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Summary 

Atmospheric CO2 levels have been increasing at ever faster rates, fueled by anthropogenic 

activity. Natural ecosystems, which typically form net autotrophic habitats such as seagrass 

meadows, could be crucial to counteracting CO2 emissions.  

Increased fragmentation of Posidonia oceanica seagrass meadows within the eastern 

Mediterranean basin, linked to increased sea surface temperature, places these meadows at 

high risk of loss. Annual metabolism estimates showed patchy shallow water P. oceanica within 

the eastern region of the Aegean Sea to be overall autotrophic. P. oceanica net apparent 

productivity was heterotrophic in Autumn and significantly less than Summer when autotrophic, 

influenced by relative changes in irradiance and seagrass aboveground biomass. Seagrass 

biometrics also acted as predictors of carbon sequestration spatially, demonstrating higher 

productivity in the meadow center compared to the meadow edge. Future forecasts of 

autochthonous carbon storage must consider seasonal changes in productivity, potentially 

alongside seasonal changes in irradiance and aboveground biomass. Ultimately shallow patchy 

P. oceanica meadow’s contribution to carbon sequestration should not be overlooked.  

The non-indigenous seagrass Halophila Stipulacea was first recorded in the Mediterranean, 

within the Aegean Sea. Its tropical origin may enable it to thrive given global climate change 

predictions for the Mediterranean. However, the H. stipulacea community was highly 

heterotrophic during Autumn. Utilising periods of increased irradiance in Summer may enable 

the plant to persist at this locality, but it seems to live near its limits for survival. The presence of 

an uncommon endosymbiotic phytomyxid is documented and its potential influence on 

H. stipulacea metabolism discussed.  

Overall, this work demonstrates shallow water P. oceanica meadows in the Aegean Sea are 

annually autotrophic and if able to persist will continue to remove atmospheric carbon. Knowing 

H. stipulacea is near its limits in terms of metabolic balance and survival, indicates 

Mediterranean autochthonous carbon sequestration may decrease should H. stipulacea 

increase in abundance simultaneous to known P. oceanica regression. 
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Introduction 

Seagrasses are paraphyletic marine angiosperms, which evolved from terrestrial angiosperms 

that transitioned into the coastal marine environment. Despite a low global diversity of less than 

60 species, they act as the architects of major coastal habitats worldwide. There have long 

been major concerns about their global and localised decline within regions such as the 

Mediterranean. There is renewed interest in seagrasses because their large capacity to 

sequester carbon in long term carbon sinks poses them as a major contributor to the removal of 

atmospheric carbon. In the Mediterranean the dominant seagrass is Posidonia oceanica and 

within this region it plays an integral role carbon sequestration. In this masters by dissertation, I 

will be assessing the productivity and carbon sequestration potential of the dominant seagrass 

P. oceanica and the non-native seagrass Halophila stipulacea, in the eastern region of the 

Aegean Seas of Greece. 

Climate change and global carbon dioxide emissions 

It is now widely accepted that atmospheric concentrations of key greenhouse gases have 

increased, fuelled by anthropogenic activity. Atmospheric increases in carbon dioxide (CO2) 

concentrations are considered to pose the greatest threat, as they may remain irreversible 

1000 years after emissions stop (Solomon et al., 2008). It is this longevity of atmospheric 

carbon that means the discussion surrounding future CO2 emissions requires a critical 

understanding now for society to be fully informed and act appropriately. It is a problem that 

requires a multi-facetted approach. Natural ecosystems play a crucial part in carbon 

sequestration and act as one means to mitigate against increases in anthropogenic CO2 

emissions. For instance, of the 9.1 Petagrams C yr-1 emitted through increased anthropogenic 

CO2 emission and land use change between 2000 and 2006, 4.1 Pg C yr-1 accumulated in the 

atmosphere, 2.8 Pg C yr-1 was sequestered within the terrestrial biosphere and 2.2 Pg C yr-1 

consigned to marine sequestration (Battin et al., 2009). This equates to 55% (of those 

9.1 Petagrams C yr-1 anthropogenic emissions) captured into natural carbons sinks, with a 

relative contribution of 31 % from the terrestrial biosphere and 24 % from marine sequestration. 
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Marine carbon sinks therefore pose a major contributor to the removal of global atmospheric 

CO2. 

The relative ratio of carbon stored within ocean and terrestrial sinks is not constant over time, as 

these sinks are susceptible to natural fluxes. The ocean CO2 sink has been shown to be smaller 

when the El Nino /Southern Oscillation (ENSO) is in a positive state, as it enhances land sinks 

due to lower temperatures and wetter conditions and reduces the ocean CO2 sink due to more 

intense equatorial upwelling of carbon rich waters (Le Quéré et al., 2009). This also highlights 

how localised carbon sinks can have global impacts. With natural fluctuations changing the 

relative contributions of different natural carbon sinks in time. It is crucial to understand the 

changing contributions of natural sinks as the increase in atmospheric CO2 emissions (1959-

2008) was partly due to decreased uptake of CO2 by carbon sinks, in response to climate 

change and variability (Le Quéré et al., 2009).Terrestrial and ocean carbon sinks have been 

described as a ‘mosaic’ of regions gaining or losing carbon, therefore individual sink regions 

could have weakened, or individual source regions could have intensified, or sink regions could 

have transitioned to sources (Canadell et al.,2007). This suggests individual carbon sink or 

source systems need their current and potential future sequestration dynamics fully assessed.  

‘Blue Carbon’ the Coastal carbon champions 

Blue carbon habitats accumulatively occupy 0.2 % of the ocean surface as each of these 

vegetated marine habitats maintains a specific niche that is limited to coastal waters. Despite 

this small areal cover, the habitats collectively contribute to 46.9 % of carbon burial in marine 

sediments (Duarte et al., 2013) and are considered disproportionately important in sequestering 

CO2 compared with terrestrial ecosystems (McLeod et al., 2011). Therefore, blue carbon 

storage rates and the conservation of blue carbon stores pose a significant answer in mitigating 

climate change.  

The ecosystems considered to contribute most to carbon sequestration are mangroves, 

saltmarsh and seagrass. Carbon stocks suggest conservative estimates of approximately 
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280 Mg C ha-1 for mangroves, 250 Mg C ha-1 for tidal marshes and 140 Mg C ha-1 for seagrass 

(Pendelton et al., 2012). These estimates place mangroves, saltmarsh then seagrass in order of 

importance in terms of the magnitude of their total carbon storage. However, as global areas 

and trends of seagrass meadows cannot always be retrieved from remote sensing products 

(Duarte et al., 2013) there is greater uncertainty of their extent and likely underestimation of 

their services. 

Seagrass meadows  

The unsung hero of ‘Blue Carbon’ 

 Researchers have evaluated the ecosystem service value of mangroves more frequently than 

either seagrass or saltmarsh ecosystem values (Himes-Cornell et al., 2018). Suggesting a bias 

in the research implemented across blue carbon systems, potentially because mangroves 

appear of greater ‘value’ or perhaps simply the logistical ease of access relative to completing 

research on submerged seagrass. This bias transitions into the public domain, as seagrass 

meadows have been shown to attribute lower reports in the media for every scientific paper 

published, compared to that of mangroves (Duarte et al., 2008) and saltmarsh (Orth et al., 

2006). Therefore, the perceived importance of seagrass ecosystems is not yet parallel with 

other blue carbon ecosystems in the public conscious. Duarte (et al., 2008) suggested more 

effective communication of scientific knowledge combined with increased understanding could 

ultimately help inform and motivate effective management of integral ecosystems such as 

seagrass meadows.  

The lack in effective communication on the importance of seagrass ecosystems comes at a time 

when the loss of seagrass meadows matches that of mangroves and coral reefs (Waycott et al., 

2009). Beyond losing the current sequestering potential of seagrass meadows, loss of seagrass 

habitat could release the large carbon stocks that have already built up over time resulting in a 

release of 299 Tg C yr-1 (Fourqurean et al., 2012). This would instead make seagrass meadows 

major carbon emitters. As the distribution of seagrass meadows is underestimated, seagrass 
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meadow loss and predicted estimates of carbon release due to their loss underestimated too. 

The rate of seagrass loss has increased over time (Waycott et al., 2009) making this issue 

evermore current. Losses may occur at greater rates in specific regions, because despite a 

29 % areal loss globally (Waycott et al., 2009), some localised areas have seen up to 50 % 

areal loss (Marba et al., 2014). With potentially global scale impacts, global and regional action 

needs to happen to prevent further loss. Positive indicators of successful restoration show 

revegetation can restore carbon sequestration ecosystem services (Marba et al., 2015).  As 

such seagrass meadows deserve equal precedence at the global table in terms of 

understanding, communication and effective conservation strategies. If specific seagrass 

meadows play an integral role or act as localised regions of importance to carbon sequestration, 

the research behind this needs to be fully informed and effectively translated to policymakers. 

From the sea, to the land and back again 

Seagrass is the term given to a functional polyphyletic group of angiosperms that returned 

‘secondarily’ to the marine habitat (Reusch, 2014). The recolonisation of marine habitats likely 

posed a difficult evolutionary transition for flowering plants, as seagrasses represent only 

0.02 % of an estimated 300,000 angiosperm species (Les et al., 1997). Evolving from three 

separate lineages to produce less than 60 species (Les et al., 1997; Short et al., 2007), it 

remains a plant group quite unlike any other. The characteristics that make seagrasses different 

from terrestrial angiosperms, is what enables them to inhabit the marine environment, become 

the architects of coastal marine ecosystems and subsequently provide numerous ecosystem 

services. Understanding the changes involved in their transition to the marine environment may 

answer why they are able to contribute to some ecosystem services, such as carbon 

sequestration, in a disproportionately important way compared with terrestrial ecosystems 

(McLeod et al., 2011). 
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The role of submergence and sedimentation in carbon storage 

The submerged nature of seagrass results in different processes attributing to blue carbon 

storage in comparison to the partially submerged blue carbon coastal ecosystems, mangroves 

and saltmarshes. Blue carbon in seagrass sediment accumulates from both in situ production 

and sedimentation of particulate carbon from the water column (Greiner et al., 2013). The dense 

canopy of some seagrass meadows reduces near-bottom velocity by 70 to 90 %, which 

subsequently promotes the deposition of suspended sediment from the water column (Hansen 

and Reidenbach, 2012). The longevity of debris progressively buried over time in seagrass 

meadows, can then remain without alteration for millennia (Mateo et al., 1997; Serrano et al., 

2011), this ability enables seagrass meadows to act as long-term carbon sinks.  

The carbon sequestered through sedimentation in part relies on allochthonous inputs, which 

vary dependent on the surrounding connected systems. The inability to model this connectivity 

between ecosystems has often been criticised as a considerable weakness of many coastal 

ecosystem service estimations (Barbier et al., 2011). It is the reduced flow within the seagrass 

canopy that allows initial allochthonous inputs to settle out of the canopy and then prevents 

sediment resuspension (Gacia and Duarte, 2001). Increased surface area, blade length (Gacia 

and Duarte, 2001; Hansen and Reidenbach, 2012) and seagrass density (Bos et al., 2007; 

Hansen and Reidenbach, 2012) have been related to increased sediment accretion, therefore 

the health and biometrics of a seagrass meadow need to be considered when determining 

carbon sequestration potential. Seagrass meadows also vary in physiology dependent on the 

species composition of a meadow. Different seagrass species vary in how they alter flow and 

accrete sediment (Fonseca and Fisher, 1986). Typically, small pioneer species low structural 

complexity corresponds to low carbon storage (Samper-Villarreal et al., 2016). 

Seagrass presence and sediment accretion impact the sediment type through enhanced 

presence of fine sediment, which may act as a positive feedback to assist root anchorage and 

seagrass survival (Bos et al., 2007). The actions of particle sedimentation are therefore 
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synergistic to creating an environment that increases growth, through reduced flow induced 

sedimentation. The removal of particles from the water column also enhances light penetration 

(Hansen and Reidenbach, 2012), which creates a positive feedback to aid in situ production of 

organic carbon (Corg), through photosynthesis. 

Aquatic adaptations and the consequences for photosynthesis 

Genes involved in photosynthesis, metabolism and translation have been shown to strongly 

diverge after the split of the common ancestor of seagrasses from terrestrial monocots (Wissler 

et al., 2011).  These changes from their terrestrial counterparts enabled them to colonise the 

marine environment, but also resulted in changes to the processes involved in photosynthesis, 

a key process in carbon sequestration. However, seagrass adaptation to the marine 

environment is still not fully understood, with the first fully sequenced seagrass genome of the 

species Zostera marina only completed relatively recently (Olsen et al., 2016).  

In terrestrial angiosperms stomata act as the conjunction for gaseous exchange, submerged in 

the marine environment stomata are redundant (Larkum et al., 2017). Seagrass have an 

absence of all genes involved in stomatal differentiation (Olsen et al., 2016). The blades of 

seagrass are not surrounded by atmospheric CO2 but immersed in seawater where CO2 

concentrations are lower. In addition to low carbon concentrations another obstacle the diffusion 

boundary layer (DBL) must be overcome before CO2 reaches the leaf surface.  The DBL 

thickens during low energy events limiting photosynthesis, in comparison high flow reduces the 

thickness of the DBL which allows for higher carbon availability on the plant surface (Kock, 

1994). In high velocity waters increased shoot density also increases the likelihood of ‘skimming 

flow’ whereby the seagrass lies flat to the benthos redirecting flow over the meadow, hindering 

gaseous exchange into the plant and reducing productivity. To combat difficulties in obtaining 

respiratory carbon in the marine environment the seagrass cellular structure assists diffusion of 

CO2 as leaf epidermal cells contain additional polysaccharides compared to terrestrial plants, 

polysaccharides more similar to those found in the cell walls of macroalgae (Olsen et al., 2016). 
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Availability of organic carbon –Carbon dioxide and Bicarbonate 

The composition of available Corg in the marine environment differs to the terrestrial biosphere, 

because after diffusion of CO2 at the marine surface interface, CO2 also reacts with water to 

form HCO3
-. HCO3

- is the most available source of Corg in the marine environment before CO2. 

For that reason, three systems for the active uptake of HCO3
- have been described for 

seagrasses; enzyme carbonic anhydrase (CA) conversion of HCO3
- to CO2 at the plasma 

membrane or chloroplast level; extracellular CA-catalysed dehydration of HCO3
− to CO2 within 

acidified zones created by the extrusion of H+ across the plasma membrane; and outward 

pumping of protons (H+) to aid the cotransport of H+ and HCO3
- (Beer et al., 2002; Burnell et al 

2014). However, literature is mixed about which mechanisms are definitively supported, most 

recent debate suggests evidence against a bicarbonate pump (Larkum et al., 2017). Instead 

focus remains on the evidence for CA conversion outside the outer plasmalemma, together with 

a proton pump to assist with local acidification and the potential for carbon concentrating 

mechanisms via CA within the cell in the cytoplasm, chloroplast stroma or inner thylakoid space 

(Larkum et al., 2017).  

Under the predicted CO2 atmospheric increases, greater availability of CO2 may mean greater 

uptake of Corg by passive diffusion and decreased use of active uptake of HCO3
- which requires 

energetic expenditure (Burnell et al., 2014). Further to this, the fossils of historic seagrass 

suggest this group of angiosperms moved into the marine environment nearly 90 million years 

ago during the Cretaceous period, a period when atmospheric CO2 was higher than it is today 

(Beer and Koch, 1996). Therefore, the increase in current atmospheric CO2 may aid increased 

photosynthetic efficiency, but only if seagrasses can prevail with the simultaneous predicted 

increase in temperature, pH and sea level rise. Whilst good evidence exists as to how HCO3
- is 

involved in plant photosynthesis it has not yet been proved, the varied divergence within the 

seagrasses may also result in varied adaptations (Larkum et al., 2017). This variation between 

species needs to be explored as it limits its application in future predictions of productivity within 

species-specific meadows. 
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Low carbon availability can also act as a limiting factor in the photosynthetic potential of 

seagrass, by transitioning form photosynthesis to photorespiration. Photorespiration occurs 

when the enzyme rubisco reacts with oxygen preferentially over CO2, favoured by high oxygen 

levels in comparison to CO2. Photorespiration can be overcome in seagrasses by flow 

enhanced removal of oxygen from the plant into the seawater (Mass et al., 2010). But 

photorespiration may also be induced in the environment due to community changes in the 

relative concentrations of O2 and CO2, as a result of high community photosynthesis, particularly 

in shallow waters (Buapet et al., 2013). Photorespiration also occurs in seagrasses with 

increased pH in the surrounding environment (Buapet et al., 2013). However, seagrass 

photorespiration is considered to be driven by the increase of oxygen saturation rather than the 

increase of pH (Champenois and Borges, 2012).  The lack in understanding about seagrass 

photorespiration means the true extent of its effect on photosynthetic efficiency cannot be 

interpreted, but it does waste energy and decreases carbon fixing efficiency compared to 

photosynthesis. Moving forward into an increasing CO2 environment, seagrass photorespiration 

may become reduced allowing for increased carbon fixation efficiency. 

From source to shoot, blue carbon fixation 

Excess photosynthetic carbon fixation, which occurs when the costs of metabolism are 

surpassed by photosynthetic activity, allows for growth and increase in biomass. The carbon 

fixed in non-structural carbohydrate typically gets translocated from the leaves, to the rhizome 

and roots (Kaldy et al., 2013). As much as two-thirds of global living seagrass biomass exists 

belowground as rhizome and roots (Fourqurean et al., 2012). This means one-third of the 

carbon fixed in global living seagrass biomass forms the shoots and blades aboveground 

(Fourqurean et al., 2012), of which half the leaf production is eventually delivered to the local 

sediments, (Kennedy et al., 2010). The organic matter, derived from an accumulation of root, 

rhizome and leaf are progressively buried and if left undisturbed remain unaltered (Mateo et al., 

1997; Serrano et al., 2011), acting as carbon sinks. Globally on average half the Corg buried in 

seagrass sediments derives from seagrass tissue, at a total 41 - 6 g C m-2 yr-1 (Kennedy et al., 
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2010). Therefore, the productivity, translocation and burial of carbon fixed by seagrass 

ultimately contributes to a meadow’s blue carbon storage, along with sedimentation. 

Seagrasses of the Aegean Sea 

The Mediterranean temperate-tropical mix of seagrass species is considered a unique bioregion 

of seagrass diversity, (Short et al., 2007). The Aegean Sea has prominent presence of two 

native seagrass species P. oceanica and Cymodocea nodosa. The most prevalent species 

being Posidonia oceanica, the health and status of which can inform the health of the 

ecosystem (Personnic et al., 2014). The Aegean Sea also hosts two nonindigenous seagrass 

species, Halophila stipulacea since 1894 (Fritsch, 1895) and more recently Halophila decipiens 

(Gerakaris et al., 2019). The eastern region of the Aegean Sea sits at a crossroad for alien 

species expansion (Pancucci-Papadpooulou et al., 2012), therefore it is more important than 

ever to understand the current dynamics within these seagrass meadows, as the community 

dynamics may change in the future. The rise of SST and relative sea level rise has already 

raised concerns about replacement of these native species for those of lower structural 

complexity such as H. stipulacea (Pergent et al., 2014). Concerns are the native P. oceanica will 

be replaced by “warm” affinity species, such as the native C. nodosa, and invasive H. stipulacea 

(Pergent et al., 2014).  

H. stipulacea is considered invasive primarily because of the rapid nature and extensive 

distribution it has secured across the Mediterranean. It has been found in some cases to 

colonise areas previously occupied by native seagrass species, such as P. oceanica dead 

matte or mixed C. nodosa meadows (Sghaier et al., 2011). Structural complexity is considered a 

key factor influencing carbon content in seagrass content (Samper-Villarreal et al., 2016). 

Pioneer species with low structural complexity, such as H. stipulacea can on occasion have 

relatively high C stocks dependent on other conditions such as water depth and wave height 

(Samper-Villarreal et al., 2016; Lavery et al., 2013). There are real concerns however, that the 

replacement of P. oceanica or the transition into multi-species seagrass beds including 
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H. stipulacea could see an overall reduction in the carbon storage potential of seagrass beds in 

the Aegean Sea and the eastern Mediterranean basin. Ultimately this could have a large impact 

on global estimates of seagrass carbon stocks given P. oceanica meadows are considered to 

represent the maximum in carbon storage potential among seagrasses (Lavery et al., 2013). 

Posidonia oceanica as a global frontrunner 

Leading in carbon sequestration potential 

The largest pools of Corg stored in living seagrasses were found in Mediterranean meadows 

dominated by P. oceanica (Fourqurean et al., 2012). P. oceanica is unique, it is the only 

Posidonia species found within the northern Hemisphere and endemic to the Mediterranean. 

The southern hemisphere has eight recognised Posidonia taxa found around Australia (Aires 

et al., 2011), despite Australian seagrass meadows containing a greater diversity of Posidonia 

species, mean Corg content of Australian seagrass habitats was 4 time lower than 

Mediterranean P. oceanica meadows (Lavery et al., 2013). Posidonia species have similar 

morphology but it appears the other Posidonia species do not have as great a carbon 

sequestering capability as P. oceanica. Only estuarine Posidonia australis meadows accrued 

stored Corg comparable to P. oceanica meadows, but this was a comparison of the top 25 cm of 

the meadow’s sediment profile (Lavery et al., 2013). P. oceanica meadows typically have 

deeper organic profiles due to their vertical growth (Mateo et al., 1997). Therefore P. oceanica 

meadows are considered to represent the maximum in carbon storage potential among 

seagrasses, even in comparison to its closet extant relatives (Lavery et al., 2013). This suggests 

P. oceanica meadows are of global importance in their unique capability for high carbon 

sequestration and potentially retain unique attributes that allow them to act as a global 

frontrunner in carbon sequestration, irrespective of other seagrass meadows on Earth. 

Is P. oceanica always actively sequestering carbon? 

 Though P. oceanica may represent a seagrass species of global importance through its ability 

to sequester large quantities of Corg, the plant’s in situ productivity may not always be high and 
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sequestering carbon at its maximum potential. Changes in growth rates of P. oceanica provide 

strong evidence to suggest at the plant level, photosynthesis and utilisation of the plant’s stored 

carbon has seasonal variation (Buia et al., 1992). The whole plant carbon balance can show 

negative carbon balance from fall to Spring and transitions into positive carbon balance only in 

the Summer months; as such the plant may rely on reserve utilisation, to persist over Winter 

and for regrowth during Spring (Alcoverro et al., 2001). P. oceanica meadows clearly undergo 

periods when their productivity is low and not actively aiding carbon sequestration within the 

year. If the periods of high productivity balance or surpass the periods of carbon loss, the 

meadow should persist and continue to sequester carbon to some extent. A meadow that is 

heterotrophic on the annual scale, cannot sustain its metabolism requirements, if this continues 

year-on year,  it indicates long-term regression (Alcoverro et al., 2001). Understanding periods 

of low productivity and high productivity, provide effective estimates on an annual scale as to 

whether the meadow contributes to net carbon sequestration.  

Light availability -driving growth and limits 

To adapt to a fully submerged marine existence P. oceanica has adapted to lower light 

availability, as light travels through an additional medium before reaching the plant. The 

minimum light surface irradiance for P. oceanica sits between 16 and 10% of surface irradiance 

(Ruiz and Romero, 2001), which determines the lower depth limit at which the meadows exist. 

The minimum surface irradiance values also assist annual carbon budget predictions, as it 

informs the carbon balance and photosynthetic activity. P. oceanica can photoacclimate to 

lower light levels, but a threshold exists at which deterioration in health and productivity occurs 

(Ruiz and Romero, 2001). Therefore, seasonal changes in light surface irradiance are within the 

plant’s phenotypic plasticity, to maintain photosynthetic capacity. In addition, dynamic 

responses to light intensities occur with diel fluctuations in light.  

Light varies with spatial scales; across the seagrass blade; within the meadow canopy through 

self-shading; within the meadow by depth and between sites (Ralph et al., 2007). Within-shoot 
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variability regarding photosynthetic capacity is important in long-lived species such as 

P. oceanica whose blades can reach up to 300 days age, the ability to cope with changes in 

environmental conditions will vary across the blades (Alcoverro et al., 1998). P. oceanica 

meadows follow a seasonal growth cycle, with decreased biomass from Autumn to Winter when 

blades are shed, followed by a major growth spurt in late Winter (Champenois and Borges, 

2018), in preparation to maximise plant biomass for photosynthetic gains in the following 

months. As such the age composition of shoots changes throughout the season (Alcoverro et 

al., 1998) and interplays with seasonal environmental conditions that control photosynthetic 

efficiency and productivity.  

The seagrass P. oceanica is considered to acclimate well to high solar irradiance and shows a 

high capacity for recovery (Figueroa et al., 2002). However, during periods of high irradiance 

seagrass can experience photoinhibition which causes damage to the photosystems leading to 

a period of recovery when photosynthetic capacity and carbon sequestration is reduced. 

Photoinhibition coincides with maximum light irradiance at the middle of the day, so maximum 

photosynthetic production occurs in the afternoon when saturating not inhibiting irradiance 

levels occur (Costa et al., 2015). Photoinhibition may have a more pronounce effect on 

seagrass meadows during Summer when annual irradiance levels typically peak. This relates to 

an energetic cost and loss in carbon sequestration as the maximum annual solar irradiance 

does not coincide with annual maximum GPP (Champenois and Borges, 2018). Shallow 

meadows are more consistently exposed to high irradiance and irradiance saturation 

comparatively to those at the lower depth limit, therefore shallow meadows are more 

susceptible to the energetic repercussions of living in a high light environment. 

Mediterranean temperature trends  

Sudden increases in temperature such as those driven by heat waves and the gradual 

increases in the mean annual temperature pose a threat to the current functioning of P. 

oceanica (Marba and Duarte, 2010). The temperature of seawater in situ can fluctuate greatly, 
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as such the impact of temperature on plant tissue mortality near its maximum threshold is 

dependent on; the extent temperature increases toward or surpasses the maximum temperature 

threshold; the length of time the seawater temperature stays around the maximum threshold; 

and the frequency of these events. Based on the distribution of maximum seawater temperature 

in the relation to presence and absence of P. oceanica across the Mediterranean, the maximal 

thermal tolerance for P. oceanica meadows to maintain their presence was 29.21 oC (Chefaoui 

et al.., 2017). Even if P. oceanica meadows have the capability to survive close to the maximum 

temperature threshold and above optimum temperature conditions 17 - 21 oC (Champenois and 

Borges, 2018), it is likely that the functioning of the plant is compromised and subsequent the 

carbon sequestering potential lowered. 

Variations within and between P. oceanica populations 

Spatial differences in thermal tolerance exist within P. oceanica meadows, with shallow 

ecotypes exhibiting a greater tolerance (Marin-guirao et al., 2016). Shallow ecotypes can 

acclimate through re-establishing the balance between leaf respiration and photosynthesis, 

whilst deep plants were unable to stabilise respiration (Marin-guirao et al., 2016). Differences in 

thermal tolerances may also exist between P. oceanica meadows across the Mediterranean 

given, divergence exists between the P. oceanica populations in the eastern and western 

basins of the Mediterranean (Arnaud-Haond et al., 2007). The differences in environmental 

conditions between basins may result in varied responses to thermal stress. Predictions suggest 

the lowest probability of P. oceanica meadow occurrence in areas such as the eastern region of 

the Aegean Sea, where fragmented meadows inhabit marginally high sea surface temperatures 

(SST) compared to the rest of the Mediterranean (Chefaoui et al., 2017). Yet historically most of 

the research on P. oceanica has occurred on populations in the western Mediterranean; it is 

important to consider there may be different underlying mechanisms in the eastern basin of the 

Mediterranean that are specific to predicting the response of P. oceanica within these localised 

areas.  
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P. oceanica meadows are synonymous with forming large dense continuous meadows, but can 

form patchy spatial dynamics, due to a variety of factors including hydrodynamic interactions. 

The differences in architecture between dense and patchy meadows likely change the dynamics 

that exist within meadows. P. oceanica has long strap like blades, within large continuous 

meadows this creates a constant dense canopy. Patchy meadows have intermittent points of 

increased light and flow. A dense seagrass canopy may hinder productivity by reducing within 

canopy irradiance from between 34 – 90 % (Enriquez and Pantoja-Reyes, 2005), resulting in 

the lower part of the canopy encountering self-shading. The differences in inter-leaf variation 

between the top of the canopy and the understorey may be greater than the variation between 

shoots in a meadow (Ralph et al., 2007). The relationship between increased shoot density and 

decreased light attenuation within the canopy, was used to interpret the relationship between 

decreased shoot density with depth to maximise solar irradiance (Enriquez and Pantoja-Reyes, 

2005). This equally relates to how spatial configuration in shoot density may interact with 

productivity in meadows.  Patchy meadows may have enhanced light availability for 

photosynthetic activity, whilst dense continuous meadows negatively feedback to reduce carbon 

sequestration, however continuous meadows have been shown to accumulate greater Corg 

compared to patchy meadows (Ricart et al., 2017).  

Continuous P. oceanica meadows retain greater autochthonous carbon through the decreased 

export of blade detritus (Ricart et al., 2017). Whilst the in situ productivity may be lowered due to 

self-shading and reduced gaseous exchange through reduced flow, these decreases in 

productivity may be balanced at an ecosystem level due to the retention of Corg within 

continuous meadows. Seagrass tissues are considered resistant to degradation back into CO2, 

whilst P. oceanica tissues are not distinct in this ability to other seagrass taxa, morphologically 

larger taxa like P. oceanica have larger amounts of refractory carbon to contribute 

(Trevathan-Tackett et al., 2017). Plus P. oceanica tissues are more recalcitrant than algae or 

sestonic detrital inputs (Gacia et al., 2002), if continuous meadows retain a larger amount of 
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seagrass tissue which are less likely to remineralise, this increases the long-term stored Corg in 

the sediments. 

Limitations in estimating seagrass productivity 

Mapping Mediterranean meadow distribution 

Despite seagrass meadows importance there are serious gaps in the valuation of these habitats 

most notably involving methodology and coverage (Himes-Cornell et al., 2018). In order to 

determine the extent of current carbon stocks and their changes over time firstly the distribution 

of these meadows must be well understood. Large scale mapping typically uses remote sensing 

techniques; these have their limitations when applied to submerged habitats. Even with large 

seagrass species such as P. oceanica remote sensing may only be accurate for shallow 

mapping to a depth such as 15m (Fornes et al., 2006). This would result in a major 

underestimation of meadow distribution, as P. oceanica meadow range extends to 50 m depth. 

Large scale mapping also does not account for the within meadow variation in terms of shoot 

density it merely presents seagrass meadows in a binary measure of presence or absence. 

Mapping seagrass presence doesn’t inform on the biomass and health status of the meadow 

present. 

It was not until 2018 that the first seagrass coverage maps were produced from satellite images 

to describe and quantify the spatial distribution of seagrass meadows in Greek waters 

(Topouzelis et al., 2018), but this study emphasised that accuracy may have been affected by a 

number of potential errors in the image analysis, reference data and classification of these 

images. Prior to this only 8 % of Greece’s coastline was considered to have been surveyed for 

P. oceanica distribution (Telesca et al., 2015) Therefore despite the considered importance of 

seagrass habitat, in particular P. oceanica, major gaps have long existed in our understanding 

of its distribution. This lack of understanding in seagrass meadow distribution within the Aegean 

Sea and the eastern part of the Mediterranean basin, impacts the ability to produce carbon 

sequestration estimates for these areas of the Mediterranean.  
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Benthic chambers for assessing seagrass meadow net community metabolism  

Methods such as open water optodes (Champenois and Borges, 2012; Champenois and 

Borges, 2018) and sediment analysis (Kennedy et al., 2010) have been used to determine the 

contribution of primary productivity to carbon sequestration potential. Yet net community 

productivity (NCP) by oxygen evolution within in situ incubation chambers has widely been used 

to determine the metabolic balance of gross productivity versus metabolic cost to seagrass 

meadow carbon sequestration potential (Duarte et al., 2010; Olive et al., 2015). The oxygen 

evolution within these chambers is measured and converted to carbon production with a 

photosynthetic quotient ratio, but discrepancies exist in the appropriate quotient for seagrass 

oxygen to carbon conversion and in the literature range between 1:1 and 1:1.2 (Alcoverro et al., 

2001; Apostolaki et al., 2010; Duarte et al., 2010). You might expect to encounter a variety of 

photosynthetic quotients applied across seagrass species, given seagrasses are only 

functionally and not phylogenetically grouped. But the application of photosynthetic quotients is 

not consistent for any given species, with P. oceanica productivity measurements as a prime 

example. 

Gas fluxes within benthic chambers have been heavily criticised for underestimating productivity 

by as much as 10 % (Peduzzi and Vukovic, 1990). Underestimations in productivity and 

subsequently carbon sequestration are largely because incubation times of 12 and 24 hour are 

standard practice, despite the flaws to long incubation time (Olive et al., 2015). Water motion 

has been highlighted as a fundamental factor, equivalent to light and nutrients in determining 

productivity (Mass et al., 2010), the design of benthic chambers typically undermines factoring 

natural flow into productivity measurements. Long incubation times create a static environment 

which increases pH and oxygen, when water currents would replace and mix the water 

naturally. Under high oxygen saturation and low dissolved inorganic carbon, the enzyme rubisco 

decreases its carboxylase activity, moving the seagrass from more readily completing 

photosynthesis to photorespiration. Photorespiration is considered wasteful because it lowers 

photosynthetic efficiency, as much as 40% in some seagrass species (Buapet et al., 2013). 
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Photorespiration occurs naturally in shallow water seagrass environments due to the primary 

productivity of other plants in the system (Buapet et al., 2013). The typical benthic chamber 

setup imitates these productive shallow water systems, without explicitly accounting for the 

occurrence of photorespiration in the resultant productivity calculations, thereby underestimating 

carbon sequestration. 

The biomass to chamber volume ratio influences the production and consumption of O2 and 

CO2, when the volume of the chamber is increased relative to the seagrass biomass it should 

take longer for the chamber to reach oxygen saturation (Olive et al., 2015). Considering the 

varied morphology between seagrass species in aboveground vegetative canopy biomass the 

chamber requirements may vary dependent on the studied species. Some long strap leaf 

seagrass species such as P. oceanica are recorded to have maximum blade lengths > 75 cm 

(Pergent et al., 2008). For benthic chambers to allow for the natural architecture of the seagrass 

meadow and account for an appropriate seagrass biomass to chamber volume (particularly 

across long incubation periods), chamber design specifically volume should try to account for 

this. Yet the volume of benthic chambers used to assess seagrass metabolism can vary greatly 

from 5 L to 20 L (Dunton and Tomasko, 1994; Santos et al., 2004; Gazeau et al., 2005; Barrón 

et al., 2006; Champenois and Borges, 2012; Ouisse et al., 2014; Olive et al., 2015), so there is 

not distinct guidelines on what is most appropriate in each case. Despite the characteristic flaws 

of using in situ benthic chambers to determine net community productivity in seagrass 

meadows, they remain a valuable, well understood and widely used tool for determining 

conservative estimates of net community productivity and as such autochthonous carbon 

sequestration potential. 

Aims and Objectives  

This thesis focuses on assessing the primary productivity of seagrass in the eastern region of 

the Aegean Sea given there are no current metabolism estimates for seagrass habitat within 

this area. It considers the limitations associated with benthic chamber metabolism methods by 
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using chambers that are a relative size to the seagrass biomass within, in particular addressing 

the high biomass of P. oceanica through deploying the largest benthic chamber volume before 

utilised for this species, with additional internal mixing.  

The setup utilised aims to assess seasonal changes in productivity and the relative importance 

of the concurrent light and temperature conditions. The seasonal P. oceanica metabolism 

measurements will distinguish if and when the meadow is actively sequestering carbon.  

Moreover, whether the meadow has an overall positive carbon balance on an annual scale.  

This will represent a conservative estimate of current annual autochthonous carbon 

sequestration within the Aegean and Eastern Mediterranean, given the representative 

P. oceanica meadow in shallow water. The shallow nature of this seagrass meadow means the 

seagrass would be subject to high light and temperature thresholds compared to other areas of 

the meadow and so more likely to exhibit periods of reduced metabolic function. The study 

location may also mean this would be a conservative representation of shallow P. oceanica in 

the Eastern Mediterranean, given the eastern Aegean Sea in considered to hold particularly 

fragmented meadows due to the high SST compared to the rest of the Mediterranean (Chefaoui 

et al., 2017). The influence of patchy and fragmented shallow meadows is explored by gauging 

the extent of spatial variation in autochthonous carbon sequestration within the meadow 

between patchy edge habitat and denser central areas. Biometric measures of seagrass 

patchiness such as percentage cover and shoot density are tested for their effectiveness as 

indicators of changes in spatial primary productivity.  

Finally, the productivity of the non-indigenous seagrass species H. stipulacea is assessed within 

the eastern region of the Aegean Sea, as well as the relative influence of light and temperature. 

This provides the context to discuss the differences in productivity between these species in the 

Mediterranean, how future climate change may influence Mediterranean seagrass meadows 

and the ecosystem services they provide, specifically autochthonous carbon sequestration. 
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Seasonal and spatial variations in shallow water Posidonia oceanica meadow productivity  

Introduction 

Coastal blue carbon ecosystems are considered disproportionately important to global carbon 

sequestration as they account for 46.9% of the total carbon burial in marine sediments, despite 

modestly occupying 0.2 % of the ocean surface (Duarte et al., 2013). Seagrass meadows are 

one of these coastal blue carbon ecosystems that act as a major global carbon sink. Their ability 

to capture carbon is two-fold; actively sequestering autochthonous carbon through 

photosynthesis and passively trapping allochthonous carbon with their architectural structure. 

Allochthonous carbon is typically considered more labile, therefore deposits of autochthonous 

carbon are those expected to lead to long-term stable carbon deposits (Mazarrasae et al., 

2018). The metabolic rates of global seagrass communities favour net autotrophy, with 

temperate meadows typically favoured to have a higher net autotrophy than tropical meadows 

(Duarte et al., 2010), suggesting not all seagrass is equal in its ability to sequester 

autochthonous carbon. 

The temperate seagrass Posidonia oceanica forms vast monospecific meadows in the 

Mediterranean and is unique in its ability to form vertical mattes that can store sedimentary 

carbon for millennia (Mateo et al., 1997). It is perhaps why some herald these meadows to 

represent the global maximum in carbon sequestration among seagrasses (Lavery et al., 2013). 

Unlike terrestrial soils, these P. oceanica sediments do not become saturated with carbon over 

time because they can accrete vertically. If the vertical accretion matches the rate of sea level 

rise, they potentially have a limitless capacity, which in part demonstrates their suitability for 

climate mitigation policy efforts (Howard e al., 2017). However, P. oceanica meadows have 

generally undergone severe regression (34%) in the last 50 years, with only localised areas of 

persistence and growth (Telesca et al., 2015). The causes of decline most prolifically recorded 

for P. oceanica regression are water quality degradation, coastal modification, mechanical 

damage, extreme events and non-native macroalgae invasion (Santos et al., 2019). Localised 
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variability in the status of P. oceanica meadows is in response to local stressors, rather than to 

processes at the basin scale (Telesca et al., 2015).  

Seagrass metabolism is influenced by multiple variables including light (Champenois and 

Borges, 2018), nutrient availability (Holmer et al., 2008; Apostolaki et al., 2010), temperature 

and ocean acidification (Berg et al., 2019); many of which follow seasonal cycles, thus driving 

seasonal fluctuations in productivity. Primarily seagrass productivity is controlled by the solar 

cycle, because it determines the relative light availability, but also the water temperature 

(Alcoverro et al., 1995). Seagrass depth distribution is determined by light availability, because 

when light conditions are insufficient the plant does not meet the photosynthetic requirements 

necessary to maintain positive metabolic and carbon balance (Ralph et al., 2007), moving away 

from a state of net autotrophy and net carbon storage. The annual solar cycle should act as a 

driver in seasonal changes in P. oceanica productivity. However, high light intensity causes 

photodamage reducing the photosynthetic efficiency and instigating photoinhibition. 

Subsequently maximum annual solar irradiance does not coincide with annual maximum P. 

oceanica gross primary productivity (GPP) (Champenois and Borges, 2018).  

Water temperatures of > 29 oC are lethal to P. oceanica (Chefaoui et al., 2017). As shallow 

water environments are more readily heated by solar irradiance, the metabolism of shallow 

water P. oceanica meadows are more likely influenced by increased water temperature. Given 

respiration increases faster than the rate of primary production Summer temperatures can move 

seagrass ecosystems seasonally from autotrophy to heterotrophy, though the likelihood of 

transition is species specific (Burkholz et al., 2019). Water’s high specific heat capacity creates 

seasonal lags to terrestrial temperatures. The stress induced by high water temperatures may 

persist beyond the maximum solar irradiance. The optimal thermal conditions for P. oceanica 

are between 17 - 20 oC (Champenois and Borges, 2018), therefore both above and below these 

conditions its metabolism is not optimal for maximum oxygen production and more likely to 

become heterotrophic.  
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At the Mediterranean scale, the P. oceanica populations in the Western and Eastern basins 

have historically been genetically isolated and still maintain genetic differentiation due to 

present-day dispersal limits (Arnaud-Haond et al., 2007). Genomic and proteomic approaches 

need to be integrated with ecophysiology and physical approaches in order to determine 

seagrass productivity and metabolism to different environmental settings (Mazzuca et al., 2013). 

The genetic differences in P. oceanica between basins may influence the underlying plant 

productivity and metabolism to environmental conditions. There is a greater distribution of 

P. oceanica in the Eastern basin (713,992 ha) compared to the Western basin (510, 715 ha) 

(Telesca et al., 2015). Despite the genetic variation between basins and the largest population 

existing in the Eastern Mediterranean basin, the majority of P. oceanica metabolism estimates 

have come from the Western Mediterranean basin (Frankignoulle and Bouquegneau, 1987; 

Holmer et al., 2004; Gazeau et al., 2005; Barron and Duarte, 2009; Olive et al., 2015; 

Champenois and Borges, 2018). The only published study on P. oceanica metabolism in the 

Eastern Mediterranean basin comes from a single study, in the western region of the Aegean 

Sea (Apostolaki et al., 2010). Metabolism and carbon sequestration estimations for P. oceanica 

are considered one of the most well researched amongst seagrass species (Nordlund et al., 

2018), yet there are distinct local knowledge gaps and spatial biases, particularly within the 

Eastern Mediterranean Basin. These spatial biases largely undermine the extensive research 

on the species when you consider the potential distinctions between Western and Eastern basin 

populations. 

In the Eastern Mediterranean basin, the sea surface has warmed by 0.05 ± 0.009 °C yr -1 (from 

1985 to 2006), more than in the Western Mediterranean (Nykjaer, 2009). It is no surprise then, 

that future increases in sea surface temperature have been predicted to assist the decline of P. 

oceanica within the eastern basin (Pergent et al., 2014). The Aegean Sea has undergone the 

greatest change in sea surface temperature within the Mediterranean (Nykjaer, 2009), warming 

at a rate several times larger than the estimated average global rate (Skliris et al., 2011). The 

progressive warming of Mediterranean waters since the last glacial maximum had already 
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caused P. oceanica distribution to be most prevalent on the Northern shores of the Eastern 

Mediterranean basin compared to the Southern (Chefaoui et al., 2017). Considering the 

physical geography of the Eastern Mediterranean Basin, this means the extensive coastline 

within the Aegean Sea comprises a large proportion of the available habitat for P. oceanica in 

the Eastern Mediterranean basin. The P. oceanica occupying the eastern region of the Aegean 

Sea exhibits fragmented meadow morphology and this fragmentation is attributed to the 

marginally higher sea surface temperatures compared to the rest of the Mediterranean 

(Chefaoui et al., 2017). The P. oceanica within the eastern region of the Aegean Sea will likely 

be the first to respond to future climate change predictions (Pergent et al., 2014) regarding 

further increases in sea surface temperature. The P. oceanica carbon stock within the eastern 

region of the Aegean Sea is at the highest risk of loss. This study therefore aims to contribute to 

the knowledge available on the carbon sequestration potential of P. oceanica in the Eastern 

Mediterranean basin, primarily through acquiring P. oceanica metabolism rates specifically 

within the eastern region of the Aegean Sea.   

The fragmented meadow morphology within the eastern region of the Aegean Sea (Chefaoui et 

al., 2017) indicates the patchiness of habitat in this region should be taken into consideration. 

Seagrass meadows are not always a uniform habitat and whilst P. oceanica meadows can form 

continuous meadows they also exhibit patchy dynamics. The fragmentation of P. oceanica 

meadows creates complex seascapes, a mosaic of patches, that include habitats of sand, P. 

oceanica matte and P. oceanica (Abadie et al., 2015). Naturally meadows that experience a 

wave exposure gradient from low to high energy develop patchier dynamics (Folkard, 2005; 

Pace et al., 2016). Seagrass habitats are also exposed to anthropogenic factors that increase 

patchiness including anchoring, impact of WW2 bombs, explosive fishing and fish farming 

(Montefalcone et al., 2009; Abadie et al., 2015). Often distinct patches are not determined in 

surface area mapping, as it is the direct underwater observation of the meadow that allows for 

the discrimination between similar habitat patch types such as living P. oceanica and dead 

matte (Montefalcone et al., 2009). The effects of patchiness in shallow seagrass habitat is 
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particularly important as patchiness is more of a prominent feature within shallow water beds 

(Montefalcone et al., 2009) but also because meadow patchiness  influences the retention of 

autochthonous material (Ricart et al., 2017).When a P. oceanica meadow is described as 

patchy it has lower overall cover, more complex patch shapes and reduced within-patch 

architectural complexity (Pace et al., 2016). Spatial changes in its architecture (seagrass 

canopy height or blade length) act as describers of patchiness. As the leaf of a plant is this site 

of photosynthetic activity, they may also act as describers of primary productivity. It is just as 

important to consider the variation in canopy architecture between areas of P. oceanica as it is 

to consider the discrete patches of seagrass, matte and sand within a meadow.   

Herbivory disturbance reduces seagrass canopy, the photosynthetic component of seagrass 

beds, reducing the carbon fixation (Fourqurean et al., 2010). Other physical disturbance to 

seagrass meadows such as Autumnal and Winter storms reduce the photosynthetic 

compartment of seagrass meadows. The loss of seagrass canopy due to storms happens as a 

result of distinct seasonal patterns whilst other disturbance such as herbivory may remain 

constant through the year. The seasonal loss of biomass is vast enough that in Autumn part is 

exported onshore via currents where it forms large banquettes (Gomez-Pujol et al., 2013). Early 

canopy growth in Spring creates a well-developed canopy during maximum Summer irradiance 

(Alcoverro et al., 2001). The increase in seagrass canopy in Summer maximises plant 

productivity. The combination of temporal peaks and troughs in canopy biomass may dictate 

seasonal primary productivity patterns. This study should therefore check whether changes in 

seagrass canopy influence seasonal P. oceanica productivity patterns. 

The Aegean Sea has housed the non-indigenous seagrass species Halophila stipulacea the 

longest, given it was first recorded in the Mediterranean within the Aegean Sea, off Rhodes 

island (Fritsch, 1895). H. stipulacea is a tropical species that may be able to take advantage of 

the rising global sea surface temperature, when P. oceanica is predicted to undergo further 

regression (Pergent et al., 2014). The eastern region of the Aegean Sea acts as part of the 

Mediterranean that may best showcase how Mediterranean seagrass dynamics could change. 
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Assessing whether P. oceanica meadows are currently able to maintain a positive annual 

carbon balance indicates whether under current conditions they are likely to persist, as P. 

oceanica meadows that are heterotrophic on an annual scale are reducing in plant biomass due 

to the negative carbon balance (Alcoverro et al., 2001). 

Annual patterns of P. oceanica metabolism comprise of periods that alternate from negative to 

positive carbon balance (Alcoverro et al., 2001). If carbon estimates were produced only 

factoring the higher productivity during the Summer months (Champenois and Borges, 2012) it 

would overestimate the meadow’s overall carbon sequestration capacity. To estimate the 

annual carbon sequestration potential of P. oceanica within the eastern Aegean Sea, this study 

needs to account for the periods of negative carbon balance alongside the periods of positive 

carbon balance. Notably as stable carbon stocks rely on autochthonous carbon deposits, key 

environmental parameters that influence photosynthesis such as light and temperature should 

be assessed to determine whether they drive P. oceanica primary productivity in the eastern 

region of the Aegean Sea. Alongside this changes in seagrass canopy should be assessed to 

determine if this influences productivity at the meadow scale. Finally, sediment samples should 

be acquired to determine if variance in spatial primary productivity translates to the relative 

organic content of the sediment, thus alluding to the relative retention of primary productivity 

and the gain of autochthonous carbon stocks. The fact remains that seagrass meadows are 

currently excluded from global carbon budgets, therefore local P. oceanica carbon 

sequestration estimates and their drivers need to be better understood to provide suitable 

Mediterranean scale carbon budgets.  

Methods 

Study site 

This study took place at Vroulia Bay (37.317460° N, 26.724704° E), NW Lipsi Island, the 

Dodecanese, in the eastern region of the Aegean Sea, Greece. Data collection took place from 

Autumn 2018 to Summer 2019; November 3rd – 9th, April 12th – 19th and July 2nd – August 12th. 
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Vroulia is a sheltered bay with minimal tourist presence. The bay consists of a multispecies 

seagrass meadow, largely dominated by monospecific patches of P. oceanica, but sparsely 

populated by both Cymodocea nodosa and Halophila stipulacea. Whilst there is sparse sailing 

boat activity and disturbance, the study area within the bay was shallow enough (< 2 m) to be 

unaffected by these activities. The shallow area of the bay consists of several large dense areas 

of P. oceanica, surrounded by numerous small patches.  

In situ benthic chamber setup 

The benthic chambers were dome shaped and made from clear PVC (diameter = 1 m, height = 

50 cm, benthic surface area = 0.79 m2, volume = 576 L) and deployed by free divers between 

1.6 – 2 m depth (Fig. 1). PME miniDOT loggers were fitted to the central (highest) part of the 

dome chamber, to record dissolved oxygen and temperature in 10 minute intervals. HOBO 

loggers were placed within the chambers on the seafloor to record relative irradiance in 5 

minute intervals. HOBO logger irradiance (lux) were converted to PAR (photosynthetic active 

radiation), according to the conversion factor appropriate to the light source ‘daylight’ (Thimijan 

and Heins, 1983). The Instantaneous PAR with the unit μmol s-1m-2 is used to calculate Daily 

Light integral (DLI) given the time interval in seconds (t) between each PAR reading over each 

24 hour period: 

DLI = ΣΔt × 𝑃𝐴𝑅 

 The DLI is presented with the unit mol m-2d-1. The mean PME miniDOT water temperature is 

calculated across each incubation period. 

 



33 
 

 

Figure 1. Large benthic chamber setup A Deployed in Autumn over a small P. oceanica patch 

(edge habitat) B deployed in Summer over dense central P. oceanica meadow area. 

 

The benthic chambers were setup with a water pump secured to the inside of the chamber 

roughly 30 cm from the seafloor (Fig. 2). This water pump circulated the water within the dome 

at a flow rate of roughly 480 L hr-1 in 10 minute intervals, as such the overall flow rate within the 

chamber was considered to be 240L hr-1. A thin cable went between the pump within the 

benthic chamber to an external submersible battery pack.  

 

 

Figure 2. Setup of the internal water pump (foreground). Within a benthic chamber over the 

control unvegetated habitat. External submersible pump in background. 

A B 
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The benthic chambers were held in place by large chains and sank 5 cm into the sediment to 

create a seal. The benthic chambers were deployed within the same 2 hr timeframe each 

morning (10:45 am -12:45 pm) then left in situ for; 24 hours (Autumn and Summer) or 23 hours 

(Spring).   

Daily Net Community Productivity  

Small P. oceanica patches of < 2 m are assumed to consist entirely of edge habitat due to the 

proximity of the centre to the edge. Measurements of edge habitat are obtained from placing the 

benthic chambers over the edge of large P. oceanica patches or over the edge and centre of 

small P. oceanica patches (< 2 m). The in situ benthic chambers were deployed over sampling 

points of edge habitat in autumn, spring and summer. Edge habitat creates a good seal at the 

base of the benthic chambers because of the high proportion of sand to low proportion of 

rhizome. This avoids damage to the rhizome and roots from the chamber. A benthic chamber 

was simultaneously placed over the adjacent unvegetated sandy control habitat. If it was not 

possible to simultaneously deploy the control chamber, they were deployed at the next sampling 

opportunity the day after the first incubation is completed.  

There is no need to consider diffusive exchange with the atmosphere as these benthic 

incubations were carried out in closed systems. The record from the PME oxygen logger is used 

to calculate net community productivity (NCP) for every 10-minute interval over each 24 hour 

period (modified from; Cole et al., 2000): 

ΣΔ𝐷𝑂 = 𝑁𝐶𝑃𝐷𝑎𝑖𝑙𝑦 

where DO is dissolved oxygen. This was applicable to the Autumn and Summer incubations 

when 24 hour incubations were completed. 

The 23 hour incubations were completed missing one hour of daylight incubation. The total 

hours of daylight (Hd) were determined as: 

𝐻𝑑 = 24 − 𝐻𝑛 
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where Hn is the total hours of night-time darkness. 

NCPDaytime (Champenois and Borges, 2012; Rodriguez et al., 2016) was calculated whereby t is 

the daylight incubation time : 

𝑁𝐶𝑃𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = (
ΣΔDO

𝑡
) × 𝐻𝑑 

During darkness GPP is 0, therefore the change in dissolved oxygen in any 10-minute interval is 

assumed to be a result of community respiration. The change that occurred during the night-

time dark period were summed to calculate CRNight:  

ΣΔ𝐷𝑂 = 𝐶𝑅𝑁𝑖𝑔ℎ𝑡 

The combination of the net community change during the daytime (NCPDaytime) and night-time 

dark period (CRNight) determine NCPDaily for 23 hour incubations made during Spring: 

𝑁𝐶𝑃𝐷𝑎𝑖𝑙𝑦 = 𝑁𝐶𝑃𝐷𝑎𝑦𝑡𝑖𝑚𝑒 + 𝐶𝑅𝑁𝑖𝑔ℎ𝑡 

Daily community respiration and daily gross primary productivity 

Since the benthic chamber incubations do not acquire a direct measurement of CRDay, we 

assume the hourly value of CRNight and CRDay are equal (Cole et al., 2000): 

𝐶𝑅𝐷𝑎𝑦 = (
𝐶𝑅𝑁𝑖𝑔ℎ𝑡

𝐻𝑛
) × 𝐻𝑑  

This allows daily community respiration (CRDaily) to be found: 

𝐶𝑅𝐷𝑎𝑖𝑙𝑦 = 𝐶𝑅𝐷𝑎𝑦 + 𝐶𝑅𝑁𝑖𝑔ℎ𝑡 

NCPDaily is then calculated as: 

𝑁𝐶𝑃𝐷𝑎𝑖𝑙𝑦 = 𝐺𝑃𝑃𝐷𝑎𝑖𝑙𝑦 − 𝐶𝑅𝐷𝑎𝑖𝑙𝑦 

All metabolism measurements (O2 mg L-1 d-1) are then converted into areal based estimates 

(Olive et al., 2015): 
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𝑂2 𝑚𝑚𝑜𝑙 𝑚−2 𝑑−1 =

((
𝐷𝑂
32

) × 𝑉)

𝐴
 

The corresponding GPP:CR ratios were calculated: 

𝐺𝑃𝑃

𝐶𝑅
 

Daily Net Apparent Productivity  

The net apparent productivity (NAP) of the seagrass and epiphytes, was calculated as the 

difference between estimates for the NCP of the P. oceanica meadow and the average NCP of 

the sediment and plankton in the unvegetated control chambers (Murray and Wetzel, 1987) 

from the same corresponding season. This calculation assumes the only difference between the 

vegetated and unvegetated benthic chambers is the presence of the seagrass and epiphytes. 

Although the expected contribution of epiphyte productivity is deemed minimal due to the overall 

high biomass of P. oceanica to that of the epiphytes (Cox et al., 2015), therefore the NAP 

primarily reflects the productivity of the P. oceanica.  

Daily NAP standardised for seagrass canopy height 

After the in situ incubations were completed the blade length from 5 – 6 randomly selected 

blades were taken from the seagrass within the benthic chambers, as a proxy for the average 

height of the seagrass canopy in the edge habitat. To account for seasonal changes in 

seagrass canopy the seasonal NAP measurements were standardised by the average blade 

length with the benthic chamber (O2  mmol m−2 cm−1 d−1).  

Annual Net Community Productivity and Net Apparent Productivity 

Annual NAP and NCP was estimated by scaling up the three average seasonal daily NAP and 

NCP measurements; the November measurement was chosen to represent the period between 

October to January (123 days), April represented the period from February to May (120 days) 

and July represented June to September (122 days):  
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𝑁𝐴𝑃𝐴𝑛𝑛𝑢𝑎𝑙 = (𝑁𝐴𝑃𝐷𝑎𝑖𝑙𝑦(𝑁𝑜𝑣) × 123) + (𝑁𝐴𝑃𝐷𝑎𝑖𝑙𝑦(𝐴𝑝𝑟) × 120) + (𝑁𝐴𝑃𝐷𝑎𝑖𝑙𝑦(𝐽𝑢𝑙) × 122) 

𝑁𝐶𝑃𝐴𝑛𝑛𝑢𝑎𝑙 = (𝑁𝐶𝑃𝐷𝑎𝑖𝑙𝑦(𝑁𝑜𝑣) × 123) + (𝑁𝐶𝑃𝐷𝑎𝑖𝑙𝑦(𝐴𝑝𝑟) × 120) + (𝑁𝐶𝑃𝐷𝑎𝑖𝑙𝑦(𝐽𝑢𝑙) × 122) 

The photosynthetic and respiratory quotient of 1 mol of O2: 1 mol CO2 is applied to terrestrial 

plants that use starch and sugars as respiratory substrates, as observed in P. oceanica 

(Alcoverro et al., 2001) and therefore applied to convert all annual metabolism values (O2 mol 

m−2 d−1) into carbon (C mol m−2 d−1). 

NAP of central P. oceanica meadow and the meadow edge 

In the Summer benthic chambers were placed over P. oceanica within the meadow centre in 

addition to the benthic chambers deployed over the edge habitat. Within the dense areas of the 

P. oceanica meadow the rigid PVC benthic chamber likely cut the rhizomes and roots, however 

the stress caused is generally considered marginal (Champenois and Borges, 2012). Control 

chambers were not placed out simultaneously to the central meadow measurements, as the 

already obtained Summer control measurements (n = 4) were used as the reference. After the 

incubations were completed several measurements were taken from the seagrass within the 

benthic chambers; an estimate of P. oceanica cover (%); shoot density (Shtdens) (m-2) within 

three 20 x 20 cm quadrats randomly placed on P. oceanica; the number of blades (BNumber)  

(shoot-1) from 5 - 6 randomly selected shoots; canopy blade length (Blength) and blade width 

(Bwidth) (cm) from 5 – 6 randomly selected blades. 

Plant surface area (m-2) for each chamber was calculated from the seagrass biometrics: 

𝑆ℎ𝑜𝑜𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 = 2(𝐵𝑙𝑒𝑛𝑔𝑡ℎ × 𝐵𝑤𝑖𝑑𝑡ℎ) × 𝐵𝑁𝑢𝑚𝑏𝑒𝑟  

𝑃𝑙𝑎𝑛𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 = 𝑆ℎ𝑜𝑜𝑡𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎  × (𝑆ℎ𝑡𝐷𝑒𝑛𝑠 ×  
𝐶𝑜𝑣𝑒𝑟

100
) 

Sediment analysis of central P. oceanica meadow and the meadow edge 

Four sediment samples were collected from within every Summer benthic chamber using a 

modified (open-ended) PVC syringe inserted to a depth of 10 cm, to collect 10 cm3 cores. For 
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each chamber there were already noted several seagrass biometrics e.g. shoot density, 

percentage cover. All cores taken within seagrass underwent some level of compaction 

(x̅ = 17 %, SD ± 10 %), due to the large rhizome and root network. Cores were resampled if 

compaction was greater than 45 %.  

The PVC syringe was inserted into the sediment without the plunger until 10 cm, then the 

plunger was inserted to cap the sample at one end. As the sample was removed from the 

sediment it was capped at the other end, this was directly transferred into 50 ml falcon tubes. 

The samples were dried to a constant weight at 40 - 70 oC using a desiccator, then returned to 

50 ml falcon tubes for transport from Greece to the UK lab. At the lab the sediment samples 

were passed through a series of sieves, with the smallest mesh size 250 μm, to remove any 

seagrass root fragments or fibres. Loss on ignition analysis was conducted to calculate organic 

content of the sediment (OC) using the organic material lost at 550 oC to determine sediment 

organic carbon (%).   

𝑂𝐶 = (
(𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝐴𝑠ℎ 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡)

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
) × 100 

Data analysis 

Seasonal P. oceanica metabolism 

With three samples from Winter and Spring, and four samples in Summer, finding an 

appropriate data distribution is challenging, but the distribution of NCP and NAP measurements 

are approximately normal. ANOVAs were applied to assess if there was a significant difference 

in NCP and NAP with changes in season. Tukey post hoc tests were used to test the 

differences between the seasons. An ANOVA was also applied to assess if there was a 

significant seasonal difference in NAP when standardised by canopy length.  

Influence of environmental conditions on P. oceanica NAP 

To examine the change in P. oceanica NAP relative to the changing light environment, the 

photosynthesis-irradiance relationship were fit with a hyperbolic tangent function (Jassby and 
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Platt, 1976) modified to account for respiration (Rheuban et al., 2014) and used prior for the 

seagrass species in question (Koopmans et al., 2020). The fit was calculated as: 

𝐹𝑙𝑢𝑥 = 𝑃𝑚𝑎𝑥𝑡𝑎𝑛ℎ
𝐼

𝐼𝑘
− 𝑅𝐼 

where Pmax is the maximum photosynthetic rate, Ik is the saturation irradiance, and RI is 

respiration. The parameters were estimated by non-linear least squares approach (nls function, 

R version 3.5.1), estimating approximate start values. The irradiance compensation point is the 

irradiance at which net oxygen production equals zero.  

As there was no significant interaction between temperature and seasonal NAP (F1,4 = 0.189, p 

= 0.8345), or significant effect when temperature is assessed as a covariate for change in 

seasonal NAP by ANCOVA (F1,6 = 2.1154, p = 0.1961). The maximal model to assess for 

significant effect of temperature on NAP was by ANOVA. 

Comparison of spatial meadow carbon storage potential 

A t- test is applied to determine if the NAP differs between the central meadow area and the 

meadow edge. Then linear regressions are applied to the Summer NAP to determine if the 

difference in central meadow and meadow edge relate to changes in plant surface area, 

percentage cover, shoot density and blade length.  Comparison of the R2 values provides an 

understanding of which seagrass biometric account for the variation in NAP and are the best 

spatial predictor for P. oceanica NAP. 

A t- test is applied to determine the sediment organic carbon content differs between the central 

meadow area and the meadow edge. Then linear regressions applied to determine in the same 

seagrass health biometrics plant surface area, percentage cover, shoot density and blade 

length relate to the sediment organic content within the edge and central areas of the 

P. oceanica meadow.  
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Results 

Seasonal Net Community Productivity and Net Apparent Productivity 

The P. oceanica meadow NCP is greater than the unvegetated control in every season (Fig. 

3A). In Autumn the P. oceanica community is overall heterotrophic as CR is greater than GPP 

(GPP:CR ratio < 1, Fig. 3 B), however the oxygen deficit is greatest in the control community 

without seagrass (NCP x̅ = -6.9, SD ± 16.7 O2 mmol m-2 d-1), than in the P. oceanica community 

(NCP x̅ = -4.0, SD ± 6.48 O2 mmol m-2 d-1). The NCP is lowest in Autumn but there is a 

significant seasonal influence on NCP (F2,7 = 10.924, p = 0.007), subsequently NCP is 

significantly higher NCP in Spring (NCP x̅ = 16.7, SD ± 6.25 O2 mmol m-2 d-1, p = 0.0113) and 

Summer (NCP x̅ = 15.6, SD ± 6.05 O2 mmol m-2 d-1, p = 0.0107), compared to Autumn. But not 

significantly different between the Spring and Summer NCP (Fig. 3A). 

During the transition from Autumn to Spring there is a large increase in GPP (GPP x̅ = 40.3, 

SD ± 15.6 O2 mmol m-2 hr-1 to GPP x̅ = 137.0, SD ± 95.7 O2 mmol m-2 d-1, Fig. 3C). There is also 

a large increase in CR from Autumn into Spring (CR x̅ = 44.4, SD ± 20.2 O2 mmol m-2 d-1 to 

CR x̅ = 120.3, SD ± 89.6 O2 mmol m-2 d-1, Fig. 3D), however the increase in GPP is greater than 

the increase in CR transitioning the P. oceanica meadow into an autotrophic ecosystem 

(GPP:CR ratio > 1, Fig. 3B).  

The P. oceanica meadow stays in an autotrophic state in the Summer (GPP:CR ratio > 1, 

Fig. 3B) with its highest GPP (GPP x̅ = 188.3, SD ± 148.44 O2 mmol m-2 d-1, Fig. 3C), but also its 

highest CR (CR x̅ = 172.704, SD ± 148.4 O2 mmol m-2 d-1, Fig. 3C). The increase in GPP is not 

as great as the increase in CR, therefore the GPP to CR ratio and NCP is lower in Summer 

compared to Spring (Fig. 3B).  
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Figure 3. A Net community productivity (NCP), B GPP:CR Ratio, C Gross primary productivity 

(GPP) and D Community respiration (CR) for the P. oceanica meadow edge (grey) and control 

chamber (White), Autumn (November), Spring (April) and Summer (July). Error bars represent 

standard deviation (Autumn and Spring n = 3, Summer n = 4). 
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The P. oceanica NAP is highest in Summer (NAP x̅ = 21.87, SD ± 6.05 O2 mmol m-2 d-1). The 

season of the year also has a significant impact on P. oceanica NAP (F2,7 = 8.3885, p = 0.0139) 

(Fig. 4A). Tukey post hoc comparisons found NAP is only significantly lower in Autumn 

(p = 0.0123) compared to Summer. There is an observational difference in NAP between the 

Autumn (NAP x̅ = 2.81, SD ± 6.48 O2 mmol m-2 d-1) and Spring season (NAP x̅ = 17.40, 

SD ± 6.25 O2 mmol m-2 d-1), but the post hoc comparisons showed the difference was not 

significant (p = 0.0556), similarly there was no significant difference between the periods of 

highest NAP in Spring and Summer (p = 0.6343).  

Despite the highest P. oceanica NAP occurring in Summer (Fig. 4), at the meadow’s community 

level net gain is highest in the Spring (Fig. 3A), as the organisms present within the control 

chambers have a higher metabolic rate in the Summer (NCP x̅ = -6.3, SD ± 1.6 O2 mmol m-2 d-1, 

Fig. 3A) compared to the Spring (NCP x̅ = -0.7, SD ± 1.4 O2 mmol m-2 d-1, Fig. 3A). Likewise, 

despite a net gain by P. oceanica in Autumn (NAP x̅ = 2.81, SD ± 6.48 O2 mmol m-2 d-1) (Fig. 3),  

this becomes a net loss at the community level (NCP x̅ = -4.0, SD ± 6.5 O2 mmol m-2 d-1, 

GPP/CR ratio < 1) (Fig. 3A). 

Seasonal Net Apparent Productivity standardised for seagrass canopy height 

The average canopy blade length within the edge P. oceanica habitat is at its lowest during 

Autumn (x̅ = 15.4, SD ± 2.84 cm), this increases into Spring (x̅ = 22.3, SD ± 4.77 cm) and peaks 

during Summer (x̅ = 25.1, SD ± 5.90 cm). When the P. oceanica NAP is standardised by the 

blade length of the seagrass canopy in the corresponding season, there is no significant 

seasonal difference in NAP (F2,7 = 3.9782 p = 0.070) (Fig. 4B). The NAP standardised for blade 

length is most similar between Spring (NAP x͂ = 0.85, Range = 0.533 O2 mmol m-2 cm-1 d-1) and 

Summer (NAP x͂ = 0.85, Range = 0.316 O2 mmol m-2 cm-1 d-1). Whilst the NAP standardised for 

blade length is observationally lower in Autumn (NAP x͂ = 0.85, Range = 0.976 O2 mmol m-2 cm-1 

d-1), it is not significantly different to Spring and Summer.  
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Figure 4. A The P. oceanica NAP given the season, B The P. ocenica NAP when standardised 

by the blade length of the seagrass canopy in the given season. Autumn and Spring n = 3, 

Summer n = 4. 

 

 

Influence of environmental conditions on P. oceanica NAP 

The daily light integral ranged from 4.7 mol photons m–2 d–1 during Autumn to 25.2 mol photons 

m-2 d-1  in Summer. Variation in environmental conditionswithin each season allowed for some 

overlap in the irradiance encountered between seasons. The P. oceanica NAP resembled a 

saturation curve when plotted as a function of irradiance (Fig. 5A), as did the curve for NAP 

standardised by canopy length (Fig. 5B). Light saturating levels begin to occur in Spring and 

continue into Summer, when NAP sits near the predicted maximum (20.421 O2 mmol m-2 d-1). 

Whereas the DLI conditions in Autumn (Min = 4.7 mol photons m–2 d–1) sit closer to the 

predicted light compensation point (IC= 4.6 mol photons m–2 d–1) as such within the Autumnal 

DLI range there are conditions where the plant may only just or may not maintain metabolic 

requirements due to low irradiance.  

A B 
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Figure 5 A P. oceanica NAP  (R2 = 0.713) and B P. oceanica NAP standardised by canopy 

length (R2 = 0.711), as a function of PAR given as the Daily Light Integral. The irradiance 

compensation point (IC) was 4.6 mol photons m–2 d–1. Replicate season denoted for visual 

reference Autumn  (   ), Spring (   ) and Summer (   ). 

 

The water temperature was lowest in Spring (x̅ = 17.7, SD ± 0.13 oC), increasing to a Summer 

high (x̅ = 23.6, SD ± 0.40 oC). The Autumn temperatures encountered sat at a relative mid-point 

(x̅ = 20.6, SD ± 0.45 oC). between Spring and Summer, yet the NAP was lowest in Autumn 

(NAP x̅ = 2.81, SD ± 6.48 O2 mmol m-2 d-1). Therefore the change in NAP was not relative to the 

change in water temperature and not a significant factor as main effects, with season (Fig. 6A) 

(F1,6 = 2.1154, p = 0.0.19606) or without season (Fig. 6B)  (Temperature F1,8 = 0.7265, 

p = 0.422).  

A B 
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Figure 6. A Realised P. oceanica NAP in Autumn (     ), Spring (     ) and Summer  

(     ) B Realised NAP irrespective of season (     ), given as a function of the average daily water 

temperature (oC). Replicate season denoted Autumn (   ) and Spring (   ) n = 3, Summer (   ) 

n = 4. The relationships described in this figure are based on predicted temperature 

relationships which were  of no significance 

 

Annual Net Community Productivity and Net Apparent Productivity 

The annual NAP of the P. oceanica in this meadow is determined as 5.1 C mol m-2 yr-1 (SD± 

0.02 C mol m-2 yr-1). However the organisms present within the P. oceanica meadow have their 

own metabolic requirements (NCP without seagrass present 1.7 SD± 0.02 C mol m-2 yr-1), as 

such the net carbon gain at the community level for this P. oceanica meadow is less than the 

NAP produced annually by the P. oceanica (NCP = 3.4 C mol m-2 yr-1 SD± 0.02 C mol m-2 yr-1). 

 

 

A B 
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Spatial variance in Net Apparent Productivity and the organic content of sediment 

The NAP of the P. oceanica in Summer is significantly different between the central areas of the 

meadow and the meadow edge (t (1,4) = 3.657, p = 0.02) (Fig. 7). The P. oceanica NAP is 

highest in the central areas of the meadow (NAP x̅ =43.4, SD± 8.4 O2 mmol m-2 d-1), compared 

to the edge habitat (NAP x̅ =21.9, SD± 6.0 O2 mmol m-2 d-1).  

The P. oceanica NAP increased relative to the plant surface area of P. oceanica (LM: F1,5= 

72.15, p = 0.0004) (Fig. 7A).  The plant surface area was the best predictor of NAP and 

accounted for more than 92 % of the variation in NAP. As standalone biometrics of seagrass 

meadow metabolism, shoot density (m2), blade length (cm) and seagrass cover (%), were all 

significant predictors of NAP (shoot density, LM: F1,5= 19.09, p = 0.007; blade length, 

LM: F1,5= 11.93, p = 0.018; percentage cover, LM: F1,5= 7.359, p = 0.04) but they only 

accounted for 75 %, 64 % and 51 % (Fig. 7B, C and D) of the variation in NAP of the 

P. oceanica. 

 



47 
 

 

Figure 7. Net apparent productivity (NAP) of the P. oceanica in the central meadow (grey) and 

meadow edge (Black) in relation to A P. oceanica blade surface area B P. oceanica shoot 

density (m2) C P. oceanica blade length (cm) and D P. oceanica cover (%). Central meadow 

n = 3, meadow edge n = 4. * significant linear regression of p < 0.05, ** significant linear 

regression of p < 0.01 

 

 

 

A B 

C D 
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The percentage of organic carbon stored within the sediment was observationally higher in the 

central areas of P. oceanica meadow (x̅ =5.78 %, SD± 1.01%) than the edge and patchy areas 

of this P. oceanica meadow (x̅ =4.89 %, SD± 0.84%), though not significantly higher 

(t (1,4) = 1.1646 p = 0.31) (Fig. 8). In contrast to the NAP, there was no significant increase in 

sediment organic with shoot density (p = 0.15), percentage cover (p = 0.21), plant surface area 

(p = 0.33) and blade length (p = 0.96). 

 

 

 

Figure 8. Organic content of sediment for edge and central P. oceanica meadow. 
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Discussion 

The strong seasonality in productivity at both the community and plant level, enforces the need 

for metabolism methodologies to utilise seasonal sampling, thereby ensuring carbon storage 

estimates are not overscale by only reflecting seasonal peaks. Placing specific emphasis on 

collecting measurements in opposing seasons, given low heterotrophic metabolism periods 

occurred in Autumn compared to higher autotrophic periods in Spring and Summer. Irradiance 

has often been considered one of the main drivers in P. oceanica community productivity 

(Gazeau et al., 2005; Champenois and Borges, 2012).  During Autumn the overall irradiance 

reaching the plant is likely lower as the daylight period is shorter, the likelihood of cloudy 

conditions increases and increased likelihood of stormy conditions result in greater 

hydrodynamic activity reducing in-water visibility, the subsequent irradiance would in part 

promote the distinction in photosynthetic activity between season. Moving through Spring into 

Summer you typically expect the daylight period to increase and the level of daylight irradiance 

to intensify resulting in increased productivity. Continued increase in irradiance does not 

guarantee continued increase in productivity, light saturating levels present throughout Summer, 

lead to a lower photosynthetic efficiency despite continued increase in irradiance. Long term 

exposure to saturating irradiance decreases plant productivity and can lead to photoinhibition 

(Ralph and Burchett, 1995). Though a negative decline as a result of photoinhibition is not 

modelled in this study, the consecutive days of light saturating irradiance which occur in 

Summer represent an increasing likelihood that photoinhibition would occur. However, shallow 

water P. oceanica are adapted to high-light light conditions, showing specific photoacclimative 

and photoprotective responses; significant enrichment of up-regulated transcripts associated to 

light-dependent reaction of photosynthesis (e.g. light-harvesting proteins); modifications in the 

structure of photosystems and tocopherol biosynthesis activation in the Summer (Dattolo et al., 

2014). Which is potentially why a strong negative photoinhibition response was not seen. The 

saturation response alone has important considerations for modelling carbon sequestration 

capacity, re-emphasising the importance of seasonality and the concurrent irradiance levels. 
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Leaf shedding alongside biomass exported by storm disturbance results in reduced 

aboveground biomass and photosynthetically active tissue from late Summer to early Winter 

(Champenois and Borges, 2012; Gomez-Pujol et al., 2013). The strong distinction in 

P. oceanica NAP between late Autumn and Summer, may in part relate to the relative 

availability of photosynthetic plant surface area due to changing aboveground plant biomass 

between seasons. Autumnal loss of leaves is followed by new growth during Winter despite this 

typically being a period of negative carbon balance for the plant (Alcoverro et al., 1995). Growth 

during a period of negative carbon balance is possible because P. oceanica has large long-lived 

rhizomes which store starch, this combined with the ability to transport photoassimilates further 

than smaller seagrass species, allows it to use these reserves to support growth patterns that 

are independent to seasonal environmental conditions (Marba et al., 1996). This P. oceanica 

growth pattern is governed by an internal rhythm (Ott, 1979). which ensures Winter growth is 

well-timed to coincide with increasing irradiance, allowing for maximum carbon fixation post-

Winter (Alcoverro et al., 2001). Therefore, its seasonal metabolism is governed by its 

asynchronous growth to mis-match irradiance. Reinforcing that light is a key factor in 

understanding this plant’s growth patterns and ultimately determining its carbon acquisition 

dynamics. Given this internal rhythm can persist for at least two years under constant conditions 

of irradiance, day length and temperature (Ott, 1979), the predictable growth of P. oceanica 

coupled with anticipated irradiance could be utilised to forecast future carbon sequestration. 

P. oceanica meadows within the eastern region of the Aegean Sea have already been noted to 

exhibit scattered and fragmented meadow morphology in response to the elevated sea surface 

temperatures (Chefaoui et al., 2017), it is surprising then that temperature did not have a 

significant effect on the productivity of shallow water P. oceanica. Other temperate seagrass 

species have been shown to transition to negative carbon balance when exposed to high 

Summer water temperatures (Marsh Jr. et al., 1986). Although our highest average daily water 

temperature was above optimal thermal conditions (17 - 20 oC) for P. oceanica (Champenois 

and Borges, 2018), this was well below P. oceanica lethal temperature limits (> 29 oC) and 
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perhaps explains why the increased Summer water temperatures did not cause a transition into 

overall heterotrophy. The in-situ nature of this study does not allow for the active control of 

either the water temperature or the light intensity encountered within our seasonal samples. A 

variety of conditions may not be encountered, and the predictions not appropriately reflect the 

response of P. oceanica productivity to water temperatures and light intensities outside of what 

was encountered. Evidence shows shallow water P. oceanica has a greater tolerance to 

increased water temperatures than deep P. oceanica (Marin-Guirao et al., 2016). The ability to 

stabilise respiration, thereby establishing respiratory homeostasis (balanced photosynthetic 

carbon gains and respiratory carbon losses), was highlighted as the key mechanism for heat 

acclimation in shallow P. oceanica (Marin-Guirao et al., 2016). This suggests that shallow 

P. oceanica may maintain net productivity gains at higher water temperatures for longer, at least 

in comparison to deeper P. oceanica. Given the shallow and deep water ecotypes have been 

shown to thermally acclimate to local conditions (Marin-Guirao et al., 2016), it is also possible 

that the P oceanica within the eastern Aegean or more broadly the Eastern Mediterranean basin 

may have a greater existing acclimation to increased water temperature, as the Eastern 

Mediterranean basin has been exposed to higher sea surface temperatures (since 1985) than 

the Western Basin (Nykjaer, 2009). Ultimately any temperature effect on P. oceanica 

metabolism in this study was confounded by the strong irradiance effect and thus could not be 

disentangled. 

The planktonic community in the water surrounding the P. oceanica meadow tended to be more 

heterotrophic outside of Spring when blooms typically occur (Gazeau et al., 2005). 

Mediterranean planktonic and benthic communities show increased respiration rates with 

warming (Vaquer-Sunyer and Duarte, 2013). The higher water temperatures in Summer and 

late Autumn increased community utilisation of oxygen produced by P. oceanica. Accounting for 

the metabolism of the planktonic community within a seagrass meadow is important to 

determine the net gain of carbon at a community level, but as the autotrophy within the 

community is largely attributed to the primary productivity of the seagrasses (Hemminga and 
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Duarte, 2000), distinguishing the NAP of the P. oceanica enables a clearer determination of the 

influences driving this metabolic component of the community. Justifying the approach to 

distinguish between NCP and NAP within the P. oceanica meadow ecosystem, as seasonal 

community metabolism may partially mask the drivers in P. oceanica productivity. The 

calculation of NAP requires the assumption that the only difference between the vegetated and 

unvegetated control chamber is the presence of P. oceanica,  the metabolism of the 

invertebrate community hidden within the seagrass are not accounted for when using the 

unvegetated control chamber as a proxy for the planktonic and overlying benthic community 

metabolism, potentially overestimating the NAP of P. oceanica. Epifauna community structure, 

defined by the number of taxonomic groups, doesn’t necessarily differ between P. oceanica 

central meadow and sandy bottoms (Sanchez-Jerez et al., 1999), but some species-specific 

epifaunal differences do occur between these habitat types and could influence the community 

metabolism (Sanchez-Jerez et al., 1999). Therefore, the use of NCP estimates are widely 

accepted for benthic chamber metabolism studies within seagrass meadows (Duarte et al., 

2010; Olive et al., 2015) because they clearly quantify the extent to which the overall community 

is a carbon sink or source. Hence this study still presents the results in NCP as it allows for 

closer comparisons to the existing P. oceanica NCP estimates.  

Metabolism measurements are typically presented with an area-based unit (Duarte et al., 2010; 

Olive et al., 2015), but considering productivity has been shown to significantly relate to spatial 

variations in plant aboveground biomass, carbon sequestration estimates should potentially 

more away from denoting discrete areal measurements for meadows. Instead acquiring and 

mapping large scale data on canopy height (shoot size) and shoot density to enable 

comprehensive habitat wide autochthonous carbon sequestration estimates. Determining 

annual changes in shoot size would also support the prediction of annual meadow productivity. 

Acquiring biometric data to support distribution data may require greater effort than simply 

collating presence-absence or coverage data, but simple plant biometrics of shoot density and 

blade length have been demonstrated as standalone predictors of carbon sequestration. High 
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shoot density in shallow areas with a high degree of patchiness creates very specific nest-like 

patterns, that have their highest shoot density in the centre and decrease in density radially 

towards the edge of the patches (Zupo et al., 2005). Therefore, this distinction in spatial 

productivity between edge and central areas of P. oceanica may be a specific characteristic to 

consider for shallow meadow carbon stocks. Because overall shoot densities are highest in the 

shallow and decrease with depth (Olesen et al., 2002; Zupo et al., 2005). More work would be 

needed to determine if the same distinctions in shoot density and subsequent primary 

productivity exist between the edge and central areas of deeper areas of P. oceanica meadows. 

Patchiness also exists on a small scale less than that of metres, although factors such as 

physical disturbance, topography and nutrients are thought to operate on this small scale, 

variation at this small scale in harder to explain (Ballestri et al., 2003). The use of benthic 

chambers with a large benthic surface area have a greater representation of community-scale 

metabolism as trialled for heterogenic coral reef habitats (Yates and Halley, 2003). The use of a 

larger benthic chamber in this study (1m diameter) comprises community metabolism 

measurements influenced by fine scale variation in shoot density, compared to the previous 

small chambers (0.18m diameter), which house only a few shoots at similar densities within the 

benthic chamber (Gazeau et al., 2005; Barron et al., 2006).  

The annual net community productivity for this meadow was lower than recorded for the two 

P. oceanica meadows within the western region of the Aegean Sea; one situated 20m away 

from a fish farm deemed to be negatively impacted by eutrophication (4.83 C mol m-2 yr-1) and 

the second reference meadow  (11.97 C mol m-2 yr-1) (Apostolaki et al., 2010). This suggests a 

great variability in NCP exists between meadows in the Aegean Sea, but considering these 

estimates were acquired from deeper meadow areas it cannot be determined if the variability is 

due to factors that change with depth such as meadow composition and environmental 

conditions. The annual NCP in this study was most similar to an NCP measurement in the 

Western Mediterranean, by open water O2 mass balance (3.5 ± 0.8 O2 mol m-2 yr-1), however 

within its dataset it was the lowest annual NCP, with the reduction attributed to accumulation of 
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leaf litter in the meadow due to lower wintertime wind speeds (Champenois and Borges, 2012). 

Therefore, the annual NCP of this meadow appears most comparative to P. oceanica meadows 

that are under duress whether that be eutrophication (Apostolaki et al., 2010) or increased 

decomposition of leaf litter (Champenois and Borges, 2012). The metabolism of shallow water 

P. oceanica habitats potentially does not function at the highest metabolic efficiency, given 

shallow water P. oceanica exists in a light saturating environment for large parts of the year. 

However, the annual NCP in this study was obtained from patchy P. oceanica edge habitat, this 

underestimates the meadows overall carbon sequestration ability as central areas with high 

shoot density clearly demonstrated higher levels of productivity. This low annual estimate of 

NCP reflects that this study focused on shallow water meadows, where patchy edge habitat is a 

more prominent feature (Montefalcone et al., 2009), therefore it is an appropriate and 

conservative annual NCP estimate for this habitat. It also highlights the need for future 

estimates to account for the distinct heterogeneity in carbon sequestration within shallow 

meadows. Despite a relatively lower annual NCP estimate shallow water P. oceanica still 

represents an autotrophic habitat aiding carbon sequestration. When you consider the potential 

collective amasses of shallow water P.  oceanica this represents a considerable carbon sink. 

The carbon sequestration potential of seagrass meadows ultimately relates to how much of the 

organic material produced accumulates as refractory material in the seagrass meadow. 

Reduced current attenuation should promote significantly higher organic carbon concentration 

with distance from the edge (Oreska et al., 2017), for both allochthonous and autochthonous 

carbon. Despite the sediment analysis within this study not determining between allochthonous 

and autochthonous, the patterns of high productivity should have been retained relating to an 

increase in the sedimentary organic content of central meadow area. The higher organic 

content in central areas should perhaps would have been expected to be more distinct given 

allochthonous carbon would also settle preferentially out in central areas. In shallow patchy 

meadows the proximity of central areas to the meadow edge may limit organic carbon 

accumulation, as increased settlement of particles with distance from meadow edge occurs at 
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concentration gradients over 1km in length (Oreska et al., 2017), within shallow fragmented 

meadows this spatial scale isn’t scalable. Even if the patchiness of shallow meadows may limit 

the burial of carbon, if the seagrass patches have the long-term ability to persist, they still 

actively contribute to carbon sequestration. Loss of shallow patchy P. oceanica habitat would 

still represent a loss of current carbon sinks, thus their importance and relative contribution 

should not be overlooked. The retention of autochthonous material in patchy meadows requires 

further research and direct relation to the expected primary productivity. 

If natural ecosystems such as seagrass meadows are to play a part in mitigating increases in 

anthropogenic CO2 emissions variability in primary productivity needs to be accounted for to 

produce comprehensive carbon stock estimates in the future. Firstly, this means future 

metabolism studies must account for changes in seasonal productivity, measurements only 

obtained in peak seasons risk skewing the relative carbon sequestration potential. Utilising 

predictable seasonal canopy growth patterns in combination with seasonal irradiance levels 

could be well utilised to fine tune forecasts of annual carbon storage potential. Finally 

accounting for spatial heterogeneity across a meadow by considering plant surface area and 

shoot density as predictors of productivity, particularly in shallow meadows, would help to more 

truly reflect the contribution of these habitats to carbon sequestration. Overall, the autotrophic 

nature of shallow water P. oceanica, even when considering the patchy nature of the habitat, 

maintains that these areas are valuable in their contribution to the overall carbon sink potential 

of P. oceanica meadows. 
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Productivity of the ‘invasive’ seagrass Halophila stipulacea and the presence of an uncommon 

phytomyxid infection  

Introduction 

The eastern region of the Aegean Sea sits at a crossroad for alien species expansion 

(Pancucci-Papadpooulou et al., 2012).  This includes the marine angiosperm, 

Halophila stipulacea which was introduced to the Mediterranean and first reported in 1894 off 

the Island of Rhodes in the south-eastern region of the Aegean Sea (Fritsch, 1895). This is not 

the only new global region this species has spread too, beyond its indigenous distribution in the 

Red Sea and Indian Ocean (den Hartog, 1970) it has established within the Mediterranean and 

the Eastern Caribbean (Ruiz and Ballantine, 2004). H. stipulacea was listed amongst the 

‘100 Worst Invasive Species’ in the Mediterranean (Streftaris and Zenetos, 2006), but there are 

discrepancies in opinion as to whether it should be considered ‘invasive’, as no ecological 

consequences of the introduction and spreading of H. stipulacea in the Mediterranean have 

been reported (Williams, 2007). Many only tentatively chose to include it in the list of invasive 

macrophytes within the eastern Mediterranean (Boudouresque and Verlaque, 2002).  

The term ‘invasive’ has been inconsistently used to describe inter alia in many different 

contexts; as any introduced non-indigenous species; introduced species that spread rapidly in a 

new region; and introduced species that have harmful impacts particularly on native species 

(Ricciardi and Cohen, 2007). To many people (especially policy-makers and stakeholders) it 

implies a species that causes environmental or socio-economic impacts (Ricciardi and Cohen, 

2007). An expansive amount of literature exists on the changing and potential range extension 

of H. stipulacea (Fritsch, 1895; van der Velde and den Hartog, 1992; Gambi et al., 2009; 

Tsiamis et al., 2010; Sghaier et al., 2011; Georgiou et al., 2016).  Implying the dominant reason 

for it to be deemed invasive, is its rapid and vast expansion within the Mediterranean. Less 

research has focused on its impact or contribution to specific ecosystem services within 

Mediterranean coastal ecosystems, such as carbon sequestration (Apostolaki et al., 2019). 

Given H. stipulacea is one of the longest monitored nonindigenous species in the 
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Mediterranean there has been a clear lag from reporting its presence and rate of expansion, to 

beginning to understand its impact within the communities it has established. Until recently 

H. stipulacea was thought to be the only non-indigenous seagrass species in the Mediterranean 

but records now demonstrate another species from the Halophila genus, Halophila decipiens 

has also entered the Mediterranean (Gerakaris et al., 2019). The unsurprising ease at which 

these tropical pioneer seagrass species appear to be able to enter the Mediterranean suggest, 

more than ever, it is crucial to understand, not just where in the Mediterranean they are present 

but, the impact they may have now and in the future.  

Seagrass meadows high productivity means they are typically considered autotrophic 

ecosystems (Duarte et al., 2010; Champenois and Borges, 2012). This productivity coupled with 

their canopies’ ability to increase particle settlement out of the water column means they can 

store large quantities of carbon (Duarte et al., 2011) and are considered carbon sinks. This is 

certainly true of native Mediterranean seagrass meadows, largely dominated by the seagrass 

Posidonia oceanica (Duarte et al., 2010; Champenois and Borges, 2012). Whereas long-term 

organic carbon accumulation rates in Red Sea seagrass meadows, where H. stipulacea is 

native, have been shown to be lower than estimates for P. oceanica meadows in the 

Mediterranean (Serrano et al., 2016; Serrano et al., 2018). Recent research found sedimentary 

carbon stocks from Mediterranean H. stipulacea meadows to be comparable to native 

P. oceanica, although was attributed to the deposition of allochthonous carbon (Apostolaki 

et al., 2019). Allochthonous carbon is typically considered more labile, thus habitat that favours 

the accumulation of autochthonous rather than allochthonous organic carbon lead to stable 

deposits and carbon sinks (Mazarrasae et al., 2018). To understand to the effect of 

H. stipulacea presence in the Mediterranean on autochthonous carbon sequestration an 

assessment of H. stipulacea in situ productivity in the Mediterranean is integral. 

In the Mediterranean H. stipulacea can be found in multi-species meadows with the native 

Cymodocea nodosa, in the free spaces between patches of P. oceanica or in habitats 

previously devoid of seagrass (Boudouresque et al., 2009). Whilst there are reports of its 
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‘invasive’ behaviour on sandy bottoms when it exists in high abundances, no displacement of 

native species has yet been reported (Tsiamis et al., 2010). Given that H. stipulacea has various 

contexts in which it can be found in the Mediterranean its contribution to community productivity 

may differ depending on the context. When H. stipulacea has colonised areas previously absent 

of seagrass its presence has increased the distribution of seagrass habitat in the Mediterranean 

and is perhaps why it has been highlighted as a new potential blue carbon sink habitat 

(Apostolaki et al., 2019). But it is important to understand how the community productivity of the 

habitat devoid of seagrass differs to the ‘new’ seagrass habitat. Given seagrass habitats are 

typically considered autotrophic systems (Duarte et al., 2010; Champenois and Borges, 2012) it 

may suggest H. stipulacea has had an additive presence to the community and increased 

community productivity. This may be dependent on the habitat it has replaced as some algal 

communities show high community productivity and have traditionally been underestimated as 

blue carbon systems (Duarte et al., 2013). The positive potential of H. stipulacea to increase 

community productivity and create new carbon sink habitats in the Mediterranean (Apostolaki 

et al., 2019), is in direct contrast to the negative connotations, implied by the word ‘invasive’. 

In the Mediterranean H. stipulacea has colonised areas previously occupied by native seagrass 

species, such as P. oceanica dead matte or mixed C. nodosa meadows (Sghaier et al., 2011). 

In the Caribbean H. stipulacea has been shown to actively displace the dominant native 

seagrass Syringodium filiforme (Willette and Ambrose, 2012). Whilst Sghaier (et al., 2011) does 

not necessarily describe active displacement of the native species C. nodosa and P. oceanica, 

it highlights replacement of native seagrass species and species-specific alteration in 

Mediterranean seagrass meadows. Morphologically and phylogenetically P. oceanica, 

C. nodosa and H. stipulacea are very different seagrasses. Colonisers such as H. stipulacea are 

considered to have lower biomass accumulation, particularly belowground biomass, than larger 

and long-lived species such as P. oceanica (Serrano et al., 2016). The comparatively lower 

belowground biomass of H. stipulacea suggests its accumulation of autochthonous organic 

carbon is less than native Mediterranean species. If H. stipulacea is replacing monospecific 
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meadows or altering the species composition within mixed meadows, the dynamics and 

ecosystem services provided by Mediterranean meadows will alter too. The recorded regression 

of native species like P. oceanica (Telesca et al., 2015), may enable further colonisation of 

H. stipulacea and changes in the carbon sequestering potential of Mediterranean meadows.  

Within its native range of the Red Sea H. stipulacea net productivity has seasonal increases 

driven by irradiance (Cardini et al., 2018). This suggests that H. stipulacea is likely to show 

decreased productivity in the Mediterranean, due to decreased irradiance compared to its native 

range in the Red Sea. The minimum expected productivity for H. stipulacea should occur during 

the lower Mediterranean Autumn irradiance, this would provide conservative estimates of 

Mediterranean H. stipulacea community productivity rather than the Summer maximums, which 

on their own may overestimate annual community productivity. At 10 °C the clonal growth of 

H. stipulacea ceases, although the plant does not die (Georgiou et al., 2016). Low 

Mediterranean irradiance and water temperatures may both simultaneously influence plant 

metabolism. Whilst its tropical heritage might suggest it would struggle to expand into the colder 

regions of the Mediterranean (Sghaier et al., 2011), temperature may not limit its expansion 

across the entire Mediterranean and further into the Atlantic (Georgioiu et al., 2016).  

H. stipulacea productivity may increase with global climate predictions for the Mediterranean in 

mind. By the end of this century the relative increase in average SST within the Mediterranean 

is predicted to be 5.8 ⁰C (Sakalli, 2017). This is in line with predictions that P. oceanica will 

continue to decline especially in the eastern basin where sea surface temperature is expected 

to rise. Thus “warm” affinity species including H. stipulacea, would be well placed to take 

advantage of the predicted future decline of its competitor P. oceanica (Pergent et al., 2014).  

Seagrass meadows typically support a high biodiversity of organisms from fish and 

invertebrates (Heck Jr et al., 1989), to a diverse epiphytic community, largely algae, that use the 

seagrass leaf as a substrate (Prado et al., 2007). They also support obligate endosymbionts 

such as phytomyxids. Phytomyxids are a particularly interesting group of organisms as certain 

species have been considered highly detrimental to seagrass health. Once they have infected 
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the host, they alter their host’s metabolism, changing the metabolic status of their host through 

either facilitating the diverted transfer of energy derived from the seagrass or indirectly affecting 

carbon flows by altering seagrass growth (Neuhauser et al., 2011a).  

Phytomyxids have a characteristic gall development that in some seagrass species prevents the 

elongation of the seagrass internodes, thus the seagrass becomes bulbous at the base and the 

poor root development increases uprooting (den Hartog, 1989). Uprooting of the seagrass host 

would mean the carbon within the seagrass roots is lost from the seagrass sediment carbon 

sink (Gleason et al., 2013). The ability to alter metabolic activity may influence the capacity and 

mechanisms of carbon sequestration in seagrass habitats subsequently impacting global 

primary productivity (Neuhauser et al., 2011b). Despite their potentially significant role in marine 

ecosystems, knowledge of many phytomyxean species is limited. As records are limited any 

new findings are of importance (Vohnik et al., 2017). Documentation of new records are also 

key because a greater understanding of their impact on seagrass habitats will need to be 

undertaken in the future. 

Currently there are no recorded in situ community productivity measurements within the 

Mediterranean of H. stipulacea, in this study we acquire Autumn community productivity 

measurements from a H. stipulacea bed, that has occupied a sandy and rubble coastal benthos 

situated between P. oceanica meadow. This enables an assessment of H. stipulacea’s 

contribution to net community productivity (NCP) compared to the seagrass absent habitat. 

Further to this it enables an in situ assessment of H. stipulacea productivity relative to 

Mediterranean light and temperature conditions, which can be compared to its native range. 

Finally, this study addresses the circumstantial finding an endosymbiotic phytomyxid within 

H.  stipulacea and discusses its potential influence on the plant’s productivity. 
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Methods 

Study site 

This study took place off the southeast of Samos Island, in the eastern Aegean Sea 

(37.697744° N, 26.970575° E), during the Autumn season between October 22nd to October 31st 

2018. With a later seagrass sample collection completed on November 23rd 2018. This took 

place across a large roughly 50 x 100 m bed of H. stipulacea situated on sandy and rubble 

benthos, between the edge of larger P. oceanica meadow. 

In situ benthic chamber setup 

Two clear dome PVC benthic chambers (diameter = 30 cm, height = 16.5 cm, benthic surface 

area = 0.28 m2) were fitted with PME loggers to record oxygen concentration and temperature. 

Two HOBO loggers were attached to the outside of the benthic chambers to record relative 

temperature and light intensity. The difference in light attenuation through the chamber was 

considered negligible, as the light registered on a logger placed outside the chamber whilst 

higher than the light registered on a logger placed inside the chamber, showed no significant 

difference in the light intensity across 13 hours of daylight logging (p > 0.05). The benthic 

chambers were deployed by free divers between 5.7 - 6.2 m depth, secured with a small chain 

and sank into the sediment to create a seal (Fig. 9). The benthic chambers were deployed 

within the same 1hr 10minute timeframe each morning (10:40 - 11:50 am), to ensure they were 

setup latest by 12:00 noon (modified from, Cardini et al., 2018). The benthic chambers were left 

in situ for 5 hours, before their retrieval by free divers. When benthic chambers were retrieved 

those containing H. stipulacea had all the leaf matter from within the chambers collected.  
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Figure 9. Benthic chamber setup deployed over benthos with H. stipulacea presence  

 

Daylight Net Community Productivity of adjacent benthic communities 

The benthic chambers were placed over areas of vegetated H. stipulacea (n = 6) and adjacent 

areas of sand/rubble benthos without H. stipulacea presence (n = 4), to determine NCP for both 

adjacent benthic communities.  

The record from the PME oxygen logger is used to calculate an mean hourly NCPDaylight across 

the 5 hour incubation time (t): 

𝑁𝐶𝑃𝐷𝑎𝑦𝑙𝑖𝑔ℎ𝑡 =
∆𝐷𝑂

𝑡
 

The NCPDaylight value (O2 mg L-1 hr-1) is then converted into areal based estimates 

(O2 mmol-1 hr-1 m-2) (Olive et al., 2015): 

𝑂2 𝑚𝑚𝑜𝑙 𝑚−2 ℎ𝑟−1 =

((
𝐷𝑂
32 ) × 𝑉)

𝐴
 

The difference in mean hourly NCPDaylight between adjacent benthos types were determined by 

independent t test.  
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Influence of temperature and light on H. stipulacea NCP 

For all H. stipulacea chambers (n = 6) there was a comparable four-hour time window from 

12:00 to 16:00 at which the chambers were deployed on their respective days. The DO data 

was split to calculate the change in 4 one-hour NCP (NCPHour) measurements:  

𝑁𝐶𝑃𝐻𝑜𝑢𝑟 = ∆𝐷𝑂 

The NCPHour measurements (O2 mg L-1) were converted into areal based estimates 

(O2 mmol-1 m-2). 

The HOBO logger fastened to the respective NCP H. stipulacea chamber recorded light and 

temperature at 5 minute intervals. Both the temperature and light data was split across the 

same hourly time series between 12:00 to 16:00. The first measurement registered on the 

HOBO logger after 12:00, 13:00, 14:00 and 15:00 and the following 11 measurements recorded 

within the hour, were averaged to determine the mean light intensity (lux) and seawater 

temperature (°C), complimentary to the PME logger NCP benthic chamber measurements.  

Linear regression analysis was used to determine the influence of light and temperature on the 

NCP of the benthos with H. stipulacea present.  

Daily Net Community Productivity 

Benthic chambers were blacked out and placed over areas with H. stipulacea presence to 

gauge the average hourly dark community respiration (CRDark), for the community with H. 

stipulacea presence (n = 4). The chambers were blacked out with a reflective material to 

prevent heat absorption and aim to maintain a similar temperature inside the CR chambers to 

the NCP chambers. Mean hourly CRDark was determined across a five hour incubation time (t):  

𝐶𝑅𝐷𝑎𝑟𝑘 =
∆𝐷𝑂

𝑡
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The hourly daytime rate of respiration is assumed to be equal to the hourly night time rate of 

respiration. Samos Island experienced on average 13 hours 12 minutes (13.2 hours) of night-

time darkness during the October sampling period in 2018. CRNight was calculated from CRDark: 

𝐶𝑅𝑁𝑖𝑔ℎ𝑡 =  𝐶𝑅𝐷𝑎𝑟𝑘 × 13.2 

Samos Island experienced on average 10 hours and 48 minutes (10.8 hours) of daylight during 

the October sampling period in 2018. NCPDaytime was calculated with NCPDaylight: 

𝑁𝐶𝑃𝐷𝑎𝑦𝑡𝑖𝑚𝑒 =  𝑁𝐶𝑃𝐷𝑎𝑦𝑙𝑖𝑔ℎ𝑡 × 10.8 

 The combination of net community change during the daytime (NCPDaytime) and night time 

(CRNight) determine NCPDaily: 

𝑁𝐶𝑃𝐷𝑎𝑖𝑙𝑦 = 𝑁𝐶𝑃𝐷𝑎𝑦𝑡𝑖𝑚𝑒 − 𝐶𝑅𝑁𝑖𝑔ℎ𝑡 

The photosynthetic and respiratory quotient of 1 mol of O2 : 1 mol CO2 is applied, as it is 

consistent with estimates reported for seagrass meadows (Duarte et al., 2010), converting the 

NCPDaily values into carbon (C mmol m−2 d−1). 

Phytomyxid documentation 

From the leaf matter collected within the benthic chambers, photo documentation of a 

H. stipulacea leaf with phytomyxid gall was taken prior to the pressing and drying of leaf 

samples. The pressed leaf matter was retrospectively assessed for percentage colonisation of 

blades with the phytomyxid in the late developmental black gall stage (modified from; Katlova 

et al., 2019), but not accounting for the early white stage. Dried specimens of the H. stipulacea 

infected with the phytomyxid collected from within the benthic chambers were deposited in the 

Herbarium of the Institute of Botany in Průhonice, Czech Republic under the accession number 

PRA 15920. Specimens stored in 70% ethanol collected from the same sampling site in 

November 2018 were deposited under the accession number PRA 15921. 
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Results     

Comparison of habitat NCP without and with H. stipulacea  

Observationally the benthic community with H. stipulacea presence has higher and less variable 

NCP (x̅ = 2.03 SE ± 0.40 O2 mmol m-2 hr-1) compared to the adjacent benthos without seagrass 

(x̅ = 0.79 SE ± 0.64 O2 mmol m-2 hr-1) (Fig. 10). There is no significant difference in NCP 

between H. stipulacea and the adjacent benthic community (t (1,5) = 5.3356, p > 0.05).  

 

 

Figure 10. Daylight net community productivity of a vegetated H. stipulacea and adjacent 

unvegetated benthos (errors bars represent SE, unvegetated n= 4 and vegetated n= 6).  

 

Influence of irradiance and temperature on H. stipulacea productivity 

Light intensity is coupled with the NCP of the H. Stipulacea benthic community (LM: t1,22= 2.191, 

p < 0.05) (Fig. 11A). Lower light intensities occur between 14 - 15:00 and 15 - 16:00, when the 

NCP values are lowest, representing the time period in the day when light may become limiting 

(IC = 186 lux). In contrast no significant relationship exists between seawater temperature and 

the NCP of the H. Stipulacea community (LM: t1,22= 0.303, p > 0.05) (Fig. 11B). 
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     Time Series:      12 -13:00,      13 -14:00,      14 -15:00,      15 -16:00 

Figure 11. Hourly changes in net community productivity of a benthos vegetated with 

H. stipulacea across comparable time series, given the (A) mean light intensity and (B) 

temperature for the hourly time series (n = 24) 

 

Daily net community productivity 

Estimates of daily NCP show the photosynthetic activity doesn’t balance the community 

metabolic demand as the benthic community with H. stipulacea present is heterotrophic 

(NCP x̅ = -12.59, SE ± 9.79 C mmol m-2 d-1) in Autumn (Table 1). 
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Table 1. Comparison of reports for daily H. stipulacea NCP and CR (C mmol m-2 d-1). Includes 

the study location, date, average light intensity (lux) and water temperature (oC). 

 

 

Phytomyxid presence 

The presence of the phytomyxid reported here as Plasmodiophora cf. halophilae was recorded 

within the H. stipulacea collected from this seagrass bed (Fig. 12). This is only the fourth record 

within the Mediterranean of a phytomyxid symbiosis with the seagrass H. stipulacea (Marziano 

et al., 1995; Vohnik et al., 2017; Katlova et al., 2019) and the first time documented at this 

locality. The presence of the late developmental black gall stage of the endosymbiont 

phytomyxid was low (x̅ = -2.6 % SE ± 1.1 %) at this site during October 2018. 

 

Figure 12. Photo documentation of H. stipulacea with characteristic phytomyxid black gall.  

 

Reference Country 
Date 

completed 

Light 

Intensity 
Temperature NCP CR 

Cardini 

et al., 2018 
Egypt 

November 

2013 

9306 

(± 780) 
23.0 434 115  

This study Greece 
October 

2018 
545 (± 93) 21.7 -12.6 62.8 
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Discussion 

H. stipulacea presence did not increase the community productivity relative to the existing 

coastal community and therefore suggests it does not assist Mediterranean ecosystem services, 

such as carbon sequestration. The productivity within the community without seagrass was 

probably a result of photosynthesis by the algal biofilm on the rubble benthos, sporadic algae 

and planktonic productivity in the water above the benthos. H. stipulacea NCP was less variable 

than in the community without seagrass, potentially as seagrass rhizome colonisation is more 

uniform and less variable spatially. Seagrass roots withstand better winter storm erosion than 

any algal community can provide, better stabilising the sediment (Hendricks et al., 2009). Whilst 

there was no discernible difference in productivity between habitats, H. stipulacea may improve 

sediment stabilisation and the uniformity of primary production across the habitat. Suggesting it 

may produce more stable and uniform sedimentary carbon stocks than the existing habitat in 

this instance, as it colonised a rubble unvegetated benthos. 

Irradiance was the main driving factor in H. stipulacea productivity within its home range in the 

gulf of Aquaba (Cardini et al. 2018). Light irradiance was reiterated as the factor driving daily 

increases in H. stipulacea community productivity in the Mediterranean. Maximal growth 

(Beca-Carretero et al., 2020) and productivity (Cardini et al. 2018) in H. stipulacea occurs in the 

summer within the gulf of Aquaba. The NCP of H. stipulacea in the Mediterranean should 

increase in the Summer with increases in irradiance. H. stipulacea is heterotrophic on a daily 

scale, it must be autotrophic for other periods of the year in order to maintain overall annual 

carbon balance and persist at this locality. Given the overall extent of H. stipulacea distribution 

within the Mediterranean, its persistence since 1984 and predicted potential to expand (Fritsch, 

1895; van der Velde and den Hartog, 1992; Gambi et al., 2009; Tsiamis et al., 2010; Sghaier et 

al., 2011; Georgiou et al., 2016), its likely to maintain a presence within the Mediterranean. Only 

direct underwater observation allows for discrimination between H. stipulacea and bare 

substrate, particularly at depth. The persistence and extent of H. stipulacea at this locality would 

need to be monitored routinely to definitively determine if this area of habitat with H. stipulacea 
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is stable, increasing or decreasing. Species of the Halophila genus show rapid growth, which 

allows persistence even under high disturbance (Nakaoka and Aioi, 1999). Given H. stipulacea 

is known to disappear and recolonise areas of the Mediterranean (Gambi et al., 2018), its rapid 

growth may enable it to utilise small windows of positive carbon balance. Utilisation of high 

growth in summer months must enable H. stipulacea to withstand Autumnal carbon loss . 

In this environment H. stipulacea lives near its limit in terms of metabolic survival. This 

introduced species may not act as an ‘invasive’ species actively competing and displacing 

native seagrass. It does however have the capacity to opportunistically colonise available 

space. It has colonised areas previously occupied by native seagrass species, such as 

P. oceanica dead matte or mixed C. nodosa meadows (Sghaier et al., 2011). Changes in 

Mediterranean seagrass species composition through H. stipulacea occupying predicted sites of 

P. oceanica regression (Telesca et al., 2015), would change autochthonous carbon 

sequestration in the Mediterranean.  

Sedimentary carbon stocks from Mediterranean H. stipulacea meadows are sometimes 

comparable to native P. oceanica (Apostolaki et al., 2019), so its low productivity does not 

necessarily mean it has low carbon sequestration capabilities. H. stipulacea carbon 

sequestration in the Mediterranean likely depends on deposition of allochthonous material not 

autochthonous production. High levels of allochthonous organic carbon accumulation 

compromise the stability of sedimentary organic carbon deposits in the long-term (Mazarrasae 

et al., 2018). The disappearance and recolonisation of areas of H. stipulacea (Gambi et al., 

2018), also means any allochthonous carbon accretion is unlikely to be retained in the long-

term. The long-term carbon sink potential is then not equal to the carbon stores that can persist 

for millennia in P. oceanica meadows (Mateo et al., 1997).  

Increasing the seagrass species richness of Mediterranean meadows makes them more like the 

multi-species meadows that exist in the tropics. Increased variability of biological traits and life 

strategies support seagrass bed resistance and recovery during periods of stress (Unsworth 

et al., 2015). So increased seagrass biodiversity and varied life traits of P. oceanica, C. nodosa 
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and H. stipulacea may enable the overall surface area of Mediterranean seagrass meadows to 

remain unchanged (Pergent et al., 2014). Maintaining areal cover of Mediterranean seagrass 

meadows through replacement by a different seagrass species does not mean Mediterranean 

seagrass meadow ecosystem services will also be maintained. 

This assessment primarily focuses on H. stipulacea productivity and carbon sequestration, but 

seagrass ecosystems provide numerous ecosystem services. H. stipulacea may also not be 

equal to native seagrass in assisting the coastal protection of Mediterranean coastlines, 

P. oceanica forms onshore Winter banquettes aiding coastal protection (Gomez-Pujol et al., 

2013). The low structural complexity of pioneer species such as H. Stipulacea (Pergent el al., 

2014), may also create less refuge for juvenile fish and support a lower biodiversity of fish 

species than compared with the native P. oceanica (Guidetti, 2000). The smaller leaf size and 

leaf life span of small seagrass species like H. stipulacea reduces the community diversity of 

epiphytic species (Mabrouk et al., 2014). Therefore, were the replacement of native meadows 

by H. stipulacea to occur it may reduce community biodiversity at multiple levels. However, the 

presence of H. stipulacea has in this study enabled the endosymbiotic presence of a 

phytomyxid. Phytomyxids can be host species specific and P. halophilae is not known to 

symbiotically occur with the other Mediterranean seagrass species (Vohnik et al., 2017). 

The low prevalence of the phytomyxid means no discernible conclusion could be construed 

directly as to its impact on the plant’s metabolic activity and to carbon sequestration in this 

coastal system. However, given the phytomyxid had altered the hosts cell to form the distinctive 

late stage galls, its presence did alter the growth and metabolic activity of H. stipulacea, as seen 

in other seagrass species (den Hartog, 1989). If the presence of the phytomyxid causes 

negative carbon balance to decrease beyond which the plant can recover, it would result in the 

host seagrass’ death. Lost equilibrium between the seagrass host and pathogen resulting in 

seagrass death, would allow much of the carbon within the plant biomass to be released into 

the ocean and atmosphere (Gleason et al., 2013).  
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Leaf shedding has been observed in H. stipulacea infected with P. halophilae though it was not 

clear if this was facilitated or triggered by the phytomyxid infection (Kolatkova et al., 2019). It 

bears distinct resemblance to the swelling and uprooting observed in species of Zostera when 

infected by Plasmodiophora bicaudate (den Hartog, 1989). In both instances detachment of the 

seagrass biomass with the spore would aid the dispersal range and spore protection during 

dispersal (Gleason et al., 2013; Kolatkova et al., 2019), but mean the carbon within the 

seagrass biomass is lost from the seagrass sediment carbon sink (Gleason et al., 2013). The 

formation of galls is also thought to alter the chemical composition of the host tissue, which 

impacts the diversity of species which feed on the tissues of the infected host (Neuhauser et al., 

2011a). The galls may act as energy rich nutrient resources which increases the herbivory 

pressures on the seagrass and reduces the retention of organic carbon within the seagrass 

meadow (Neuhauser et al., 2011a). Overall, it may be concluded that the finding of the 

phytomyxid suggests an altered metabolic activity within H. stipulacea and changes in the 

retention (i.e. herbivory, leaf shedding) of H. stipulacea leaf biomass within the meadow, 

reducing its carbon sequestration potential. However, further research would be needed to 

conclude if these mechanisms were in place.  

The record of the phytomyxid is important as it increases the known distribution of the 

phytomyxid adding to limited knowledge on its distribution (Marziano et al., 1995; Vohnik et al., 

2017; Katlova et al., 2019). Its presence does not detract from fact that during late Autumn this 

H. stipulacea habitat was heterotrophic. Only further estimates of H. stipulacea productivity in 

the Mediterranean will determine if this is true in all cases and without the presence of the 

phytomyxid. 

Overall, the introduction of H. stipulacea to the Mediterranean may have increased 

Mediterranean seagrass habitat, but it does not appear to aid autochthonous carbon 

sequestration. If H. stipulacea occupies space previously dominated by P. oceanica in the 

likelihood of further P. oceanica regression, this replacement could result in an overall decline in 

the autochthonous carbon sequestration capacity of Mediterranean seagrass ecosystems. 
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Conclusion 

Seagrass metabolism studies in the Eastern Mediterranean and Aegean Sea are few and tend 

to focus of the dominant species P. oceanica. Specifically, within the eastern region of the 

Aegean Sea the picture is even less clear with seagrass metabolism studies currently 

non-existent. This thesis contributes conclusions on the metabolic functioning and carbon 

sequestration of both the dominant seagrass P. oceanica and the non-native H. stipulacea in 

the eastern region of the Aegean Sea.   

What influences P. oceanica carbon sequestration potential in the Eastern Aegean? 

Strong seasonality influences the patterns in P. oceanica productivity, within the eastern region 

of the Aegean Sea. The transition from near light limiting to saturating light levels across the 

seasons, relative to changes in primary productivity indicates that irradiance contributes to this 

pattern of seasonality in P. oceanica productivity. The P. oceanica meadow also undergoes 

seasonal changes in aboveground plant surface area which contributes to the relative quantity 

of primary production undertaken within the seasons. Projected irradiance levels coupled with 

estimates in the relative change in P. oceanica canopy length could be utilised to forecast future 

carbon sequestration. Incorporating seagrass biomass into carbon sequestration forecasts 

could also be applied to better reflect the spatial heterogeneity across P. oceanica meadows, 

especially between the edge and central areas of shallow P. oceanica meadows. This is likely of 

specific importance when considering shallow P. oceanica meadows because of their more 

fragmented nature and higher proportion of edge habitat. Despite the patchy nature of shallow 

P. oceanica habitat in the eastern region of the Aegean Sea it annually sequesters carbon and 

therefore contributes to the overall carbon sink potential of P. oceanica meadows. 
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What influences H. stipulacea carbon storage potential in the Mediterranean and what 

questions does this raise about Mediterranean seagrass meadows in the future? 

H. stipulacea presence did not further Mediterranean ecosystem services, at least relative to the 

existing rubble and algae coastal community regarding carbon sequestration, Although the 

colonial nature of the seagrass likely accounted for decreased variability through higher spatial 

uniformity. This suggests its presence is changing the heterogeneity of these rubble algal 

habitats. Its presence may therefore result in a cascade of changes to the existing habitat, such 

as the subsequent species present, including as documented in this thesis an endosymbiotic 

phytomyxid, Plasmodiophora cf. halophilae, not known to symbiotically occur with the other 

Mediterranean seagrass species (Vohnik et al., 2017). 

Light irradiance was driving daily increases in H. stipulacea NCP in the Mediterranean, it may 

utilise windows of high irradiance in Summer, to counteract the heterotrophic Autumn period. 

Across both seagrass metabolism studies Autumn was a distinct period of heterotrophy, 

however within this season the H. stipulacea habitat was the more heterotrophic 

(NCP x̅ = -12.59, SE ± 9.79 C mmol m-2 d-1) of the two seagrass species (P. oceanica 

NCP x̅ = -4.0, SD ± 6.5 O2 mmol m-2 d-1). Though it must be noted that the benthic chamber 

methods used to determine these measurements are not directly comparable as derived with 

differing chamber areal cover, chamber volume, chamber mixing regime, incubation time and 

island location, to name but a few variables. It does suggest that Mediterranean H. stipulacea 

lives near the edge of its limit in terms of survival and explain whys there is no evidence of it 

actively competing with native P. oceanica.   

Even if only opportunistically colonising available space, new H. stipulacea habitat can 

represent an increase in Mediterranean seagrass habitat, but its value in terms of carbon 

sequestration is not necessarily equal to native Mediterranean seagrass habitat. With 

regression of P. oceanica meadows well documented (Telesca et al., 2015), it implies 
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autochthonous carbon sequestration by seagrass habitat in the Mediterranean will decrease, as 

the presence of P. oceanica decreases relative to newly forming areas of H. stipulacea. 

Final remarks 

This thesis demonstrates the clear importance of protecting Eastern Mediterranean P. oceanica 

meadows as a nature-based solution to mitigating climate change due to the carbon 

sequestration services provided, even when shallow and patchy in nature. But it also 

precautionarily alludes to the potential change in carbon stock afoot as the overall species 

presence of non-native H. stipulacea increases relative to known decline in P. oceanica 

seagrass meadows. 
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