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Abstract (Word Count 200) 27 

 28 

Background 29 

Resistance to major public health insecticides in Côte d’Ivoire has intensified and now threatens 30 

the long-term effectiveness of malaria vector control interventions.  31 

 32 

Methods 33 

This study evaluated the bioefficacy of conventional and next-generation long-lasting 34 

insecticidal nets (LLINs), determined resistance profiles, and characterized molecular and 35 

metabolic mechanisms in wild Anopheles coluzzii from South-East Côte d’Ivoire in 2019. 36 

 37 

Results 38 

Phenotypic resistance was intense: more than 25% of mosquitoes survived exposure to ten 39 

times the doses of pyrethroids required to kill susceptible populations. Similarly, 24-hour 40 

mortality to deltamethrin-only LLINs was very low and not significantly different to an untreated 41 

net. Sub-lethal pyrethroid exposure did not induce significant delayed vector mortality 72 hours 42 

later. In contrast, LLINs containing the synergist piperonyl butoxide (PBO), or new insecticides, 43 

clothianidin and chlorfenapyr, were highly toxic to An. coluzzii. Pyrethroid-susceptible An. 44 

coluzzii were significantly more likely to be infected with malaria, compared to those that 45 

survived insecticidal exposure. Pyrethroid resistance was associated with significant over-46 

expression of CYP6P4, CPY6Z1 and CYP6P3. 47 

 48 

Conclusions 49 

Study findings raise concerns regarding the operational failure of standard LLINs and support 50 

the urgent deployment of vector control interventions incorporating PBO, chlorfenapyr or 51 

clothianidin in areas of high resistance intensity in Côte d'Ivoire. 52 
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 53 

 54 
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 57 

Introduction  58 

 59 

In Côte d’Ivoire, malaria is a serious public health problem with the entire population of ~26.2 60 

million people is at risk, and disease prevalence reaching as high as 63% in the south-west 61 

region [1]. Control of Anopheles gambiae s.l., the major malaria vector species group in Côte 62 

d’Ivoire, has been through the efforts of the National Malaria Control Programme (NMCP), 63 

which has distributed insecticide-treated nets (ITNs) as the primary vector control intervention. 64 

Indoor residual spraying (IRS) and larviciding in high transmission areas have been 65 

recommended as complementary strategies; implementation of the former has commenced in 66 

late 2020 [2]. Estimates of net coverage across the country remain low, with the proportion of 67 

households with at least one ITN for every two people rising from 31% in 2012 to 47% in 2016, 68 

and ITN use stagnating at 40% of households reporting sleeping under a net the previous night 69 

in both survey years [2]. The most recent universal net campaigns in Côte d’Ivoire in 2017–2018 70 

issued conventional, pyrethroid (deltamethrin) long-lasting insecticidal nets (LLINs), aiming to 71 

achieve 90% coverage and 80% use [2]. However, country-wide, multi-class insecticide 72 

resistance among populations of An. gambiae s.l. is a growing cause for concern because of 73 

potential operational failure of current vector control strategies, both locally, as well as across 74 

the sub-Saharan region [2,3]. 75 

Resistance to pyrethroid and carbamate insecticides in Anopheles mosquitoes was first 76 

reported from the central region of Côte d’Ivoire in the early 1990s [4-7]. Subsequently, local 77 
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resistance to the major insecticide classes recommended by the World Health Organization 78 

(WHO) for adult mosquito control – pyrethroids, carbamates, organophosphates, and 79 

organochlorines – evolved rapidly [8–10] and has been increasing in intensity, driven largely by 80 

selective pressures imposed by contemporaneous scale-up of public health vector control 81 

interventions (including those targeting malaria, trypanosomiasis and onchocerciasis vectors) 82 

and use of agricultural pesticides [7, 11–14]. This escalation in resistance has now begun to 83 

compromise the insecticidal efficacy and community-wide impact of conventional, pyrethroid 84 

LLINs in Côte d’Ivoire [14,15], although some levels of personal protection may still remain [15–85 

17]. 86 

Amongst vector populations across Côte d’Ivoire, the L1014F kdr mutation is pervasive and has 87 

been implicated in some longitudinal trends in decreasing DDT and pyrethroid susceptibility [7, 88 

11]; L1014S kdr and N1575Y resistance mutations have also been detected but at much lower 89 

frequencies [18]. Extreme carbamate (bendiocarb) resistance and pyrethroid cross-resistance in 90 

local An. gambiae s.s. populations have been shown to be mediated by over-expression of 91 

CYP6P3 and CYP6M2 and duplication of the G119S Ace-1 mutation [19]. 92 

To support and safeguard future malaria control efforts in Côte d’Ivoire, this study evaluated the 93 

efficacy of conventional and next-generation LLINs for prospective distribution; determined 94 

current insecticide resistance profiles of An. gambiae s.l. (principally An. coluzzii); and 95 

characterized underlying molecular and metabolic resistance mechanisms.  96 

 97 

 98 

 99 

 100 
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Methods 101 

Study area and mosquito collections 102 

 103 

The study protocol was approved by the Comité National d’Ethique des Sciences de la Vie et de 104 

la Santé (#069-19/MSHP/CNESVS-kp) and the London School of Hygiene and Tropical 105 

Medicine (#16782 and #16899). Study activities were conducted in the village of Aboudé, rural 106 

Agboville, Agnéby-Tiassa region, south-east Côte d'Ivoire (5°55’N and 4°13’W), selected due to 107 

its high mosquito densities and malaria prevalence (26% in children <5 years old, in recent 108 

estimates [1]). Adult mosquitoes were collected nightly between 5th July and 26th July 2019, 109 

using human landing catches (HLCs), inside and outside households from 18:00 to 06:00hr. 110 

Unfed mosquitoes, morphologically identified as An. gambiae s.l. [20], were tested in bioassays 111 

that same day, following a brief recovery period; blood-fed mosquitoes were first held for 2–3 112 

days to allow for blood-meal digestion. 113 

  114 

WHO cone bioassay testing 115 

 116 

Two types of LLIN were evaluated in this study. PermaNet® 2.0 is a conventional LLIN treated 117 

with deltamethrin only (1.4g/kg±25%) and PermaNet® 3.0 is a PBO synergist LLIN, consisting of 118 

a roof containing PBO (25g/kg) and deltamethrin (4g/kg±25%) and side panels containing 119 

deltamethrin only (2.8g/kg±25%). WHO cone bioassays were used to test the susceptibility of 120 

An. gambiae s.l. exposed to unwashed PermaNet® 2.0, PermaNet® 3.0 roof panels and 121 

PermaNet® 3.0 side panels [21]. To control for potential variation in insecticide/synergist 122 

content, each of five LLINs per type was cut into 19 pieces, measuring 30 x 30cm, with each 123 

piece tested a maximum of three times.  124 

 125 
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Resistance intensity and synergist bioassay testing 126 

 127 

Centers for Disease Control and Prevention (CDC) resistance intensity bioassays were 128 

performed for six public health insecticides (pyrethroids: alpha-cypermethrin, deltamethrin and 129 

permethrin; carbamate: bendiocarb; neonicotinoid: clothianidin; and pyrrole; chlorfenapyr) 130 

[22,23]. The diagnostic doses of all insecticides were evaluated (including clothianidin: 131 

90µg/bottle [23] and chlorfenapyr: 100µg/bottle) and 2, 5 and 10 times the diagnostic dose of 132 

pyrethroid insecticides were also used. Per test, knock-down was recorded at 15-minute 133 

intervals for 30 minutes (pyrethroids and bendiocarb) or 60 minutes (clothianidin and 134 

chlorfenapyr) of insecticide exposure. PBO pre-exposures were performed using WHO tube 135 

assays [24], prior to CDC bottle bioassay testing.  136 

 137 

WHO cone and CDC resistance intensity bioassay data were interpreted according to the WHO 138 

criteria [21,22].  Mosquitoes which died following exposure to a LLIN or 1X insecticide dose 139 

were stored at -20°C in RNAlater® (Thermo Fisher Scientific, UK) and were considered 140 

‘susceptible’ for genotypic analysis. Surviving mosquitoes were held and scored for mortality 141 

after 24, 48 and 72 hours to observe delayed mortality. Kaplan-Meier curves were used to 142 

visualize survival data, and Cox regression was used to compare post-exposure survival. 143 

Immediate mortality following LLIN (60 minutes and 24 hours) or insecticidal exposure (30 or 60 144 

minutes, depending on insecticide) were excluded. Surviving mosquitoes at 72 hours were 145 

stored at -20°C in RNAlater® and were considered ‘resistant’ for genotypic analysis.  146 

 147 

 148 

 149 

 150 
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Mosquito processing, identification of Anopheles gambiae s.l. species complex members and 151 

Plasmodium falciparum detection 152 

 153 

A sub-sample of field-caught mosquitoes that were tested in bioassays were selected for 154 

molecular analysis (n=912). Approximately equal numbers of specimens were chosen to 155 

represent phenotypically ‘susceptible’ or ‘resistant’ mosquitoes for each LLIN type or insecticide 156 

dose, and selected across different replicates/testing days to capture as much population-level 157 

variation as possible. RNA was extracted from individual whole-body mosquitoes according to 158 

standard protocols [23]. Field An. gambiae s.l. were identified to species-level by amplification of 159 

the SINE200 insertion that differentiates An. coluzzii and An. gambiae s.s. [25] and were 160 

screened for the presence of Plasmodium falciparum [26]. 161 

 162 

Characterization of insecticide resistance mechanisms: target site mutations  163 

The same cohort of field mosquitoes (n=912) were tested for the presence of the L1014F kdr 164 

[27] and N1575Y mutations [28]. A sub-sample of mosquitoes (n=49) which were exposed to 165 

bendiocarb, clothianidin or chlorfenapyr were tested for the presence of the G119S Ace-1 166 

mutation [29]. Pearson’s Chi-squared tests and Fisher’s exact tests (when sample sizes were 167 

small) were used to investigate the statistical association between resistance status, allele 168 

frequencies and deviations from Hardy-Weinberg equilibrium. 169 

 170 

 171 

 172 

 173 

 174 

 175 
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Characterization of insecticide resistance mechanisms: metabolic gene expression 176 

 177 

Relative expression of five metabolic genes (CYP6P3, CYP6P4, CYP6Z1 CYP6P1 and GSTE2) 178 

was measured in all field collected mosquitoes (n=912), using multiplex quantitative real-time 179 

PCR (qRT-PCR) assays, relative to the housekeeping gene ribosomal protein S7 (RPS7) [30]. 180 

In addition, gene expression levels were measured in susceptible An. coluzzii N’gousso colony 181 

mosquitoes (n=48). All samples were run in technical triplicate. Relative expression level and 182 

Fold Change (FC) of each target gene from resistant and susceptible field samples, relative to 183 

the susceptible laboratory strain, were calculated using the 2-ΔΔCT method incorporating PCR 184 

efficiency, normalised relative to the endogenous control gene (RPS7). 185 

 186 

Results 187 

 188 

Mosquito collections and species identification 189 

 190 

A total of 4,609 female An. gambiae s.l. mosquitoes were collected in Agboville, Côte d'Ivoire. 191 

Of those, 912, which were previously tested in either LLIN bioefficacy assays (n=384) or 192 

resistance intensity bioassays (n=528), were selected for molecular species identification, with 193 

805 (88.3%) determined to be An. coluzzii, 75 (8.2%) An. gambiae s.s. and 22 (2.4%) An. 194 

gambiae-An. coluzzii hybrids; 10 individuals did not amplify.  195 

 196 

Long-lasting insecticidal net efficacy 197 

 198 

A total of 2,666 field-caught An. gambiae s.l. were used to assess the bioefficacy of 199 

conventional pyrethroid-treated LLINs (PermaNet® 2.0 and PermaNet® 3.0 side panels) and 200 
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next-generation synergist LLINs (PermaNet® 3.0 roof panels), compared to an untreated control 201 

(Figure 1).  202 

 203 

Overall, levels of An. gambiae s.l. knock-down and mortality to deltamethrin LLINs, were very 204 

low and largely equivalent to the untreated control net (Figure 1). At 60 minutes, average 205 

mosquito knock-down to the untreated control, PermaNet® 2.0 and PermaNet® 3.0 side panels 206 

was 1.56% (95% CI: 1.13-1.99%), 0.54% (95% CI: 0.42-0.65%) and 1.75% (95% CI: 1.49-207 

2.0%), respectively. By contrast, average mosquito knock-down for PBO-containing PermaNet® 208 

3.0 roof panels was significantly higher (79.8%, 95% CI: 79.07-80.48%; �2 =705.51, 968.65 and 209 

937.33; p<0.001, versus untreated control, PermaNet® 2.0 and PermaNet® 3.0 side panels, 210 

respectively) (Figure 1).  211 

 212 

At 24 hours, mortality to the untreated control, PermaNet® 2.0 and PermaNet® 3.0 side panels 213 

remained low (6.11%, 95% CI: 4.71-7.51%; 5.44%, 95% CI: 4.58-6.29% and 3.66%, 95% CI: 214 

3.12-4.19%, respectively), while mortality to PermaNet® 3.0 roof panels increased only 215 

marginally but still remained significantly higher (83.81%, 95% CI: 83.15-84.47%; �2 =727.96, 216 

914.61 and 963.09; p<0.001 for all, versus untreated control, PermaNet® 2.0 and PermaNet® 217 

3.0 side panels, respectively) (Figure 1). PermaNet® 3.0 roof panels reached minimal 218 

effectiveness (knock-down ≥75%) 60 minutes after exposure and optimal effectiveness 219 

(mortality ≥80%) at 24 hours. Neither of the deltamethrin-only LLINs reached either 220 

effectiveness threshold at any time point.  221 

 222 

Insecticide resistance intensity 223 

 224 

One thousand, nine hundred and forty-three field-caught An. gambiae s.l. were tested in 225 

resistance bioassays. Intense pyrethroid resistance was evident with more than 25% of 226 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 25, 2020. . https://doi.org/10.1101/2020.09.24.311639doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.311639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

mosquitoes surviving exposure to ten times the dose of insecticide required to kill a susceptible 227 

population; at the diagnostic dose, mosquito mortality did not exceed 25% for any pyrethroid 228 

tested (Figure 2A). These results are consistent with the high survival rates observed during 229 

cone bioassays using conventional LLINs (Figure 1). In general, levels of resistance to alpha-230 

cypermethrin, deltamethrin and permethrin were not significantly different at each insecticide 231 

concentration tested (Figure 2A).  232 

 233 

By comparison, carbamate tolerance was low, with mean knock-down of 94.53% (95% CI: 234 

92.11-96.95%) after 30 minutes exposure to the diagnostic dose of bendiocarb. Similarly, high 235 

levels of susceptibility to new insecticides clothianidin and chlorfenapyr were observed, with 236 

mean mortality of 94.11% (95% CI: 93.43-94.80%; n=102) and 95.54% (95% CI: 94.71-96.36%; 237 

n=112), respectively, 72 hours after exposure to the tentative diagnostic doses.  238 

 239 

Pre-exposure to PBO increased average An. gambiae s.l. mortality significantly from 14.56% 240 

(95% CI: 6.24-22.88%) to 72.73% (95% CI: 64.81-79.43) and from 44.66% (95% CI: 34.86-241 

54.46%) to 94.17% (95% CI: 91.12-97.22) after exposure to one or two times the diagnostic 242 

dose of deltamethrin (Figure 2B). 243 

 244 

Mosquito survival following insecticidal exposure 245 

 246 

All An. gambiae s.l. tested in LLIN bioefficacy or resistance intensity bioassays, were held for 72 247 

hours, to assess any impact of insecticide or net exposure on delayed mortality. For LLIN 248 

bioassays, there was little evidence for any reduction in survival during this holding period (Cox 249 

regression P= 0.149, 0.272 and 0.85 comparing PermaNet® 2.0, PermaNet® 3.0 side panels and 250 

PermaNet® 3.0 roof panels versus untreated control, respectively) (Table 1 and Figure 3A). 251 

Exposure to the diagnostic doses of all insecticides in CDC bottle bioassays did not induce 252 
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significant delayed mortality over 72 hours (Cox regression P>0.05 for all insecticides compared 253 

to the control; with the exception of chlorfenapyr, P=0.02) (Table 1 and Figure 3B). This 254 

phenomenon was also observed at increasing pyrethroid doses (Cox regression P>0.05 for 255 

alpha-cypermethrin, deltamethrin and permethrin 5X and 10X versus either the control or 256 

diagnostic dose) (Table 1; Figure 3C and 3D).  257 

 258 

Malaria prevalence 259 

 260 

Of the 912 An. gambiae s.l. mosquitoes assayed, 31 tested positive for P. falciparum (3.4%). 261 

For PCR-confirmed An. coluzzii, P. falciparum prevalence was 3.50% (28/805); the remaining 262 

three infections were in An. gambiae s.s. (4%; 3/75). By resistance phenotype, susceptible An. 263 

coluzzii (i.e. those which died following pyrethroid exposure) were more likely to be infected with 264 

malaria, compared to resistant mosquitoes (�2 =4.6987; p=0.030); infection rates were 5.94% 265 

(13/219) and 2.49% (10/401), respectively. 266 

 267 

Target site resistance mutations 268 

 269 

L1014F kdr screening revealed 92.2% (796/863) of An. gambiae s.l. mosquitoes harboured the 270 

mutation; 71.5% (617/863) were homozygous, 20.7% (179/863) were heterozygous, 5.1% 271 

(44/863) were wild type and 2.6% (23/863) did not amplify. For PCR-confirmed An. coluzzii, 272 

L1014F kdr prevalence was 87.8% (707/805); 66.6% (536/805) were homozygous for the 273 

mutation, 21.2% (171/805) were heterozygous, 5.3% (43/805) were wild type and 2.2% (18/805) 274 

did not amplify. For An. coluzzii, population-level L1014F kdr allele frequency was 0.83, with 275 

evidence for significant deviations from Hardy-Weinberg equilibrium (�2 =29.124; p<0.0001). 276 

There was no significant association between L1014F kdr frequency and ability of mosquitoes to 277 

survive pyrethroid exposure, in either LLIN or resistance bioassays (�2 =2.0001; p=0.157 and 278 
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�
2 =3.7577; p=0.0.53, respectively). Similarly, there was no significant association between 279 

L1014F kdr and ability of mosquitoes to survive PBO pre-exposure and pyrethroid treatment, in 280 

either LLIN or resistance bioassays (�2 =0.0086; p=0.926, Fisher’s exact=0.429, respectively). 281 

For PCR-confirmed An. gambiae s.s., L1014F kdr prevalence was 95.3% (61/64); 89.1% 282 

(57/64) were homozygous for the mutation, 6.3% (4/64) were heterozygous, none were wild 283 

type and 4.7% (3/64) did not amplify. For An. gambiae s.s., population-level L1014F kdr allele 284 

frequency was 0.97, with no significant deviations from Hardy-Weinberg equilibrium (�2 =0.070; 285 

p=0.791). 286 

 287 

N1575Y screening revealed 2.3% (21/912) of An. gambiae s.l. mosquitoes harboured the 288 

mutation; all of these were heterozygotes. N1575Y prevalence was 1.1% (9/805) and 16% 289 

(12/75) for PCR-confirmed An. coluzzii and An. gambiae s.s., respectively; 0.99% (9/912) did 290 

not amplify. There was no evidence for ongoing N1575Y selection in either species (�2 =0.026; 291 

p=0.873 and �2 =0.62; p=0.433 for An. coluzzii and An. gambiae s.s., respectively). For An. 292 

coluzzii, there was no significant association between N1575Y frequency and ability of 293 

mosquitoes to survive pyrethroid exposure, in LLIN or resistance bioassay (�2 =0.0001; p=0.993 294 

and �2 =0.3244; p=0.569, respectively).  295 

 296 

G119S Ace-1 screening revealed 55.1% (27/49) of An. gambiae s.l. mosquitoes harboured the 297 

mutation; all of these were heterozygotes. G119S Ace-1 prevalence was 64.9% (24/37) and 298 

27.3% (3/11) for PCR-confirmed An. coluzzii and An. gambiae s.s., respectively; one remaining 299 

An. gambiae-An. coluzzii hybrid was wild type. For An. coluzzii, population-level G119S Ace-1 300 

allele frequency was 0.32, with evidence for significant deviations from Hardy-Weinberg 301 

equilibrium (�2 =8.525; p=0.00350). For An. gambiae s.s., population-level G119S Ace-1 allele 302 

frequency was 0.14, with no significant deviations from Hardy-Weinberg equilibrium (�2 =0.274; 303 
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p=0.6005). For An. coluzzii, there was a significant association between presence of the G119S 304 

Ace-1 mutation and surviving bendiocarb exposure (Fisher’s exact test = 0.005).  305 

 306 

Metabolic resistance mechanisms 307 

 308 

Comparison of metabolic gene expression levels in field populations of An. coluzzii and An. 309 

gambiae s.s. demonstrated significant upregulation of CYP6P4 (FC=5.88, 95% CI: 5.19-44.06; 310 

and 6.08, 95% CI: 5.43-50.64), CPY6Z1 (FC=4.04, 95% CI: 3.69-41.54; and 3.56, 95% CI: 3.24-311 

36.25) and CYP6P3 (FC=12.56, 95% CI: 11.40-123.83; and 13.85, 95% CI: 12.53-132.03), 312 

relative to a susceptible laboratory colony, respectively (Figure 4). More modest overexpression 313 

of CYP6P1 and GSTE2 was observed (FC=1.18, 95% CI: 1.08-12.31; and 1.28, 95% CI: 1.17-314 

14.40; FC=0.56, 95% CI: 0.48-3.32; and 0.67, 95% CI: 0.58-4.29; for An. coluzzii and An. 315 

gambiae s.s., respectively) (Figure 4). Levels of FC did not differ significantly between the two 316 

species for any gene nor by malaria infection status in wild An. coluzzii. 317 

 318 

Comparison of metabolic gene expression in phenotyped field populations of An. coluzzii  319 

revealed lower FCs overall, but notably, increased overexpression of CYP6P3 in survivors of 320 

bendiocarb, deltamethrin, PBO + deltamethrin and permethrin (FC = 3.91, 95% CI: 3.33-22.16; 321 

2.21, 95% CI: 1.88-12.53; 2.64, 95% CI: 2.21-13.69; and 2.21, 95% CI: 1.99-20.03, 322 

respectively) (Figure 5). 323 

 324 

 325 

 326 

 327 

 328 

 329 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 25, 2020. . https://doi.org/10.1101/2020.09.24.311639doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.311639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Discussion 330 

 331 

Côte d’Ivoire is a hot spot of some of the highest levels of resistance of Anopheles mosquitoes 332 

to public health insecticides worldwide, with potentially severe implications for sustaining gains 333 

in malaria control [31]. To safeguard future malaria vector control efforts and inform the design 334 

of effective resistance management strategies, involving tactical deployment of differing IRS and 335 

LLIN modalities, there needs to be a clear understanding of contemporary phenotypic and 336 

genotypic insecticide resistance. 337 

  338 

Our study detected intense pyrethroid resistance in south-east, Côte d’Ivoire, as evidenced by 339 

high proportions of survivors, following exposure to ten times the diagnostic doses of 340 

pyrethroids, as well as very low levels of knock-down and 24-hour mortality to deltamethrin-only 341 

LLINs, equivalent to an untreated net. These findings are largely in agreement with historical 342 

resistance profiles from this region [7,10,11] and indicate that conventional LLINs may no longer 343 

be operationally viable in areas of high pyrethroid resistance intensity. Previous Phase II studies 344 

of pyrethroid-only LLINs in the central region of Côte d’Ivoire have demonstrated similarly poor 345 

efficacy with highly resistant An. gambiae s.l. populations but argued for the retention of some 346 

degree of personal protection [15-17]. Other observational cohorts have reported higher 347 

incidences of malaria among non-net users compared to users in areas of moderate to high 348 

pyrethroid resistance [17]. The extent of protective efficacy afforded by pyrethroid LLINs will 349 

likely reflect the strength of local vector resistance and levels of both net physical integrity and 350 

individual compliance [32,33]. However, in Côte d’Ivoire, reported LLIN usage has been low, 351 

requiring additional behavioural interventions [2,34]. Our findings of high mosquito mortality 352 

following exposure to clothianidin and chlorfenapyr and improved vector susceptibility with PBO 353 

treatment (on both LLINs and in resistance bioassays), are consistent with data from other 354 
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sentinel sites across Côte d’Ivoire [16,35,36], and strongly support the deployment of vector 355 

control interventions incorporating these new active ingredients. 356 

  357 

Study results indicate that An. coluzzii was the predominant local vector species during the rainy 358 

season, as observed previously [7], circulating sympatrically with smaller proportions of An. 359 

gambiae s.s.. These two vector species commonly co-habit but can be genetically distinct in 360 

terms of resistance mechanisms [37,38] and can also differ in larval ecology, behaviour, 361 

migration and aestivation [39-41]. In general, resistance mechanisms in An. coluzzii are less 362 

well-characterized, compared to An. gambiae s.s., in part because these vectors are 363 

morphologically indistinguishable and few studies present data disaggregated by PCR-364 

confirmed species. We observed several distinct features in our study, principally, evidence for 365 

ongoing selection of L1014F kdr and G119S Ace-1 in An. coluzzii, which was absent in An. 366 

gambiae s.s. and higher proportions of N1575Y in An. gambiae s.s.; expression levels of 367 

metabolic genes were comparable between species. The lack of association between L1014F 368 

kdr genotype and mosquito phenotype, coupled with the identification of three CYP450 369 

enzymes (CYP6P4, CYP6P3 and CYP6Z1) that were significantly over-expressed in field 370 

populations, (some of which are known to metabolise pyrethroids and next generation LLIN 371 

insecticides [42,43]), indicate a key role for metabolic resistance in this An. coluzzii population. 372 

One notable difference in our dataset, compared to previous work in Agboville [7], was the 373 

finding of bendiocarb susceptibility. This may be attributable to small-scale spatial and 374 

longitudinal heterogeneity in resistance, which can be highly dynamic [37,44], and/or phenotypic 375 

differences between vector species.   376 

  377 

With the exception of chlorfenapyr, which is known to be a slow-acting insecticide, we did not 378 

detect any delayed mortality effects for 72 hours following insecticidal exposure; the format and 379 

dose used for clothianidin testing (another slow-acting insecticide [45]) was instead intended to 380 
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measure acute toxicity within a 60 minute exposure period. Previous mathematical models 381 

using resistant mosquito colonies have suggested that sub-lethal insecticide treatment may still 382 

reduce vector lifespan and inhibit blood-feeding and host-seeking behaviours, thereby 383 

interrupting malaria transmission [46,47]. Our observations are more compatible with reports 384 

from Burkina Faso where different exposure regimens of wild, resistant An. gambiae s.l. 385 

populations to deltamethrin LLINs did not induce any delayed mortality [47]. Further assessment 386 

of sublethal effects are warranted across additional field populations with differing resistance 387 

mechanisms to better understand the impact of insecticidal exposure on vectorial capacity of 388 

resistant mosquitoes.   389 

  390 

To date there is a paucity of data regarding the interactions between insecticide resistance and 391 

Plasmodium development [48]. In this study, An. coluzzii which died following pyrethroid 392 

exposure were significantly more likely to be infected with malaria. This might be explained by 393 

elevated metabolic enzymes and/or prior pyrethroid exposure detrimentally affecting parasite 394 

development [49]; although it is important to note that we did not detect any significant 395 

differences between gene overexpression in malaria infected vs. non-infected An. coluzzii. 396 

Alternatively, our sampled population may have been physiologically older, as phenotypic 397 

resistance is known to decline with age [50]. It is impossible to distinguish between these 398 

hypotheses using field-collected vector populations; the experimental design used in this study 399 

had other biological and technical limitations, which have been described in detail previously 400 

[23,37]. 401 

 402 

Conclusions 403 

 404 

As new combination and bi-treated vector control interventions become available for 405 

deployment, contemporary resistance information is crucial for the rationale design of 406 
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management strategies and to mitigate future selection for particular resistance mechanisms. 407 

The results from this study contribute to growing insecticide resistance data for Côte d’Ivoire, 408 

demonstrating a loss of bioefficacy of conventional pyrethroid LLINs and supporting the use of 409 

new active ingredients (clothianidin, chlorfenapyr and PBO). Study findings also highlight the 410 

need for expanded insecticide resistance surveillance, including monitoring of metabolic 411 

resistance mechanisms, in conjunction with studies to better characterize the impact of 412 

sublethal insecticide exposure on vectorial capacity and the interaction between insecticide 413 

resistance on Plasmodium parasite development.  414 

 415 
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Figures 590 

 591 

 592 

 593 

Figure 1. Bioefficacy of different unwashed LLINs against field-caught An. gambiae s.l. Mean 594 

knock-down and mortality rates with 95% confidence intervals (CI) at 60 minutes and 24 hours, 595 

respectively, after 3 minutes exposure to PermaNet® 2.0 (deltamethrin only), side panels of 596 

PermaNet® 3.0 (deltamethrin only), roof panels of PermaNet® 3.0 (PBO + deltamethrin) and an 597 
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untreated control net. Knock-down or mortality in the same time period for each treatment 598 

sharing a letter do not differ significantly (p>0.05). Green lines at ≥75% knock-down = minimal 599 

effectiveness at 60 minutes and at ≥ 95% knock-down = optimal effectiveness at 60 minutes. 600 

Red lines at ≥50% mortality = minimal LLIN effectiveness at 24 hours and ≥80% mortality = 601 

optimal LLIN effectiveness at 24 hours, as defined by the WHO [21]. 602 

 603 

 604 

Figure 2. A: Resistance intensity of field-caught An. gambiae s.l. after exposure to one, two, 605 

five and ten times the diagnostic dose of pyrethroid insecticides.  Mean knock-down/acute 606 

toxicity after 30 minutes exposure with 95% confidence intervals (CI). Knock-down/mortality at 607 

the same dose per insecticide sharing a letter do not differ significantly (p>0.05). Values of less 608 

than 90% mortality (lower red line) indicate confirmed resistance at the diagnostic dose (1X) and 609 

values of less than 98% mortality (upper red line) indicate moderate to high intensity resistance 610 

or high intensity resistance at 5X and 10X, respectively, as defined by the WHO [24]. B: 611 

Restoration of deltamethrin susceptibility of field-caught An. gambiae s.l. after pre-exposure to 612 
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PBO. Mean knock-down/acute toxicity after 30 minutes exposure to one or two times the 613 

diagnostic dose of deltamethrin with 95% confidence intervals (CI). Knock-down/mortality 614 

between pyrethroid only and synergist + pyrethroid sharing a letter do not differ significantly 615 

(p>0.05). Red line at 98% mortality indicates metabolic resistance mechanisms partially 616 

involved [24]. 617 

 618 

 619 

620 

 621 

Figure 3. The longevity of field-caught An. gambiae s.l. after exposure to LLINs in WHO cone 622 

assays (A) 1X (B), 5X (C) and 10X (D) times the diagnostic dose of pyrethroid insecticides in 623 
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CDC resistance intensity assays. Kaplan Meier survival curves indicate the proportion alive 624 

each day post-exposure. Immediate mortality following LLIN (60 minutes and 24 hours) or 625 

insecticidal exposure (30 or 60 minutes, insecticide depending) were excluded.  626 

 627 

 628 

Figure 4. Metabolic gene expression in field An. coluzzii and An. gambiae s.s. populations 629 

relative to a susceptible colony population. Error bars represent 95% CI; statistically significant 630 

differences in expression levels relative to the susceptible colony are indicated as *P<0.05, 631 

**P<0.01, ***P≤0.001. 632 

 633 
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 634 

 635 

Figure 5. Metabolic gene expression in resistant versus susceptible field An. coluzzii, which 636 

either died or survived following insecticidal exposure. Error bars represent 95% CI.637 
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Table 1. Cox proportional hazard model to describe the impact of LLIN/insecticidal exposure 

on survival of field-caught An. gambiae s.l. 72 hours post exposure. 

Insecticide Exposure N (N Events) HRR 95% CI P-value 

Untreated Netting  Reference - - 

PermaNet® 2.0 (deltamethrin 

only) 

1135 (1047) 1.095 0.968-1.239 0.149 

PermaNet® 3.0 side panels 

(deltamethrin only) 

1157 (1088) 0.9664 0.9092-1.027 0.272 

PermaNet® 3.0 roof panels 

(PBO + deltamethrin) 

563 (533) 1.007 0.939-1.079 0.85 

Acetone Control  Reference - - 

Alpha-cypermethrin 1X 676 (641) 1.006 0.9696-1.043 0.767 

Deltamethrin 1X 683 (645) 0.9942 0.9539-1.036 0.782 

Permethrin 1X 693 (661) 1.015 0.9698-1.062 0.525 

Clothianidin 1X 698 (581) 1.208 0.9227-1.581 0.169 

Chlorfenapyr 1X 708 (580) 1.692 1.086-2.637 0.02 

PBO + Deltamethrin 1X 630 (577) 0.9662 0.2411-3.873 0.961 

Alpha-cypermethrin 5X 633 (601) 0.9951 0.9407-1.053 0.863 

Deltamethrin 5X 652 (610) 0.9942 0.9393-1.052 0.842 

Permethrin 5X 636 (583) 0.9931 0.8638-1.142 0.923 
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Alpha-cypermethrin 10X 624 (587) 0.9951 0.917-1.08 0.906 

Deltamethrin 10X 623 (588) 0.9943 0.9072-1.09 0.902 

Permethrin 10X 656 (603) 1.026 0.9509-1.107 0.509 

1X Insecticide Dose  Reference - - 

Alpha-cypermethrin 5X 117 (92) 1.016 0.9069-1.138 0.785 

Alpha-cypermethrin 10X 108 (78) 1.007 0.9403-1.078 0.845 

Deltamethrin 5X 143 (105) 1.0 0.9035-1.107 1.0 

Deltamethrin 10X 114 (83) 1.0 0.9363-1.068 1.0 

Permethrin 5X 137 (94) 1.022 0.8528-1.225 0.812 

Permethrin 10X 157 (114) 0.9952 0.9491-1.044 0.842 

HRR: hazard rate ratio; ratio between the hazard rate in control/reference group and hazard 

rate for each treatment group. 

Significance level defined as α = 0.05. 

Immediate mortality following LLIN (60 minutes and 24 hours) or insecticidal exposure (30 or 

60 minutes, insecticide depending) were excluded. 
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