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Asymptotically Locally Optimal Weight Vector
Design for a Tighter Correlation Lower Bound of

Quasi-Complementary Sequence Sets
Zilong Liu, Yong Liang Guan, Wai Ho Mow

Abstract—A quasi-complementary sequence set (QCSS) refers
to a set of two-dimensional matrices with low non-trivial aperi-
odic auto- and cross- correlation sums. For multicarrier code-
division multiple-access applications, the availability of large
QCSSs with low correlation sums is desirable. The generalized
Levenshtein bound (GLB) is a lower bound on the maximum
aperiodic correlation sum of QCSSs. The bounding expression of
GLB is a fractional quadratic function of a weight vector w and
is expressed in terms of three additional parameters associated
with QCSS: the set sizeK, the number of channelsM , and the
sequence lengthN . It is known that a tighter GLB (compared
to the Welch bound) is possible only if the conditionM ≥ 2

and K ≥ K + 1, where K is a certain function of M and N ,
is satisfied. A challenging research problem is to determineif
there exists a weight vector which gives rise to a tighter GLB
for all (not just some) K ≥ K + 1 and M ≥ 2, especially for
large N , i.e., the condition is asymptotically both necessary and
sufficient. To achieve this, weanalytically optimize the GLB which
is (in general) non-convex as the numerator term is an indefinite
quadratic function of the weight vector. Our key idea is to apply
the frequency domain decomposition of the circulant matrix(in
the numerator term) to convert the non-convex problem into
a convex one. Following this optimization approach, we derive
a new weight vector meeting the aforementioned objective and
prove that it is a local minimizer of the GLB under certain
conditions.

Index Terms—Fractional quadratic programming, convex op-
timization, Welch Bound, Levenshtein Bound, perfect comple-
mentary sequence set (PCSS), quasi-complementary sequence set
(QCSS), Golay complementary pair.

I. I NTRODUCTION

In recent years, multicarrier code-division multiple-access
(MC-CDMA) based on the quasi-/perfect- complementary
sequence set (in abbreviation, QCSS/PCSS) has attracted much
attention due to its potential to achieve low-/zero- interference
multiuser performance [1], [2]. Here, a QCSS (or PCSS) refers
to a set of two-dimensional matrices with low (or zero) non-
trivial auto- and cross- correlation sums [3]−[5]. In this paper,
a complementary sequence is also called a complementary
matrix, and vice versa.

To deploy a QCSS (or PCSS) in an MC-CDMA system,
every data symbol of a specific user is spread by a com-
plementary matrix by simultaneously sending out all of its
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row sequences over a number of non-interfering subcarrier
channels. Because of this, the number of row sequences of
a complementary matrix, denoted byM , is also called the
number of channels. At a matched-filter based receiver, de-
spreading operations are performed separately in each subcar-
rier channel, followed by summing the correlator outputs of
all the subcarrier channels to attain a correlation sum which
will be used for detection.

A PCSS may also be called a mutually orthogonal comple-
mentary sequence set (MOCSS) [6]−[9], a concept extended
from mutually orthogonal Golay complementary pairs (GCPs)
[10]−[13]. However, a drawback of PCSS is its small set size
[14]. Specifically, the set size (denoted byK) of PCSS is upper
bounded by the number of channels, i.e.,K ≤M . This means
that a PCSS based MC-CDMA system withM subcarriers
can support at mostM users only. Against such a backdrop,
there have been two approaches aiming to provide a larger
set size, i.e.,K > M . The first approach is to design zero-
or low- correlation zone (ZCZ/LCZ) based complementary
sequence sets, called ZCZ-CSS [15], [16] or LCZ-CSS [17]. A
ZCZ-CSS (LCZ-CSS) based MC-CDMA system is capable of
achieving zero- (low-) interference performance but requires
a closed-control loop to dynamically adjust the timings of all
users such that the received signals can be quasi-synchronously
aligned within the ZCZ (LCZ). A second approach is to design
QCSS which has uniformly low correlation sums over all non-
trivial time-shifts. As such, QCSS can be utilized to achieve
low-interference performance with a simpler timing-control
system. To the authors’ best knowledge, the first aperiodic
correlation lower bound of QCSS was derived by Welch in
[18], which states:

δ2max ≥M2N2
K
M

− 1

K(2N − 1)− 1
, (1)

where every quasi-complementary sequence is a matrix of
orderM × N (thus, every row sequence has length ofN )
with assumed energy ofM2N2. The aforementioned set
size upper bound of PCSS, namely,K ≤ M , can also be
obtained from (1) by settingδmax = 0. On the other hand, if
0 < δmax ≪ MN , one can show thatK > M , meaning that
a larger set size can be supported by QCSS.

Recently, a generalized Levenshtein bound (GLB) for QCSS
has been derived by Liu, Guan and Mow in [5,Theorem
1]. The key idea behind the GLB (including the Levenshtein
bound [19]) is that the weighted mean square aperiodic cor-
relation of any sequence subset over the complex roots of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/334954981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1701.01550v1


2

unity should be equal to or greater than that of the whole set
which includes all possible complex roots-of-unity sequences.
The Levenshtein bound was extended from binary sequences
to complex roots-of-unity sequences by Boztaş [20]. A lower
bound for aperiodic LCZ sequence sets was derived in [21]
by an approach similar to Levenshtein’s.

In its bounding equation, GLB is a function of the “simplex”
weight vectorw, the set sizeK, the number of channelsM ,
and the row sequence lengthN . A necessary condition (shown
in [5, Theorem 2]) for the GLB to be tighter than the Welch
bound is thatK ≥ K + 1, where

K ,

⌊

4(MN − 1)N sin2
π

2(2N − 1)

⌋

, (2)

with

lim
N→∞

K =

⌊
π2M

4

⌋

. (3)

Although a “step-function” weight vector was adopted in [5,
(34)], it only leads to a tighter GLB forK ≥ 3M + 1. As a
matter of fact, the tightness of GLB remains unknown for

⌊
π2M
4

⌋

M
<
K

M
< 3 +

1

M
,

whenN is sufficiently large.
The main objective of this paper is to optimize and then

tighten the GLB forall K ≥ K + 1 (instead ofsome). For
this, we are to find a (locally) optimal weight vector which is
used in the bounding equation. A similar research problem was
raised in [19] for traditional binary sequences (i.e., non-QCSS
with M = 1). See [22] for more details. The optimization of
GLB on QCSS (withM ≥ 2), however, is more challenging
because an analytical solution to a non-convex GLB (in terms
of weight vectorw) for all possible cases of(K,M) is in
general intractable.

We first adopt a frequency-domain optimization approach
in Section III-B to minimize the (non-convex) fractional
quadratic function of GLB. This is achieved by properly
exploiting the specific structure of the circulant quadratic
matrix in the numerator of the fractional quadratic term of
GLB. Following this optimization approach, we find a new
weight vector which leads to a tighter GLB forall (K,M)
cases satisfyingK ≥ K + 1 andM ≥ 2, asymptotically (in
N ). Our finding shows that the condition ofK ≥ K+1, shown
in [5, Theorem 2], is not only necessary but also sufficient, as
N tends to infinity. Moreover, in Section III-C, it is proved
that the newly found weight vector is a local minimizer to the
fractional quadratic function of GLB, asymptotically.

We then examine in Sections IV two weight vectors which
were presented in [22] for the tightening of the Levenshtein
bound on conventional single-channel (i.e.,M = 1) sequence
sets. We extend their tightening capability to GLB on multi-
channel (i.e.,M ≥ 2) QCSS, although the proof is not
straightforward. It is shown that each of these two weight
vectors gives rise to a tighter GLB (over the Welch bound)
for several small values ofM provided thatK ≥ K +1. It is
also noted that the GLB from the newly found weight vector
is (in general) tighter than the GLBs from these two (earlier
found) weight vectors, as shown by some numerical results.

II. PRELIMINARIES

In this section, we first present some necessary notations
and define QCSS. Then, we give a brief review of GLB.

A. Introduction to QCSS

For two complex-valued sequencesa = [a0, a1, · · · , aN−1]
andb = [b0, b1, · · · , bN−1], their aperiodic correlation func-
tion at time-shiftτ is defined as

ρa,b(τ) =







N−1−τ∑

t=0
atb

∗
t+τ , 0≤τ≤(N − 1);

N−1+τ∑

t=0

at−τ b
∗
t , −(N − 1)≤τ≤ − 1;

0, |τ | ≥ N.

(4)

Whena 6= b, ρa,b(τ) is called the aperiodic cross-correlation
function (ACCF); otherwise, it is called the aperiodic auto-
correlation function (AACF). For simplicity, the AACF ofa
is denoted byρa(τ).

Let C = {C0,C1, · · · ,CK−1} be a set ofK matrices, each
of orderM ×N (whereM ≥ 2), i.e.,

Cν =








cν0
cν1
...

cνM−1








M×N

=








cν0,0 cν0,1 · · · cν0,N−1

cν1,0 cν1,1 · · · cν1,N−1
...

...
. . .

...
cνM−1,0 cνM−1,1 · · · cνM−1,N−1







,

(5)

where0 ≤ ν ≤ K−1. Define the “aperiodic correlation sum”
of matricesCµ andCν as follows,

ρCµ,Cν (τ) =
M−1∑

m=0

ρcµm,cνm
(τ), 0 ≤ µ, ν ≤ K − 1. (6)

Also, define the aperiodic auto-correlation toleranceδa and
the aperiodic cross-correlation toleranceδc of C as

δa , max

{∣
∣
∣ρCµ,Cµ(τ)

∣
∣
∣:

0 < τ ≤ N − 1,
0 ≤ µ ≤ K − 1.

}

,

δc , max

{∣
∣
∣ρCµ,Cν (τ)

∣
∣
∣:

0 ≤ τ ≤ N − 1,
µ 6= ν, 0 ≤ µ, ν ≤ K − 1.

}

respectively. Moreover, define the aperiodic tolerance (also
called the “maximum aperiodic correlation magnitude”) ofC
asδmax , max{δa, δc}. Whenδmax = 0, C is called aperfect
complementary sequence set (PCSS); otherwise, it is called
a quasi-complementary sequence set (QCSS)1. In particular,
when M = 2 and K = 1, a PCSS reduces to a matrix
consisting of two row sequences which have zero out-of-phase
aperiodic autocorrelation sums. Such matrices are called Golay
complementary matrices (GCMs) or Golay complementary
pairs (GCPs) in this paper, and either sequence in a GCP is
called a Golay sequence.

Note that the transmission of a PCSS or a QCSS requires
a multi-channel system. Specifically, every matrix in a PCSS
(or a QCSS) needsM ≥ 2 non-interfering channels for the
separate transmission ofM row sequences. This is different
from the traditional single-channel sequences withM = 1
only.

1QCSS can also be defined with respect to the “periodic correlation sums”.
The interested reader may refer to [4].



3

B. Review of GLB

Let w = [w0, w1, · · · , w2N−2]
T be a “simplex” weight

vector which is constrained by

wi ≥ 0, i = 0, 1, · · · , 2N − 2, and
2N−2∑

i=0

wi = 1. (7)

Define a quadratic function

Q(w, a) , wTQaw

= a
2N−2∑

i=0

w2
i +

2N−2∑

s,t=0

τs,t,Nwswt,
(8)

whereQa is a (2N − 1)× (2N − 1) circulant matrix with all
of its diagonal entries equal toa, and its off-diagonal entries
Qa(s, t) = τs,t,N , wheres 6= t and

0 ≤ τs,t,N , min {|t− s|, 2N − 1− |t− s|} ≤ N − 1. (9)

The GLB for QCSS over complex roots of unity in [5] is
shown below.

Lemma 1:

δ2max ≥M






N −

Q
(

w, N(MN−1)
K

)

1− 1
K

2N−2∑

i=0

w2
i






. (10)

A weaker simplified version of (10) is given below.

δ2max ≥M

[

N −Q

(

w,
MN2

K

)]

. (11)

Remark 1: Settingw = 1
2N−1 (1, 1, · · · , 1), the GLB re-

duces to the Welch bound for QCSS in (1).

Remark 2: [5, Theorem 2] For the GLB to be tighter than
the corresponding Welch bound, it isnecessary thatK ≥ K+
1, whereK is defined in (2).

Remark 3: [5, Corollary 1] Applying the weight vectorw
with

wi =

{
1
m
, i ∈ {0, 1, · · · ,m− 1};

0, i ∈ {m,m+ 1, · · · , 2N − 2}; (12)

where1 ≤ m ≤ N , to (10), we have

δ2max ≥ max
1≤m≤N

3MNKm− 3M2N2 −MK(m2 − 1)

3(mK − 1)
.

(13)
The lower bound in (13) is tighter than the Welch bound for
QCSS in (1) if one of the two following conditions is fulfilled:

(1): 3M + 1 ≤ K ≤ 4M − 1, M ≥ 2 and

N ≥
⌊

K − 1 +
√

−3K2 + (12M − 6)K + 12M + 1

2(K − 3M)

⌋

+ 1;

(14)
(2): K ≥ 4M , M ≥ 2 andN ≥ 2.

III. PROPOSEDWEIGHT VECTOR FORTIGHTER GLB

A. Motivation

The necessary condition inRemark 2 implies that for a given
M,N , the Welch bound for QCSS cannot be improved ifK ≤
K, whereK is defined in (2). On the other hand, the weight
vector in (12) can only lead to a tighter GLB forK ≥ 3M +
1. Because of this, the tightness of GLB is unknown in the
following ambiguous zone.

K

M
<
K

M
< 3 +

1

M
. (15)

For sufficiently largeN , the aboveK/M zone further reduces
to ⌊

π2M
4

⌋

M
<
K

M
< 3 +

1

M
, (16)

by recalling (3). One may visualize this zone in the shaded
area of Fig. 1 for2 ≤M ≤ 256.

0 50 100 150 200 250
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2.4

2.6

2.8

3

3.2

3.4

3.6

M

K M

 

 

3 + 1
M

π
2

4
⌊

π
2M
4

⌋

M

Fig. 1: The tightness of GLB is unknown over the shaded
K/M zone, whereN is sufficiently large.

We are therefore interested in finding a weight vector which
is capable of optimizing and tightening the GLB forall (rather
thansome) K ≥ K+1. Relating this objective to Fig. 1, such
a weight vector can give us a tighter GLB for the largestK/M
region right above the red diamond symbols.

However, the optimization of GLB in (10) is challenging
because its fractional quadratic term (in terms ofw) is indef-
inite. More specifically, the quadratic termQ

(

w, N(MN−1)
K

)

in the numerator is indefinite as some eigenvalues of the cor-
responding circulant matrix are negative whenK ≥ K+1 [5,
Appendix B]. It is noted that indefinite quadratic programming
(QP) is NP-hard [23], even it has one negative eigenvalue
only [24]. Moreover, checking local optimality of a feasible
point in constrained QP is also NP-hard [25]. Although some
optimality conditions for constrained QP have been derived
by Bomze from the copositivity perspective [26], [27], [28],
the situation becomes more complicated when indefinite frac-
tional quadratic programming (FQP) problems are dealt with.
According to [29], GLB may be classified as a standard FQP
(StFQP) as the feasible set is the standard simplex. To the
best of the authors’ knowledge, Preisig pioneered an iterative
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algorithm for which convergence to a KKT point (but cannot
be guaranteed to be a local minimizer) of the StFQP can be
proved [30]. Two algorithms for StFQP based on semidefinite
programming (SDP) relaxations are presented in [29], yet the
optimalities of the resultant solutions are unknown. As a matter
of fact, the algorithms developed in [29], [30] may only be
feasible for medium-scaled StFQP withN ≤ 200. In contrast,
we target at an analytical solution (as opposed to a numerical
solution) which is applicable to large scale of GLB (e.g., the
sequence lengthN > 1000). Thus, the techniques used in
[29], [30] may not be useful for the specific StFQP problem
considered in this paper.

In the sequel, we introduce a frequency-domain optimiza-
tion approach which finds a local minimizer (i.e., a weight
vector) of the GLB. We show that the obtained weight vector
leads to a tighter GLB forall K ≥ K + 1 and M ≥ 2,
asymptotically.

B. GLB from Weight Vector 1

To tighten the GLB in (10), we adopt a novel optimization
approach in this subsection, motivated by the observation that
any circulant matrix [e.g.,Qa in (8) which forms a part of the
GLB quadratic function in (10)] can be decomposed in the
frequency domain.

Define ξL = exp
(
−
√
−12π/L

)
and theL-point discrete

Fourier transform (DFT) matrix as

FL = [fm,n]
L−1
m,n=0, wherefm,n = ξmn

L . (17)

Denote byq the first column vector ofQa in (8), i.e.,

q = [a, 1, 2, · · · , N − 1, N − 1, · · · , 2, 1]T. (18)

Let
v = F2N−1w = [v0, v1, · · · , v2N−2]

T. (19)

It is noted thatv0 =
∑2N−2

i=0 wi = 1. By [31], the circulant
matrix Qa defined in (8) can be expressed as

Qa =
1

2N − 1
FH

2N−1diag(λ)F2N−1, (20)

where
λ = F2N−1q = [λ0, λ1, · · · , λ2N−2]

T, (21)

and diag(λ) is the matrix withλ being the diagonal vector
and zero for all the non-diagonal matrix entries. Consequently
[32, Theorem 3.1],

Q(w, a) =
1

2N − 1

2N−2∑

l=0

λl |vl|2 . (22)

Similarly,
2N−2∑

i=0

w2
i =

1

2N − 1

2N−2∑

l=0

|vl|2 . (23)

By [5, Appendix B], we have

λ0 = a+ (N − 1)N, (24)

and

λl = a−
1− (−1)l cos πl

2N−1

2 sin2 πl
2N−1

, (25)

for l = 1, · · · , 2N − 2. Note thatλl = λ2N−1−l for l ∈
{1, 2, · · · , N − 1}. Moreover, we remark that

λl > λ1, for 2 ≤ l ≤ N − 1. (26)

This is because
1) if l is odd:

λl − λ1 =
sin2 πl

2(2N−1) − sin2 π
2(2N−1)

4 sin2 π
2(2N−1) sin

2 πl
2(2N−1)

> 0. (27)

2) if l is even:

λl − λ1 =
cos πl

2N−1 + cos π
2N−1

8 sin2 π
2(2N−1) cos

2 πl
2(2N−1)

> 0. (28)

To maximize the GLB in (10), it is equivalent to consider the
following optimization problem.

Problem 1:

min
v

λ0 +
2N−2∑

l=1

λl|vl|2

2N − 1− 1
K

− 1
K

2N−2∑

l=1

|vl|2
,

subject tow =
1

2N − 1
FH

2N−1v ≥ 0.

(29)

Sincew is real-valued,v is conjugate symmetric, i.e.,vl =
v∗2N−1−l for l = 1, 2, · · · , 2N − 2. Having this in mind, we
define

r2 =

N−1∑

l=1

|vl|2 =

2N−2∑

l=N

|vl|2. (30)

Taking advantage of the fact thatλ1 = λ2N−2 are strictly
smaller than otherλl’s with nonzerol as shown in (26), we
have

2N−2∑

l=1

λl|vl|2 = 2λ1r
2 +

2N−3∑

l=2

(λl − λ1)|vl|2 ≥ 2λ1r
2, (31)

where the equality is achieved if and only ifvl = 0 for l =
2, 3, · · · , 2N − 3. Inspired by this observation, we relax the
non-negativity constraint onw, i.e., some negativewi’s may
be allowed (but the sum of all elements ofw must still be
equal to 1). With this, the optimization problem in (29) can
be translated to

min
r

min∑
2N−2

l=1
|vl|2=2r2

λ0 +
2N−2∑

l=1

λl|vl|2

2N − 1− 1+2r2

K

,

=min
r

λ0 + 2λ1r
2

2N − 1− 1
K

− 2r2

K

,

(32)

where

λ0 =
N(MN − 1)

K
+N(N − 1),

λ1 =
N(MN − 1)

K
− 1

4 sin2 π
2(2N−1)

.
(33)

From now on, we adopt the setting of

v1 = v∗2N−2 = r exp
(√

−1θ
)
,

vl = 0, for l = 2, 3, · · · , 2N − 3,
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wherer, θ denote the magnitude and phase ofv1, respectively.
Sincew = 1

2N−1F
H
2N−1v, we have

w =
1

2N − 1

[

1 + 2r cos θ, 1 + 2r cos

(

θ +
2π

2N − 1

)

,

· · · , 1 + 2r cos

(

θ +
2π(2N − 2)

2N − 1

)]T

.

(34)

To optimize the fractional function in (32), we have the
following lemma.

Lemma 2: The fractional function λ0+2λ1r
2

2N−1− 1

K
− 2r2

K

in terms

of r2 in (32) is

Case 1: monotonically decreasing inr2 if K ≥ K + 1
and λ0

|λ1|
< (2N − 1)K − 1;

Case 2: monotonically increasing inr2 if K ≤ K, or
K ≥ K + 1 and λ0

|λ1|
≥ (2N − 1)K − 1.

Proof: To prove Case 1, we first show thatλ1 < 0 if and
only if

K ≥ K + 1 =

⌊

4(MN − 1)N sin2
π

2(2N − 1)

⌋

+ 1,

whereK is defined in (2). For ease of analysis, we write

4(MN − 1)N sin2
π

2(2N − 1)
= n+ ǫ, (35)

wheren is a positive integer and0 ≤ ǫ < 1. Thus,K + 1 =
n+ 1. Consequently, we have

λ1 = a− 1

4 sin2 π
2(2N−1)

=
N(MN − 1)

K
− 1

4 sin2 π
2(2N−1)

=
N(MN − 1)

K

[

1− K

4N(MN − 1) sin2 π
2(2N−1)

]

≤ N(MN − 1)

K

(

1− n+ 1

n+ ǫ

)

< 0,
(36)

with which the proof of Case 1 follows. The proof of Case 2
can be easily obtained by following a similar argument.

For Case 2 ofLemma 2, it can be readily shown that the
minimum of the fractional function λ0+2λ1r

2

2N−1− 1

K
− 2r2

K

in (32) is

achieved atr = 0. Thus, the weight vector in (34) reduces to

w =
1

2N − 1
· [1, 1, · · · , 1]T , (37)

where the corresponding GLB reduces to the Welch bound in
(1).

Next, let us focus on the application of Case 1 for GLB
tightening. In this case, we wish to know the upper bound of
r2 in order to minimize the fractional function ofr2 in (32).

Coming back to the constraint ofw given in (7), r and θ
should satisfy

1 + 2r min
i=0,1,··· ,2N−2

cos

(

θ +
2πi

2N − 1

)

≥ 0. (38)

Thus,

0 ≤ r ≤ max
θ

−1

min
i=0,1,··· ,2N−2

cos
(

θ + 2πi
2N−1

) =
1

2 cos
(

π
2N−1

) ,

(39)
where the upper bound is achieved with equality whenθ =
2πj

2N−1 for any integerj. By substitutingr = 1

2 cos( π
2N−1 )

into

(34), we obtain the following weight vector.

wi =
1

2N − 1

(

1 +
cos 2π(i+j)

2N−1

cos π
2N−1

)

, (40)

wherei = 0, 1, · · · , 2N−2 andj is any integer. The resultant
GLB from this weight vector is shown in the following lemma.

Lemma 3: ForK ≥ K +1 and λ0

|λ1|
< (2N − 1)K − 1, we

have

δ2max ≥M



N −
K
(

λ0 − |λ1|
2 cos2 π

2N−1

)

(2N − 1)K − 1− 1
2 cos2 π

2N−1



 , (41)

whereλ0, λ1 are given in (33).

To analyze the asymptotic tightness of the lower bound in
(41), we note that whenN is sufficiently large, the second
condition inLemma 3, i.e.,

λ0
|λ1|

< (2N − 1)K − 1, (42)

is true forK ≥ K+1. To show this, we substituteλ0, λ1 into
(42). After some manipulations, one can see that the inequality
in (42) holds if and only if

K >4(MN − 1)N sin2
π

2(2N − 1)

+
4N(N − 1) sin2 π

2(2N−1) + 1

2N − 1
.

(43)

Carrying on the expression in (35), we require

K − n ≥ 1 > ǫ+
4N(N − 1) sin2 π

2(2N−1) + 1

2N − 1
, (44)

which is guaranteed to hold for sufficiently largeN becauseǫ
is strictly smaller than 1 by assumption. Furthermore, we note
that

lim
N→∞

Kλ0
N

= (K +M)N,

lim
N→∞

K|λ1|
2N cos2 π

2N−1

=

(
2K

π2
− M

2

)

N.
(45)

Therefore,

lim
N→∞

K
(

λ0 − |λ1|
2 cos2 π

2N−1

)

N ·
[

(2N − 1)K − 1− 1
2 cos2 π

2N−1

] =
3M

4K
+

1

2
− 1

π2
.

(46)
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On the other hand, let us rewrite the Welch bound expression
(1) as

M2N2
K
M

− 1

K(2N − 1)− 1
=M (N −R1) (47)

with

R1 ,
N(MN − 1) +N(N − 1)K

(2N − 1)K − 1
. (48)

Then,

lim
N→∞

R1

N
=

1

2
+
M

2K
. (49)

With (48) and (49), one can show that the lower bound in
Lemma 3 is asymptotically tighter than the Welch bound in
(1) if and only if the following equation is satisfied.

1

2
+
M

2K
>

3M

4K
+

1

2
− 1

π2
. (50)

Equivalently, we need to prove that forK =
⌊
π2M
4

⌋

+ 1 (as
N → ∞), the following inequality holds.

d1(M) ,

⌊
π2M
4

⌋

+ 1

M
− π2

4
> 0. (51)

One can readily show that the conditiond1(M) > 0 given in
(51) is true forall M ≥ 2. Therefore, we have the following
theorem.

Theorem 1: The GLB in (41) which arises from the weight
vector in (40) reduces to

δ2max &MN

[(
1

2
+

1

π2

)

− 3M

4K

]

, (52)

for sufficiently largeN . Such an asymptotic lower bound is
tighter than the Welch bound forall K ≥ K + 1 and forall
M ≥ 2.

C. Proof of Local Optimality

In this subsection, we prove the proposed weight vector in
(40) is a local minimizer of the GLB in (10) under certain
condition. We consider the weight vectorw by settingj = 0
in (40) because other values ofj will lead to identical value
of GLB [cf. (22) and (23)].

wi =
1

2N − 1

(

1 +
cos 2πi

2N−1

cos π
2N−1

)

, i ∈ {0, 1, · · · , 2N − 2}.

(53)
Note that the frequency domain vectorv = F2N−1w has
v0 = 1, v1 = v2N−2 = 1

2 cos π
2N−1

and vl = 0 for all l ∈
{2, 3, , · · · , 2N − 3}. Our problem in this subsection can be
formally cast as follows.

Problem 2: Define the fractional quadratic functionf(x)2

as follows.

f(x) ,
xTQax

1− 1
K

· xTx
, (54)

2Note that f(x) is essentially the fractional quadratic term in (10) by
replacingw with x.

wherexi ≥ 0, i ∈ {0, 1, · · · , 2N − 2},∑2N−2
i=0 xi = 1, Qa is

the circulant matrix defined in (8) which has order(2N − 1)
and witha = (MN − 1)N/K. WhenK = K + 1 andM,N
becomes sufficiently large, prove that the weight vectorw in
(53) is a local minimizer off(x), i.e.,

f(w + e) ≥ f(w), (55)

holds for any feasible perturbatione which has sufficiently
small norm.

Proof: To get started, we define

α(w, e) , wTQaweTe−wTweTQae,

β(w, e) , wTQaweTw −wTwwTQae,

γ(w, e) ,
α(w, e) + 2β(w, e)

K
.

(56)

It is easy to show that (55) is equivalent to the following
inequality.

2wTQae+ eTQae+ γ(w, e) ≥ 0. (57)

Let E = F2N−1e. Sincee is a real vector,E is conjugate
symmetric in thatEl = E∗

2N−1−l for l = 1, 2, · · · , 2N−2. By
taking advantage of (20), we present the following properties
which will be useful in the sequel.

E0 =

2N−2∑

i=0

ei = 0; (58a)

w + e ≥ 0; (58b)

wTQae = λ1 ·
E1 + E∗

1

2(2N − 1) cos π
2N−1

; (58c)

eTQae =
2

2N − 1
·
N−1∑

i=1

λi|Ei|2; (58d)

wTQaw =
1

2N − 1

(

λ0 +
λ1

2 cos2 π
2N−1

)

; (58e)

eTw =
E1 + E∗

1

2(2N − 1) cos π
2N−1

; (58f)

wTw =
1

2N − 1

(

1 +
1

2 cos2 π
2N−1

)

; (58g)

eTe =
2

2N − 1

N−1∑

i=1

|Ei|2. (58h)

By (58d), (58e), (58g) and (58h), we have

α(w, e) =
2

(2N − 1)2
·
{

(λ0 − λ1)|E1|2

+
N−1∑

i=2

[

(λ0 − λ1) +
λ1 − λi

2 cos2 π
2N−1

]

|Ei|2
}

.

(59)

By (58c), (58e), (58f) and (58g), we have

β(w, e) =
λ0 − λ1

2(2N − 1)2
· E1 + E∗

1

cos π
2N−1

. (60)

Therefore,γ(w, e) can be expressed in the form shown in
(61). Sincee is a small perturbation, let us assume

0 ≤ 2

N−1∑

i=1

|Ei|2 ≪ 1. (62)
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γ(w, e) =
λ1

K(2N − 1)2
·
{

N−1∑

i=2

|Ei|2
cos2 π

2N−1

− 2|E1|2 −
E1 + E∗

1

cos π
2N−1

}

+
1

K(2N − 1)2
·
{

2λ0|E1|2 +
N−1∑

i=2

(

λ0 − λi −
λi

cos2 π
2N−1

)

|Ei|2 + λ0
E1 + E∗

1

cos π
2N−1

}

.

(61)

Next, we proceed with the following two cases.

1) Case I: If there existsEi 6= 0 for i ∈ {2, 3, · · · , N −1}.
Since we considerK = K + 1 with sufficiently large
M,N , it is readily to show thatλi > 0 holds for any
i ∈ {2, 3, · · · , N − 1} [see (67) and (69)]. By (58d), let
us write

eTQae(2N − 1) = 2λ1|E1|2 + ξ, (63)

whereξ = 2
N−1∑

i=2

λi|Ei|2 > 0. Furthermore, write

[

2wTQae+ eTQae+ γ(w, e)
]

·(2N − 1) = λ1A+B,

(64)
where

A =2

(

1− 1

K(2N − 1)

)

|E1|2

+

(

1− 1

K(2N − 1)

)

· E1 + E∗
1

cos π
2N−1

+
1

K(2N − 1)

N−1∑

i=2

|Ei|2
cos2 π

2N−1

,

B =ξ +
1

K(2N − 1)
· 2λ0|E1|2

+
1

K(2N − 1)
·
N−1∑

i=2

(

λ0 − λi −
λi

cos2 π
2N−1

)

|Ei|2

+
1

K(2N − 1)
· λ0

E1 + E∗
1

cos π
2N−1

.

(65)

Remark 4: SinceK =
⌊

4(MN − 1)N sin2 π
2(2N−1)

⌋

+

1, A andB approach to
(
2|E1|2 + E1 + E∗

1

)
and ξ, respectively, asM grows

sufficiently large.

To show (55) [and (57)] holds, we only need to prove
the right-hand term of (64) divided bya is nonnegative,
asymptotically. For this, our idea is to consider a fixed
N (sufficiently large) and prove that: (1) lim

M→+∞

B
a

is

lower bounded by a nonnegative value determined by
N only; (2) lim

M→+∞

λ1

a
tends to zero (with an upper

bounded lim
M→+∞

A) regardless the value ofN .

From (25), we have

λ2i
a

= 1− 1

4a cos2 π(2i)
2(2N−1)

, 2 ≤ 2i ≤ N − 1. (66)

For ease of analysis, letN be an even integer3. Hence,
max

2≤2i≤N−1
(2i) = N − 2. Since λ2i

a
is a decreasing

function of i, we have

λ2i
a

≥ 1− 1

4a cos2 π(N−2)
2(2N−1)

> 2/3. (67)

Also,

λ2i+1

a
= 1− 1

4a sin2 π(2i+1)
2(2N−1)

≥ 1− 1

4a sin2 3π
2(2N−1)

,

(68)
where2 ≤ 2i+ 1 ≤ N − 1. By noting sin 3x > 2 sinx
(x a small positive angle) andK = K + 1, we have

λ2i+1

a
> 1− 1

4
·

⌊

4(MN − 1)N sin2 π
2(2N−1)

⌋

+ 1

4(MN − 1)N sin2 π
2(2N−1)

> 1− 1

4
· 4
3
=

2

3
.

(69)

By (67) and (69), we obtain

lim
M→+∞

B

a
=
ξ

a
=

N−1∑

i=2

(
λi
a

)

·2|Ei|2 ≥ 2

3
·
(

2
N−1∑

i=2

|Ei|2
)

.

(70)
On the other hand,

lim
M→+∞

λ1
a

= lim
M→+∞



1−

⌊

4(MN − 1)N sin2 π
2(2N−1)

⌋

+ 1

4N(MN − 1) sin2 π
2(2N−1)





→ 0−,
(71)

where0− denotes a sufficiently small value (negative)
that approaches zero from the left. Therefore, we have

lim
M→+∞

[

2wTQae+ eTQae+ γ(w, e)
]

·(2N − 1)

a

= lim
M→+∞

λ1
a

· lim
M→+∞

A

︸ ︷︷ ︸

upper bounded

+ lim
M→+∞

B

a

(72)

By (70) and (71), we assert that whenM is sufficiently
large, the sign of the limit in (72) will be identical to
that of ξ/a [cf. (70)] which is nonnegative. This shows
that (55) [and (57)] holds for Case I, asymptotically.

3WhenN is odd, we can prove (55) [and (57)] holds by almost the same
arguments.
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2) Case II: IfEi = 0 for all i ∈ {2, 3, · · · , N − 1}.
In this case, (65) reduces to

A =2

(

1− 1

K(2N − 1)

)

|E1|2

+

(

1− 1

K(2N − 1)

)
E1 + E∗

1

cos π
2N−1

,

B =
λ0

K(2N − 1)
·
{

2|E1|2 +
E1 + E∗

1

cos π
2N−1

}

.

(73)

SinceE = F2N−1e, we have

ei =
2

2N − 1
Re

{

E1 exp

(√
−12πi

2N − 1

)}

, (74)

where Re{x} denotes the real part of complex datax.
ConsiderE1 which takes the following form.

E1 =
t

2 cos π
2N−1

exp
(√

−1ψ
)
, (75)

where0 ≤ t ≪ 1 andψ denotes the phase shift ofE1.
As a result,ei can be expressed as

ei =
t

(2N − 1) cos π
2N−1

· cos
(

2πi

2N − 1
+ ψ

)

. (76)

Thus,

λ1A+B

=

(

2|E1|2 +
E1 + E∗

1

cos π
2N−1

)

·
(

λ1 +
λ0 − λ1

K(2N − 1)

)

.

(77)

Sinceλ1 ∼ O(N2), λ0−λ1

K(2N−1) ∼ O(N
K
) ∼ O( N

M
), we

assert that for sufficiently largeM,N ,

λ1 +
λ0 − λ1

K(2N − 1)
< 0, (78)

holds because it will be dominated by the negativeλ1.
Our next task is to show that

(

2|E1|2 + E1+E∗

1

cos π
2N−1

)

≤ 0.
By (75), we have

2|E1|2+
E1 + E∗

1

cos π
2N−1

=
1

2 cos2 π
2N−1

(t2+2t cosψ). (79)

It is required in (58b) thatwi + ei ≥ 0 for all i, i.e.,

cos
π

2N − 1
+cos

2πi

2N − 1
+t cos

(
2πi

2N − 1
+ ψ

)

≥ 0.

(80)
Settingi = N , we have

cos

(
2πN

2N − 1
+ ψ

)

≥ 0

→
(
1

2
− 1

2N − 1

)

π ≤ ψ ≤
(
3

2
− 1

2N − 1

)

.

(81)

Settingi = N , we have

cos

(
2π(N − 1)

2N − 1
+ ψ

)

≥ 0

→
(
1

2
+

1

2N − 1

)

π ≤ ψ ≤
(
3

2
+

1

2N − 1

)

.

(82)

Therefore,
(
1

2
+

1

2N − 1

)

π ≤ ψ ≤
(
3

2
− 1

2N − 1

)

→− 1 ≤ cosψ < 0.

(83)

This showst2 + 2t cosψ ≤ 0 holds providedt ≤
−2 cosψ. This can be easily satisfied by a sufficiently
small t. Together with (77)-(79), we conclude that (55)
[and (57)] holds for Case II, asymptotically. This com-
pletes the proof of the local optimality of the proposed
weight vector in (53).

Remark 5: Following a proof similar to the above, one can
easily show that the weight vectorw in (53) is also a local
minimizer of the constrained QP ofmin

w
Q
(

w, N(MN−1)
K

)

whenK = K + 1 andM,N are sufficiently large.

IV. D ISCUSSIONS ANDCOMPARISONS

In this section, we first consider another two weight vectors
and study the tightness of their resultant GLBs. Then, we
compare them with the proposed weight vector in (40) by
some numerical results.

A. GLB from Weight Vector 2

In [22], Liu et al showed that the following “positive-cycle-
of-sine” weight vectorw

wi =

{
tan π

2m sin πi
m
, i ∈ {0, 1, · · · ,m− 1};

0, i ∈ {m,m+ 1, · · · , 2N − 2},
(84)

where 2 ≤ m ≤ 2N − 1, asymptotically leads to a tighter
Levenshtein bound (i.e.,M = 1) for all K ≥ 3 [19].

By [22, Proposition 1], one can show that the resultant GLB
from the weight vector in (84) can be written as follows.

Corollary 1:

δ2max ≥M

[

N − N(MN − 1)m tan2 π
2m + 2KQ(w, 0)

2K −m tan2 π
2m

]

,

(85)
where

Q(w, 0)

=







m
4

(
1− tan2 π

2m

)
,

for 2 ≤ m ≤ N,
− 3m−4N+2

4 − m
4 tan2 π

2m + m−N−1
2 cos Nπ

m

+
(

2m−2N+1
4 tan π

2m + 3
4 tan π

2m

)

sin Nπ
m
,

for N < m ≤ 2N − 1.

(86)

In what follows, we analyze the asymptotic tightness of the
lower bound in (85).

Define r , lim
N→∞

m/N . Obviously, r is a real-valued

constant with0 < r < 2 whenm is on the same order of
rN (i.e., m ∼ rN ); and r → 0 whenm is dominated by
N asymptotically (i.e.,m ∼ o(N)). Furthermore, define the
fractional term in (85) as

R2 ,
N(MN − 1)m tan2 π

2m + 2KQ(w, 0)

2K −m tan2 π
2m

. (87)
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It is easy to see that the lower bound in (85) is tighter than
the Welch bound in (1) if and only if

R1 > min
2≤m≤2N−1

R2, (88)

where R1 is defined in (48). AsN tends to infinity, the
inequality in (88) is equivalent to

lim
N→∞

R1

N
> lim

N→∞
min

2≤m≤2N−1

R2

N
. (89)

Whenm ∼ o(N), we haver → 0 and rN ∈ [2,∞) as
N → ∞. In this case, one can show that

lim
N→∞

R2

N

= lim
N→∞

N(MN − 1)rN tan2 π
2rN + 2K · rN

4

(
1− tan2 π

2rN

)

N(2K − rN tan2 π
2rN )

= lim
N→∞

MN(rN tan2 π
2rN ) + Kr

2

(
1− tan2 π

2rN

)

2K − rN tan2 π
2rN

=

{ ∞, for 2 ≤ rN <∞;
Mπ2

8Kr
+ r

4 → ∞, for rN → ∞,
(90)

which can be ignored without missing the minimum point of
interest in the right-hand side of (89). Hence, we shall assume
r to be a non-vanishing real-valued constant with0 < r < 2,
and rewrite (89) as

lim
N→∞

R1

N
> min

0<r<2
lim

N→∞

R2

N
. (91)

Here, the order of the limit and minimization operations
can be exchanged becauselim

N→∞

R2

N
as a function ofr

exists, as shown below. Next, noting thatlim
N→∞

m tan2 π
2m =

lim
N→∞

rN tan2 π
2rN = 0, we can express (87) as

lim
N→∞

R2

N
= lim

N→∞

MN − 1

2K
m tan2

π

2m
+ lim

N→∞

Q(w, 0)
N

,

(92)

where

lim
N→∞

MN − 1

2K
m tan2

π

2m
=
Mπ2

8Kr
, (93)

and after some manipulations,

f(r) , lim
N→∞

Q(w, 0)
N

=

{
r/4, for 0 < r ≤ 1;

4−3r
4 + r−1

2 cos π
r
+ 3r

2π sin π
r
, for 1 < r < 2.

(94)

By (49), (93) and (94), it follows that (91) reduces to

1

2
+
M

2K
> min

0<r<2

(
Mπ2

8Kr
+ f(r)

)

. (95)

Equivalently, we assert that the asymptotic lower bound in (85)
is tighter than the Welch bound if and only if

K

M
> min

0<r<2
L(r) ≈ 2.483257, (96)

where

L(r) ,

{
π2−4r
4r−2r2 , for 0 < r ≤ 1;

π2−4r

2r(3r−2)−4r(r−1) cos π
r
−12 r2

π
sin π

r

, for 1 < r < 2.

(97)

0.8 1 1.2 1.4 1.6 1.8 2
2.2

2.4

2.6

2.8

3

3.2

3.4

r = lim
N→+∞

m/N

 

 

← r = 1.542

L(r)
π
2/4

Fig. 2: A plot ofL(r) andπ2/4 versusr.

In Fig. 2,L(r) andπ2/4 versusr over the range of0.8 ≤
r ≤ 2 are plotted. It can be obtained from (108) and Fig. 2
that

lim
N→∞

K

M
≤ π2

4
︸︷︷︸

≈2.467401

< min
0<r<2

L(r)
︸ ︷︷ ︸

≈2.483257

. (98)

By (96), one can see that the proposed weight vector in (84)
asymptotically leads to a tighter GLB forall K ≥ K + 1 if
and only if the value ofM satisfies the following condition
[c.f. (107)]

d2(M) ,

⌊
π2M
4

⌋

+ 1

M
− min

0<r<2
L(r) > 0. (99)

In Fig. 3, d2(M) versusM is also plotted. By identifying
M satisfyingd2(M) > 0 [shown in (99)], we arrive at the
following theorem.

Theorem 2: The GLB in (85) which arises from the weight
vector in (84) reduces to

δ2max &MN

[

1− min
0<r<2

(
Mπ2

8Kr
+ f(r)

)]

, (100)

for sufficiently largeN , wheref(r) is given in (94). Such an
asymptotic lower bound is tighter than the Welch bound for
all K ≥ K + 1 if and only if

M ∈
{

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20,

22, 24, 26, 28, 30, 31, 33, 35, 37, 39, 41, 43, 45, 60
}

.

(101)
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(a) 2 ≤ M ≤ 512
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d2(M) from weight vector 2
d3(M) from weight vector 3

(b) 2 ≤ M ≤ 80

Fig. 3: A plot of d2(M) in (99) andd3(M) in (109) versusM , where subplot (a) is a zoom-in of subplot (b). It is noted that
a positived2(M) [or d3(M)] corresponds to a tighter GLB over the Welch bound.

B. GLB from Weight Vector 3

Let us consider the weight vector obtained by minimizing
the following function using the Lagrange multiplier.

FK,M,N,m(w) = Q

(

w,
MN2

K

)

− 2λ

(
m−1∑

i=0

wi − 1

)

,

(102)
wherewi = 0 for i ∈ {m,m+1, · · · , 2N − 2} and2 ≤ m ≤
2N − 1. The idea is to optimize the weaker GLB in (11). By
relating the quadratic minimization solution ofFK,M,N,m(w)
to the Chebyshev polynomials of the second kind, one can
obtain the weight vector4 below.

Let K ≤ MN2 and cosϕ = 1 − K
MN2 . Also, letm be an

even positive integer withmϕ < π+ϕ. Forϕ0 = (π−mϕ+
ϕ)/2, define the following weight vector

wi =

{
sin ϕ

2

sin mϕ
2

sin(ϕ0 + iϕ), i ∈ {0, 1, · · · ,m− 1};
0, i ∈ {m,m+ 1, · · · , 2N − 2}.

(103)
Settingm =

⌊
π
ϕ

⌋

+ 1, one can minimizeFK,M,N,m(w) in
(102) over differentm and get a generalized version of the
Levenshtein bound in [19,Corollary 4] as follows.

Corollary 2:

δ2max ≥M

(

N −
⌈

πN
√

8K/M

⌉)

, for K ≤MN2. (104)

As N → ∞, the lower bound in (104) is tighter than the
Welch bound in (1) if and only if

1

2
+
M

2K
> lim

N→∞

1

N

⌈

πN
√

8K/M

⌉

=
π

√

8K/M
, (105)

or equivalently,

K

M
>
π2

4
− 1 +

√
(
π2

8
− 1

)
π2

2
≈ 2.541303, (106)

4Although it looks similar to that in [22, Lemma 2], such a weight vector
is more generic as it applies to QCSS with differentM ≥ 2.

where the right-hand side of (105) is obtained from (104).
Recall that asN → ∞, a necessary condition (cf.Remark

2) for the GLB to be tighter than the corresponding Welch
bound is

K

M
≥

lim
N→∞

K + 1

M
=

⌊
π2M
4

⌋

+ 1

M
. (107)

Clearly,

lim
N→∞

K

M
=

⌊
π2M
4

⌋

M
≤ π2

4
≈ 2.467401, (108)

which is smaller than the right-hand side of (106).
It can be asserted that the resultant GLB obtained from the

weight vector in (103) withm = ⌊π/ϕ⌋ + 1 is tighter if and
only if the value ofM satisfies the condition

d3(M) ,

⌊
π2M
4

⌋

+ 1

M
−
[

π2

4
− 1 +

√
(
π2

8
− 1

)
π2

2

]

> 0.

(109)
This is because when condition (109) is satisfied,K ≥
lim

N→∞
K + 1 is not only a necessary condition [cf. (107)]

but also a sufficient condition [cf. (106)] for the GLB to be
asymptotically tighter than the Welch bound.

In Fig. 3, d3(M) versusM is plotted. By identifyingM
satisfyingd3(M) > 0 [shown in (109)], we have the following
theorem.

Theorem 3: The GLB in (104) which arises from the weight
vector in (103) is asymptotically tighter than the Welch bound
for all K ≥ K + 1 if and only if

M ∈
{

3, 5, 7, 9, 11
}

. (110)

C. Discussions

Denote by B1,B2,B3 the optimized asymptotic lower
bounds in (52), (100), (104), respectively. We remark that (1),
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Both B1 and B2 are greater thanB3 for any M ≥ 2; (2),
B1 > B2 except forM ∈ {3, 5, 7, 9}. The proof is omitted as
it can be easily obtained from the tightness analysis in Section
III-B and Section IV.

To further visualize their relative strengths of these three
lower bounds, we calculate in Table I the ratio values of
B1

BW
, B2

BW
, B3

BW
with M ∈ {2, 3, · · · , 25}, whereN = 2048,K =

K+1 andBW denotes the corresponding Welch bound. A ratio
value which is larger than 1 corresponds to a tighter GLB (over
the Welch bound). With Table I, one may verify the three sets
of M for tighter GLB in Theorems 1-3 as well as the above-
mentioned remark in this subsection. In particular, we can see
that B1

BW
> 1 for all M ≥ 2, showing that weight vector 1 is

superior than the other two as it is capable of tightening the
GLB for all possibleM , asymptotically.

V. CONCLUSIONS

The generalized Levenshtein bound (GLB) in [5,Theo-
rem 1] is an aperiodic correlation lower bound for quasi-
complementary sequence sets (QCSSs) withnumber of chan-
nels not less than 2 (i.e.,M ≥ 2). Although GLB was shown
to be tighter than the corresponding Welch bound [i.e., (1)]
for certain cases, there exists an ambiguous zone [shown in
(15) and (16)] in which the tightness of GLB over Welch
bound is unknown. Motivated by this, we aim at finding a
properly selected weight vector in the bounding equation for
a tighter GLB forall (other thansome) K ≥ K + 1, where
K denotes the set size, andK is a value depending onM
andN (the sequence length). As the GLB is in general a non-
convex fractional quadratic function of the weight vector,the
derivation of an analytical solution for a tighter GLB forall
possible cases is a challenging task.

The most significant finding of this paper is weight vector 1
in (40) which is obtained from a frequency-domain optimiza-
tion approach. We have shown that its resultant GLB in (41) is
tighter than Welch bound forall K ≥ K+1 and forall M ≥ 2,
asymptotically. This finding is interesting as it explicitly shows
that the GLB tighter condition given in [5,Theorem 2] is not
only necessary but also sufficient, asymptotically, as shown in
Theorem 1. Interestingly, we have proved in Section III-C that
weight vector 1 in (40) is local minimizer of the GLB under
certain asymptotic conditions.

We have shown that both weight vectors 2 and 3 [given
in (84) and (103), respectively] lead to tighter GLBs forall
K ≥ K + 1 but only for certain small values ofM not less
than 2. Note that although they were proposed in [22], the
focus of [22] was on the tightening of Levenshtein bound for
traditional single-channel (i.e.,M = 1) sequence sets, whereas
in this paper we have extended their tightening capability to
GLB for multi-channel (i.e.,M ≥ 2) QCSS. Furthermore, we
have shown inTheorem 2 and Theorem 3 that weight vector
2 is superior as its admissible set ofM [see (101)] is larger
and subsumes that of weight vector 3.
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