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Abstract  This paper is concerned with the study of a domain decomposition method for  

approximating the conformal modules of long quadrilaterals. The method has been studied already 

by us and also by D Gaier and W K Hayman, but only in connection with a special class of 

quadrilaterals, viz. quadrilaterals where: (a) the defining domain is bounded by two parallel straight 

lines and two Jordan arcs, and (b) the four specified boundary points are the four corners where the 

arcs meet the straight lines. 

 Our main purpose here is to explain how the method may be extended to a wider class of qua-

drilaterals than that indicated above. 
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1 Introduction 
 

Let Ω be a simply-connected domain in the complex z-plane (z = x + iy), and consider a sys-
tem consisting of Ω and four distinct points z1, z2, z3, z4 in counterclockwise order on its boundary 
∂Ω Such a system is said to be a quadrilateral Q and is denoted by 

        
                 Q := { Ω; z1, z2, z3, z4 }.                                  (1.1) 

 

The conformal module m(Q)of Q is defined as follows: 

Let RH  be a rectangle of the form 

 
RH:={(ξ,η):0<ξ<1,0<η<H },                         (1.2) 

 

in the w-plane ( W =ξ+iη). Then, m(Q) is the unique value of H for which Q is conformally 
equivalent to the rectangular quadrilateral 
 

Q':={RH;0,l,l+iH,iH }.         (1.3) 
 
By this we mean that for H = m(Q) and for this value only there exists a unique conformal map 
Ω→RH, which takes the four points z1,z2,z3,z4 respectively onto the four corners 0,1, l+ iH , iH            
of RH. 
 

This paper is concerned with the study of a domain decomposition method (DDM) for comput-
ing approximations to the conformal modules of "long " quadrilaterals Q. This involves decompos-
ing Q  into two or more component quadrilaterals Qj, j = 1,2,... , and approximating m(Q) by the 
sum ∑m(Qj) of the conformal modules of the component quadrilaterals. The method has been stu-
died already by us [9,10] and also by Gaier and Hayman [2, 3], but only in connection with a special 
class of quadrilaterals, viz. quadrilaterals  Q :={ Ω; z1, z2, z3, z4} where : (a) The domain Ω is 
bounded by two parallel straight lines l1 ,l2,and two Jordan arcs γ1, γ2,. (b) The points z1,z2,z3,z4 are     
the four corners where the arcs γ1, γ2, meet the straight lines l1 ,l2.

 
Of the four references cited above, our two earlier papers [9,10] are concerned with the prob-

lems of approximating both the conformal module m(Q) and the full conformal map Rm(Q)→ Ω and 
include the following: 

 
(i)  Computable estimates for the error in the DDM approximation to m (Q), and also for vari-
ous other errors connected with the DDM approximation to the conformal map Rm(Q)→ Ω 
These are derived in [9,§4], by assuming that the two boundary arcs γ1, γ2, satisfy certain 
smoothness conditions. 
(ii)  A number of conjectures concerning the assumptions under which the error estimates of [9] 
hold (cf. [10, §3]). 
(iii) The results of several numerical examples that confirm the theory of [9] and support the 
conjectures made in [10] (cf.[9,§5]and[10, §3]). 
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The two more recent papers [2,3] by Gaier and Hayman are concerned only with the problem of 
approximating m(Q),and contain several important results that enhance considerably the associated 
theory. In particular,[2,3]include the following: 

 
(iv)  An estimate for the error in the DDM approximation to m(Q), which (unlike our estimate 
in [9])is derived without imposing any conditions on the boundary segments γ1

, γ2
, other than 

requiring that they are Jordan arcs. (This proves one of the conjectures made in [10].) 
 

(v) Certain other estimates that connect the conformal modules of the quadrilaterals involved in 
the decomposition with the conformal radii of certain curves associated with die arcs γ1

, γ2
,

 
In this paper we consider again the problem of computing approximations to m(Q),and investi-

gate the possibility of extending the application of the DDM to a wider class of quadrilaterals than 
that studied in [2,3,9,10]. Our main objective is to show that the method does, indeed, have much 
wider applicability and, for each new application, to derive an estimate of the error in the resulting 
DDM approximation to m(Q). We shall do this by making use of two new theorems, which are sim-
ple consequences of the results of Gaier and Hayman [2,3] mentioned in (iv) and (v) above. 

 
The paper is organized as follows: In Section 2 we set up various notations and state, without 

proof, the results of [2,3]which are needed for our subsequent work. In Section 3we prove two new 
theorems concerning the decomposition of general quadrilaterals. These theorems are then used in 
Section 4 to identify several new types of quadrilaterals for which the DDM is applicable, and to 
derive estimates for the errors in the resulting approximations to m (Q). Finally, in Section 5 we 
present three numerical examples that illustrate the much wider applicability of the method. 

 
We end this introductory section by noting that the DDM is of considerable practical interest for 

the following two reasons: (a) The method can be used to overcome the "crowding" difficulties 
associated with the conventional approach of seeking to determine m(Q) by going via the unit disc or 
the upper half plane (see [8, §3.1] and the other references cited there ).(b)It is often possible to 
decompose a complicated quadrilateral into very simple component quadrilaterals ( see the examples 
in Section 5 ). 
 
2 Preliminary results and notations 

 
We shall use throughout the following notations : 
 
(i) Ω and Q := {Ω; z1

,z2
,z3

,z4 } will denote respectively the original domain and the                 
corresponding quadrilateral. 
 
(ii) Ω1

, Ω12
,… , and Q1

,Q2
,… , will denote the principal subdomains and corresponding 

com- 
ponent quadrilaterals of the decomposition under consideration. 
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In addition, we shall use a multisubscript notation to denote the other subdomains and quadrila- 
terals that arise when the decomposition of Q involves more than one crosscut. For example, consider 
the situation illustrated in Fig. 2.1, where the decomposition of 

 
}zzzz;{:Q 4321Ω=  

 
is defined by two non-intersecting arcs ,, 21

γγ that join respectively two distinct points a and b on the 
boundary segment (z2,z3) to two distinct points d and c on the boundary segment (z4,z1). These 
two arcs subdivide Ω into three non-intersecting subdomains which we denote by  Ω1

, Ω2 and Ω3
,In 

addition the arc ,1
γ  subdivides Ω into Ω1 and another subdomain which we denote by Ω2,3 ie. we take 

.: 323,2 Ω∪Ω=Ω  
Similarly, we say that ,2

γ subdivides Ω into Ω1,2 and Ω3 ie. we take 

.: 212,1 Ω∪Ω=Ω  
Finally, we use the notations Q1,

 Q2,
 Q3,

 Q1,2
 and Q2,3

  to denote respectively the quadrilaterals 
corresponding to the subdomains Ω1, Ω2, Ω3,Ω1.2and ft, Ω2.3 ie. 
 

Q1:=
{ } { } { },zz,b,c;:Q,c,b,a,d;:Q,d,a;z;z; 4,33322211 Ω=Ω=Ω  

and 
 

{ } { }433,.23,22,12,12,1 ,,,;:,,,;: zzadQcbzzQ Ω=Ω=  
 

Figure 2.1 
 

 
Let γ  be a Jordan arc that joins the boundary lines x = 0 and x = 1 of the strip 

 
S := {z = x + i y: 0 < x < 1 } , 

 
and lies entirely within S, except for its two end points. In our work we shall refer frequently to the 
so-called exponential radius r of such an arc γ. This is denned as follows ( cf. [2,§1.2] and see Fig. 
2.2): 
 

Let γ* be the arc obtained by translating γ along the imaginary axis until it lies in Im z ≤ 0, with 
at least one point on Im z =0. Next, let *Γ  be the image of γ* under the transformation z , and 
let 

zie π→
*Γ denote the reflection of  in the real axis. Finally, letΓ Γ  denote the symmetric curve  
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**: Γ∪Γ=Γ (Observe thatΓ  surrounds the unit circle and meets the circle in at least two points; see    
Fig. 2.2.) Then, r is defined to be the conformal radius of the interior of the curve Γwith respect to       
the origin 0. That is the exponential radius of the arc γ is the radius of the disc W  < r onto which           
Int can be mapped by a conformal map f such that f (0)=0 and f’(0) = 1. Γ

 
 

Figure 2.2 
 
 
In the remainder of this section we state without proof various results which are needed for our 

subsequent work. These include, in particular, three theorems due to Gaier and Hayman [2, 3] which  

play a very crucial role in our work. 

 
Consider a decomposition of the form illustrated in Fig. 2.3, where: 

 

(i)  The domain Ω of the original quadrilateral { }4321 .,,,: zzzzQ Ω= is bounded by two seg-
ments of the lines x=0 and x=1, and two Jordan arcs γ1, γ2.

 
(ii)  The points z1 z2, z3, z4 are the four corners where the arcs γ1,γ2 meet the lines x = 0and 
x= l. 

 
(iii) The crosscut l of subdivision is a straight line 

 
{ }cyxyxl =≤≤= ,10:),(: , 

 
Parallel to the real axis, so that the component quadrilaterals are 
 

{ } { }.zz,ci1,ci;:Qandci,ci1z,z;:Q 4,322,2111 +Ω=+Ω=  
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Let 

 
h1:=c-max  { Im z: z ∈γ1,  }   and h2:=min  { Im z: z ∈  γ2 } -c ,  

 
as illustrated in Fig.2.3, and set 
 

),,min(:: 212112 hhhandhhh =+=  
 

Also, let r1and r2 denote respectively the exponential radii of the arcsγ1, and 2γ . ( Here, and        

throughout the paper, will denote the reflection of an arc
−

γ γ  in the real axis.) 

Figure 2.3 
 

 
For the purposes of this papers, it is convenient to state Theorems 4 and 6 of [3] and Theorem 5  
of [2] as follows : 
 
Theorem 2.1 ([3, Theor.4], [2,Theors 1,4]) With the notations of Fig. 23 and the above erminal-
ogy we have : 
 
       (i) 
 

                  (2.1)
   

           
 

( ) ( ) ,e381.0loglog 21
2112

hrrhQm π−≤+−

provided that h12:=h1+h 
    (ii) 
 

   .2,1j,0rlog1h)Q(me381.0x
2
1

jjjj
h2 =≤

π
−−≤− π−           (2.2)  

provided that hj ≥ 1. 
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Theorem 2.2 ([3, Theor. 6], [2, Theor.2]) For the decomposition illustrated in Fig. 23 we have 
  

{ } ,761.0)()()(0 2
21

heQmQmQm π−≤+−≤            (2.3) 
 
provided that h:= min (h1,h2) ≥1.  
 
Theorem 23 ([2, Theor. 5]) If in Fig. 2.3 the arc γ1, is a straight line parallel to the real axis, ie. if 
    

{ },,10:),(: 11 ccyxyx <=≤≤=γ  
 
as illustrated in Fig. 2.4, then 
 

        
{ } ,381.0

2
1)()(0 22

21
hexQmhQm π−≤+−≤

   (2.4) 
provided that h2≥1. 

 

Figure 2.4 
 
We end this section by making the following four remarks: 
 
Remark 2.1 The bounds in (2.1) - (2.4) were deduced from the precise estimates given by Gaier and 
Hayman in their second paper [3]. For this reason, they are smaller than those given in Theorems 1,4,  
2 and 5 of their earlier paper [2]. 
 
Remark 2.2 For a general decomposition of the form illustrated in Fig. 2.1 we always have 
 

                                  )()()()( 321 QmQmQmQm ++≥         (2.5) 
 
and equality occurs only in the special case where the crosscuts γ1and γ2 are equipotentials of the   
function u satisfying the Laplacian problem 
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Ω=Δ in0u  
u=0 on (z1,z2),   u  =1on (z3,z4), 

                                                      
),,(),(on0 1432 zzzz

n
u

∪=
∂
∂

 
(see e.g. [6, p.437]). In particular, for the special decomposition of Fig. 2.3, 

 
                               ),()()( 21 QmQmQm +≥         (2.6) 

 
and equality occurs only in the two trivial cases where: (a) Ω is a rectangle, and (b) γ2 is the reflection    
of γ1 in the crosscut l. In addition, for the quadrilaterals Q,Q1and Q2 of Fig. 2.3 we have 
 

                 )(:1)( 2112 QmhhhQm ≤+=≤−     (2.7) 
and 
 

               
,2,1),(

2
1)( =≤≤− jQmhQm jjj

    (2.8) 
  
(cf. [5, p.36]). Finally, for the quadrilaterals Q and Q2 of Fig. 2.4 the composition law (2.6)implies 
that 
 

               .)()()( 2221 hQmhhQm −≥+−     (2.9) 
 
Remark 23 With reference to the quadrilaterals of Figs 2.3 and 2.4, estimates for the errors in the 
DDM approximations to m(Q) (similar to those of Theorems 2.2 and 2.3 ), and also for various other 
errors associated with the DDM approximation to the full conformal map  were first 

given by us in [9], without imposing any restrictions on the sizes of h and h

,R )( Ω→Qm

2. However, the estimates 
given in [9] were derived by imposing certain additional assumptions on the arcs γ1, γ2 , and one of 
these is rather restrictive. (It requires that the slopes of the two two arcs are numerically less than 1.) 
 
Remark 2.4 Let denote the quadrilateral illustrated in Fig. 2.5. That is,  := { Ω; zlT lT 1, z2, z3, z4 }    
where : (a) Ω is the trapezium bounded by the real and imaginary axes and the lines x = 1 and 
y =x +1 -1, with l > 1, and (b) the points z1,z2,z3,z4 are the corners of Ω. 
 
We note the following, for future reference: 
 
(i) The exact value of m ( ) is known exactly, for any l > 1, in terms of elliptic integrals ( cf.                
[1, p. 104] ). For example, the exact values of m (T

lT

2), m (T3), m (T3 5) and m(T4) are given to                
twelve decimal places by 
 

m(T2) = 1.279261571171,       m(T3) = 2.279364207968 ,  (2.10a) 
m(T3.5) = 2.779 364 391556,    m (T4) = 3.279 364 399 489 .  (2.10b) 
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(ii) For any c > 0, Theorem 2.3 gives 
 

{ } )1(2381.0.
2
1)()(0 −−

+ ×≤+−≤ l
lcl ecTmTm π

 
Provided that l≥2.This means, in particular, that 
 

{ } 7
33 1065.6)()(0 −

+ ≤+−≤ xcTmTm c  
and 
 

    { } 9
44 1025.1)()(0 −

+ ≤+−≤ xcTmTm c  
It follows that, for any c > 0, m ( ) can be computed correct to at least five decimal places 
(from the value of m (T

cT +3

3) given in (2.10a)), by means of 
 

            cTmTm c +=+ )()( 33      (2.11) 

Similarly, m ( ) can be computed correct to at least eight decimal places (from the value of m(TcT +4 4) 
given in (2.10b)) by means of 

                                             cTmTm c +−+ )()( 44       (2.12) 
  
( see also [8, pp. 78-81] and [10, Ex. 3.1]). 

 
 

Figure 2.5 
 
 
3 Two theorems for general domain decomposition 
 

In this section we prove two theorems concerning general domain decompositions of the form 

illustrated in Fig. 3.1(a). As will become apparent, these two theorems are simple consequences of the 

results of Gaier and Hayman stated in Section 2. 
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Figure 3.1 
 
Theorem 3.1 With the notations of Fig. 3.1(a) and the terminology introduced in Section 2, we have 
 

                                     { } )(
23,22,1

282.8)()()()( QmeQmQmQmQm π−≤−+−    (3.1) 
provided that m(Q2)≥3. 
 
Proof  The quadrilateral Q:= { Ω; z1, z2, z3, z4 } is conformally equivalent to the rectangular quadri-
lateral 
 

{ })(),(1,1,0;: )(
' QmiQmiRQ Qm += , 

where 
 

{ },)(0,10);,(:)( QmR Qm <<<<= ηξηξ  
 

Let F be the corresponding conformal map of Q onto Q', and let be respectively the images of 

the crosscuts γ

'
2

'
1,γγ

1, γ2 under this map. Then, and  define the decomposition of Q' illustrated in Fig. 
3.1(b), where 

'
1γ

'
2γ

m( ) = m(Q 
'
jQ

j), j = 1,2,3,   m( ) = m(Q
'

2.1Q
1,2)  and   m ) = m(Q

'
3,2(Q

2,3,),     (3.2) 
 
because the modules are conformally invariant.   
 
Let 
 

{ } { }'1'''
2

''
2 :Immax:Immin: γγ ∈−∈= zzzzh  



-10- 
 
{ } { }'1''

23
'
2

''
12 ;Immax)(:,;Immin: γγ ∈−=∈= zzQmhzzh  

 
 and observe that 

               ),(22312 Qmhhh =−+       (3.3) 
 
Observe also that the assumption m (Q2) ≥ 3 implies the fol lowing : 
 

    ,21)( 22 ≥−≥ Qmh       (3.4) 

2
5

2
1)(

2
1)( 22,112 ≥−≥−≥ QmQmh

     (3.5) 

   
2
5

2
1)(

2
1)( 23,223 ≥−≥−≥ QmQmh      (3.6) 

 
(see Remark 2.2 ). 

Next, apply the results of Theorem 2.1 to each of the quadrilaterals and  
This, in conjunction with (3.2), gives    

'
2,1

'
2 ,QQ .'

3,2Q

2381.0log(log1)( 2122
herrhQm π

π
−≤+−−

 
 

,0rlog1h)Q(me381.0x
2
1

2122,1
h2 12 ≤

π
−−≤− π−  

 

,0rlog1h)Q(me381.0x
2
1

1233,2
h2 23 ≤

π
−−≤− π−  

where r1 and r2 are respectively the exponential radii of the arcs and.
'
1γ

'
2γ  It follows that 

{ } ,)()()()( 223,22,11 EQmQmQmQmE ≤−+−≤−  
where, by using (3.4)-(3.6), 

)()(
1

222 82.8381.0381.0: QmQmh eeeeE ππππ −−− ≤≤=  
and 

)(22
2

2122 82.8)
2
1

2
1(381.0: Qmhhh eeeeE ππππ −−−− ≤++=

  
This completes the proof of the theorem.    � 
 
Theorem 3.2 Consider the decomposition illustrated in Fig. 3.1(a) and, with the terminology used in 
the proof of Theorem 3.1, assume that the image of the crosscut γ1 under the conformal map 

is a straight line parallel to the real axis ( see Fig. 3.2 ). Then, 'QQ:F →
 

{ } ,0)Q(m)Q(m)Q(m)Q(me41.4 23,22,1
)Q(m2 2 ≤−+−≤− π−

       (3.7) 
provided that m (Q2) ≥ 1.5. 
 
Proof The assumption m(Q2)≥ 1.5 implies that 

1
2
1)( 22 ≥−≥ Qmh

                                (3.8) 
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(see (2.8)). Therefore, for the quadrilateral  of Fig. 3.2, Theorem 2.3 gives 
'

2,1Q

 

    { } ,)()(0 212,1 EQmhQm ≤+−≤     (3.9a) 
where, by using (3.8), 
 

   
)Q(m2)Q(m2hL2 222 e41.4ee381.0x

2
1e381.0x

2
1:E π−π−ππ− ≤≤=

  (3.9b) 
The desired result follows at once from (3.9), because 

 
hl = m(Q)-h23 = m(Q)-m(Q2.3).    � 

 
Figure 3.2 

 
 
4 Applications 
 

4.1 Let Q1 and Q2  be the two component quadrilaterals of the decomposition illustrated in Fig. 

4.1(a), and assume that the reflection  of the arc γ1

∧

γ 1, in the crosscut 
 
l:={ (x ,y ):0≤x ≤ l, y =x }  

lies above the arc γ2. Then, 
 

                                            { } )(2
21

241.4)()()(0 QmeQmQmQm π−≤+−≤    (4.1) 
 
provided that m (Q2) ≥ 1.5. This can be shown as follows : 

Reflect Ω1, in l, and consider the decomposition of the resulting quadrilateral  illustrated in 

Fig. 4.1(b). (That is the decomposition of  is defined by the two crosscuts l and γ

∧

Q
∧

Q 2.) Then, 
because    of the symmetry, 
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                                           m(Q2,3) = m(Q1),    m( ) = 2m(Q
∧

Q 1),      (4.2) 
 
and the image of the crosscut l under the associated conformal map 
 

⎭
⎬
⎫

⎩
⎨
⎧ +→

∧∧∧

∧ )(),(1,1,0;:
)(

QmiQmiRQF
Qm  

will be the straight line 
{ })(,10);,( 1Qm=≤≤ ηξηξ  

. 
 Therefore, Theorem 3.2 is applicable to the decomposition of Fig. 4.1(b), and its application gives 
 

     (4.3) { } .0)()()()(41.4 23.22,1
)(2 2 ≤−+−≤−

∧
− QmQmQmQme Qmπ

 
Since m(Q12),= m(Q) the, desired result follows at once from (4.2) and (4.3). 

 
 

Figure 4.1 
 
4.2 Let Q1, Q2, and Q3 be the three component quadrilaterals of the decomposition illustrated       

in Fig. 4.2, let , and  denote the reflections of Ω1

∧

Ω 3

∧

Ω 1, and Ω3in the crosscuts l1, and l2, and assume 

that . Then, 3212 and
∧∧

Ω⊂ΩΩ⊂Ω
   

{ } )(
321

2821.8)()()()(0 QmeQmQmQmQm π−≤++−≤     (4.4) 
 
provided that m (Q2) ≥ 3. This can be shown as follows: 
 

The application of Theorem 3.1 gives 
   

{ } )(
23,22,1

282.8)()()()( QmeQmQmQmQm π−≤++−    (4.5) 
 

Further, the application of estimate (4.1) to each of the quadrilaterals Q1,2 and Q 2,3 gives 
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{ } )(2
212,1

241.4)()()(0 QmeQmQmQm π−≤+−≤   (4.6) 
and 
 

                                             { } )(2
323,2

241.4)()()(0 QmeQmQmQm π−≤+−≤          (4.7) 
 
The desired result then follows at once from (4.5)-(4.7) and the composition law (2.5). 

 

 
 

Figure 4 .2 
 

4.3   Consider the decomposition illustrated in Fig.4.3, let and  denote respectively the 

reflections of Ω

1

∧

Ω 3

∧

Ω

1 and Ω3in the crosscuts l1, and l2, and assume that  and.  Then, an 
argument similar to that used in § 4.2 above gives 

12

∧

Ω⊂Ω 32

∧

Ω⊂Ω

 
0≤m(Q)-{m(Ql) + m(Q2) + m(Q3)}≤8.821e                           (4.8) 

)Q(m 2e π−

 
provided that m (Q2) ≥ 3. 

 
 

Figure 43 
 
4.4   Consider the decomposition of the quadrilateral Q := { Ω;z1,z2,z3,z4 } illustrated in   
Fig.4.4(a), where: 
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(i) The domain Ω is the union of a rectangle 

 
{ (x ,y ):0<x <2c,0<y <1 }                                              (4.9) 

 
and some other simply-connected domain,  
 
(ii) The decomposition is defined by the straight line crosscut 
 

l:={ (x, y ):x=c, 0 ≤ y ≤ l },                                        (4.10) 
 
ie. m(Q2) = c. 
 
Then, 

 
{ } ,41.4()(0 2

1
ceQmcQm π−≤+−≤                                     (4.11) 

 
provided that c ≥ 1.5. 

 
 
 

Figure 4.4 
 
 

The estimate (4.11) can be derived, in a manner similar to that used in § 4.1, by reflecting the 

subdomain Ω1, in the crosscut l and considering the decomposition of the resulting quadrilateral  
illustrated in Fig. 4.4(b). Then, because l is a line of symmetry, the application of Theorem 3.2 to this 

decomposition of  gives 

∧

Q

∧

Q
 

     (4.12) { } 0)()()()(41.4 23,22.1
)(2 2 ≤−+−≤−

∧
− QmQmQmQme Qmπ
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The desired result follows at once from (4.12), because 

m( ) = 2m(.Q
∧

Q
l),  m(Q2) = c ,  m(Q1,2) = m(Q)  and  m(Q2,3) = m(Ql). 

 
4.5 Let Q1 and Q2 be the component quadrilaterals of the decomposition illustrated in Fig. 

4.5(a), where again the domain Ω consists in part by a rectangle of the form (4.9), and the crosscut is 
the straight line (4.10). Then, 
 

                                           (4.13) { } ,64.17)()()(0 2
21

ceQmQmQm π−≤+−≤

 
provided that c ≥ 1.5. 

 
 

Figure 4.5 
 
For the proof of (4.13), we introduce two additional crosscuts by means of the straight lines 

 
l1:={ (x , y):x =2c,0 ≤ y ≤ l }   and  l2 := { (x ,y ):x = 0,0 ≤ y ≤1 } , 

and label the subdomains of the resulting decomposition as illustrated in Fig.4.5(b). 
Then, the application of Theorem 3.1 to the decomposition of Q defined by the two crosscuts l

4321 ,,,
∧∧∧∧

ΩΩΩΩ

1 and l2 
gives 
 

                                  
,82.82)()()( 2

4,3,23,2,1
cecQmQmQm π−

∧∧

≤
⎭
⎬
⎫

⎩
⎨
⎧ −+−

   (4.14) 

because = 2c. In addition, the application of (4.11) to each of the quadrilaterals and )3,2

∧

Qm( 3,2,1

∧

Q
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,4,3,2

∧

Q gives 

       (4.15) 
ceQmcQm π2

,2,13,2,1 41.4)()(0 −
∧∧

≤
⎭
⎬
⎫

⎩
⎨
⎧ +−≤

and 
ceQmcQm π2

4,34,3,2 41.4)()(0 −
∧∧

≤
⎭
⎬
⎫

⎩
⎨
⎧ +−≤

                               (4.16) 

The desired  result   follows from   (4.14)-(4.16),   by   observing   that   m( ) = m(Q 2,1

∧

Q
l) and  

m( ) = m(Q4,3

∧

Q
2). 

 
5 Numerical examples 

 

Example 5.1 Let Q := be the quadrilateral illustrated in Fig. 5.1, where the 

two boundary arcs 

}z,z,z,z;{ 4321Ω

,, 21 γγ have cartesian equations 
 

,10,75.025.0 24 ≤≤+−= yyyx  
x = 7.5 + 0.25 cos2π ( 6-y ),   6≤ y ≤ 7, 

respectively. 

 

Figure 5.1 
 

We consider approximating m (Q) by 
 

∑
=

=
1j

jQmQm  

 
and note the following in connection with the determination of the modules of the component quadric-
laterals Qj , j = 1, .... 5: 
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(i) The modules of quadrilaterals of the form illustrated in Fig. 2.3 can be determined easily by 
means of the Garrick iterative algorithm given in [4]. In addition, such quadrilaterals admit 
further decompositions to which the estimates (2.3) and (2.4) of Gaier and Hayman are applica- 
ble. For the component quadrilaterals Q1, and Q5 under consideration the algorithm of [4] gives 
the values 

 
m(Q1) = 2.859569035   and   m(Q5) = 3.364089632 , 

  
 and these are expected to be correct to all the figures quoted (cf. [10, Ex. 3.2]). 
 

(ii) As was indicated in §2, the values of m(Q2), m(Q3) and m(Q4) are known exactly in terms 
of elliptic integrals. More specifically, if denotes the quadrilateral of Fig. 2.5, then these three 
modules are given correct to nine decimal places by 

lT

 
m(Q2) = m (Q4) = m (T4) = 3.279364399 

 and 
 

m(Q3) = 2m (T3.5) = 5.558728783 
  
(cf. Remark 2.4 ). 
 
 Thus, (Q) is given by ~m

~m  (Q)= 18.341116249. 
 

For the error in the above approximation, we first note that estimate (4.8) implies 
  
    0 ≤ m(Q) - { m(Q1,2) + m(Q3) + m(Q4,5) } ≤ 8.821 , 

)( 3Qme π−

  
(cf. § 4.3 ). In addition, Theorem 2.2 implies 
 

0 ≤ m(Q1,2) - { m(Q1) + m(Q2) } ≤ 0.761 , and , 12 he π−

and 
0 ≤ m (Q4,5) - { m(Q4) + m(Q5) } ≤ 0.761 , 42 he π−

  
where h1 = 2.75 and h4 = 3. Therefore, 

0 ≤ m(Q)-  , 
EQm

j
j ≤∑

=

5

1
)(

where 
E := 8.821 + 0.761 ( + )≤  2.6xl0

)( 3Qme π− 12 he π− 42 he π− -7, 
 
ie. 

0 ≤ m(Q)- ~m  (Q) ≤ 2.6xl0-7. 
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Thus, 

18.341116 24 ≤ m (Q) ≤ 18.34111651. 
 
 
 Example 5.2 Let Q := { Ω; z1, z2, z3, z4 } be the quadrilateral illustrated in Fig 5.2,where the 
boundary arcs γ1, γ2, have cartesian equations 
 

x = y (y-l) + 6.5,   0 ≤ y ≤ 1, 
 

x =-7.5-0.2sech 2 2.5 y, 0 ≤ y ≤ 1, 
respectively. 

 
 

 
 

Figure 5.2 
 
 Here we approximate m (Q) by 
 

~m  (Q):= ∑ , 
=

5

1j
j )Q(m

 
where: 
  

(i) The modules of Q1 and Q4 are determined by using the Garrick algorithm of [4]. The com-
puted values are 

 
m(Q1) = 3.12181333   and   m (Q4) = 4.06551571, 

  
 and these are expected to be correct to all the figures quoted (cf. [10, Ex.3.3]). 
  

(ii) The module of Q2 (which, by symmetry, is equal to that of Q3 ) is determined by using the 
subroutine RESIST of the Schwarz-Christoffel package SCPACK of Terefethen [11]. This gives 
the value 

 
m (Q2) = 3.42344546 = m (Q3), 

 
 which is also expected to be correct to all the figures quoted. 
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Thus, (Q)m~ is given by 

 
(Q)m~  := m (Q1) + 2m(Q2) +  m(Q4) = 14.03421996. 

 
For the error in the above DDM approximation, we first apply estimate (4.13), of § 4.5, to the decom- 

position of Q defined by the single crosscut at x = 3.5. This gives 

                                         0 ≤ m (Q)-{m (Q1) + m (Q2,3,4)} ≤ 17.64    (5.1) .6π−e
 
The same estimate, when applied to the decomposition of Q2,3,4 defined by the crosscut at x =-3.5, 
gives 

                                       0 ≤ m(Q2,3,4)- {m(Q2,3) + m(Q4)} ≤ 17.64 ,      (5.2) 
π6−e

where, by symmetry, 
 

                                                m(Q2,3) = m(Q2) + m(Q3) = 2m(Q2).    (5.3) 
 
Therefore, from (5.1) - (5.3), we have that 
 

0 ≤ m(Q) - (Q) ≤ 35.28 ≤ 2.3xl0
~
m π6−e -7 , 

ie.  
14.034 21996 ≤ m (Q) ≤ 14. 03422019 . 

 
 Example 5.3 Let Q := {Ω; z1, z2, z3, z4 } be the quadrilateral illustrated in Fig. 5.3, where 

the width of each strip of the spiral Ω is 1, and the lengths of the "outer" segments of Ω∂  (in 

clockwise 

order, starting from the right hand side) are 18,19,18,16,15,13,12,10,9,7,6,4 and 3. 

 
 
 

Figure 5 .3 
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This is one of the examples considered by Howell and Trefethen [7], in connection with the 

use of a modified Schwarz Christoffel technique for the conformal mapping of elongated polygonal 
regions. Here we consider approximating m(Q) by 
 

                                      (Q)m~  :=            (5.4) ,)()()(
14

12
11,10

9

1
∑∑
==

++
j

j
j

j QmQmQm

and note the following concerning the decomposition used and the determination of the 
corresponding component quadrilaterals: 
 

(i) The crosscut that subdivides Q10,11 into Q10 and Q11 is needed only for estimating the error 
in he DDM approximation (5.4). 

 
(ii) Let T1, be the quadrilateral of Fig. 2.5. Then, 

 
                                m(Q1) = m(T18),    m(Q2) = 2m(T9.5),    m(Q3) = 2m(T9),   (5.5a) 
 
                                m (Q4) = 2m(T8),   m(Q5) = 2m(T7.5),    m(Q6) = 2m(T6.5),  (5.5b) 
 
                                 m(Q7) = 2m(T6),    m(Q8) = 2m(T5),    m(Q9) = 2m(T4.5),  (5.5c) 
 
                                             m(Q10,11) = 2m(T3.5), and  m(Q12) = m(T3),   (5.5d) 

 
This means that all the above modules can be written down, correct to at least eight 
decimal places, by using the values of m(T3), m(T3.5) and m (T4), given in (2.10), in 

conjunction with the formula 
 

m(T4+c) = m(T4)+c ,  c>0, 
 

( cf. Remark 2.4 ). 
 
(iii) By symmetry 

 
                                                       m(Q11,12) = m(Q13) = m(Q14)    (5.6a) 

 
and 

 
                                                            m(Q11,….,14) = 3m(Q13)     (5.6b) 

 
(iv) For the computation of m (Q13) we use (as in Example 5.2 ) the subroutine RESIST of 
[11]. This gives the value 
 

m(Q13) = 3.558625812, 
   
which is expected to be correct to all the figures quoted. 
 
Thus, by determining the modules involved in (5.4), as indicated in (ii) and (iv) above, we find 

that  
                                                               (Q)m~  =132.70453941.       (5.7) 
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This should be compared with the approximation 

                                                         m(Q) = 132.70454,        (5.8) 

obtained by Howell and Trefethen [7. p.943]. 

The error in  can be estimated as follows : (Q)m~

Theorem 3.1 implies that 

| m(Q)- { m(Q1,2) + m(Q2,….,14 )-m(Q2) } | ≤ 8.82 . 
)( 2Qme π−

Also, the application of estimate (4.1) to Q1,2 gives 

0 ≤ m (Q1,2) - { m (Q1) + m (Q2) } ≤ 4.41 . )Q(m2 2e π−

Hence, by recalling (2.5), 

          0 ≤ m (Q) - { m (Q1) + m (Q2,…14) } ≤ 8.82 + 4.4 1         (5.9). 
)( 2Qme π−

)2ππm( 2e−

 
Similarly, by combining (5.9) with the results obtained by applying respectively Theorem 3.1 and 
estimate (4.1) to Q2,…14 and Q2..3 ; Q3,…14 and Q3,4,…;….; Q8,…,14 and Q8,…,14 and Q8,9; Q9,..,14 and 
Q9,10,11;  we find that 

                                               (5.10a) ( ) ( ) .)(0 114,...10

9

1
EQmQmQm

j
j ≤

⎭
⎬
⎫

⎩
⎨
⎧

+−≤ ∑
=

where 

     E1 :=8.82  (5.10b) 
⎭
⎬
⎫

⎩
⎨
⎧

+++
⎭
⎬
⎫

⎩
⎨
⎧

+ −

=

−−−

=

− ∑∑ )(2
9

3j

)(2)(2)(2
9

2

)(2 11,10111,10 41.4 QmQmQmQm

j

Qm eeeee jj πππππ

 
Next, by applying Theorem 3.1 to Q10,….14 and estimate (4.1) to Q10,11,12, we obtain 

 

0 ≤ m (Q10,…,14) - { m (Q10,11,12) + m (Q11,…,14)- m (Q11,12)} ≤ 8.82  
)( 12,11Qme π−

and 
0 ≤ m (Q10,11,12) - { m (Q10,11) + m (Q12)- m (Q11,12)} ≤ 4.41  )Q(m2 12e π−

 
These two estimates, in conjunction with the symmetry relations (5.6), then yield 

                                            (5.11a) ,E)Q(m)Q(m{)Q(m0 2

14

12j
j11,1014........,10 ≤+−≤ ∑

=

where 
 

                                                   .   (5.11b) )(2)(
2

1213 41.482.8: QmQm eeE ππ −− +=
 
Finally, by combining (5.10) and (5.11), we obtain 
     

                                                        EQm~Qm ≤−≤ )()(0 .    (5.12a) 
 
where 
 

                                                              (5.12b) .1026.1: 4
21

−×≤+= EEE
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Therefore, from (5.7) and (5.12), 
 

132.704 539 ≤ m (Q ) ≤ 132.704 666 . 
 

We end by considering the alternative decomposition of Q illustrated in Fig. 5.4. In this, the 

component quadrilaterals , j = 1, 2, ...9, are the same as those in Fig. 5.3, ie. 

= 1,2,... 9, are given by (5.5a)-(5.5c). In addition, 

jQ

j),m(Qj

 
m(Ql0) = 2m(T3.5),  m(Q11) = 2m(T3),  m(Q12) = 2m(T2)and m(Q13) = m(T3). 

 

Thus, the corresponding DDM approximation can be calculated trivially (as indicated in (ii)      

above) from the four values of m (T

)(Qm
∧

2), m (T3), m (T3.5) and m (T4) given in (2.10). The resulting value 

 
∧

m (Q):= 132.70453935 
 
agrees to ten significant figures with the DDM approximation (5.7), and to eight significant figures 

with the approximation (5.8) of Howell and Trefethen [7]. Unfortunately, however, our method of 

estimating the DDM errors cannot be applied to the decomposition of Fig. 5.4. More specifically, this 

method cannot be used to estimate the error in (Q), because m (Q∧
m 12) < 3 and, as a result, Theorem     

3.1 cannot be used to estimate 

 
)}.()()({)( 1213,1212,1113,12,11 QmQmQmQm −++  

 

 
 
 

Figure 5.4 
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