

Proxy Circuits for Fault-Tolerant Primitive

Interfacing in Reconfigurable Devices Targeting

Extreme Environments

Adewale Adetomi

Ewireless Research Group, School of Engineering

University of Edinburgh

Edinburgh EH9 3JL, United Kingdom

a.adetomi@ed.ac.uk

Klaus McDonald-Maier

Embedded and Intelligent Systems Lab

University of Essex

Colchester CO4 3SQ, United Kingdom

kdm@essex.ac.uk

Sangeet Saha

Embedded and Intelligent Systems Lab

University of Essex

Colchester CO4 3SQ, United Kingdom

sangeet.saha@essex.ac.uk

Tughrul Arslan

Ewireless Research Group, School of Engineering

University of Edinburgh

Edinburgh EH9 3JL, United Kingdom

t.arslan@ed.ac.uk

Abstract—Continuous interface access to device-level

primitives in reconfigurable devices in extreme environments is

key to reliable operation. However, it is possible for a primitive’s

interface controller, which is static to be rendered non-

operational by a permanent damage in the controller’s circuitry.

In order to mitigate this, this paper proposes the use of

relocatable proxy circuits to provide remote interfacing

capability to primitives from anywhere on a reconfigurable

device. A demonstration with device register read controller

shows that an improvement in fault-tolerance can be achieved.

Keywords—reconfigurable device; reliable; primitive

interfacing; extreme environment; network on chip

I. INTRODUCTION

Reconfigurable hardware devices like FPGAs have become

more attractive for computing, thanks to their combination of

sheer hardware performance and (re)programmability, the

latter especially useful in applications in extreme

environments (e.g., space and nuclear) where it allows key

fault-tolerant features to be implemented (e.g., scrubbing and

relocation [1]) for adaptation and recovery from errors.

To take advantage of ASIC-like performance and power

consumption, reconfigurable devices often come with

specialized functional modules or primitives built directly into

the silicon. These fixed structures often provide specialized

functionalities like analogue-to-digital conversion; and device-

level functionalities like configuration memory access and

clock management. To access these primitives, a user design

implements a controller around the primitive’s interface to

gain access to control the core’s functionalities through key

read-write operations.

The subject of this paper is relates to the fault tolerance of

such a controller. While a soft error in the primitive’s

controller has a transient effect and can be easily masked by

Triple Modular Redundancy (TMR) [2] and fixed by

scrubbing [3], the same cannot be said of a hard error, which

renders the affected area permanently damaged. If this area

falls within a critical section of the controller, it could cripple

its key functionalities. A potential solution in this situation is

circuit relocation, which is the movement of a task from one

location to another on the device while maintaining its

functionality and preserving its inter-task communication

capability and timing properties.

In the event of a permanent chip damage, provoked by

radiation, for instance, circuit relocation would allow the

controller to be moved to a damage-free area on the chip in

order to circumvent the permanent damage. However, because

the controller requires access to the primitive, which is in a

fixed location on the chip (e.g., the internal configuration

access port in an FPGA [4]), a mechanism that would ensure a

continuous access to the primitive in the case of an emergent

hard error is required.

This paper presents the implementation of a fully functional

and relocatable controller for device register read. Because a

primitive is in a fixed location on the chip, a special technique

is required to decouple a controller from the primitive it

controls while preserving the cross-interface functionalities

between the controller and the primitive. We introduce proxy

circuits to abstract the original interface access between a

controller and its corresponding primitive. To the best of our

knowledge, this is the first time a mechanism like this will be

reported in the open literatures.

Circuit relocation often generates the question of how to

provide dynamic communication for relocated circuits and

how to preserve timing, among others. This paper presents our

mitigation approach to the circuit relocation challenges and

describes the implementation of an example proxy circuit for

device register access for diagnosis in an FPGA. We further

discuss the benefits of our approach to fault tolerance and

relate the implications on resource utilization and interface

access latency.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/334955019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. MEETING THE REQUIREMENTS FOR FULL

RELOCATABILITY

For a circuit to be relocatable from one location to another

on the FPGA, a set of stringent requirements must be met,

namely: the matching of the source and destination regions in

terms of resource type and relative positions, including the

interconnect structure; the provision of dynamic

communication between the relocated circuit and the other

circuits on the FPGA; and the preservation (or rather,

avoidance) of any static interconnections routes crisscrossing

the target region. A practical implementation of a relocatable

circuit must put these requirements into consideration. Here,

we describe what mechanisms we are adopting to meet these

requirements.

A. Matching Target Location

It is easier to meet this requirement in FPGAs that have

homogeneous resources and those that have heterogeneous

resources arranged at regular column intervals. It is salient to

state that with newer FPGAs like the 7 series and the

UltraScale, the architecture of the chip area is more

heterogeneous and irregular. This means it is more difficult to

find matching locations on the horizontal plane. Vertical

matching locations are easier to come by because there is

homogeneity at the column level of all known Xilinx FPGAs.

In general there is usually a matching location for any circuit

on the FPGA, not considering other circuits that may be on the

FPGA. However, in reality, other circuits could have taken up

potential matching locations, in which case other techniques

of relocation like the memoization-based method in [5] can be

used, though with limitation in the data width and with

possible timing issues (see Section II.D), but nonetheless, a

promising solution to an impossible situation.

B. Provision of Dynamic Communication

Circuit relocation allows a circuit to be moved from its

original location where it has established communication

routes with other circuits on the FPGA. Current design tools

do not natively support re-establishing these communication

routes after relocation. Indeed, it is possible to use online

routing to re-establish communication between a relocated

circuit and the other circuits on the chip but this is

computationally expensive, often requiring tens of thousands

of clock cycles [6] and far from being trivial. Another

possibility is to use the reconfiguration mechanism to

transport data, an idea exploited in [7]. In this case, the I/Os of

the original circuits are abstracted by a task interface logic,

with on-chip memories used to store input and output data,

which are then transferred through the configuration layer via

the Internal Configuration Access Port (ICAP). However, this

can be counterintuitive in a situation where the primitive being

controlled is the ICAP itself in which case one would need the

controller in order to gain access to the ICAP, but a

relocatable controller is intended to be detachable and

relocatable away from the ICAP. This would create a

conundrum if the physically connected controller-ICAP

combination were to be used to provide dynamic

communication between the controller and the ICAP itself.

Because the controller is relocated away from the ICAP, data

needs to be transferred between the controller and the ICAP.

However, according to [7], to transfer data using the ICAP,

the controller needs to be attached to the ICAP.

 In order to provide a dynamic communication that is

applicable to a generic primitive, we employ the mechanism

advanced in [8], where the clock buffers of an FPGA are

adapted for dynamic communication in a scheme called

Clock-Enabled Low-Overhead Communication (CELOC),

with a corresponding Clock-Enabled Relocation-Aware

Network on Chip (CERANoC) advanced to support online

relocation. Fig. 1 shows the implemented star-shaped

CERANoC network for this work. The clock nets of an FPGA

run through dedicated wires in the silicon and as such, provide

a side channel for routing data regardless of where circuits are

or relocated to on the FPGA in runtime. Further details can be

found in [8].

Fig. 1. A start-shaped CERANoC network using [8]

C. Preservation of Existing Interconnect Routes

The target location for a relocated circuit is not guaranteed

of being free from interconnect routings that belong to a

neighbouring circuit. If the relocated circuit is reconfigured in

the location without regard to these pre-existing routings, it

could override the routings and break the functionalities of the

nearby circuits. A method of preservation of pre-existing

routings would be to read back the interconnect configuration

information of the target region and compare with those of the

relocated circuit, but care has to be taken to ensure that these

pre-existing routings are avoided if their path would conflict

with the routing in the relocated circuit. A good allocation

algorithm search should put this into consideration in finding a

suitable place for relocation in the first place.

The task here is made more difficult because FPGA design

tools generally allow circuits to use routing resources that are

outside the partitions assigned to them, mostly because of the

need to resolve routing congestion. A way of reducing routing

congestion especially at the interface of circuits is to use bit-

serial interconnections between circuits, as this has been

shown to have reduced footprint and congestion factors [9].

BUFG

BUFG

BUFG

Task

Task Wrapper

Clock Buffer Block

 SERDES TX RX

. . .

Switch Buffer Block

Node

(N0)

Switch

Arbiter

CE

CE

CE
Reconfigurable

Region

switch_clockcom_clock

BUFR

CE

BUFMR

Central
Router

The adaptation of clock buffers for communication calls for

the adoption of bit-serial interconnect owing to the limited

availability of clock buffers in a typical FPGA [8]. This use of

a bit-serial communication implementation nevertheless is

beneficial because it helps in easily meeting the requirement

for the preservation of existing routes, while at the same time

garnering the other benefits of bit-serial over bit-parallel

interconnects, which include high speed and power savings as

demonstrated in [9][10].

D. Dynamic Timing Closure

When a circuit is moved away from the original location,

for which its static timing closure has been ensured, certainty

has to be provided that the circuit will continue meeting

timing in the new location. To ease timing closure, it is

recommended that the inputs of a relocatable circuit are

registered [4]. Once a relocatable circuit meets timing within

its bounded partition at design time, for the purpose of

relocation, it can be expected to maintain its timing closure

within its own physical bound regardless of wherever it is

relocated on-chip in runtime so far a strictly matching target

location is used. Timing issues are related more to the

interface between the static logic and the relocatable circuit.

As the circuit is moved about, its physical distance from the

static interface changes and thus its interface timing changes.
This timing change has to be taken into consideration.

In [11], a worst-case interface timing analysis is used,

where every possible location for a relocation circuit is

analysed offline and the worst-case timing used to characterise

the circuit for online relocation. With our use of the clock

buffers for communication, the interface’s static timing is not

violated because the clock network is on a dedicated network

different from the general interconnect. With the

communication interface well characterised – the latency is

known deterministically for a given clock frequency [8] and

from the point of view of the relocatable circuit, any delay is

incurred as communication latency rather than setup/hold time

delay. All static/hold time delays related to the communication

interface are already covered by the network on chip.

E. Provision of Clock Network at the Target Location

The design tools do not route clock signals to regions of the

device that are not used by user designs. As such, if a circuit is

relocated in runtime, a suitable clock network must be

provided at the target location. The clock networks of the

FPGA are routed through switch matrices. These routing

resources can be controlled online by activating specific bits

in the configuration memory. This approach is exploited in

[12] to provide online clock routing for relocatable circuits.

For instance, the authors manipulate regional clock buffers in

runtime to provide different clock frequencies to tasks and to

also switch away from failed clock networks.

To simplify the process of clock routing, the clock tree

routing information that pertains to each relocation region can

be extracted from the static design and added to the

relocatable circuit at design time as done in [13].

Alternatively, dummy primitives (e.g., flip-flops) can be

placed into the floorplan and connected to global clock lines at

compile time, forcing the place and route tool to route the

required clock network to predetermined regions that will be

used for relocation [14].

III. PROXY CIRCUITS FOR ICAP ACCESS

In order to demonstrate the proposed concept, a device

register read circuit is implemented. Fig. 2 is a diagrammatic

representation of a static non-relocatable ICAP controller for

device register read (RGR) access, which is a capability that

can be used to diagnose an FPGA. For instance, if a

configuration error occurs, the status (STAT) register of the

device can be queried to know the source of error. This

controller is comprised of a Finite State Machine (FSM) and a

Command Sequence ROM (CSROM). It should be noted that

after issuing the RGR command and prior to desynchronising

the interface, a readback event occurs where the 32-bit register

value is presented at the output of the ICAP deterministically

three clock cycles after asserting the ICAP’s enable.

To read a register, a series of commands must be issued to

the configuration interface [15] (see Fig. 3). The preamble

commands are used to synchronise the interface before

reading a register, and then the postamble commands are used

to desynchronise it. These commands are kept inside CSROM,

implemented from distributed memory. The FSM sends the

commands to the ICAP.

Fig. 2. A static non-relocatable ICAP controller with direct connections

between the controller and the ICAP interface

Fig. 3. Command template for reading device registers

In order to allow the controller to be relocatable, the entire

controller is broken into multiple modules that can

communicate via the unique CELOC-based communication

mechanism. We call these modules proxy modules as they are

able to interact as if they were directly connected even though

I[31:0]

RW_EN

EN

O[31:0]

CLK

ROM

rgr_addr
enable ICAP

rgr_value
valid

err

FSM

FFFFFFFF

AA995566

20000000

280xx001

Dummy pad word

Synchronization word

No operation command

Command to read register with address xx

Read 1 word from the device

30008001

0000000D

20000000

Write 1 word to the CMD register

DESYNC command

No operation word

Preamble

Postamble

they can be far apart on the FPGA. In the two proxy circuits,

the interconnection of the clock buffers allows a global start-

shaped communication. There are various clock buffer

combinations that can be used [8]. However, to allow the

majority of the chip area to be available for other circuits to be

implemented, the outer left and right edges of the clock

regions are preferred for placing (or relocating) the proxy

circuits. This implies that a clock buffer connection of

[BUFMR BUFR BUFG] (necessitated by allowable

clock-to-clock connections [16]) has to be used to access the

clock network-based communication network.

A. ICAP’s Proxy Circuit

This circuit abstracts the interconnections between the

ICAP controller and the ICAP (see Fig. 4). It receives input

signals from the controller and streams them over the

CERANoC network to the controller’s proxy attached to the

ICAP. The ICAP proxy module serializes the parallel data (en,

rw_en, and data_in) and encodes it for transmission through

the clock buffers. The register read commands are transmitted

over several clock cycles. The returned register value is

received via the clock network (the data riding on

data_clock_in).

Fig. 4. The ICAP interface’s proxy circuit

B. Controller’s Proxy Circuit

The controller’s proxy receives signals sent from the

ICAP’s proxy and applies them to the ICAP (see Fig. 5). Since

the ICAP registers input data on the rising edge of the clock

when EN is asserted [15], it is important to ensure that the

application of inputs to the ICAP is synchronised to the rate of

data transmission over the network. To achieve this, the EN

port is gated and controlled by an internal signal that ensures

that EN takes the value set by the remote controller only when

a complete packet has been received.

Fig. 5. The ICAP controller’s proxy circuit

IV. RESULT AND EVALUATION

The demonstration is carried out on an Artix-7 FPGA. The

proxy circuits are flushed left and right against the outer edges

of the clock regions to allow other circuits on the FPGA to

have maximum available area, and thereby minimising

internal fragmentation. For comparison, a static version of the

controller is also implemented. Tables I and II present the

comparative numbers for resource overhead and device read

latency.

The obvious limitation of the introduction of proxy circuits

is the increase in resource overhead and the impact on read

latency owing to the time taken to transmit the data signals

over the dynamic communication network and the special

synchronisation adopted in the controller’s proxy circuit.

However, there is a relocation (and by extension, reliability)

improvement of at least, (N-1)×, where N is the number of

clock regions in the device. In the Artix-7 device used for

demonstration, this translates to 500% improvement in

reliability.

TABLE I. RESOURCE UTILIZATION COMPARISON

Module
No Proxies With Proxies

Flip Flops LUTs Flip Flops LUTs

Controller 73 105 73 105

ICAP’s Proxy - - 255 87

Controller’s Proxy - - 256 92

Total 73 105 584 284

Total (Slices) 27 73 (2.88×)

TABLE II. REGISTER READ LATENCY COMPARISON

Communication Clock’s

Frequency (MHz)

Read Latency (μs)

No Proxies With Proxies

100.00 0.26 15.6

150.00 0.26 10.4

171.43 0.26 9.10

V. SUMMARY

This paper has presented the use of proxy circuits to

improve reliability in primitive interfacing in reconfigurable

devices operating in extreme environments. A relocatable

device register read controller has been demonstrated, with

improved reliability, but incurring higher resource overhead

and latency compared to a static implementation. However,

relocatability is of immense benefit in critical applications,

and the costs in terms of speed and resources, are easily offset

when one considers that a hard error in a static primitive

interface controller could cripple the controller, with knock-on

effects on other dependent system functionalities.

VI. ACKNOWLEDGEMENT

This work is supported in part by the UK Engineering and

Physical Sciences Research Council (EPSRC) through grants

EP/R02572X/1 and EP/P017487/1.

ROM

com_clock
rgr_addr

enable

rgr_value
valid

err

 FSM

com_clock
BUFRBUFMR

data_clock_out

BUFG

ICAP

PROXY

data_clock_in

(data from

icap)

rw_en
en

d
a
ta

_
in

I[31:0]

RW_EN

EN

O[31:0]

CLK

ICAP

rgr_value

100 MHz

CNTRLR

PROXY

com_clock

BUFRBUFMR
data_clock_out

(data to controller)
BUFG

data_clock_in

(data from controller)

REFERENCES

[1] A. Adetomi, G. Enemali, and T. Arslan, ‘A fault-tolerant ICAP

controller with a selective-area soft error mitigation engine’, in 2017

NASA/ESA Conference on Adaptive Hardware and Systems (AHS),

2017, pp. 192–199.

[2] R. E. Lyons and W. Vanderkulk, ‘The Use of Triple-Modular

Redundancy to Improve Computer Reliability’, IBM J. Res. Dev., vol. 6,

no. 2, pp. 200–209, Apr. 1962.

[3] B. Bridgford, C. Carmichael, and C. W. Tseng, ‘Single Event Upset

Mitigation Selection Guide’. 2008.

[4] Xilinx Inc., ‘Vivado Design Suite User Guide, Partial Reconfiguration -

UG909 (v2018.1)’. Xilinx Inc., 2018.

[5] G. Enemali, A. Adetomi, G. Seetharaman, and T. Arslan, ‘A

Functionality-Based Runtime Relocation System for Circuits on

Heterogeneous FPGAs’, IEEE Trans. Circuits Syst. II Express Briefs,

vol. 65, no. 5, pp. 612–616, May 2018.

[6] A. DeHon, R. Huang, and J. Wawrzynek, ‘Hardware-assisted fast

routing’, in Proceedings. 10th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, 2002, pp. 205–215.

[7] X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez, ‘Methods

and Mechanisms for Hardware Multitasking: Executing and

Synchronizing Fully Relocatable Hardware Tasks in Xilinx FPGAs’, in

2011 International Conference on Field Programmable Logic and

Applications (FPL), 2011, pp. 295–300.

[8] A. Adetomi, G. Enemali, and T. Arslan, ‘Enabling Dynamic

Communication for Runtime Circuit Relocation’, IEEE Trans. Very

Large Scale Integr. VLSI Syst., pp. 1–14, 2019.

[9] N. Kapre, ‘On Bit-Serial NoCs for FPGAs’, in 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2017, pp. 32–39.

[10] A. Morgenshtein, I. Cidon, A. Kolodny, and R. Ginosar, ‘Comparative

analysis of serial vs parallel links in NoC’, in 2004 International

Symposium on System-on-Chip, 2004, pp. 185–188.

[11] A. Lalevée, P. H. Horrein, M. Arzel, M. Hübner, and S. Vaton,

‘AutoReloc: Automated Design Flow for Bitstream Relocation on

Xilinx FPGAs’, in 2016 Euromicro Conference on Digital System

Design (DSD), 2016, pp. 14–21.

[12] X. Iturbe, K. Benkrid, R. Torrego, A. Ebrahim, and T. Arslan, ‘Online

clock routing in Xilinx FPGAs for high-performance and reliability’, in

2012 NASA/ESA Conference on Adaptive Hardware and Systems

(AHS), 2012, pp. 85–91.

[13] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood,

‘OpenPR: An Open-Source Partial-Reconfiguration Toolkit for Xilinx

FPGAs’, in 2011 IEEE International Symposium on Parallel and

Distributed Processing Workshops and Phd Forum, 2011, pp. 228–235.

[14] C. Beckhoff, D. Koch, and J. Torresen, ‘Go Ahead: A Partial

Reconfiguration Framework’, in 2012 IEEE 20th International

Symposium on Field-Programmable Custom Computing Machines,

2012, pp. 37–44.

[15] Xilinx Inc., ‘7 Series FPGAs Configuration, User Guide - UG470

(v1.13.1)’. Xilinx Inc., 2018.

[16] Xilinx Inc., ‘7 Series FPGAs Clocking Resources - User Guide UG472

(v1.11.2)’. Xilinx Inc., 2015.

