2008) 135-42. 997 
[81] M.J. Page, E. Di Cera, Serine peptidases: classification, structure and function, Cell Mol 998 
Life Sci 65(7-8) (2008) 1220-36. 999 
[82] L.D. Papsidero, M.C. Wang, L.A. Valenzuela, G.P. Murphy, T.M. Chu, A prostate antigen 1000 
in sera of prostatic cancer patients, Cancer Res 40(7) (1980) 2428-32. 1001 
[83] M. Kalinska, U. Meyer-Hoffert, T. Kantyka, J. Potempa, Kallikreins - The melting pot of 1002 
activity and function, Biochimie 122 (2016) 270-82. 1003 
[84] P.S. Filippou, G.S. Karagiannis, N. Musrap, E.P. Diamandis, Kallikrein-related peptidases 1004 
(KLKs) and the hallmarks of cancer, Crit Rev Clin Lab Sci 53(4) (2016) 277-91. 1005 
[85] A.C. Stefanini, B.R. da Cunha, T. Henrique, E.H. Tajara, Involvement of Kallikrein-Related 1006 
Peptidases in Normal and Pathologic Processes, Dis Markers 2015 (2015) 946572. 1007 
[86] A. Guillon-Munos, K. Oikonomopoulou, N. Michel, C.R. Smith, A. Petit-Courty, S. Canepa, 1008 
P. Reverdiau, N. Heuze-Vourc'h, E.P. Diamandis, Y. Courty, Kallikrein-related peptidase 12 1009 
hydrolyzes matricellular proteins of the CCN family and modifies interactions of CCN1 and 1010 
CCN5 with growth factors, J Biol Chem 286(29) (2011) 25505-18. 1011 
[87] A. Sano, T. Sangai, H. Maeda, M. Nakamura, T. Hasebe, A. Ochiai, Kallikrein 11 1012 
expressed in human breast cancer cells releases insulin-like growth factor through degradation 1013 
of IGFBP-3, Int J Oncol 30(6) (2007) 1493-8. 1014 
[88] S. Mukai, T. Fukushima, D. Naka, H. Tanaka, Y. Osada, H. Kataoka, Activation of 1015 
hepatocyte growth factor activator zymogen (pro-HGFA) by human kallikrein 1-related 1016 
peptidases, Febs j 275(5) (2008) 1003-17. 1017 
[89] G.M. Yousef, T. Kishi, E.P. Diamandis, Role of kallikrein enzymes in the central nervous 1018 
system, Clin Chim Acta 329(1-2) (2003) 1-8. 1019 
[90] M. Talieri, M. Zoma, M. Devetzi, A. Scorilas, A. Ardavanis, Kallikrein-related peptidase 6 1020 
(KLK6)gene expression in intracranial tumors, Tumour Biol 33(5) (2012) 1375-83. 1021 
[91] P. Prezas, A. Scorilas, C. Yfanti, P. Viktorov, N. Agnanti, E. Diamandis, M. Talieri, The 1022 
role of human tissue kallikreins 7 and 8 in intracranial malignancies, Biol Chem 387(12) (2006) 1023 
1607-12. 1024 
[92] G.M. Yousef, E.P. Diamandis, The new human tissue kallikrein gene family: structure, 1025 
function, and association to disease, Endocr Rev 22(2) (2001) 184-204. 1026 
[93] J.E. Burda, M. Radulovic, H. Yoon, I.A. Scarisbrick, Critical role for PAR1 in kallikrein 6-1027 
mediated oligodendrogliopathy, Glia 61(9) (2013) 1456-70. 1028 
[94] H. Yoon, M. Radulovic, I.A. Scarisbrick, Kallikrein-related peptidase 6 orchestrates 1029 
astrocyte form and function through proteinase activated receptor-dependent mechanisms, 1030 
Biol Chem 399(9) (2018) 1041-1052. 1031 
[95] K.L. Drucker, A.R. Paulsen, C. Giannini, P.A. Decker, S.I. Blaber, M. Blaber, J.H. Uhm, 1032 
B.P. O'Neill, R.B. Jenkins, I.A. Scarisbrick, Clinical significance and novel mechanism of action 1033 
of kallikrein 6 in glioblastoma, Neuro Oncol 15(3) (2013) 305-18. 1034 
[96] E. Shavit-Stein, E. Sheinberg, V. Golderman, S. Sharabi, A. Wohl, S.G. Gofrit, Z. Zivli, N. 1035 
Shelestovich, D. Last, D. Guez, D. Daniels, O. Gera, K. Feingold, Z. Itsekson-Hayosh, N. 1036 
Rosenberg, I. Tamarin, A. Dori, N. Maggio, Y. Mardor, J. Chapman, S. Harnof, A Novel 1037 
Compound Targeting Protease Receptor 1 Activators for the Treatment of Glioblastoma, Front 1038 
Neurol 9 (2018) 1087. 1039 
[97] K.L. Drucker, C. Gianinni, P.A. Decker, E.P. Diamandis, I.A. Scarisbrick, Prognostic 1040 
significance of multiple kallikreins in high-grade astrocytoma, BMC Cancer 15 (2015) 565. 1041 
[98] E.C. Burton, K.R. Lamborn, B.G. Feuerstein, M. Prados, J. Scott, P. Forsyth, S. Passe, 1042 
R.B. Jenkins, K.D. Aldape, Genetic aberrations defined by comparative genomic hybridization 1043 
distinguish long-term from typical survivors of glioblastoma, Cancer Res 62(21) (2002) 6205-1044 
10. 1045 
[99] S.P. Lutgens, K.B. Cleutjens, M.J. Daemen, S. Heeneman, Cathepsin cysteine proteases 1046 
in cardiovascular disease, Faseb j 21(12) (2007) 3029-41. 1047 



Page | 28 
 

[100] S.M. Soond, M.V. Kozhevnikova, P.A. Townsend, A.A. Zamyatnin, Jr., Cysteine 1048 
Cathepsin Protease Inhibition: An update on its Diagnostic, Prognostic and Therapeutic 1049 
Potential in Cancer, Pharmaceuticals (Basel) 12(2) (2019). 1050 
[101] E. Vidak, U. Javoršek, M. Vizovišek, B. Turk, Cysteine Cathepsins and their Extracellular 1051 
Roles: Shaping the Microenvironment, Cells 8(3) (2019). 1052 
[102] N. Aggarwal, B.F. Sloane, Cathepsin B: multiple roles in cancer, Proteomics Clin Appl 1053 
8(5-6) (2014) 427-37. 1054 
[103] I. Giusti, S. D'Ascenzo, D. Millimaggi, G. Taraboletti, G. Carta, N. Franceschini, A. Pavan, 1055 
V. Dolo, Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed 1056 
microvesicles, Neoplasia 10(5) (2008) 481-8. 1057 
[104] M.E. Fukuda, Y. Iwadate, T. Machida, T. Hiwasa, Y. Nimura, Y. Nagai, M. Takiguchi, H. 1058 
Tanzawa, A. Yamaura, N. Seki, Cathepsin D is a potential serum marker for poor prognosis in 1059 
glioma patients, Cancer Res 65(12) (2005) 5190-4. 1060 
[105] H. Kobayashi, N. Moniwa, M. Sugimura, H. Shinohara, H. Ohi, T. Terao, Effects of 1061 
membrane-associated cathepsin B on the activation of receptor-bound prourokinase and 1062 
subsequent invasion of reconstituted basement membranes, Biochim Biophys Acta 1178(1) 1063 
(1993) 55-62. 1064 
[106] G. Murphy, R. Ward, J. Gavrilovic, S. Atkinson, Physiological mechanisms for 1065 
metalloproteinase activation, Matrix Suppl 1 (1992) 224-30. 1066 
[107] N. Murphy, M.A. Lynch, Activation of the P2X₇ receptor induces migration of glial cells 1067 
by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1, J Neurochem 1068 
123(5) (2012) 761-70. 1069 
[108] J. Christensen, V.P. Shastri, Matrix-metalloproteinase-9 is cleaved and activated by 1070 
cathepsin K, BMC Res Notes 8 (2015) 322. 1071 
[109] T. Mikkelsen, P.S. Yan, K.L. Ho, M. Sameni, B.F. Sloane, M.L. Rosenblum, 1072 
Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and 1073 
angiogenesis, J Neurosurg 83(2) (1995) 285-90. 1074 
[110] S.A. Rempel, M.L. Rosenblum, T. Mikkelsen, P.S. Yan, K.D. Ellis, W.A. Golembieski, M. 1075 
Sameni, J. Rozhin, G. Ziegler, B.F. Sloane, Cathepsin B expression and localization in glioma 1076 
progression and invasion, Cancer Res 54(23) (1994) 6027-31. 1077 
[111] N. Yanamandra, K.V. Gumidyala, K.G. Waldron, M. Gujrati, W.C. Olivero, D.H. Dinh, J.S. 1078 
Rao, S. Mohanam, Blockade of cathepsin B expression in human glioblastoma cells is 1079 
associated with suppression of angiogenesis, Oncogene 23(12) (2004) 2224-30. 1080 
[112] K.K. Veeravalli, C. Chetty, S. Ponnala, C.S. Gondi, S.S. Lakka, D. Fassett, J.D. 1081 
Klopfenstein, D.H. Dinh, M. Gujrati, J.S. Rao, MMP-9, uPAR and cathepsin B silencing 1082 
downregulate integrins in human glioma xenograft cells in vitro and in vivo in nude mice, PLoS 1083 
One 5(7) (2010) e11583. 1084 
[113] S. Gopinath, K. Alapati, R.R. Malla, C.S. Gondi, S. Mohanam, D.H. Dinh, J.S. Rao, 1085 
Mechanism of p27 upregulation induced by downregulation of cathepsin B and uPAR in glioma, 1086 
Mol Oncol 5(5) (2011) 426-37. 1087 
[114] R.R. Malla, S. Gopinath, C.S. Gondi, K. Alapati, D.H. Dinh, M. Gujrati, J.S. Rao, 1088 
Cathepsin B and uPAR knockdown inhibits tumor-induced angiogenesis by modulating VEGF 1089 
expression in glioma, Cancer Gene Ther 18(6) (2011) 419-34. 1090 
[115] B. Breznik, C. Limbaeck Stokin, J. Kos, M. Khurshed, V.V.V. Hira, R. Bosnjak, T.T. Lah, 1091 
C.J.F. Van Noorden, Cysteine cathepsins B, X and K expression in peri-arteriolar glioblastoma 1092 
stem cell niches, J Mol Histol 49(5) (2018) 481-497. 1093 
[116] B. Gole, P.C. Huszthy, M. Popovic, J. Jeruc, Y.S. Ardebili, R. Bjerkvig, T.T. Lah, The 1094 
regulation of cysteine cathepsins and cystatins in human gliomas, Int J Cancer 131(8) (2012) 1095 
1779-89. 1096 
[117] V.V. Hira, U. Verbovsek, B. Breznik, M. Srdic, M. Novinec, H. Kakar, J. Wormer, B.V. der 1097 
Swaan, B. Lenarcic, L. Juliano, S. Mehta, C.J. Van Noorden, T.T. Lah, Cathepsin K cleavage 1098 
of SDF-1alpha inhibits its chemotactic activity towards glioblastoma stem-like cells, Biochim 1099 
Biophys Acta Mol Cell Res 1864(3) (2017) 594-603. 1100 
[118] Y. Liu, Y. Zhou, K. Zhu, Inhibition of glioma cell lysosome exocytosis inhibits glioma 1101 
invasion, PLoS One 7(9) (2012) e45910. 1102 



Page | 29 
 

[119] T. Flannery, D. Gibson, M. Mirakhur, S. McQuaid, C. Greenan, A. Trimble, B. Walker, D. 1103 
McCormick, P.G. Johnston, The clinical significance of cathepsin S expression in human 1104 
astrocytomas, Am J Pathol 163(1) (2003) 175-82. 1105 
[120] T. Flannery, S. McQuaid, C. McGoohan, R.S. McConnell, G. McGregor, M. Mirakhur, P. 1106 
Hamilton, J. Diamond, G. Cran, B. Walker, C. Scott, L. Martin, D. Ellison, C. Patel, C. 1107 
Nicholson, D. Mendelow, D. McCormick, P.G. Johnston, Cathepsin S expression: An 1108 
independent prognostic factor in glioblastoma tumours--A pilot study, Int J Cancer 119(4) 1109 
(2006) 854-60. 1110 
[121] B. Gole, M.B. Duran Alonso, V. Dolenc, T. Lah, Post-translational regulation of cathepsin 1111 
B, but not of other cysteine cathepsins, contributes to increased glioblastoma cell invasiveness 1112 
in vitro, Pathol Oncol Res 15(4) (2009) 711-23. 1113 
[122] B. Breznik, C. Limback, A. Porcnik, A. Blejec, M.K. Krajnc, R. Bosnjak, J. Kos, C.J.F. 1114 
Van Noorden, T.T. Lah, Localization patterns of cathepsins K and X and their predictive value 1115 
in glioblastoma, Radiol Oncol 52(4) (2018) 433-442. 1116 
[123] S.P. Koh, A.C. Wickremesekera, H.D. Brasch, R. Marsh, S.T. Tan, T. Itinteang, 1117 
Expression of Cathepsins B, D, and G in Isocitrate Dehydrogenase-Wildtype Glioblastoma, 1118 
Front Surg 4 (2017) 28. 1119 
[124] J. Bischof, M.A. Westhoff, J.E. Wagner, M.E. Halatsch, S. Trentmann, U. Knippschild, 1120 
C.R. Wirtz, T. Burster, Cancer stem cells: The potential role of autophagy, proteolysis, and 1121 
cathepsins in glioblastoma stem cells, Tumour Biol 39(3) (2017) 1010428317692227. 1122 
[125] I. Ulasov, B. Thaci, P. Sarvaiya, R. Yi, D. Guo, B. Auffinger, P. Pytel, L. Zhang, C.K. Kim, 1123 
A. Borovjagin, M. Dey, Y. Han, A.Y. Baryshnikov, M.S. Lesniak, Inhibition of MMP14 1124 
potentiates the therapeutic effect of temozolomide and radiation in gliomas, Cancer Med 2(4) 1125 
(2013) 457-67. 1126 
[126] M.D. Groves, V.K. Puduvalli, C.A. Conrad, M.R. Gilbert, W.K. Yung, K. Jaeckle, V. Liu, 1127 
K.R. Hess, K.D. Aldape, V.A. Levin, Phase II trial of temozolomide plus marimastat for 1128 
recurrent anaplastic gliomas: a relationship among efficacy, joint toxicity and anticonvulsant 1129 
status, J Neurooncol 80(1) (2006) 83-90. 1130 
[127] A. Price, Q. Shi, D. Morris, M.E. Wilcox, P.M. Brasher, N.B. Rewcastle, D. Shalinsky, H. 1131 
Zou, K. Appelt, R.N. Johnston, V.W. Yong, D. Edwards, P. Forsyth, Marked inhibition of tumor 1132 
growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase 1133 
inhibitor AG3340, Clin Cancer Res 5(4) (1999) 845-54. 1134 
[128] D. Bissett, K.J. O'Byrne, J. von Pawel, U. Gatzemeier, A. Price, M. Nicolson, R. Mercier, 1135 
E. Mazabel, C. Penning, M.H. Zhang, M.A. Collier, F.A. Shepherd, Phase III study of matrix 1136 
metalloproteinase inhibitor prinomastat in non-small-cell lung cancer, J Clin Oncol 23(4) (2005) 1137 
842-9. 1138 
[129] H. Nakabayashi, T. Yawata, K. Shimizu, Anti-invasive and antiangiogenic effects of MMI-1139 
166 on malignant glioma cells, BMC Cancer 10 (2010) 339. 1140 
[130] P. Gabelloni, E. Da Pozzo, S. Bendinelli, B. Costa, E. Nuti, F. Casalini, E. Orlandini, F. 1141 
Da Settimo, A. Rossello, C. Martini, Inhibition of metalloproteinases derived from tumours: new 1142 
insights in the treatment of human glioblastoma, Neuroscience 168(2) (2010) 514-22. 1143 
[131] M. Matysiak - Kucharek, M. Czajka, K. Sawicki, M. Kruszewski, L. Kapka, Effect of 1144 
nanoparticles on expression and activity of matrix metalloproteinases, Nanotechnology 1145 
Reviews 7 (2018). 1146 
[132] Y. Lyu, Q. Xiao, L. Yin, L. Yang, W. He, Potent delivery of an MMP inhibitor to the tumor 1147 
microenvironment with thermosensitive liposomes for the suppression of metastasis and 1148 
angiogenesis, Signal Transduct Target Ther 4 (2019) 26. 1149 
[133] Y. Rajesh, A. Biswas, U. Kumar, S. Das, I. Banerjee, P. Banik, R. Bharti, S. Nayak, S.K. 1150 
Ghosh, M. Mandal, Targeting NFE2L2, a transcription factor upstream of MMP-2: A potential 1151 
therapeutic strategy for temozolomide resistant glioblastoma, Biochem Pharmacol 164 (2019) 1152 
1-16. 1153 
[134] D.H. Gwon, W.Y. Lee, N. Shin, S.I. Kim, K. Jeong, W.H. Lee, D.W. Kim, J. Hong, S.Y. 1154 
Lee, BMAL1 Suppresses Proliferation, Migration, and Invasion of U87MG Cells by 1155 
Downregulating Cyclin B1, Phospho-AKT, and Metalloproteinase-9, Int J Mol Sci 21(7) (2020). 1156 



Page | 30 
 

[135] Y. Jiang, Y. Jiao, Y. Liu, M. Zhang, Z. Wang, Y. Li, T. Li, X. Zhao, D. Wang, Sinomenine 1157 
Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the 1158 
Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous 1159 
Epithelial-Mesenchymal Transition, Int J Mol Sci 19(3) (2018). 1160 
[136] M. Desjarlais, B. Annabi, Dual functions of ARP101 in targeting membrane type-1 matrix 1161 
metalloproteinase: Impact on U87 glioblastoma cell invasion and autophagy signaling, Chem 1162 
Biol Drug Des 93(3) (2019) 272-282. 1163 
[137] Y. Hamano, M. Zeisberg, H. Sugimoto, J.C. Lively, Y. Maeshima, C. Yang, R.O. Hynes, 1164 
Z. Werb, A. Sudhakar, R. Kalluri, Physiological levels of tumstatin, a fragment of collagen IV 1165 
alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV 1166 
beta3 integrin, Cancer Cell 3(6) (2003) 589-601. 1167 
[138] M.J. Gorrin-Rivas, S. Arii, M. Furutani, M. Mizumoto, A. Mori, K. Hanaki, M. Maeda, H. 1168 
Furuyama, Y. Kondo, M. Imamura, Mouse macrophage metalloelastase gene transfer into a 1169 
murine melanoma suppresses primary tumor growth by halting angiogenesis, Clin Cancer Res 1170 
6(5) (2000) 1647-54. 1171 
[139] K.C. Chan, J.M. Ko, H.L. Lung, R. Sedlacek, Z.F. Zhang, D.Z. Luo, Z.B. Feng, S. Chen, 1172 
H. Chen, K.W. Chan, S.W. Tsao, D.T. Chua, E.R. Zabarovsky, E.J. Stanbridge, M.L. Lung, 1173 
Catalytic activity of Matrix metalloproteinase-19 is essential for tumor suppressor and anti-1174 
angiogenic activities in nasopharyngeal carcinoma, Int J Cancer 129(8) (2011) 1826-37. 1175 
[140] A. Gutiérrez-Fernández, A. Fueyo, A.R. Folgueras, C. Garabaya, C.J. Pennington, S. 1176 
Pilgrim, D.R. Edwards, D.L. Holliday, J.L. Jones, P.N. Span, F.C. Sweep, X.S. Puente, C. 1177 
López-Otín, Matrix metalloproteinase-8 functions as a metastasis suppressor through 1178 
modulation of tumor cell adhesion and invasion, Cancer Res 68(8) (2008) 2755-63. 1179 
[141] Z.I. Khamis, K.A. Iczkowski, Y.G. Man, M.J. Bou-Dargham, Q.X. Sang, Evidence for a 1180 
Proapoptotic Role of Matrix Metalloproteinase-26 in Human Prostate Cancer Cells and 1181 
Tissues, J Cancer 7(1) (2016) 80-7. 1182 
[142] K. Hannu, M. Johanna, S. Ulf-Hakan, KLK-targeted Therapies for Prostate Cancer, Ejifcc 1183 
25(2) (2014) 207-18. 1184 
[143] J.P. Du, L. Li, J. Zheng, D. Zhang, W. Liu, W.H. Zheng, X.S. Li, R.C. Yao, F. Wang, S. 1185 
Liu, X. Tan, Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic 1186 
cancer, Oncotarget 9(16) (2018) 12894-12906. 1187 
[144] N. Masurier, D.P. Arama, C. El Amri, V. Lisowski, Inhibitors of kallikrein-related 1188 
peptidases: An overview, Med Res Rev 38(2) (2018) 655-683. 1189 
[145] Y.P. Sher, C.C. Chou, R.H. Chou, H.M. Wu, W.S. Wayne Chang, C.H. Chen, P.C. Yang, 1190 
C.W. Wu, C.L. Yu, K. Peck, Human kallikrein 8 protease confers a favorable clinical outcome 1191 
in non-small cell lung cancer by suppressing tumor cell invasiveness, Cancer Res 66(24) 1192 
(2006) 11763-70. 1193 
[146] D.R. Sudhan, D.W. Siemann, Cathepsin L inhibition by the small molecule KGP94 1194 
suppresses tumor microenvironment enhanced metastasis associated cell functions of 1195 
prostate and breast cancer cells, Clin Exp Metastasis 30(7) (2013) 891-902. 1196 
[147] Y.C. Cheng, Y.M. Ding, D.Y. Hueng, J.Y. Chen, Y. Chen, Caffeine suppresses the 1197 
progression of human glioblastoma via cathepsin B and MAPK signaling pathway, J Nutr 1198 
Biochem 33 (2016) 63-72. 1199 
[148] K.H. Ho, C.H. Cheng, C.M. Chou, P.H. Chen, A.J. Liu, C.W. Lin, C.M. Shih, K.C. Chen, 1200 
miR-140 targeting CTSB signaling suppresses the mesenchymal transition and enhances 1201 
temozolomide cytotoxicity in glioblastoma multiforme, Pharmacol Res 147 (2019) 104390. 1202 
[149] W. Zheng, Q. Chen, C. Wang, D. Yao, L. Zhu, Y. Pan, J. Zhang, Y. Bai, C. Shao, Inhibition 1203 
of Cathepsin D (CTSD) enhances radiosensitivity of glioblastoma cells by attenuating 1204 
autophagy, Mol Carcinog 59(6) (2020) 651-660. 1205 
[150] Y. Xiong, W. Ji, Y. Fei, Y. Zhao, L. Wang, W. Wang, M. Han, C. Tan, X. Fei, Q. Huang, 1206 
Z. Liang, Cathepsin L is involved in X-ray-induced invasion and migration of human glioma 1207 
U251 cells, Cell Signal 29 (2017) 181-191. 1208 
[151] X. Zhang, X. Wang, S. Xu, X. Li, X. Ma, Cathepsin B contributes to radioresistance by 1209 
enhancing homologous recombination in glioblastoma, Biomed Pharmacother 107 (2018) 390-1210 
396. 1211 



Page | 31 
 

[152] L. Zhang, H. Wang, J. Xu, J. Zhu, K. Ding, Inhibition of cathepsin S induces autophagy 1212 
and apoptosis in human glioblastoma cell lines through ROS-mediated 1213 
PI3K/AKT/mTOR/p70S6K and JNK signaling pathways, Toxicol Lett 228(3) (2014) 248-59. 1214 
[153] H.S. Anantaraju, M.B. Battu, S. Viswanadha, D. Sriram, P. Yogeeswari, Cathepsin D 1215 
inhibitors as potential therapeutics for breast cancer treatment: Molecular docking and 1216 
bioevaluation against triple-negative and triple-positive breast cancers, Mol Divers 20(2) 1217 
(2016) 521-35. 1218 
[154] S.D. Konduri, N. Yanamandra, K. Siddique, A. Joseph, D.H. Dinh, W.C. Olivero, M. 1219 
Gujrati, G. Kouraklis, A. Swaroop, A.P. Kyritsis, J.S. Rao, Modulation of cystatin C expression 1220 
impairs the invasive and tumorigenic potential of human glioblastoma cells, Oncogene 21(57) 1221 
(2002) 8705-12. 1222 
[155] M. Touat, A. Idbaih, M. Sanson, K.L. Ligon, Glioblastoma targeted therapy: updated 1223 
approaches from recent biological insights, Ann Oncol 28(7) (2017) 1457-1472. 1224 
[156] S.L. Raza, L.A. Cornelius, Matrix metalloproteinases: pro- and anti-angiogenic activities, 1225 
J Investig Dermatol Symp Proc 5(1) (2000) 47-54. 1226 
[157] H. Yoon, S.I. Blaber, W. Li, I.A. Scarisbrick, M. Blaber, Activation profiles of human 1227 
kallikrein-related peptidases by matrix metalloproteinases, Biol Chem 394(1) (2013) 137-47. 1228 
[158] V.C. Ramani, G.P. Kaushal, R.S. Haun, Proteolytic action of kallikrein-related peptidase 1229 
7 produces unique active matrix metalloproteinase-9 lacking the C-terminal hemopexin 1230 
domains, Biochim Biophys Acta 1813(8) (2011) 1525-31. 1231 
[159] H. Wang, X.T. Li, C. Wu, Z.W. Wu, Y.Y. Li, T.Q. Yang, G.L. Chen, X.S. Xie, Y.L. Huang, 1232 
Z.W. Du, Y.X. Zhou, miR-132 can inhibit glioma cells invasion and migration by target MMP16 1233 
in vitro, Onco Targets Ther 8 (2015) 3211-8. 1234 
[160] J. Wang, Y. Li, J. Wang, C. Li, K. Yu, Q. Wang, Increased expression of matrix 1235 
metalloproteinase-13 in glioma is associated with poor overall survival of patients, Med Oncol 1236 
29(4) (2012) 2432-7. 1237 
[161] D. Wildeboer, S. Naus, Q.X. Amy Sang, J.W. Bartsch, A. Pagenstecher, 1238 
Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary 1239 
brain tumors and their expression levels and activities are associated with invasiveness, J 1240 
Neuropathol Exp Neurol 65(5) (2006) 516-27. 1241 
[162] X. Zheng, F. Jiang, M. Katakowski, S.N. Kalkanis, X. Hong, X. Zhang, Z.G. Zhang, H. 1242 
Yang, M. Chopp, Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness, 1243 
Cancer Sci 98(5) (2007) 674-84. 1244 

 1245 

Compliance with ethical standards 1246 

The authors have no potential conflicts of interest. 1247 

 1248 

 1249 

 1250 

 1251 

 1252 



Page | 32 
 

Figure legends 1253 

Figure 1. Classification and structure of peptidase subfamilies involved in glioblastoma 1254 

progression. (A) Subfamily of metzincins, metalloproteinases (MMPs) and transmembrane 1255 

subfamilies of metzincins, adamalysins, comprised of ADAMS and ADAMTS. The MMP 1256 

subfamily is divided into 6 subtypes according to their substrates and their structures: 1257 

collagenases, gelatinases, stromelysins, matrilysins, transmembrane MMP (TM), and other 1258 

MMPs. All MMPs share their catalytic domain (Cat) attached to a zinc atom. Hpx domain = 1259 

Hemopexin domain. Adamalysins are transmembrane proteins that share an MMP domain and 1260 

a disintegrin domain. ADAMTS display thrombospondin domains. (B) Cathepsins B, L, S and 1261 

K belong to the cysteine protease family. Cathepsin D belongs to the aspartic protease 1262 

subfamily. Kallikreins are composed of a (chymo)trypsin domain and belong to the serine 1263 

protease family. 1264 

 1265 

Figure 2. Principal proteolysis-mediated mechanisms of cell proliferation, invasion, and 1266 

angiogenesis in glioblastoma. Glioblastoma and its microenvironment, with central necrotic 1267 

tumour and invasive edge with cells migrating away from the hypoxic centre; foci of proliferative 1268 

glioblastoma cells; and angiogenesis areas with vascular proliferation and new vessel 1269 

formation. (A) Proliferative area with glioblastoma proliferative cells and TAMs. TAMs are 1270 

activated after recognition of glioblastoma cells through their toll-like receptors (TLR), which 1271 

trigger MMP-14 expression, which in turn can activate MMP-2. ADAMs are expressed at the 1272 

surface of glioblastoma cells and release pro-ligands of growth factors into the milieu after 1273 

proteolytic cleavage. Plasminogen is converted into plasmin by the uPAR/uPA complex. 1274 

Plasmin is responsible for MMPs and HGF activation. MMP-2 and -9 are expressed by 1275 

glioblastoma cells, their expression as well as the binding of HGF on its receptor c-Met, and 1276 

the activation of EGFR on glioblastoma cell support cell proliferation. KLK6 cleaves PAR1 in 1277 

glioblastoma cells and mediate intracellular pathways. All the receptors involved (c-MET, uPA, 1278 

PAR1, and EGFR) are upregulated in glioblastoma. (B) Invasive glioblastoma cells (invasive 1279 

edge of the tumour) and mechanisms contributing to cell invasion. The release of lysosomal 1280 

CatD, as well as expression of MMP-2 and -9 by glioblastoma cells contribute to ECM 1281 

degradation. Cell-to-cell and cell-to-matrix interactions are disrupted by MMPs, respectively 1282 

via E-cadherin disruption and CD44-hyaluronic acid disruption. DDR1 and integrin receptors 1283 

interact with collagen. CD44 and DDR1 are upregulated. (C) Angiogenesis mediated by 1284 

proteases in glioblastoma. MMPs are found expressed in vascular proliferation areas, induced 1285 

by angiogenic factors such as Ang-2 and HIF-1. In the extracellular space, MMP-9 controls 1286 

VEGF bioavailability and is responsible for basement membrane disruption, which allows 1287 

endothelial cells to migrate, leading to neo-vessel formation.1288 
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Table 1. Proteolytic enzymes: prognostic/diagnostic value and their implication in glioblastoma progression. 

 

(a) Overexpression in glioblastoma; (b )involvement in glioblastoma progression (invasion, proliferation, angiogenesis); (c) 

Diagnostic value: differential expression between the different glioma grades; (d) Prognostic value: expression associated with 

poor survival; (e) positive implication; (f) negative implication; (g) unknown, N/A. 

 Proteases 
 

(a)Overexpression (b)Involvement 
in progression 

(c)Diagnostic 
value 

(d)Prognostic 
value 
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