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Amplifiers for the Moran Process

ANDREAS GALANIS, ANDREAS GÖBEL, LESLIE ANN GOLDBERG,
JOHN LAPINSKAS, and DAVID RICHERBY, University of Oxford

The Moran process, as studied by Lieberman, Hauert and Nowak, is a randomised algorithm modelling the
spread of genetic mutations in populations. The algorithm runs on an underlying graph where individuals
correspond to vertices. Initially, one vertex (chosen uniformly at random) possesses a mutation, with fitness
r > 1. All other individuals have fitness 1. During each step of the algorithm, an individual is chosen with
probability proportional to its fitness, and its state (mutant or non-mutant) is passed on to an out-neighbour
which is chosen uniformly at random. If the underlying graph is strongly connected then the algorithm
will eventually reach fixation, in which all individuals are mutants, or extinction, in which no individuals
are mutants. An infinite family of directed graphs is said to be strongly amplifying if, for every r > 1,
the extinction probability tends to 0 as the number of vertices increases. A formal definition is provided
in the paper. Strong amplification is a rather surprising property — it means that in such graphs, the
fixation probability of a uniformly-placed initial mutant tends to 1 even though the initial mutant only has
a fixed selective advantage of r > 1 (independently of n). The name “strongly amplifying” comes from the
fact that this selective advantage is “amplified”. Strong amplifiers have received quite a bit of attention,
and Lieberman et al. proposed two potentially strongly-amplifying families — superstars and metafunnels.
Heuristic arguments have been published, arguing that there are infinite families of superstars that are
strongly amplifying. The same has been claimed for metafunnels. In this paper, we give the first rigorous
proof that there is an infinite family of directed graphs that is strongly amplifying. We call the graphs in
the family “megastars”. When the algorithm is run on an n-vertex graph in this family, starting with a
uniformly-chosen mutant, the extinction probability is roughly n−1/2 (up to logarithmic factors). We prove
that all infinite families of superstars and metafunnels have larger extinction probabilities (as a function
of n). Finally, we prove that our analysis of megastars is fairly tight — there is no infinite family of megastars
such that the Moran algorithm gives a smaller extinction probability (up to logarithmic factors). Also, we
provide a counter-example which clarifies the literature concerning the isothermal theorem of Lieberman
et al.
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1. INTRODUCTION
This paper is about a randomised algorithm called the Moran process. This algorithm
was introduced in biology [Moran 1958; Lieberman et al. 2005] to model the spread
of genetic mutations in populations. Similar algorithms have been used to model the
spread of epidemic diseases, the behaviour of voters, the spread of ideas in social net-
works, strategic interaction in evolutionary game theory, the emergence of monopolies,
and cascading failures in power grids and transport networks [Asavathiratham et al.
2001; Berge 2001; Gintis 2000; Kempe et al. 2003; Liggett 1999].

There has been past work about analysing the expected convergence time of the al-
gorithm [Dı́az et al. 2014; Dı́az et al. 2016]. In fact, the fast-convergence result of [Dı́az
et al. 2014] implies that when the algorithm is run on an undirected graph, and the
“fitness” of the initial mutation is some constant r > 1, there is an FPRAS for the “fixa-
tion probability”, which is the probability that a randomly-introduced initial mutation
spreads throughout the whole graph.

This paper answers an even more basic question, originally raised in [Lieberman
et al. 2005], about the long-term behaviour of the algorithm when it is run on directed
graphs. In particular, the question is whether there even exists an infinite family of
(directed) graphs such that, when the algorithm is run on an n-vertex graph in this
family, the fixation probability is 1 − o(1), as a function of n. A heuristic argument
that this is the case was given in [Lieberman et al. 2005], but a counter-example to
the argument (and to the hypothesized bound on the fixation probability) was given in
[Dı́az et al. 2013]. A further heuristic argument (with a revised bound) was given in
[Jamieson-Lane and Hauert 2015]. Here we give the first rigorous proof that there is
indeed a family of “amplifiers” with fixation probability 1−o(1). Before describing this,
and the other results of this paper, we describe the model.

The Moran algorithm has a parameter r which is the fitness of “mutants”. All non-
mutants have fitness 1. The algorithm runs on a directed graph. In the initial state,
one vertex is chosen uniformly at random to become a mutant. After this, the algo-
rithm runs in discrete steps as follows. At each step, a vertex is selected at random,
with probability proportional to its fitness. Suppose that this is vertex v. Next, an out-
neighbour w of v is selected uniformly at random. Finally, the state of vertex v (mutant
or non-mutant) is copied to vertex w.

If the graph is finite and strongly connected then with probability 1, the process
will either reach the state where there are only mutants (known as fixation) or it
will reach the state where there are only non-mutants (extinction). In this paper, we
are interested in the probability that fixation is reached, as a function of the mutant
fitness r, given the topology of the underlying graph. If r < 1 then the single initial
mutant has lower fitness than the non-mutants that occupy every other vertex in the
initial configuration, so the mutation is overwhelmingly likely to go extinct. If r = 1,
an easy symmetry argument shows that the fixation probability is 1

n in any strongly
connected graph on n vertices [Dı́az et al. 2014, Lemma 1].1 Because of this, we restrict
attention to the case r > 1. Perhaps surprisingly, a single advantageous mutant can
have a very high probability of reaching fixation, despite being heavily outnumbered
in the initial configuration.

A directed graph is said to be regular if there is some positive integer d so that the
in-degree and out-degree of every vertex is d. In a strongly connected regular graph
on n vertices, the fixation probability of a mutant with fitness r > 1 when the Moran

1The result is stated in [Dı́az et al. 2014] for undirected graphs but the proof goes through unaltered for
strongly connected directed graphs.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January 2016.



Amplifiers for the Moran Process A:3

algorithm is run is given by

ρreg(r, n) =
1− 1

r

1− 1
rn

, (1)

so the extinction probability of such a mutant is given by

ζreg(r, n) =
1
r −

1
rn

1− 1
rn

. (2)

Thus, in the limit, as n tends to ∞, the extinction probability tends to 1/r. To see
why (1) and (2) hold, note that, for every configuration of mutants, the number of edges
from mutants to non-mutants is the same as the number of edges from non-mutants
to mutants. Suppose that the sum of the individuals’ fitnesses is W and consider an
edge (u, v). If u is a mutant in the current state, it is selected to reproduce with proba-
bility r/W , and, if this happens, the offspring is placed at v with probability 1/d. Sim-
ilarly, if u is not a mutant, reproduction happens along (u, v) with probability 1/(dW ).
So, in any state, the number of mutants is r times as likely to increase at the next step
of the process as it is to decrease. If we observe the number of mutants every time it
changes, the resulting stochastic process is a random walk on the integers, that starts
at 1, absorbs at 0 and n, increases with probability r

r+1 and decreases with probabil-
ity 1

r+1 . It is well known that this walk absorbs at n with probability (1) and at 0 with
probability (2). In particular, the undirected n-vertex complete graph is regular. Thus,
by (2), its extinction probability tends to 1/r.

When the Moran process is run on non-regular graphs the extinction probability
may be quite a bit lower than 1/r. Consider the undirected (n+ 1)-vertex “star” graph,
which consists of single centre vertex that is connected by edges to each of n leaves.
In the limit as n → ∞, the n-leaf star has extinction probability 1

r2 [Lieberman et al.
2005; Broom and Rychtár 2008]. Informally, the reason that the extinction probability
is so small is that the initial mutant is likely to be placed in a leaf, and, at each step, a
mutation at a leaf is relatively unlikely to be overwritten.

Lieberman et al. [2005] refer to graphs which have smaller extinction probability
than (2) (and therefore have larger fixation probability than (1)) as amplifiers. The
terminology comes from the fact that the selective advantage of the mutant is being
“amplified” in such graphs.

The purpose of this paper is to explore the long-term behaviour of the Moran process
by quantifying how good amplifiers can be. For this, it helps to have some more formal
definitions.

Definition 1.1. Consider a function ζ(r, n) : R>1×Z≥1 → R≥0. An infinite family Υ of
directed graphs is said to be up-to-ζ fixating if, for every r > 1, there is an n0 (depending
on r) so that, for every graph G ∈ Υ with n ≥ n0 vertices, the following is true: When
the Moran process is run on G, starting from a uniformly-random initial mutant, the
extinction probability is at most ζ(r, n).

Equation (2) demonstrates that the infinite family of strongly-connected regular
graphs is up-to-ζreg fixating and since ζreg ≤ 1/r, this family is also up-to-1/r fixating.
Informally, an infinite family of graphs is said to be amplifying if it is up-to-ζ fixating
for a function ζ(r, n) which is “smaller” than ζreg(r, n). Here is the formal definition.

Definition 1.2. An infinite family of directed graphs is amplifying if it is up-to-ζ
fixating for a function ζ(r, n) which, for every r > 1, satisfies limn→∞ ζ(r, n) < 1/r.
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The infinite family of graphs containing all undirected stars (which can be viewed
as directed graphs with edges in both directions) is up-to-ζ(r, n) fixating for a function
ζ(r, n) satisfying limn→∞ ζ(r, n) = 1/r2, so this family of graphs is amplifying.

Lieberman et al. [2005] were interested in infinite families of digraphs for which the
extinction probability tends to 0, prompting the following definition.

Definition 1.3. An infinite family of directed graphs is strongly amplifying if it is up-
to-ζ fixating for a function ζ(r, n) which, for every r > 1, satisfies limn→∞ ζ(r, n) = 0.

Note that the infinite family of undirected stars is not strongly amplifying since the
extinction probability of stars tends to 1/r2 rather than to 0.

Prior to this paper, there was no (rigorous) proof that a strongly amplifying family of
digraphs exists (though there were heuristic arguments, as we explain later). Proving
rigorously that there is an infinite family of directed graphs that is strongly amplifying
for the Moran algorithm is one of our main contributions.

Lieberman et al. [2005] produced good intuition about strong amplification and de-
fined two infinite families of graphs — superstars and metafunnels — from which it
turns out that strongly amplifying families can be constructed. It is extremely diffi-
cult to analyse the Moran process on these families, due mostly to the complexity of
the graphs, and the difficulty of dealing with issues of dependence and concentration.
Thus, all previous arguments have been heuristic. For completeness, we discuss these
heuristic arguments in Section 1.4.

In this paper, we define a new family of digraphs called megastars. The definition
of megastars is heavily influenced by the superstars of Lieberman et al. Our main
theorem is the following.

THEOREM 1.4. There exists an infinite family of megastars that is strongly ampli-
fying.

Megastars are not easier to analyse than superstars or metafunnels. The reason for
our focus on this class of graphs is that it turns out to be provably better amplifying
than any of the previously-proposed families. We will present several theorems along
these lines. Before doing so, we define the classes of graphs.

1.1. Metafunnels, superstars and megastars
1.1.1. Metafunnels. We start by defining the metafunnels of [Lieberman et al. 2005].

Let k, ` and m be positive integers. The (k, `,m)-metafunnel is the directed graph Gk,`,m
defined as follows. (See Figure 1.)

The vertex set V (Gk,`,m) is the union of k + 1 disjoint sets V0, . . . , Vk. The set V0

contains the single vertex v∗ which is called the centre vertex. For i ∈ [k], Vi is the
union of ` disjoint sets Vi,1, . . . , Vi,`, each of which has size mi. The edge set of Gk,`,m is

(V0 × Vk) ∪ (V1 × V0) ∪
⋃

i∈[k−1]

⋃
j∈[`]

(Vi+1,j × Vi,j) .

Lieberman et al. refer to metafunnels with ` = 1 as “funnels”.

1.1.2. Superstars. We next define the superstars of [Lieberman et al. 2005]. Let k, `
and m be positive integers. The (k, `,m)-superstar is the directed graph Sk,`,m defined
as follows. (See Figure 2.) The vertex set V (Sk,`,m) of Sk,`,m is the disjoint union of `
size-m sets R1, . . . , R` (called reservoirs) together with k` vertices v1,1, v1,2, . . . , v`,k and
a single centre vertex v∗. The edge set of Sk,`,m is given by

E(Sk,`,m) =
⋃̀
i=1

(
({v∗} ×Ri) ∪ (Ri × {vi,1}) ∪ {(vi,j , vi,j+1) | j ∈ [k − 1]} ∪ {(vi,k, v∗)}}

)
.
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v∗

v∗

V3,2

V2,2

V1,2

V3,1

V2,1

V1,1

V3,3

V2,3

V1,3

V3,4

V2,4

V1,4

Fig. 1. The metafunnel G3,4,2. All edges are directed downwards in the diagram and the centre vertex v∗ is
shown twice, once at the top and once at the bottom of the diagram. There are ` = 4 copies of the basic unit,
each of which consists of k = 3 levels V1,j , V2,j and V3,j , with |Vi,j | = mi = 2i.

v∗

v∗

R2

v2,1

v2,2

v2,3

v2,4

R1

v1,1

v1,2

v1,3

v1,4

R3

v3,1

v3,2

v3,3

v3,4

Fig. 2. The superstar S4,3,5, with ` = 3 reservoirs R1, R2 and R3, each of size m = 5, connected by a path
with k = 4 vertices to v∗. The centre vertex v∗ is shown twice, at both the top and bottom of the diagram.

1.1.3. Megastars. Finally, we define the new class of megastars, which turn out to be
provably-better amplifiers than either metafunnels or superstars. The intuition behind
the design of this class of graphs is that the path vi,1vi,2 . . . vi,k linking the i’th reser-
voir Ri of a superstar to the centre vertex v∗ is good for amplifying but that a clique is
even better.

Let k, ` and m be positive integers. The (k, `,m)-megastar is the directed graph
Mk,`,m defined as follows. (See Figure 3.) The vertex set V (Mk,`,m) of Mk,`,m is the
disjoint union of ` sets R1, . . . , R` of size m, called reservoirs, ` sets K1, . . . ,K` of size k,
called cliques, ` “feeder vertices” a1, . . . , a` and a single centre vertex v∗. The edge set
ofMk,`,m consists of the following edges:
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v∗

v∗

a1

R1

K1

a2

R2

K2

Fig. 3. The megastar M3,2,4, with ` = 2 reservoirs R1 and R2, each of size m = 4. Each reservoir Ri is
attached, via the feeder vertex ai to a clique of size k = 3. The centre vertex v∗ is shown twice, once at the
top and once at the bottom of the diagram. The edges within the cliques K1 and K2 are bidirectional.

— an edge from v∗ to every vertex in R1 ∪ · · · ∪R`,
— for each i ∈ [`], an edge from each vertex in Ri to ai,
— for each i ∈ [`], an edge from ai to each vertex in Ki,
— for each i ∈ [`], edges in both directions between every pair of distinct vertices in Ki,
— an edge from every vertex in K1 ∪ · · · ∪K` to v∗.

1.2. Our results
Our main result is that there is an infinite family of megastars that is strongly am-
plifying, so we start by defining this family. Although megastars are parameterised
by three parameters, k, ` and m, the megastars in the family that we consider have a
single parameter `, so we define k and m to be functions of `.

Definition 1.5. Let m(`) = ` and k(`) = d(log `)23e. Let

ΥM = {Mk(`),`,m(`) | ` ∈ Z, ` ≥ 2}.

Our main result can then be stated as follows.

THEOREM 1.6. Let ζM(r, n) = (log n)23n−1/2. The family ΥM is up-to-ζM fixating.

COROLLARY 1.7. The family ΥM is strongly amplifying.

The proof of Theorem 1.6 requires a complicated analysis, accounting for dependen-
cies and concentration. The theorem, as stated here, follows directly from Theorem 6.1
which is proved in Section 6 (see Page 52).

The reason that we studied megastars rather than the previously-introduced super-
stars and metafunnels is that megastars turn out to be provably better amplifying than
any of the previously-proposed families. To demonstrate this, we prove the following
theorem about superstars.

THEOREM 1.8. Let ζ(r, n) be any function such that, for any r > 1,

lim
n→∞

ζ(r, n)(n log n)
1/3

= 0.

Then there is no infinite family of superstars that is up-to-ζ fixating.
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The function ζM from Theorem 1.6 certainly satisfies limn→∞ ζM(r, n)(n log n)
1/3

= 0,
so Theorem 1.8 shows that there is no infinite family of superstars that is up-to-ζM
fixating. More mundanely, it shows, for example, that if ζ(r, n) = n−1/3(log n)

−1, then
no infinite family of superstars is up-to-ζ fixating. Theorem 1.8 is a direct consequence
of Theorem 4.1 which is proved in Section 4 (see Page 19). It turns out that analysing
superstars is a little bit easier than analysing megastars or metafunnels, so this is the
first proof that we present.

Taken together, Theorems 1.6 and 1.8 show that superstars are worse amplifiers
than megastars. We next show that metafunnels are substantially worse. We start
with the following simple-to-state theorem.

THEOREM 1.9. Fix any δ > 0 and let ζ(r, n) = n−δ. Then there is no infinite family
of metafunnels that is up-to-ζ fixating.

In fact, Theorem 1.9 can be strengthened by an exponential amount.

THEOREM 1.10. Fix any ε < 1/2 and let ζ(r, n) = n−1/(logn)ε . Then there is no
infinite family of metafunnels that is up-to-ζ fixating.

Theorems 1.9 and 1.10 are a direct consequence of Theorem 5.1 which is proved in
Section 5 (see Page 32). In fact, Theorem 5.1 provides even tighter bounds, though
these are more difficult to state.

The theorems that we have already described (Theorem 1.6, Theorem 1.8 and The-
orem 1.10) are the main contributions of the paper. Together, they show that there is
a family of megastars that is strongly amplifying, and that there are no families of su-
perstars or metafunnels that amplify as well. For completeness, we present a theorem
showing that the analysis of Theorem 1.6 is fairly tight, in the sense that there are no
infinite families of megastars that amplify substantially better than ΥM — in partic-
ular, our bound on extinction probability can only be improved by factors of log(n). It
cannot be improved more substantially.

THEOREM 1.11. Let ζ(r, n) = n−1/2/(52r2). There is no infinite family of megastars
that is up-to-ζ fixating.

Theorem 1.11 follows from Theorem 7.3, which is straightforward, and is proved
in Section 7 (see Page 86). We conclude the paper with a digression which perhaps
clarifies the literature. It is stated, and seems to be commonly believed, that an evo-
lutionary graph (a weighted version of the Moran process — see Section 8 for details)
is “isothermal” if and only if the fixation probability of a mutant placed uniformly at
random is ρreg(r, n). This belief seems to have come from an informal statement of the
“isothermal theorem” in the main body of [Lieberman et al. 2005] (the formal state-
ment in the supplementary material of [Lieberman et al. 2005] is correct, however)
and it has spread, for example, as Theorem 1 of [Shakarian et al. 2012]. In the final
section of our paper, we clear this up by proving the following proposition, which says
that there is a counter-example.

PROPOSITION 1.12. There is an evolutionary graph that is not isothermal, but has
fixation probability ρreg(r, n).

The definitions needed to prove Proposition 1.12 are deferred to Section 8 (see
Page 87).

1.3. Proof techniques
As we have seen, it is easy to study the Moran process on a d-regular graph by con-
sidering the transition matrix of the corresponding Markov chain (which looks like a
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one-dimensional random walk). Highly symmetric graphs such as undirected stars can
also be handled in a straightforward matter, by directly analysing the transition ma-
trix. Superstars, metafunnels and megastars are more complicated, and the number of
mutant-configurations is exponential, so instead we resort to dividing the process into
phases, as is typical in the study of randomised algorithms and stochastic processes.

An essential and common trick in the area of stochastic processes (for example, in
work on the voter model) is moving to continuous time. Instead of directly studying
the discrete-time Moran process, one could consider the following natural continuous-
time model which was studied in [Dı́az et al. 2016]: Given a set of mutants at time t,
each vertex waits an amount of time before reproducing. For each vertex, the period of
time is chosen according to the exponential distribution with parameter equal to the
vertex’s fitness, independently of the other vertices. If the first vertex to reproduce is v
at time t+τ then, as in the standard, discrete-time version of the process, one of its out-
neighbours w is chosen uniformly at random, the individual at w is replaced by a copy
of the one at v, and the time at which w will next reproduce is exponentially distributed
with parameter given by its new fitness. The discrete-time process is recovered by
taking the sequence of configurations each time a vertex reproduces. Thus, the fixation
probability of the discrete-time process is exactly the same as the fixation probability of
the continuous-time process. So moving to the continuous-time model causes no harm.
As Dı́az et al. [2016] explain, analysis can be easier in the continuous-time model
because certain natural stochastic domination techniques apply in the continuous-time
setting but not in the discrete-time setting.

It turns out that moving to the model of Dı́az et al. [2016] does not suffice for our
purposes. A major problem in our proofs is dealing with dependencies. In order to
make this feasible, we instead study a continuous-time model (see “the clock process”
in Section 3.1) in which every edge of the underlying graph G is equipped with two
Poisson processes, one of which is called a mutant clock and the other of which is
called a non-mutant clock. The clock process is a stochastic process in which all of
these clocks run independently. The continuous-time Moran process (Definition 3.2)
can be recovered as a function of the times at which these clocks trigger.

Having all of these clocks available still does not give us the flexibility that we need.
We say that a vertex u “spawns a mutant” in the Moran process if, at some point in
time, u is a mutant, and it is selected for reproduction. We wish to be able to discuss
events such as the event that the vertex u does not spawn a mutant until it has already
been a mutant for some particular amount of time. In order to express such events in
a clean way, making all conditioning explicit, we define additional stochastic processes
called “star-clocks” (see Section 3.3). All of the star-clocks run independently in the
star-clock process.

In Section 3.4 we provide a coupling of the star-clock process with the Moran pro-
cess. The coupling is valid in the sense that the two projections are correct — the
projection onto the Moran process runs according to the correct distribution and so
does the projection onto the star-clock process. The point of the coupling is that the dif-
ferent star-clocks can be viewed as having their own “local” times. In particular, there
is a star-clock M∗(u,v) which controls reproductions from vertex u onto vertex v during
the time that u is a mutant. The coupling enables us to focus on relevant parts of the
stochastic process, making all conditioning explicit.

The processes that we have described so far are all that we need to derive our upper
bound on the fixation probability of superstars (Section 4). This is the easiest of our
main results.

Analysing the Moran process on metafunnels is more difficult. By design, the initial
mutant x0 is likely to be placed in the “top of a funnel” (in the set Vk). In the analysis,
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Amplifiers for the Moran Process A:9

it is useful to be able to create independence by considering a “strain” of mutants
which contains all of the descendants of a particular mutant spawned by x0. Like the
Moran process itself, a strain can be viewed as a stochastic process depending on the
triggering of the clocks. In order to facilitate the proof, we define a general notion of
“mutant process” (Section 3.2) — so the Moran process is one example of a mutant
process, and a strain is another. The analysis of the Moran process on metafunnels
involves both of these and also a third mutant process which is essentially the bottom
level of a strain (called its head). Strains and heads-of-strains share some common
properties, and they are analysed together as “colonies” in Section 5.4.1. The analysis
of the metafunnel is the technically most difficult of our results.

Fortunately, the analysis of the megastar in Section 6 does not require three different
types of mutant processes — it only requires one. The process that is considered is
not the Moran process itself. Instead, it is a modification of the Moran process called
the megastar process. The megastar process is similar to the Moran process except
that the feeder vertices are forced to be non-mutants, except when their corresponding
cliques are completely full or completely empty. It is easy to show (see the proof of
Theorem 6.1) that the fixation probability of the Moran process is at least as high
as the fixation probability of the megastar process. However, the megastar process is
somewhat easier to analyse because the cliques evolve somewhat independently. The
proof of the key lemma (Lemma 6.3) is fairly long but it is not conceptually difficult.
The point is to prove that, with high probability, the cliques fill up and cause fixation.

1.4. Comparison with previous work
The Moran process is similar to a discrete version of directed percolation known as the
contact process. There is a vast literature (e.g., [Liggett 1999; Durrett 2010; Shah 2009;
Durrett and Steif 1993]) on the contact process and other related infection processes
such as the voter model and susceptible-infected-susceptible (SIS) epidemic models.
Often, the questions that are studied in these models are different from the question
that we study here. For example, in voter systems [Durrett and Steif 1993] the two
states (mutant/non-mutant) are often symmetric (similar to our r = 1 case) and the
models are often studied on infinite graphs where the question is whether the pro-
cess absorbs or not (both kinds of absorption, fixation and extinction, are therefore
called “fixation” in some of this work). The particular details of the Moran process are
very important for us because the details of the algorithm determine the long-term
behaviour. For example, unlike the Moran process, in the contact process [Bezuiden-
hout and Grimmett 1990], the rate at which a node becomes a non-mutant is typically
taken to be 1, whereas the rate at which a node becomes a mutant is proportional to
the number of mutant neighbours. In the discrete-time versions of many commonly-
studied models, a node is chosen randomly at each step for replacement, rather than
(as in the Moran process) for reproduction. In any case, the important point for us is
that the details of the algorithm are important — results do not carry over from one al-
gorithm to the other. Therefore, we concentrate in this section on previous work about
calculating the fixation probability of the Moran process itself.

Lieberman et al. [2005] studied the fixation probability of the Moran process and
introduced superstars and metafunnels. Intuitively, a superstar is a good amplifier be-
cause (as long as m is sufficiently large) the initial mutation is likely to be placed in a
reservoir and (as long as ` is sufficiently large) this is unlikely to be killed quickly by
the centre vertex. Moreover, the paths of a superstar are good for amplifying the selec-
tive advantage of mutants because, after the infection spreads from a reservoir vertex
to the beginning of a path, it is likely to “pick up momentum” as it travels down the
path, arriving at the centre vertex as a chain of Θ(k) mutants (which, taken together,
are more likely to cause the centre to spread the infection than a single mutant arriv-
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ing at the centre would be). As we have seen (Theorems 1.6 and 1.8) megastars are
provably better for amplification than superstars. The reason for this is that a clique
is substantially better than a path at doing this “amplification”. Nevertheless, the am-
plifying properties of superstars strongly influenced our decision to study megastars.

Lieberman et al. [2005, Equation (2)] claimed2 that for sufficiently large n, the fixa-
tion probability of a superstar with parameter k tends to 1− r−(k+2), and that “similar
results hold for the funnel and metafunnel”. They provided a heuristic sketch-proof for
the superstar, but not for the funnel or metafunnel. Hauert [2008, Equation (5)] claims
specifically that the fixation probability of funnels tends to 1 − r−(k+1). As far as we
know, no heuristic arguments have been given for funnels or metafunnels.

In any event, Dı́az et al. [2013] showed that the 1 − r−(k+2) claim for superstars is
incorrect for the case k = 3. In particular, for this case they showed that the fixation
probability is at most 1 − r+1

2r5+r+1 , which is less than the originally claimed value of
1− r−5 for all r ≥ 1.42.

Subsequently, Jamieson-Lane and Hauert [2015, Equation (5)] made a more detailed
but still heuristic3 analysis of the fixation probability of superstars. They claim that
for superstars with parameter k and with ` = m, the fixation probability ρk has the
following bounds for fixed r > 1,

1− 1

r4(k − 1)(1− 1
r )2
− o(1) ≤ ρk ≤ 1− 1

r4(k − 1)
+ o(1), (3)

where the o(1) terms tend to 0 as ` → ∞. They claim that their bounds are a good
approximation as long as k � ` = m ∼

√
n. It is not clear exactly what “�” means in

this context. Certainly there are parameter regimes where k = o(`) and ` = m ∼
√
n

but nevertheless the extinction probability is much larger than the proposed upper
bound 1/(r4(k − 1)(1− 1/r)

2
) from (3). For example, suppose that ` = m = k3/2. In this

case (see Lemma 4.2), the extinction probability is at least
k

2r(m+ k)
=

1

2r(k1/2 + 1)
,

which is larger than 1/(r4(k−1)(1− 1/r)
2
) for all sufficiently large k. Nevertheless, the

bounds proposed by Jamieson-Lane and Hauert (3) seem to be close to the truth when
k is very small compared to ` and m.

Our Corollary 4.6 identifies a wide class of parameters for which the extinction prob-
ability is provably at least 1/(1470r4k). This is weaker than the suggested bound of
Jamieson-Lane and Hauert by a factor of 1470. This constant factor is explained by the
fact that our rigorous proof needs to show concentration of all random variables. We
use lots of Chernoff bounds and other bounds on probabilities. In writing the proof,
we optimised readability rather than optimising our constants, so our constants can
presumably be improved.

There is recent work on other related aspects of the Moran process. For example,
[Mertzios et al. 2013; Mertzios and Spirakis 2013] give fixation probability bounds
on connected undirected graphs. Adlam et al. [2015] study amplification with respect
to adversarial or “temperature-based” placement of the initial mutation, in which the
“temperature” of a vertex is proportional to the sum of all incoming edge weights. Also,

2The reader who consults [Lieberman et al. 2005] might wonder why “k” as written in Equation (2) of
[Lieberman et al. 2005] has become k + 2 here. The reason is just that we use a slightly different parame-
terisation from that of [Lieberman et al. 2005]. To allow appropriate comparison, we describe all previous
work using the parameterisation that we give in Section 1.1.
3A full discussion of the argument of Jamieson-Lane and Hauert (and of the obstacles to making it a rigorous
proof) are discussed in Section 9. This section is not necessary for the rest of the paper.
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Mertzios and Spirakis [2013] consider the extent to which the number of “good starts”
for fixation can be bounded.

1.5. Outline of the paper
Section 2, starting on Page 11, defines some notation and states some well-known
probabilistic bounds (Chernoff bounds and analysis of gambler’s ruin) which will be
used in the proof.

Section 3, starting on Page 15, defines several stochastic processes which we use to
study the Moran process. This section is important. It is impossible to read any of the
proofs without understanding these processes.

Section 4, starting on Page 18, gives an upper bound on the fixation probability of
superstars. The main result of the section is Theorem 4.1, which immediately implies
Theorem 1.8. This is the technically easiest of our main proofs, so we present it first.

Section 5, starting on Page 32, gives a stronger upper bound on the fixation prob-
ability of metafunnels (and hence of funnels). The main result of the section is Theo-
rem 5.1, which immediately implies Theorems 1.9 and 1.10. The proof of Theorem 5.1
has high-level similarity to the proof of Theorem 4.1, but it is much more difficult.
Dependencies cause complications, and we must analyse several mutant processes to
deal with these.

Section 6, starting on Page 52, establishes the existence of an infinite family of
megastars which is strongly amplifying. The main theorem is Theorem 6.1, which
immediately implies Theorem 1.6 and hence Theorem 1.4. In order to deal with de-
pendencies, we study a mutant process called a “megastar process”. We show in the
proof of Theorem 6.1 that this process is dominated by the Moran process. Thus, the
main work of the section is to prove the key lemma, Lemma 6.3, which analyses the
megastar process.

Section 7, starting on Page 85, gives an upper bound showing that the analysis in
Section 6 is fairly tight. The main theorem, Theorem 7.3, is straightforward and it
immediately implies Theorem 1.11.

Section 8, starting on Page 87, gives a simple example of an evolutionary graph that
is not isothermal but has fixation probability ρreg(r, n) (Proposition 1.12), clearing up
a misconception in the literature.

Section 9, starting on Page 88, discusses earlier heuristic analysis of superstars.

2. DEFINITIONS AND PRELIMINARIES
2.1. Notation
We use N−(v) to refer to the set of in-neighbours of a vertex v and N+(v) to refer to
the set of out-neighbours of v. We use d−(v) = |N−(v)| and d+(v) = |N+(v)|.

We refer to the Lebesgue measure of a (measurable) subset S ⊆ R as the measure of
that set, and denote it by len(S).

We use base-e for logarithms unless the base is given explicitly.
We write Z≥0 = {0, 1, 2, . . . }, Z≥1 = {1, 2, . . . }, and [n] = {1, 2, . . . , n}.
If b < a, we consider the interval [a, b] to be well-defined but empty. Likewise if b ≤ a,

we consider the intervals (a, b), (a, b] and [a, b) to be well-defined but empty. We define
empty sums, products, unions etc. to be the identities of the corresponding operations.
For example,

∏0
i=1 i = 1 and

⋃0
i=1Ai = ∅.

Throughout the paper, we use lower case t’s to denote fixed times and upper case T ’s
to denote stopping times.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January 2016.



A:12 Andreas Galanis et al.

2.2. Chernoff bounds
We often use the following simple bound which applies to any real number x ∈ [0, 1].

x/2 ≤ 1− e−x ≤ x. (4)

We will require the following well-known Chernoff bounds. The first appears as Theo-
rem 5.4 of [Mitzenmacher and Upfal 2005].

LEMMA 2.1. Let Y be a Poisson random variable with parameter ρ ≥ 0. If y > ρ
and z < ρ, then

P(Y ≥ y) ≤ e−ρ(eρ)y

yy
and P(Y ≤ z) ≤ e−ρ(eρ)z

zz
.

COROLLARY 2.2. Let Y be a Poisson random variable with parameter ρ ≥ 0. Then
P(Y ≥ 2ρ) ≤ e−ρ/3 and P(Y ≤ 2ρ/3) ≤ e−ρ/16.

PROOF. Lemma 2.1 applied with y = 2ρ and z = 2ρ/3 implies that

P(Y ≥ 2ρ) ≤ e−ρ(eρ)2ρ

(2ρ)2ρ
= e−ρ

(
e2

4

)ρ
= e(1−log 4)ρ ≤ e−ρ/3 ,

P(Y ≤ 2ρ/3) ≤ e−ρ(eρ)z

zz
= e−ρ

(
3e

2

)2ρ/3

= e−(1−2/3−2 log(3/2)/3)ρ ≤ e−ρ/16 .

COROLLARY 2.3. Let Y be a Poisson random variable with parameter ρ > 0. If
y ≥ 8ρ, then

P(Y ≥ y) ≤ e−y.
PROOF. Note that y > e2ρ. Thus by Lemma 2.1, we have

P(Y ≥ y) ≤ e−ρ(eρ)y

yy
≤
(
eρ

y

)y
≤ e−y.

COROLLARY 2.4. Let s be a positive integer and let Y be the sum of s i.i.d. ex-
ponential random variables, each with parameter λ. Then, for any j ≥ 3s/(2λ),
P(Y < j) ≥ 1− e−λj/16.

PROOF. First, note that P(Y < j) = P(Y ≤ j) since P(Y = j) = 0. Then P(Y ≤ j)
is equal to the probability that a Poisson process with parameter λ triggers at least s
times in the interval [0, j]. This is the same as the probability that a Poisson ran-
dom variable with parameter λj is at least s. Since s ≤ 2λj/3, we can now use Corol-
lary 2.2.

The following is Corollary 2.4 of [Janson et al. 2000].

LEMMA 2.5. Suppose that Y follows the binomial distribution with n Bernoulli
trials, each with success probability p ∈ (0, 1) and that c > 1. Then, for all y ≥ cnp,
P(Y ≥ y) ≤ e−ϕ(c)y, where ϕ(c) = log c− 1 + 1/c. Note that ϕ(2) > 1/6 and ϕ(7) > 1.

We define the geometric distribution as follows. Given a biased coin which comes up
heads with probability p > 0, imagine tossing it until it comes up heads. Then the
total number of tosses which came up tails follows the geometric distribution with
parameter p.

LEMMA 2.6. Let Y1, . . . , Yt be a sequence of i.i.d. geometric variables with parameter
p ≥ 13/14. Then

P
(
Y1 + · · ·+ Yt ≥ 14t(1− p)

)
≤ e−14t(1−p) .
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PROOF. Consider a series of independent coin tosses, each with probability p of com-
ing up heads. Then the probability that Y1+· · ·+Yt ≥ 14t(1−p) is exactly the probability
that at least d14t(1 − p)e of the first t + d14t(1 − p)e − 1 coin tosses come up tails. By
Lemma 2.5, the probability that at least d14t(1− p)e of the first 2t coin tosses come up
tails is at most e−14t(1−p), and 2t ≥ t+ d14t(1− p)e − 1, so the result follows.

2.3. Gambler’s ruin
The following analysis of the classical gambler’s ruin problem is well-known. See, for
example, [Feller 1968, Chapter XIV].

LEMMA 2.7 (CLASSICAL GAMBLER’S RUIN). Consider a random walk on Z≥0 that
absorbs at 0 and a (for some positive integer a), starts at z ∈ {0, . . . , a} and from each
state in {1, . . . , a−1} has probability p 6= 1/2 of increasing (by 1) and probability q = 1−p
of decreasing (by 1).

(i) The probability of reaching state a is
(q/p)z − 1

(q/p)a − 1
.

(ii) The expected number of transitions until absorption is
z

q − p
−
(

a

q − p

)(
1− (q/p)z

1− (q/p)a

)
.

COROLLARY 2.8 (GAMBLER’S RUIN INEQUALITIES). Consider a random walk on
Z≥0 that absorbs at 0 and a (for some positive integer a), starts at z ∈ [0, a] and from
each state in {1, . . . , a − 1} has probability p 6= 1/2 of increasing (by 1) and probability
q = 1− p of decreasing (by 1).

(i) If p > q then the probability of reaching state a is at least 1− (q/p)z.
(ii) If q > p then the expected number of transitions until absorption is at most z/(q −

p).
(iii) If p > q then the expected number of transitions until absorption is at most (a −

z)/(p− q).
PROOF. Items (i) and (ii) are immediate. To see (iii) for p > q, rewrite the expected

number of transitions as(
a

p− q

)(
1− (q/p)z

1− (q/p)a

)
− z

p− q
≤ a− z
p− q

.

We also consider a variant of the gambler’s ruin in which the probability of upwards
transitions depends on the current state.

LEMMA 2.9. Let a, b, c and d be integers satisfying a < b < c − 1 and c + 1 < d.
Consider p1 ∈ (1/2, 1). Consider the discrete Markov chain on states {a, . . . , d} with the
following transition matrix.

pa,a = 1,

pi,i+1 =

{
p1 if a+ 1 ≤ i ≤ c,
1/3 if c < i ≤ d− 1,

pi,i−1 = 1− pi,i+1 for all i ∈ {a+ 1, . . . , d− 1},
pd,d = 1.

For integers x, y and z in {a, . . . , d} and subset S of {a, . . . , d}, let px→y;z denote the
probability that, starting from state x, the chain visits state y without passing through z
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and letHx;S be the number of transitions that the chain takes to hit a state in S, starting
from state x.

(i) pc→d;b ≥ 1−
(

1−p1
p1

)c−b
2d−c.

(ii) E[Hc;{a,d}] ≤ 2d−c+1
(

3p1−1
2p1−1

)
.

PROOF. We first prove (i). It is immediate that
pc→d;b = (1− p1)pc−1→d;b + p1pc+1→d;b

= (1− p1)pc−1→c;bpc→d;b + p1pc+1→d;c + p1(1− pc+1→d;c)pc→d;b.

Rearranging,

pc→d;b =
p1pc+1→d;c

(1− p1)(1− pc−1→c;b) + p1pc+1→d;c
. (5)

Now from Lemma 2.7(i),

pc+1→d;c =
2− 1

2d−c − 1
≥ 2−(d−c) . (6)

Also, from Corollary 2.8(i),

pc−1→c;b ≥ 1−
(

1−p1
p1

)c−b−1

,

so

1− pc−1→c;b ≤
(

1−p1
p1

)c−b−1

.

Plugging these bounds into (5), we get

pc→d;b ≥
1(

1−p1
p1

)c−b
2d−c + 1

= 1−

(
1−p1
p1

)c−b
2d−c(

1−p1
p1

)c−b
2d−c + 1

≥ 1−
(

1− p1

p1

)c−b
2d−c .

We now prove (ii). Clearly,
E[Hc;{a,d}] = 1 + p1E[Hc+1;{a,d}] + (1− p1)E[Hc−1;{a,d}].

But
E[Hc+1;{a,d}] = E[Hc+1;{c,d}] + pc+1→c;dE[Hc;{a,d}]

and
E[Hc−1;{a,d}] = E[Hc−1;{a,c}] + pc−1→c;aE[Hc;{a,d}].

So solving, we get

E[Hc;{a,d}] =
1 + p1E[Hc+1;{c,d}] + (1− p1)E[Hc−1;{a,c}]

1− p1pc+1→c;d − (1− p1)pc−1→c;a
.

Now pc−1→c;a ≤ 1 and by Equation (6), pc+1→c;d ≤ 1 − 2−(d−c). By Corollary 2.8(ii),
E[Hc+1;{c,d}] ≤ 1/( 2

3 −
1
3 ) = 3. Finally, by Corollary 2.8(iii),

E[Hc−1;{a,c}] ≤
1

p1 − (1− p1)
=

1

2p1 − 1
.

Plugging all of these in,

E[Hc;{a,d}] ≤
1 + 3p1 + 1−p1

2p1−1

1− p1(1− 2−(d−c))− (1− p1)
= 2d−c+1

(
3p1 − 1

2p1 − 1

)
.
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3. STOCHASTIC PROCESSES
We will be concerned with the discrete-time Moran process [Moran 1958], as adapted
by Lieberman, Hauert and Nowak [2005] and described in Section 1. This is a discrete
model of evolution on an underlying directed graph G where the reproduction rate of
mutants is a parameter r > 0 called the “fitness”.

In this paper, we consider the situation r > 1, which corresponds to the situation in
which a mutation is advantageous. The fitness r is a parameter of all of our processes.
Our results apply to any fixed r > 1. Since the value of r is fixed, we simplify the
presentation by not including it in the explicit notation and terminology. Thus, from
now on, we say “Moran process” to signify “Moran process with fitness r”.

Following Dı́az et al. [2016] we will simplify our proofs by studying a continuous-
time version of the Moran process. The continuous-time version is also parameterised
by G and r and it has the same fixation probability as the discrete-time version, so our
results will carry over immediately to the discrete process.

In order to deal with conditioning in the proofs we will in fact define several general
stochastic processes, all of which depend on G and r — one of these will be equivalent
to the continuous-time Moran process and others will be useful for dominations.

All of the processes that we study evolve over time. For any process P , we use F(P )
to denote the filtration of P so Ft(P ) captures the history of the process P up to and
including time t.

3.1. The clock process
For each edge e = (u, v) of G we define two Poisson processes — a Poisson process Me

with parameter r/d+(u) and a Poisson process Ne with parameter 1/d+(u). We refer to
these processes as clocks, and when an event occurs in one of them, we say that the
relevant clock triggers. We refer to Me as a mutant clock with source u and target v and
Ne as a non-mutant clock with source u and target v.

We use C(G) to denote the set of all clocks so C(G) =
⋃
e∈E(G){Me, Ne}. We use P (G)

to denote the Cartesian product of all process in C(G). P (G) is the stochastic process in
which all clocks in C(G) evolve simultaneously and independently, starting at time 0.

With probability 1, the clocks trigger a countably infinite number of times and these
can be indexed by an increasing sequence τ1, τ2, . . .. Also, no clocks trigger simultane-
ously and the clocks trigger for an infinitely long period — that is, for every clock and
every t, the clock triggers at some τi > t. For convenience, we take τ0 = 0. We will use
the random variables τ0, τ1, . . . (which depend on the process P (G)) in our arguments.

3.2. Mutant processes
A mutant process µ has an underlying graph G(µ) and initial state µ0. At every time t,
the state µt is a subset of V (G(µ)), which we sometimes refer to as the “set of mutants”
at time t. Every mutant process satisfies the following two constraints.

(1) For all t ≥ 0, µt is determined by Ft(P (G(µ))).
(2) For all t, t′ ≥ 0, if there is a non-negative integer i so that t and t′ are both in the

range [τi, τi+1) then µt = µt′ .

We define some terminology associated with the mutant process µ.

— If the clock M(u,v) triggers at time t and u ∈ µt we say that u spawns a mutant onto v
in µ at time t and that µ spawns a mutant onto v at time τi.

— If the clock N(u,v) triggers at time t and u /∈ µt we say that u spawns a non-mutant
onto v in µ at time t. We say that µ spawns a non-mutant onto v at time τi.

— If v ∈ µτi and v 6∈ µτi−1
we say that v becomes a mutant in µ at time τi.
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— If v ∈ µτi−1 and v 6∈ µτi we say that v becomes a non-mutant in µ at time τi or that v
dies in µ at time τi.

When the mutant process is absolutely clear from the context, we sometimes drop the
phrase “in µ”. Note that v does not necessarily become a mutant at time τi when some
u spawns a mutant onto v at time τi since v may already be a mutant at that time.

For convenience, we include the filtration Ft(P (G)) in the filtration Ft(µ) of the mu-
tant process so the sequence of trigger-times τ0, τ1, . . . up to time t can be determined
from Ft(µ).

Remark 3.1. Sometimes we will consider a mutant process µ in which the initial
state µ0 is a randomly chosen subset of V (G(µ)). When we do this, we assume that the
choice of the initial state µ0 is independent of the triggering of the clocks in C(G(µ)).

We will define several mutant processes in the course of our proofs, but the most
fundamental is the Moran process itself, which is a particular mutant process.

Definition 3.2 (the Moran process). The (continuous-time) Moran process on graph
G with initial mutant x0 ∈ V (G) is a mutant process X with G(X) = G and X0 = {x0}
defined as follows. Recall that, for every positive integer i, a clock C ∈ C(G) triggers at
τi. For t ∈ (τi−1, τi), we set Xt = Xτi−1 . Then we define Xτi as follows.

(i) If C = M(u,v) for some (u, v) ∈ E(G) and u ∈ Xτi−1 then Xτi = Xτi−1 ∪ {v}.
(ii) If C = N(u,v) for some (u, v) ∈ E(G) and u /∈ Xτi−1

then Xτi = Xτi−1
\ {v}.

(iii) Otherwise, Xτi = Xτi−1
.

Considering the positive integers i in order, this completes the definition of the Moran
process Xt.

Remark 3.3. It is clear from Definition 3.2 that the Moran process Xt is a mutant
process. In Definition 3.2, say that τi is a “relevant trigger time” if (i) or (ii) occurs
rather than (iii). The discrete-time Moran process [Moran 1958], as adapted by Lieber-
man et al. [2005] is the Markov chain Xτ0 , Xτi1

, Xτi2
, . . ., where τi1 , τi2 , . . . is the in-

creasing sequence of relevant trigger times. Note that the fixation probability of the
discrete-time Moran process is the same as the fixation probability of the continuous-
time process Xt, so we will study the process Xt in this paper.

Definition 3.4. We say that a mutant process is extinct by time t if, for all t′ ≥ t,
µt′ = ∅. We say that it fixates by time t if, for all t′ ≥ t, µt′ = V (G(µ)). We say that it
absorbs by time t if it is extinct by time t or it fixates by time t. The fixation probability
is the probability that, for some t, it fixates by time t. The extinction probability is the
probability that, for some t, it is extinct by time t.

Remark 3.5. The Moran process Xt is extinct by time t if Xt = ∅ and fixates by
time t if Xt = V (G(X)). If G is strongly connected then the fixation probability and the
extinction probability sum to 1.

Definition 3.6. For any mutant process µ, any vertex u ∈ V (G(µ)), and any t ≥ 0,
we define im(µ, u, t) to be the measure of the set {t′ ≤ t | u ∈ µt′}. Similarly, we define
in(µ, u, t) to be the measure of the set {t′ ≤ t | u /∈ µt′}.

The subscript “m” stands for “mutant” since im(µ, u, t) is the amount of time that u is
a mutant in µ, up until time t. Similarly, the subscript “n” stands for non-mutant. The
random variables im(µ, u, t) and in(µ, u, t) are determined by Ft(µ). Also, im(µ, u, t) +
in(µ, u, t) = t.
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3.3. The star-clock process
Consider a mutant process µ. We wish to be able to discuss events such as the event
that a vertex u does not spawn a mutant until it has been a mutant for time t. In
order to express such events in a clean way, making all conditioning explicit, we define
additional stochastic processes.

For each edge e = (u, v) of G we define four further Poisson processes — Poisson
processes M∗e and M∗e each with parameter r/d+(u) and Poisson processes N∗e and N∗e
each with parameter 1/d+(u). We refer to these processes as star-clocks. We identify
sources and targets of star-clocks in the same way that we did for clocks. For example,
the star-clock M∗(u,v) has source u and target v.

We use C∗mut(G) to denote the set C∗mut(G) =
⋃
e∈E(G){M∗e , N

∗
e}. We use C∗nmut(G) to

denote the set C∗nmut(G) =
⋃
e∈E(G){N∗e ,M

∗
e}.

The star-clock process P ∗(G) is the stochastic process where all star-clocks in
C∗mut(G) ∪ C∗nmut(G) evolve simultaneously and independently, starting at time 0.

3.4. A coupled process
Given a mutant process µ let G = G(µ). We will now define a stochastic process Ψ(µ)
which is a coupling of µ (which includes the clock process P (G)) with the newly-defined
star-clock process P ∗(G). Intuitively, the idea of the coupling is that each clock M(u,v)

in P (G) will evolve following M∗(u,v) when u is a mutant and following M∗(u,v) when u

is a non-mutant. Similarly, N(u,v) will evolve following N∗(u,v) when u is a non-mutant
and N

∗
(u,v) when u is a mutant. In the coupling, we pause the star-clocks in C∗mut(G) ∪

C∗nmut(G) while they are not being used to drive clocks in C(G), so that, e.g., the “local
time” of a clock M∗(u,v) at global time t is im(µ, u, t).

We will be able to deduce both Ft(µ) and Ft(P ∗(G)) from the filtration FT (Ψ(µ)) of
the coupled process at an appropriate stopping time T — the details are given below.
The fact that the coupling is valid (which we will show below) will ensure that both of
the marginal processes, µ and P ∗(G), evolve according to their correct distributions.

To construct the coupling we start with a copy of the star-clock process P ∗(G) and
with the initial state µ0 of the mutant process µ. We define τ0 = 0 (so we have implicitly
defined Fτ0(µ)).

Suppose that, for some non-negative integer j, we have defined Fτj (µ). Given this
and the evolution of the star-clock process P ∗(G), we will show how to define τj+1 and
Fτj+1

(P (G)) which determine Fτj+1
(µ). To do this, let tj be the minimum t > 0 such

that one of the following occurs.

— For some u ∈ µτj , a star-clock in C∗mut(G) with source u triggers at time im(µ, u, τj) + t,
or

— for some u /∈ µτj , a star-clock in C∗nmut(G) with source u triggers at time in(µ, u, τj) + t.

We define τj+1 = τj + tj . No clocks in C(G) trigger in the interval (τj , τj+1). We now
determine which clock from C(G) triggers at time τj+1 by reconsidering each case.

— If u ∈ µτj and M∗(u,v) triggers at time im(µ, u, τj) + tj then M(u,v) triggers at time τj+1.
— If u ∈ µτj and N∗(u,v) triggers at time im(µ, u, τj) + tj then N(u,v) triggers at time τj+1.
— If u /∈ µτj , and N∗(u,v) triggers at time in(µ, u, τj) + tj then N(u,v) triggers at time τj+1.
— If u /∈ µτj and M∗(u,v) triggers at time in(µ, u, τj) + tj then M(u,v) triggers at time τj+1.

This fully definesFτj+1
(P (G)) and henceFτj+1

(µ). So we have fully defined the coupling
and therefore the process Ψ(µ).
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Before showing that the coupling is valid, it will be helpful to state exactly what in-
formation is contained in Ft(Ψ(µ)). Certainly this includes Ft(µ) which itself includes
Ft(P (G)). Also, Ft(P (G)) defines a non-negative integer j so that t ∈ [τj , τj+1). We will
use j to state the information that Ft(Ψ(µ)) contains about the evolution of P ∗(G).

— For each star-clock C ∈ C∗mut(G) with source u ∈ µτj , Ft(Ψ(µ)) includes a list of the
times in [0, im(µ, u, τj) + t− τj ] when C triggers.

— For each star-clock C ∈ C∗mut(G) with source u /∈ µτj , Ft(Ψ(µ)) includes a list of the
times in [0, im(µ, u, τj)] when C triggers.

— For each star-clock C ∈ C∗nmut(G) with source u /∈ µτj , Ft(Ψ(µ)) includes a list of the
times in [0, in(µ, u, τj) + t− τj ] when C triggers.

— For each star-clock C ∈ C∗nmut(G) with source u ∈ µτj , Ft(Ψ(µ)) includes a list of the
times in [0, in(µ, u, τj)] when C triggers.

To show that the coupling is valid we must show that both of the marginal processes,
µ and P ∗(G), evolve according to their correct distributions. The fact that P ∗(G) does
so is by construction. To show that µ does so, it suffices to prove that for all j ∈ Z≥0 and
all possible values fj of Fτj (µ), the distribution of Fτj+1

(µ) conditioned on Fτj (µ) = fj
is correct. Note that the only information contained in Fτj+1

(µ) but not Fτj (µ) is the
value of τj+1 and the identity of the clock in C(G) that triggers at time τj+1.

Let f ′j be an arbitrary possible value of Fτj (Ψ(µ)) consistent with the event Fτj (µ) =
fj , in the sense that the intersection of the events Fτj (Ψ(µ)) = f ′j and Fτj (µ) = fj
is non-empty. Recall from the definition of Ψ(µ) that, conditioned on Fτj (Ψ(µ)) = fj ,
Fτj+1(µ) depends only on particular star-clocks in particular intervals, as follows.

— For each u ∈ µτj , it depends on the evolution of each star-clock in C∗mut(G) with
source u only during the interval (im(µ, u, τj),∞). It does not depend on the evolution
of star-clocks in C∗nmut(G) with source u.

— For each u /∈ µτj , it depends on the evolution of each star-clock in C∗nmut(G) with
source u only during the interval (in(µ, u, τj),∞). It does not depend on the evolution
of star-clocks in C∗mut(G) with source u.

For each star-clock, these intervals are disjoint from the intervals exposed in f ′j ,
and the start of each interval is determined by f ′j . Moreover, in the interval (τj , τj+1],
each clock in C(G) is triggered by a unique clock in C∗mut(G) ∪ C∗nmut(G) with the same
rate. Thus all clocks in C(G) trigger with the correct rates in this period and they are
independent of each other (since all of the star-clocks in P ∗(G) evolve independently).
We conclude that Fτj+1

(P (G)), and hence Fτj+1
(µ), has the appropriate distribution.

The coupling is therefore valid.
By construction, we have the following observation.

Observation 3.7. Let µ be a mutant process and consider Ψ(µ). Let (u, v) be an edge
of G(µ). Given t > 0, let j be the maximum integer such that τj < t. Then the following
are true.

—M(u,v) triggers at time t if and only if either u ∈ µτj and M∗(u,v) triggers at time
im(µ, u, t) or u /∈ µτj and M∗(u,v) triggers at time in(µ, u, t).

—N(u,v) triggers at time t if and only if either u /∈ µτj and N∗(u,v) triggers at time
in(µ, u, t) or u ∈ µτj and N∗(u,v) triggers at time im(µ, u, t).

4. AN UPPER BOUND ON THE FIXATION PROBABILITY OF SUPERSTARS
Recall the definition of a (k, `,m)-superstar from Section 1.1.2. We use n = `(k+m) + 1
to denote the number of vertices of a (k, `,m)-superstar.
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Given any i ∈ [`], we say that vi,1vi,2 . . . vi,k is the path associated with the reser-
voir Ri. We will often consider the case that the initial mutant x0 is in a reservoir.
When it is possible, we simplify the notation by dropping the index i of the reservoir.
Thus, we write R for the reservoir containing x0 and we write v1 . . . vk for the path
associated with R. So if R = Ri then for each j ∈ [k], we write vj as a synonym for vi,j .
The main result of this section is the following upper bound on the fixation probability
of the superstar.

THEOREM 4.1. Let r > 1. Then there exists a constant cr > 0 (depending on r) such
that the following holds for all positive integers k, ` and m. Choose x0 uniformly at
random from V (Sk,`,m). Let X be the Moran process (with fitness r) with G(X) = Sk,`,m
and X0 = {x0}. Then the probability that X goes extinct is at least 1/(cr(n log n)1/3).

4.1. Proof Sketch
In this Section, we give an informal sketch of the proof of Theorem 4.1. The presen-
tation of the proof itself does not depend upon the sketch so the reader may prefer to
skip directly to the proof. In all of our proof sketches, we use the word “likely” to mean
“sufficiently likely”. We leave the details of “how likely” to the actual proofs.

If m is small relative to k (in particular, if m < k(n log n)
1/3) then the initial mu-

tant x0 is likely to be placed in a path, rather than in a reservoir. If this happens, then
it is likely to go extinct. This easy case is dealt with in Lemma 4.2 and corresponds to
Case 2 in the proof of Theorem 4.1. (Case 1 is the trivial case where n < n0.)

Another easy case arises if ` is sufficiently small relative to n (in particular, if ` =

O((n log n)
1/3

)). This case is dealt with in Lemma 4.3 and corresponds to Case 3 in
the proof of Theorem 4.1. In this case, even when x0 is placed in a reservoir R, it
is still likely that x0 dies before v2 ever becomes a mutant. This is because it takes
roughly Θ(m) time for the mutation to spread from v1 to v2 since a mutant at v1 has
only probability Θ(1/m) of spawning a mutant before it dies. On the other hand, since
` is small, x0 is sufficiently likely to die in Θ(m) time. For details, see the proof of
Lemma 4.3.

The remaining case, Case 4 in the proof of Theorem 4.1, is deemed the “diffi-
cult regime” and is dealt with in Section 4.4. In this case, it is easy to show that
` = Ω(κ log n) and m = Ω(κ) where κ = max{3k, 70r4 log n}.

It is likely that the initial mutant x0 is placed in a reservoir R, and the key lemma,
showing that it is sufficiently likely to go extinct, is Lemma 4.5.

At a very high level, the argument proceeds as follows. Suppose that v∗ does not
spawn a mutant before x0 dies. Then it is very easy to see that, after x0 dies, the path
of reservoir R is likely to go extinct quickly.

Thus, the crux of the argument is to show that x0 is likely to die before v∗ spawns a
mutant. Each time v∗ becomes a mutant it has an O(1/`) chance of spawning a mutant
before dying, so roughly our goal is to show that x0 is sufficiently likely to die before v∗
becomes a mutant Ω(`) times.

Very roughly, our high-level approach is to partition time into intervals of length
κ = O(m). In each block of O(m/κ) such intervals, v2 is likely to become a mutant O(1)
times. Each time this happens, it is likely thatR’s path will again fill with non-mutants
within O(κ) time, so it is likely that vk is a mutant for at most O(κ) time during the
block and it is likely that v∗ becomes a mutant at most O(κ) times during the block.
Combining O(`/κ) blocks, it is likely that v∗ becomes a mutant at most O(`) times by
time `m/κ. Since N(v∗,x0) has rate 1/(`m), it is also likely that x0 dies by time `m/κ.

In more detail, the proof of Lemma 4.5 shows that x0 dies before v∗ spawns a mutant
as long as certain events called P1–P5 occur. These events are defined in the statement
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of Lemma 4.11. They formalise the high-level approach that we have just described.
It is important that most of these events are defined in terms of clock-triggers so that
we can get good upper bounds on the probability that they fail and thus prove (in
Lemma 4.11) that they are likely to occur simultaneously.

The proof of Lemma 4.5 tracks a quantity σ(t) which is the number of times that vk
(the end of the path of the reservoir containing x0) spawns a mutant onto the centre
vertex v∗ by time t. The proof uses P1–P5 to show that σ(t) stays O(`) up to a fixed time
tx0

= O(`m/κ). As we noted, the analysis divides the period up to time tx0
into intervals

of size κ. Event P5 ensures that during most such intervals, non-mutant clocks with
target v1 and mutant clocks with targets v1 and v2 behave appropriately so that, if x0 is
the only mutant in R during the interval, then v2 does not become a mutant during the
interval. The fact that x0 is indeed the only mutant in R follows from event P1 which
ensures that v∗ does not spawn a mutant while σ(t) is small. Then since v2 does not
become a mutant during the interval, event P3 ensures that the clocks along the path
trigger in such a way that (unless v1 or v∗ spawn a mutant) the only mutants remaining
at the end of the interval are in {x0, v1}. This ensures that σ(t) stays small through
another interval. Event P5 only ensures the above during “most such intervals” but
event P4 ensures that the mutant clock with source vk does not trigger too often, so
the remaining intervals are not too problematic. Thus, events P1, P3, P4 and P5, taken
together, ensure that σ(tx0

) is O(`).
Given that σ(tx0

) isO(`), it is easy to show that the initial mutant goes extinct during
the next two intervals (beyond time tx0 ). Event P1 ensures that v∗ doesn’t spawn any
mutants. Event P2 ensures that the initial mutant x0 has already died by time tx0 .
Finally, event P3 ensures that any remaining mutants die in the path during the next
two intervals.

The difficult part of the proof is defining events P1–P5 in such a way that we
can show (in Lemma 4.11) that they are likely to occur simultaneously. It turns out
(Lemma 4.15, Corollary 4.17 and Lemma 4.18) that events P3–P5 are so unlikely to
fail that we bound this probability with a simple union bound, avoiding any complicat-
ing conditioning. (Of course, for this it was necessary to express these events in terms
of clocks rather than in terms of the underlying Moran process.) In order to simplify
the presentation, we deal with P1 and P2 together, in Lemma 4.14. Roughly, they cor-
respond to the event that, as long as σ(t) = O(`) then v∗ does not spawn a mutant at
time t and, for t = tx0 , x0 dies by time t. This event is implied by the conjunction of
three further events.

— E1 is the event that no star-clock M∗(v∗,v) (for any v) triggers in [0, 1/r].
— E2 is the event that the star-clock N∗(v∗,x0) triggers in [0, tx0 − 1].
— E3 corresponds informally to the event that v∗ is a mutant for a period of time

shorter than 1/r during the first O(`) times that it becomes a mutant (though the
formal definition is expressed in terms of clocks, and is a little more complicated).
Note the intention, though, which is to ensure that v∗ is a mutant for a period of time
shorter than 1/r, which makes E1 relevant.

Lemma 4.13 shows that E3 is very likely to hold. In the proof of Lemma 4.14, it is
observed that E1 and E2 are independent (by the definition of the star-clocks) and that
P(E1) = 1/e. The proof demonstrates that E2 is sufficiently likely, giving the desired
bound.

4.2. Glossary

clears before spawning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.8, Page 22
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clears within Ii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.10, Page 23
cr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 4.1, Page 19
Ii = (iκ, (i+ 1)κ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.7, Page 22
im(µ, u, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 3.6, Page 16
in(µ, u, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 3.6, Page 16
K = 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.4, Page 22
κ = max{3k,Kr4 log n} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 4.4, Page 22
(P1), (P2), (P3), (P4), (P5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 4.11, Page 23
protected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.9, Page 23
Ψ(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Section 3.4, Page 17
σ(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.7, Page 22
Sk,`,m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 1.1.2, Page 4
tmax = 2`m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.7, Page 22
Thm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.12, Page 23
Thn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.12, Page 23
tx0

= `m/(Kr4κ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.7, Page 22
Yh = Thn − Thm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 4.12, Page 23

4.3. The easy regimes
LEMMA 4.2. Choose x0 uniformly at random from V (Sk,`,m). Let X be the Moran

process with G(X) = Sk,`,m and X0 = {x0}. The extinction probability of X is at least
k/(2r(m+ k)).

PROOF. We have

P(x0 /∈ R1 ∪ · · · ∪R`) = 1− `m

`(m+ k) + 1
≥ 1− m

m+ k
=

k

m+ k
.

Moreover, if x0 /∈ R1 ∪ · · · ∪ R`, then x0 has an in-neighbour of out-degree 1 so, with
probability at least 1/(1 + r) ≥ 1/(2r), x0 dies before spawning a mutant. The result
therefore follows.

LEMMA 4.3. Suppose m ≥ 12r and x0 ∈ R1 ∪ · · · ∪ R`. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. The extinction probability of X is at least 1/(26r2`).

PROOF. Let R be the reservoir containing x0, and let v1 . . . vk be the path associated
with R. Let ξ = bm/(2r)c, t∗ = m/(4r2) and J = [0, t∗]. For all t ≥ 0, let E1, E2 and E3

t be
events defined as follows.

E1: N(v∗,x0) triggers in J .
E2: M(x0,v1) triggers at most ξ times in J .
E3
t : min{t′ > t | for some v 6= x0, N(v,v1) triggers at t′}

< min{t′ > t |M(v1,v2) triggers at t′}.

Finally, let T iv1 be the i’th time at which the clock M(x0,v1) triggers and define E3 =⋂ξ
i=1 E3

T iv1
.

Suppose that events E1, E2 and E3 occur. We will show that X goes extinct. Let ξ′ be
the number of times that v1 becomes a mutant in J . By E2, ξ′ ≤ ξ. By E3, for each of
the first ξ′ times that v1 becomes a mutant, it dies before spawning a mutant. Thus,
for all t ∈ J , Xt ⊆ {x0, v1}. Also, by E1, x0 dies in J . As soon as x0 dies, and v1 dies for
the (ξ′)’th time, X is extinct.
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We bound P(E1 ∩ E2 ∩ E3) below. Since N(v∗,x0) has rate 1/(`m), we have

P(E1) = 1− e−t
∗/(`m) = 1− e−m/(4r

2`m) ≥ 1−
(

1− 1

8r2`

)
=

1

8r2`
. (7)

Here the inequality follows by (4). Moreover, since M(x0,v1) has rate r, by Corollary 2.2
we have

P(E2) ≥ 1− e−m/(12r) ≥ 1− e−1. (8)
For any t ∈ J , let f be a possible value of Ft(X). Let Φ be the random variable con-

taining the list of times in J at which N(v∗,x0) and M(x0,v1) trigger. Let ϕ be a possible
value of Φ which is consistent with the events Ft(X) = f and E1 ∩ E2. Note that ϕ
determines E1 ∩ E2. By memorylessness and independence of clocks in C(Sk,`,m), we
have

P
(
E3
t | Ft(X) = f,Φ = ϕ

)
=

m− 1

m− 1 + r
= 1− r

m− 1 + r
≥ 1− r

m
.

Thus for all i ∈ [ξ], P
(
E3
T iv1
| E1 ∩ E2

)
≥ 1− r/m. It follows by a union bound that

P
(
E3 | E1 ∩ E2

)
≥ 1− ξ

( r
m

)
≥ 1

2
. (9)

Since E1 and E2 depend entirely on distinct clocks in C(Sk,`,m) in fixed intervals, the
two events are independent. Thus by (7)–(9), we have

P
(
E1 ∩ E2 ∩ E3

)
= P

(
E1
)
P
(
E2
)
P
(
E3 | E1 ∩ E2

)
≥
(

1

8r2`

)(
1− 1

e

)
1

2
≥ 1

26r2`
,

and the result follows.

4.4. The difficult regime
Definition 4.4. Let K = 70 and κ = max{3k,Kr4 log n}.
LEMMA 4.5. Consider any r > 1. There is an n0, depending on r, such that the

following holds. Suppose that ` ≥ Kr4κ log n,m ≥ 6r2κ and n ≥ n0. Fix x0 ∈ R1∪· · ·∪R`.
Let X be the Moran process with G(X) = Sk,`,m and X0 = {x0}. Then the extinction
probability of X is at least 1/(7Kr4κ).

The following corollary, which applies to the regime in which κ = 3k, is immediate.

COROLLARY 4.6. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose that k ≥ (K/3)r4 log n, ` ≥ 3Kr4k log n, m ≥ 18r2k and n ≥ n0.
Fix x0 ∈ R1 ∪ · · · ∪ R`. Let X be the Moran process with G(X) = Sk,`,m and X0 = {x0}.
Then the extinction probability of X is at least 1/(21Kr4k).

The crux of our proof of Lemma 4.5 is Lemma 4.11. In order to state this lemma, we
require the following additional definitions.

Definition 4.7. Let tx0 = `m/(Kr4κ), and tmax = 2`m. For all i ∈ Z≥0, let Ii =
(iκ, (i+ 1)κ]. For all t ∈ [0, tmax], let

σ(t) =
∣∣{t′ ≤ t | vk spawns a mutant onto v∗ at time t′}

∣∣ .
The reason that we give tx0 its name is that we will be most concerned with the case

in which x0 dies in the interval [0, tx0 ].

Definition 4.8. Let I ⊆ [0,∞) be an interval, let R ∈ {R1, . . . , R`}, suppose x0 ∈ R,
and let v1 . . . vk be the path associated with R. We say that v1 clears before spawning a
mutant within I if at least one of the following statements holds:
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(i) M(v1,v2) does not trigger in I, or
(ii) for some v 6= x0, N(v,v1) triggers in I before M(v1,v2) first triggers in I.

Definition 4.9. Let i ∈ Z≥0, let R ∈ {R1, . . . , R`}, suppose x0 ∈ R, and let v1 . . . vk
be the path associated with R. We say that v2 is protected in Ii if both of the following
properties hold.

(i) v1 clears before spawning a mutant within Ii.
(ii) For all t ∈ Ii such that M(x0,v1) triggers at time t, v1 clears before spawning a

mutant within (t, (i+ 1)κ].

In particular, suppose that v2 is protected in Ii and that x0 is the only mutant in R
for the duration of Ii. Then as we will see in the proof of Lemma 4.5, v2 does not become
a mutant in Ii.

Definition 4.10. Let i ∈ Z≥0, let R ∈ {R1, . . . , R`}, suppose x0 ∈ R, and let v1 . . . vk
be the path associated with R. We say that v1 . . . vk clears within Ii if there exist v0 ∈
R \ {x0} and times iκ < t1 < · · · < tk+1 ≤ (i + 1)κ satisfying both of the following
properties.

(i) For all j ∈ [k], N(vj−1,vj) triggers at time tj , and N(vk,v∗) triggers at time tk+1.
(ii) M(x0,v1) does not trigger in the interval [t1, t2].

The purpose of this definition is the following. Suppose that Xiκ ⊆ {x0, v1, . . . , vk, v
∗},

that neither v1 nor v∗ spawns a mutant within Ii, and that v1 . . . vk clears within Ii.
Then, as we will see in the proof of Lemma 4.5, we will have X(i+1)κ ⊆ {x0, v1}.

Our main task will be to prove the following lemma.

LEMMA 4.11. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 6r2κ and n ≥ n0. Let R ∈ {R1, . . . , R`},
and let v1 . . . vk be the path associated with R. Fix x0 ∈ R. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then, with probability at least 1/(7Kr4κ), the
following events occur simultaneously.

P1: ∀t ≤ tmax, σ(t) ≥ b`/(2r)c+ 1 or v∗ does not spawn a mutant at time t.
P2: σ(tx0) ≥ b`/(2r)c+ 1 or x0 /∈ Xtx0

.
P3: For all integers i with 0 ≤ i ≤ tx0

, v1 . . . vk clears within Ii.
P4: For all integers i with 0 ≤ i ≤ tx0

, the clock M(vk,v∗) triggers at most b2rκc times
within Ii.

P5: For all but at most 8r2tx0
/m integers i with 0 ≤ i ≤ tx0

/κ, v2 is protected in Ii.

Note that the definition of P5 considers i up to tx0
/κ, because it corresponds to at

most tx0/κ intervals of length κ. The definitions of P3 and P4 consider larger values
of i. In fact, it is only necessary to take i up to tx0/κ + 2 in P3 and P4 but we state
the lemma as we did to avoid clutter. As a first step towards proving Lemma 4.11, we
prove Lemmas 4.13 and 4.14 which give a lower bound on the probability that P1 and
P2 hold.

Definition 4.12. Let R ∈ {R1, . . . , R`}, let v1 . . . vk be the path associated with R,
and suppose x0 ∈ R. Let X be the Moran process with G(X) = Sk,`,m and X0 = {x0}.
We give two mutual recurrences to define stopping times Thn for all h ∈ Z≥0 and Thm for
all h ∈ Z≥1. The subscript “n” stands for “non-mutant” and the subscript “m” stands for
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“mutant”.

Thn =


0, if h = 0,

min

{
t > Thm

∣∣∣∣ t = tmax or some clock N(v,v∗)

with v 6= vk triggers at t

}
, otherwise.

Thm = min{t > Th−1
n | t = tmax or vk spawns a mutant onto v∗ at t}.

Finally, for all h ∈ Z≥1, let Yh = Thn − Thm.

LEMMA 4.13. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n and n ≥ n0. Let R ∈ {R1, . . . , R`} and let
v1 . . . vk be the path associated with R. Let x0 ∈ R. Let X be the Moran process with
G(X) = Sk,`,m and X0 = {x0}. Then

P

b`/(2r)c∑
i=1

Yi <
1

r

 ≥ 1− 1

n2
.

PROOF. Let n0 be an integer which is sufficiently large with respect to r. We claim
that Y1, . . . , Yb`/(2r)c are stochastically dominated above by b`/(2r)c independent expo-
nential variables, each with parameter ` − 1. To see this claim, fix i ∈ Z≥1, t ≥ 0,
and y1, . . . , yi−1, t

i
m > 0. Let fi be a possible value of Ftim(X). Suppose that the events

Y1 = y1, . . . , Yi−1 = yi−1, T im = tim and Ftim(X) = fi are consistent, and note that in this
case Ftim(X) = fi determines the other events.

If t ≥ 0 satisfies tim + t ≥ tmax, it follows that tim + t ≥ T in and hence if Ftim(X) = fi
then Yi = T in − tim ≤ t. Hence, for all such t,

P
(
Yi ≤ t | Ftim(X) = fi

)
= 1 ≥ 1− e−(`−1)t. (10)

Suppose instead that tim + t < tmax. If Ftim(X) = fi then Yi ≤ t if and only if some clock
N(v,v∗) with v 6= vk triggers in the interval (tim, t

i
m + t]. These clocks have total rate `−1,

and so by memorylessness we have

P
(
Yi ≤ t | Ftim(X) = fi

)
= 1− e−(`−1)t. (11)

Since (10) and (11) apply to every value of fi consistent with Y1 = y1, . . . , Yi−1 = yi−1

and T im = tim, it follows that

P
(
Yi ≤ t | Y1 = y1, . . . , Yi−1 = yi−1

)
≥ 1− e−(`−1)t.

Thus
∑b`/(2r)c
i=1 Yi is stochastically dominated above by a sum S of b`/(2r)c i.i.d. expo-

nential variables with parameter `− 1. Corollary 2.4 applies since

1

r
≥ 3b`/(2r)c

2(`− 1)
,

so we have

P

b`/(2r)c∑
i=1

Yi <
1

r

 ≥ P
(
S <

1

r

)
≥ 1− e−(`−1)/(16r) ≥ 1− 1

n2
,

as required.

We are now in a position to prove that P1 and P2 occur with reasonable probability.
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LEMMA 4.14. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 2 and n ≥ n0. Let R ∈ {R1, . . . , R`} and
let v1 . . . vk be the path associated with R. Let x0 ∈ R. Let X be the Moran process with
G(X) = Sk,`,m and X0 = {x0}. Then P(P1 ∩ P2) ≥ 1/(6Kr4κ).

PROOF. Let n0 be an integer which is sufficiently large with respect to r. Consider
the process Ψ(X). Define the following three events.

E1: no star-clock M∗(v∗,v) (for any v) triggers in [0, 1/r].
E2: the star-clock N∗(v∗,x0) triggers in [0, tx0

− 1].

E3:
∑b`/(2r)c
i=1 Yi < 1/r.

We will prove that P(E1 ∩ E2 ∩ E3) ≥ 1/(6Kr4κ), and that if E1 ∩ E2 ∩ E3 occurs then so
does P1 and P2.

We first bound P(E1 ∩ E2 ∩ E3) below. The sum of the parameters of the star-clocks
in {M∗(v∗,v)} is r, so P(E1) = e−1. We have tx0

= `m/(Kr4κ) ≥ m log n ≥ 2 log n0 by
hypothesis so, by choice of n0, we may assume tx0

≥ 25. The parameter of the star-
clock N∗(v∗,x0) is 1/(`m), so using (4) we have

P(E2) = 1− e−(tx0−1)/(`m) ≥ 1− e−24tx0/(25`m) ≥ 12tx0

25`m
=

12

25Kr4κ
.

Note that E1 and E2 are independent of each other by the definition of the star-
clock process P ∗(Sk,`,m) and the fact that the intervals in the definitions of E1 and
E2 are fixed: tx0

= `m/(Kr4κ) does not depend on the evolution of Ψ(X). So we have
P(E1 ∩ E2) ≥ 12/(25eKr4κ). Finally, by Lemma 4.13 together with the fact that κ ≤ n,
it follows that

P(E1 ∩ E2 ∩ E3) ≥ P(E1 ∩ E2)− P(E3) ≥ 12

25eKr4κ
− 1

n2
≥ 1

6Kr4κ
. (12)

We next show that E1 and E3 together imply that P1 occurs. If v∗ does not spawn a
mutant before time tmax then P1 occurs, so suppose instead that v∗ spawns a mutant
for the first time at some time tsp ≤ tmax. ( The “s” subscript in tsp stands for “spawn”.)
We must show that σ(tsp) ≥ b`/(2r)c + 1. This will ensure that P1 occurs since σ(t) is
monotonically increasing.

Since v∗ spawns no mutants before time tsp, we have Xt ⊆ {x0, v1, . . . , vk, v
∗} for all

t < tsp, and so (recalling Definition 3.6)

im(X, v∗, tsp) ≤
∑
i≥1,
T im<tsp

Yi. (13)

Since E3 occurs, we have ∑
1≤i≤b`/(2r)c,

T im<tsp

Yi <
1

r
. (14)

However, since E1 occurs and v∗ spawns a mutant at tsp, we have im(X, v∗, tsp) ≥ 1/r.
Therefore by (13) and (14), ∑

i≥1,
T im<tsp

Yi >
∑

1≤i≤b`/(2r)c,
T im<tsp

Yi.

Hence T b`/(2r)c+1
m < tsp. Thus, σ(tsp) ≥ b`/(2r)c+ 1, and P1 occurs.
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Finally, we show that P1, E2 and E3 together imply that P2 occurs. Suppose σ(tx0) ≤
b`/(2r)c. We have tx0 ≤ `m ≤ tmax, so by P1, v∗ spawns no mutants in [0, tx0 ]. Hence as
in (13), we have

im(X, v∗, tx0
) ≤

∑
i≥1,

T im<tx0

Yi =
∑
i≥1,

T im≤tx0

Yi.

Since σ(tx0
) ≤ b`/(2r)c, it follows by E3 that im(X, v∗, tx0

) < 1/r and therefore
in(X, v

∗, tx0) ≥ tx0 − 1/r > tx0 − 1. Since E2 occurs, it follows that v∗ spawns a non-
mutant onto x0 at some time t ≤ tx0 . Since v∗ spawns no mutants in [0, tx0 ], x0 cannot
become a mutant in (t, tx0 ], so x0 /∈ Xtx0

and P2 occurs.
Thus E1∩E2∩E3 implies that P1 and P2 occur, and so the result follows from (12).

Lower bounds for the probabilities that properties P3–P5 hold follow from Chernoff
bounds without too much difficulty.

LEMMA 4.15. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 2 and n ≥ n0. Let R ∈ {R1, . . . , R`} and
let v1 . . . vk be the path associated with R. Let x0 ∈ R. Let X be the Moran process with
G(X) = Sk,`,m and X0 = {x0}. Then P(P3) ≥ 1− 1/n.

PROOF. Let n0 be an integer which is sufficiently large with respect to r. Fix i ∈ Z≥0

— we will bound the probability that v1 . . . vk clears within Ii (as in Definition 4.10).
Let v0 ∈ R \ {x0} be arbitrary. For all h ∈ Z≥0, let

T1,h = min{t ≥ iκ+ h | t = iκ+ h+ 1/2 or N(v0,v1) triggers at t}

T2,h = min

{
t > T1,h

∣∣∣∣ t = iκ+ h+ 1 or
(
M(x0,v1) does not trigger in [T1,h, t)
and N(v1,v2) triggers at t

)}
.

Let Eh be the event that T1,h < iκ+ h+ 1/2 and T2,h < iκ+ h+ 1.
The probability that the clock N(v0,v1) triggers in [iκ + h, iκ + h + 1/2) is 1 − e−1/2.

For any t1 ∈ [iκ + h, iκ + h + 1/2) the probability that there is a t2 ∈ (t1, iκ +
h + 1) such that N(v1,v2) triggers at t2, and M(x0,v1) does not trigger in [t1, t2] is
(1 − e−(r+1)(iκ+h+1−t1))/(r + 1). To see this, note that the 1 − e−(r+1)(iκ+h+1−t1) factor
corresponds to the probability that either N(v1,v2) or M(x0,v1) triggers in the relevant
interval (together, they correspond to a Poisson process with rate r + 1). The 1/(r + 1)
factor corresponds to the probability that it is actuallyN(v1,v2) rather thanM(x0,v1) that
triggers first. Since the relevant interval has length at least 1/2, the product of these
two factors is at least (1− e−(r+1)/2)/(r + 1). So

P(Eh) ≥
(
1−e−1/2

)(
1−e−(r+1)/2

)
/
(
r+1

)
≥ (1−e−1/2)(1−e−1)/(r+1) ≥ 1

5(r + 1)
≥ 1

10r
.

Moreover, the events {Eh | h ∈ Z≥0} are mutually independent, as they depend only
on the behaviour of clocks in C(Sk,`,m) in fixed disjoint intervals. Thus

P
(
Eh holds for some 0 ≤ h ≤ (Kr4 log n)/3

)
≥ 1−

(
1− 1

10r

)b(Kr4 logn)/3c+1

≥ 1−
(

1− 1

10r

)(Kr4 logn)/3

≥ 1− e−(Kr3 logn)/30
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≥ 1− e−2 logn = 1− 1

n2
. (15)

Now, for all integers j with 3 ≤ j ≤ k + 1, define

Tj =


min{t > iκ+ κ/2 | N(v2,v3) triggers at t} if j = 3,

min{t > Tj−1 | N(vj−1,vj) triggers at t} if 4 ≤ j ≤ k,
min{t > Tk | N(vk,v∗) triggers at t} if j = k + 1.

Note that if Tk+1 < (i + 1)κ, then T3, . . . , Tk+1 ∈ Ii. By memorylessness and inde-
pendence of distinct clocks in C(Sk,`,m), the random variables T3 − (iκ + κ/2), T4 −
T3, . . . , Tk+1−Tk are k− 1 i.i.d. exponential variables with rate 1, and Tk+1− (iκ+κ/2)
is their sum. Corollary 2.4 applies because κ/2 ≥ 3(k − 1)/2, so

P
(
Tk+1 < (i+ 1)κ

)
= P

(
Tk+1 − (iκ+ κ/2) < κ/2

)
≥ 1− e−κ/32 ≥ 1− e−(Kr4 logn)/32 ≥ 1− 1

n2
. (16)

Suppose Eh holds for some 0 ≤ h ≤ (Kr4 log n)/3. Note that T2,h ≤ iκ+ κ/2. Suppose
further that Tk+1 < (i + 1)κ. Then setting t1 = T1,h, t2 = T2,h and tj = Tj for all
j ∈ {3, . . . , k + 1}, we see that t1, . . . , tk+1 satisfy the requirements of Definition 4.10
and so v1 . . . vk clears within Ii. It therefore follows by (15), (16), and a union bound
that

P(v1 . . . vk clears within Ii) ≥ 1− 2

n2
.

Finally, since tx0
≤ n/4, we can take a union bound over all integers i with 0 ≤ i ≤ tx0

to deduce that

P(P3) ≥ 1− 2tx0
· 2

n2
≥ 1− n

2
· 2

n2
≥ 1− 1

n
.

LEMMA 4.16. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose n ≥ n0. Fix x0 ∈ R1∪· · ·∪R`. Let X be the Moran process with
G(X) = Sk,`,m and X0 = {x0}. With probability at least 1− 1/n2, for all integers i with
0 ≤ i ≤ tx0

, every clock in C(Sk,`,m) triggers at most b2rκc times in Ii.

PROOF. Let n0 be an integer which is sufficiently large with respect to r. Fix a given
clock C ∈ C(Sk,`,m), fix i ∈ Z≥0 with i ≤ tx0

, and write a ≤ r for the rate of C(Sk,`,m). The
number of times that C triggers in Ii follows the Poisson distribution with parameter
aκ. Since the number of triggers is an integer and 2rκ ≥ 2aκ, by Corollary 2.2 we have

P(C triggers at most b2rκc times in Ii) = P(C triggers at most 2rκ times in Ii)

≥ P(C triggers at most 2aκ times in Ii)

≥ 1− e−aκ/3 ≥ 1− e−(Kr4 logn)/3.

There are at most 2n2 clocks in C(Sk,`,m) and at most tx0
+ 1 ≤ 2n2 choices of i. Thus by

a union bound, with probability at least 1− 4n4e−Kr
4 logn/3 ≥ 1− 1/n2, no single clock

in C(Sk,`,m) triggers more than b2rκc times in any interval Ii with 0 ≤ i ≤ tx0 .

The following corollary follows immediately from Lemma 4.16. Of course, the proba-
bility bound in the corollary can be strengthened to 1−1/n2, but we state what we will
later use.

COROLLARY 4.17. Consider any r > 1. There is an n0, depending on r, such that
the following holds. Suppose n ≥ n0. Fix x0 ∈ R1 ∪ · · · ∪R`. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then P(P4) ≥ 1− 1/n.
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The following lemma gives a lower bound on the probability that P5 occurs. In this
lemma, we require that m ≥ 6r2κ, rather than m ≥ 2, which we have so far been
assuming.

LEMMA 4.18. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 6r2κ and n ≥ n0. Let R ∈ {R1, . . . , R`}
and let v1 . . . vk be the path associated with R. Fix x0 ∈ R. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then P(P5) ≥ 1− 1/n.

PROOF. Let n0 be an integer which is sufficiently large with respect to r. Fix i ∈ Z≥0.
For all t ∈ Ii, define the following events E1

t and E2
i .

E1
t : min{t′ > t | for some v 6= x0, N(v,v1) triggers at t′}

< min{t′ > t |M(v1,v2) triggers at t′}.
E2
i : M(x0,v1) triggers at most b2rκc times in Ii.

Thus E1
t occurs if and only if v1 clears before spawning a mutant within (t,∞). Let

Ti,0 = iκ, and let Ti,h be the h’th time in Ii at which the clock M(x0,v1) triggers, or
(i+ 1)κ if no such time exists. Note that if

⋂b2rκc
h=0 E1

Ti,h
∩ E2

i occurs, then v2 is protected
in Ii.

Now consider any t ∈ Ii and let ft be a possible value of Ft(X). By memorylessness,
we have

P
(
E1
t | Ft(X) = ft

)
=

m− 1

m− 1 + r
= 1− r

m− 1 + r
≥ 1− r

m
.

In particular, since the event Ti,h = t is determined by Ft(X), it follows by a union
bound that

P

b2rκc⋂
h=0

E1
Ti,h

 ≥ 1− (b2rκc+ 1)r

m
≥ 1− 3r2κ

m
.

By Lemma 4.16 we have P(E2
i ) ≥ 1− 1/n2, so it follows by a union bound that

P(v2 is protected in Ii) ≥ P

b2rκc⋂
h=0

E1
Ti,h
∩ E2

i

 ≥ 1− 3r2κ

m
− 1

n2
. (17)

Since I0, I1, . . . are disjoint intervals, the events that v2 is or is not protected in
these intervals are independent by memorylessness. Thus the number of intervals Ii
with 0 ≤ i ≤ tx0/κ in which v2 is not protected is stochastically dominated above by
a binomial distribution consisting of btx0/κc + 1 Bernoulli trials, each with success
probability 3r2κ/m+ 1/n2. This distribution has expectation(⌊

tx0

κ

⌋
+ 1

)(
3r2κ

m
+

1

n2

)
≤ 4r2tx0

m
=

4r2`

Kr4κ
,

so by Lemma 2.5 we have

P(P5) ≤ e−(1/6)8r2tx0/m = e−(4/3)r2`/(Kr4κ) ≤ e−(4/3)r2 logn ≤ 1

n
.

Here the penultimate inequality follows since ` ≥ Kr4κ log n by hypothesis. The result
therefore follows.

Now that we have proved lower bounds on the probability that each of P1–P5 occur,
Lemma 4.11 follows easily.
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LEMMA 4.11. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 6r2κ and n ≥ n0. Let R ∈ {R1, . . . , R`},
and let v1 . . . vk be the path associated with R. Fix x0 ∈ R. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then, with probability at least 1/(7Kr4κ), the
following events occur simultaneously.

P1: ∀t ≤ tmax, σ(t) ≥ b`/(2r)c+ 1 or v∗ does not spawn a mutant at time t.
P2: σ(tx0) ≥ b`/(2r)c+ 1 or x0 /∈ Xtx0

.
P3: For all integers i with 0 ≤ i ≤ tx0

, v1 . . . vk clears within Ii.
P4: For all integers i with 0 ≤ i ≤ tx0

, the clock M(vk,v∗) triggers at most b2rκc times
within Ii.

P5: For all but at most 8r2tx0
/m integers i with 0 ≤ i ≤ tx0

/κ, v2 is protected in Ii.

PROOF. P(P1∩· · ·∩P5) ≥ P(P1∩P2)−P(P3)−P(P4)−P(P5). Let n0 be an integer which
is sufficiently large with respect to r. Then we bound each term on the right-hand side
by applying (in order) Lemma 4.14, Lemma 4.15, Corollary 4.17 and Lemma 4.18 to
obtain

P(P1 ∩ · · · ∩ P5) ≥ 1

6Kr4κ
− 3

n
≥ 1

7Kr4κ
,

as required. The final inequality follows since, by hypothesis, κ ≤ `/(Kr4 log n) ≤
n/ log n.

We are now at last in a position to prove Lemma 4.5, which we will then use to prove
Theorem 4.1.

LEMMA 4.5. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose that ` ≥ Kr4κ log n,m ≥ 6r2κ and n ≥ n0. Fix x0 ∈ R1∪· · ·∪R`.
Let X be the Moran process with G(X) = Sk,`,m and X0 = {x0}. Then the extinction
probability of X is at least 1/(7Kr4κ).

PROOF. Let n0 be an integer which is sufficiently large with respect to r. Let R
be a reservoir in {R1, . . . , R`} and let v1 . . . vk be the path associated with R. Suppose
x0 ∈ R. By Lemma 4.11, it suffices to assume that P1 – P5 occur and to prove that X
goes extinct.

Recall the definition of σ(t) from Definition 4.7. Note that σ(0) = 0 and σ(t) is mono-
tonically increasing in t. We will first bound σ(tx0) from above (assuming that P1–P5

occur). Consider an interval Ii with 0 ≤ i ≤ tx0 (technically, we need only consider
0 ≤ i ≤ tx0/κ, but the extra generality does no harm and we will later need to consider
slightly larger i). Note that Ii ⊆ [0, tmax] since (i + 1)κ ≤ 2tx0κ = tmax/(Kr

4). Suppose
that σ(iκ) ≤ b`/(2r)c − b2rκc. We will derive an upper bound on σ((i+ 1)κ) by splitting
into cases.

Case 1: i > 0 and v2 is protected in Ii−1 and Ii. First note that since P1 occurs
and σ(iκ) ≤ b`/(2r)c, v∗ does not spawn a mutant over the course of [0, iκ] and so

Xt ⊆ {x0, v1, . . . , vk, v
∗} for all t ∈ [0, iκ].

Now, suppose for a contradiction that v2 becomes a mutant at some time t̂2 ∈ Ii−1.
Then v1 must have become a mutant beforehand. Let t̂1 be the latest time in [0, t̂2] at
which this occurs, and note that M(x0,v1) must have triggered at time t̂1. Since v2 is
protected in Ii−1, if it were the case that t̂1 ∈ Ii−1, then v1 would clear before spawning
within (t̂1, iκ] and so v1 would die in (t̂1, t̂2). This is impossible since v1 spawns a mu-
tant at time t̂2, and v1 does not become a mutant in (t̂1, t̂2] by the definition of t̂1. We
therefore have t̂1 /∈ Ii−1, so t̂1 ≤ (i − 1)κ. Since v2 is protected in Ii−1, v1 clears before
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spawning a mutant within Ii−1, so v1 dies in ((i − 1)κ, t̂2) — again contradicting the
fact that v1 spawns a mutant at time t̂2. Thus we can conclude that v2 does not become
a mutant in Ii−1.

Since P3 occurs, v1 . . . vk clears within Ii−1. Let v0 ∈ R \ {x0} and t1, . . . , tk+1 ∈ Ii−1

be as in Definition 4.10. Since N(v0,v1) triggers at time t1, it follows that v1 /∈ Xt1 . Since
M(x0,v1) does not trigger in [t1, t2], v1 does not become a mutant in [t1, t2] and so v1 /∈ Xt2 .
Since N(v1,v2) triggers at time t2, it follows that v2 /∈ Xt2 . We have already seen that v2

does not become a mutant in Ii−1, so it follows that v2 /∈ Xt for all t ∈ [t2, iκ].
Now, v3 /∈ Xt3 since N(v2,v3) triggers at time t3 ∈ [t2, iκ]. Since v2 is a non-mutant

throughout [t2, iκ], it follows that v3 /∈ Xt for all t ∈ [t3, iκ]. Repeating the argument for
t4, . . . , tk+1, we see that v2, . . . , vk, v

∗ /∈ Xiκ and hence Xiκ ⊆ {x0, v1}.
Since Xiκ ⊆ {x0, v1}, no mutants can be spawned in Ii until v2 next becomes a mu-

tant. However, by the same argument as above, the fact that v2 is protected in Ii im-
plies that v2 does not become a mutant in Ii. Hence Xt ⊆ {x0, v1} for all t ∈ Ii, and in
particular vk does not spawn a mutant onto v∗ in Ii. Thus σ((i+1)κ) = σ(iκ) This gives
the desired upper bound on σ((i+ 1)κ).

Case 2: Case 1 does not hold. Suppose for a contradiction that σ((i+1)κ) ≥ σ(iκ)+
b2rκc+ 1. Then vk spawns a mutant onto v∗ at least b2rκc+ 1 times in Ii, contradicting
P4. Thus σ((i + 1)κ) ≤ σ(iκ) + b2rκc. Again, we have the desired upper bound on
σ((i+ 1)κ).

Combining Cases 1 and 2, we have proved that whenever 0 ≤ i ≤ tx0
and σ(iκ) ≤

b`/(2r)c − b2rκc,

σ((i+ 1)κ) = σ(iκ), if i > 0 and v2 is protected in Ii−1 and Ii, and
σ((i+ 1)κ) ≤ σ(iκ) + b2rκc, otherwise.

(18)

Since P5 occurs and ` ≥ Kr4κ log n, the number of intervals Ii such that 0 ≤ i ≤ btx0
/κc

and Case 1 does not hold is at most

1 + 2

∣∣∣∣{i ∈ Z≥0

∣∣∣∣ i ≤ ⌊ tx0

κ

⌋
, v2 is not protected in Ii

}∣∣∣∣ ≤ 1 + 2 · 8r2tx0

m

= 1 +
16r2`

Kr4κ
≤ 17r2`

Kr4κ
.

Moreover, again using the fact that ` ≥ Kr4κ log n,

b2rκc · 17r2`

Kr4κ
≤ 34r3`

Kr4
=

34`

Kr
≤
⌊
`

2r

⌋
− b2rκc.

Since σ(0) = 0, it therefore follows by repeated application of (18) that

σ(tx0
) ≤ σ

(⌊
tx0

κ
+ 1

⌋
κ

)
≤
⌊
`

2r

⌋
− b2rκc. (19)

Now consider the behaviour of the process in the interval (tx0 , btx0/κ + 2cκ]. From
(19), we have that σ(btx0

/κ+1cκ) ≤ b`/(2r)c−b2rκc, so by (18) it follows that σ(btx0
/κ+

2cκ) ≤ b`/(2r)c and so, since P1 occurs, v∗ does not spawn a mutant in the interval
[0, btx0

/κ+ 2cκ].
Since P2 occurs and (19) holds, we have x0 /∈ Xtx0

, so for all t ∈ (tx0
, btx0

/κ + 2cκ],
we have Xt ⊆ {v1, . . . , vk, v

∗}. Since P3 occurs, v1 . . . vk clears within Ibtx0/κ+1c. Let
v0 ∈ R \{x0} and the sequence of times t1, . . . , tk+1 ∈ Ibtx0/κ+1c be as in Definition 4.10.
Then for all i ∈ [k],N(vi−1,vi) triggers at time ti and so vi /∈ Xt for all t ∈ [ti, btx0

/κ+2c]κ.
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Likewise, v∗ /∈ Xt for all t ∈ [tk+1, btx0/κ + 2c]κ. In particular, Xbtx0/κ+2cκ = ∅, so X
goes extinct and the result holds.

4.5. Proving the main theorem (Theorem 4.1)
We now have everything we need to prove Theorem 4.1, which follows relatively easily
from Lemmas 4.2, 4.3 and 4.5.

THEOREM 4.1. Let r > 1. Then there exists a constant cr > 0 (depending on r) such
that the following holds for all positive integers k, ` and m. Choose x0 uniformly at
random from V (Sk,`,m). Let X be the Moran process (with fitness r) with G(X) = Sk,`,m
and X0 = {x0}. Then the probability that X goes extinct is at least 1/(cr(n log n)1/3).

PROOF. Fix r > 1 as in the statement of the theorem. Recall from Definitions 4.4
and 4.7 that K = 70 and κ = max{3k,Kr4 log n}. Let n0 be the smallest integer such
that, for n ≥ n0, Lemma 4.5 and Lemma 4.14 applies and also

(n log n)1/3 ≥ n1/3 ≥ max{18r2, 6Kr6 log n,Kr4(log n)2} . (20)

We split into cases depending on the values of k, `, m and n. We show that in each
case, the statement of the theorem holds, provided cr ≥ max{2rn0, 156r6K}.

Case 1: n < n0. We show that with probability at least 1/2rn0, x0 dies before spawn-
ing a single mutant. Indeed, at the start of the process x0 spawns a mutant with rate
r, and every choice of x0 ∈ V (Sk,`,m) has an in-neighbour so x0 dies with rate at least
1/n. Thus X goes extinct with probability at least

1
n

1
n + r

≥ 1

2rn
≥ 1

2rn0
,

so the result follows since cr ≥ 2rn0.
Case 2: n ≥ n0,m < k(n logn)1/3. By Lemma 4.2, X goes extinct with probability

at least
k

2r(m+ k)
≥ k

2r(k(n log n)1/3 + k)
≥ 1

4r(n log n)1/3
,

where the final inequality holds since (n log n)1/3 ≥ 1. The result follows since cr ≥ 4r.
Case 3: n ≥ n0, m ≥ k(n logn)1/3 and ` < 3Kr4(n logn)1/3. Note that

P(x0 ∈ R1 ∪ · · · ∪R`) =
`m

`(m+ k) + 1
≥ m

m+ k + 1
≥ 1

2
, (21)

where the final inequality is valid since m ≥ k(n log n)1/3 ≥ 2k. We will therefore
condition on x0 ∈ R1 ∪ · · · ∪ R`. Moreover, we have m ≥ k(n log n)1/3 ≥ 12r. Thus by
Lemma 4.3 and (21), X goes extinct with probability at least

1

2
· 1

26r2`
≥ 1

156r2Kr4(n log n)1/3
,

so the statement holds since cr ≥ 156Kr6.
Case 4: n ≥ n0, m ≥ k(n logn)1/3 and ` ≥ 3Kr4(n logn)1/3. Note that

m ≥ k(n log n)1/3 ≥ 6r2 max{3k,Kr4 log n} = 6r2κ.

We will also show that ` ≥ Kr4κ log n, in order to apply Lemma 4.5. Since ` ≥
3Kr4(n log n)1/3 and n = `(m + k) + 1 ≥ `m, we have m ≤ n/` ≤ (n2/ log n)1/3. It is
also immediate from (20) and the hypothesis on ` that

` ≥ K2r8(log n)2. (22)
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Therefore,

3k ≤ 3m

(n log n)1/3
≤ 3n1/3

(log n)2/3
=

3Kr4(n log n)1/3

Kr4 log n
≤ `

Kr4 log n
. (23)

It therefore follows from (22), (23) and the definition of κ (Definition 4.4) that ` ≥
Kr4κ log n, and so we may apply Lemma 4.5.

As in Case 3, (21) holds. Thus by (21) and Lemma 4.5,X goes extinct with probability
at least 1/(14Kr4κ). By (23) we have 3k ≤ 3n1/3, and so

1

14Kr4κ
=

1

14Kr4 max{3k,Kr4 log n}
≥ 1

14Kr4 max{3n1/3,Kr4 log n}
=

1

42Kr4n1/3
,

and the result follows since cr ≥ 156Kr6.

5. AN UPPER BOUND ON THE FIXATION PROBABILITY OF METAFUNNELS
The (k, `,m)-metafunnel is defined in Section 1.1.1. We use n = 1 + `

∑k
i=1m

i to denote
the number of vertices.

The main result of this section is the following upper bound on the fixation probabil-
ity of the metafunnel.

THEOREM 5.1. Let r > 1. Then there is a constant cr > 0, depending on r, such
that the following holds for all k, `,m ∈ Z≥1 such that the (k, `,m)-metafunnel Gk,`,m
has n ≥ 3 vertices. Suppose that the initial state X0 of the Moran process with fitness r
is chosen uniformly at random from all singleton subsets of V (Gk,`,m). The probability
that the Moran process goes extinct is at least e−

√
log r·logn(log n)−cr .

5.1. Proof sketch
If k = 1 then Gk,`,m is a star and has extinction probability roughly 1/r2 so Theorem 5.1
follows easily. So for most of the proof (and the rest of this sketch) we assume k ≥ 2. To
prove the theorem, we divide the parameter space into two regimes.

In the first regime, m < r
√

logr n. Since m is small, Vk is not too large compared to
V0 ∪ · · · ∪ Vk−1. Thus, it is fairly likely that x0 is born outside Vk, and dies before it
can spawn a single mutant. This straightforward analysis is contained in the short
Section 5.3.

Most of the proof (Section 5.4) focusses on the second regime, where m ≥ r
√

logr n

which, since n ≥ `mk, implies k ≤
√

logr n. In this regime it is likely that a uniformly-
chosen initial mutant x0 is born in Vk (Lemma 5.3) so we assume that this is the case
in most of the proof (and the rest of this sketch). The key lemma is Lemma 5.28 which
shows that, in this case, it is (sufficiently) likely that x0 dies before v∗ spawns a mutant.

In more detail, Definition 5.5 defines a stopping time Tpa which is the first time t
that one of the following occurs.

(A1) Xt = ∅, or
(A2) |Xt| exceeds a given threshold m∗ which is a polynomial in log n, or
(A3) By time t, v∗ has already become a mutant in X more than b∗ times, where b∗ is

about half as large as its number `m of in-neighbours, or
(A4) t exceeds some threshold tmax which is (very) exponentially large in n.

The subscript “pa” is for “pseudo-absorption time” because (A1) implies that the Moran
process absorbs by going extinct and (A2) is a prerequisite for absorbing by fixating.
The proof of Lemma 5.28 shows that, with sufficiently high probability, (A2)–(A4) do
not hold, and so the Moran process X must go extinct by Tpa.
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Conditioning makes it difficult to prove that (A2)–(A4) fail. To alleviate this, we
divide the mutants into groups called “strains” which are easier to analyse. In partic-
ular, a strain contains all of the descendants of a particular mutant spawned by x0.
Formally, for each positive integer i, the i’th strain Si is defined as a mutant process
in Definition 5.6. Informally, Si is “born” at the i’th time at which x0 spawns a mutant
in X. It “dies” when all of the descendants of this spawn have died. It is “dangerous” if
one (or more) of these descendants spawns a mutant onto v∗ before Tpa.

Lemma 5.7 defines eight events P1–P8. These are defined in such a way that we can
show (in the proof of Lemma 5.28) that if P1–P8 simultaneously occur, then (A2)–(A4)
do not hold. The definitions are engineered in such a way that we can also show that
it is fairly likely that they do hold simultaneously — this takes up most of the proof.
Informally, the events are defined as follows.

P1: No star-clock M∗(v∗,v) triggers in [0, 1].
P2: For some threshold tx0 < n, the star-clock N∗(v∗,x0) triggers in [0, tx0 − 2].
P3: v∗ is a mutant for at most one unit of time up to time Tpa.
P4: The Moran process absorbs (either fixates or goes extinct) by time tmax/2.
P5: Break [0, tx0 ] into intervals of length (log n)

2. During each interval, x0 spawns at
most 2r(log n)2 mutants in X.

P6: Define s to be around 3rtx0 . Each of the strains S1, . . . , Ss spawns at most log n
mutants before Tpa.

P7: Each of the strains S1, . . . , Ss dies within (log n)
2 steps.

P8: At most b∗/ log n of S1, . . . , Ss are dangerous.

The rough sketch of Lemma 5.28 is as follows. P1 and P3 guarantee that v∗ does not
spawn a mutant in X until after Tpa. This together with P2 and P3 guarantees that the
only mutants in the process before time Tpa are part of strains that are born before tx0

.
By P5, there are at most s such strains. By P6, each of these strains only has about
log n mutants. Together with P7, this implies that (A2) does not hold at t = Tpa. P8 and
P6 imply that (A3) does not hold at t = Tpa. Finally, P4 implies that (A4) does not hold
at t = Tpa.

The bulk of the proof involves showing (Lemma 5.7) that P1–P8 are sufficiently likely
to simultaneously occur. Of these, P3–P7 are all so likely to occur that the probability
that they do not occur can be subtracted off using a union bound (so conditioning on
the other Pi’s is not an issue). The majority of the failure probability comes from the
probability that P2 does not occur. This is handled in the straightforward Lemma 5.8
which gives a lower bound on the probability that P1 and P2 both occur. The remaining
event, P8, is sufficiently unlikely to occur that careful conditioning is required. This
is (eventually) handled in Lemma 5.27, which shows that it is fairly likely to occur,
conditioned on the fact that both P1 and P2 occur.

In order to get a good estimate on the probability that a strain is dangerous (in P8),
we need to consider the number of mutants spawned from the “layer” of the strain
closest to the centre vertex v∗. In order to do this, we define a new mutant process
called the “head” of a strain. Strains and heads-of-strains share some common prop-
erties, and they are analysed together as “colonies” in Section 5.4.1. Informally (see
Definition 5.12) a “colony” is a mutant process Z whose mutants are in V1 ∪ · · · ∪ Vk−1

(and not in V0 or Vk). Once a colony becomes empty, it stays empty. Since a colony is a
mutant process but not necessarily a Moran process, vertices may enter and/or leave
whenever a clock triggers but we say that the colony is hit when a vertex leaves a
colony specifically because a non-mutant is spawned onto it in the underlying Moran
process. We define the “spawning chain” Y Z of a colony and show that it increases
whenever the colony spawns a mutant and that it only decreases when the colony is
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hit. By analysing the jump chain of a spawning chain (see Definition 5.15) we are able
to obtain the desired bounds on the probability that P6, P7 and P8 fail to occur.

5.2. Glossary

A = {M(v∗,u) | u ∈ Vk} ∪ {N(v∗,x0)} . . . . . . . . . . . . . . . . . . . . Definition 5.16, Page 41
A∗ = {M∗(v∗,u) | u ∈ Vk} ∪ {M

∗
(v∗,u) | u ∈ Vk}

∪{N∗(v∗,x0), N
∗
(v∗,x0)}

. . . . . . . . . . Definition 5.16, Page 41

(A1), (A2), (A3), (A4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 5.5, Page 35
b∗ = b`m/2c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.4, Page 35
Cr = d2 logr 20e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.4, Page 35
cr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 5.1, Page 32
dangerous strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.6, Page 36
Gk,`,m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 1.1.1, Page 4
hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.12, Page 40
Hit (head of a strain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.24, Page 47
im(µ, u, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 3.6, Page 16
in(µ, u, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 3.6, Page 16
Ij = [(j − 1)(log n)2, j(log n)2] . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.4, Page 35
m∗ = d5r(log n)3e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.4, Page 35
m′ = m−m∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 5.4, Page 35
P1, . . . ,P8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 5.7, Page 36
Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 5.16, Page 41
Ψ(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Section 3.4, Page 17
Ψ(X,Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.14, Page 41
Ra,b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.13, Page 40
s = d3rtx0e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.4, Page 35
Sit (strain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.6, Page 36
T ib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.6, Page 36
T id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.6, Page 36
Te(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 5.12, Page 40
tmax = n3n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.4, Page 35
Tpa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.5, Page 35
Ts(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 5.12, Page 40
tx0 = `mk/(rk(log n)Cr+5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.4, Page 35
τi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 3.1, Page 15
Y Z (spawning chain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.13, Page 40
Ŷ Z (jump chain of Y Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.15, Page 41
Z (colony) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 5.12, Page 40
(Z1), (Z2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 41

5.3. The small m case
We first show that if m is small, then x0 is likely to be born outside Vk and die before
spawning a mutant. This is relatively easy.

LEMMA 5.2. Suppose k ≥ 2. Choose x0 uniformly at random from V (Gk,`,m). Let X
be the Moran process with G(X) = Gk,`,m and X0 = {x0}. The extinction probability
of X is at least 1/(2(m+ r)).
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PROOF. Note that P(x0 ∈ Vk) = `mk/n. First suppose m = 1 and k ≥ 2. We have

P(x0 ∈ Vk) =
`

`k + 1
≤ `

2`+ 1
<

1

2
.

Moreover, if x0 /∈ Vk, then x0 has an in-neighbour of out-degree 1. In this case, with
probability at least 1/(1 + r), x0 dies before spawning a mutant. It follows that X goes
extinct with probability at least 1/(2(1 + r)), as required.

Now suppose m, k ≥ 2. We have

P(x0 /∈ Vk) =
1 + `

∑k−1
i=1 m

i

1 + `
∑k
i=1m

i
≥
∑k−1
i=1 m

i∑k
i=1m

i
=

mk −m
m(mk − 1)

≥ 1

2m
.

If x ∈ Vi for some i ∈ {0, . . . , k − 1}, then x has at least mi+1 in-neighbours with out-
degree mi, so with probability at least m/(m + r), x0 dies before spawning a mutant.
Hence X has extinction probability at least

1

2m
· m

m+ r
=

1

2(m+ r)
.

5.4. The large m case
We now consider the case where m is large.

LEMMA 5.3. Suppose m ≥ 2. Choose x0 uniformly at random from V (Gk,`,m). Then
P(x0 ∈ Vk) ≥ 1/2.

PROOF. We have

P(x0 ∈ Vk) =
`mk

`
∑k
i=0m

i − (`− 1)
≥ mk∑k

i=0m
i

=
mk(m− 1)

mk+1 − 1
≥ 1− 1

m
≥ 1

2
.

For the remainder of Section 5, we will fix an arbitrary vertex x0 ∈ Vk and let X be
the Moran process with G(X) = Gk,`,m and X0 = {x0}. We first define some constants.
Then, we define a “pseudo-absorption time” Tpa which, by (A1) and (A2) in the definition
below, is at most the absorption time of the Moran process X.

Definition 5.4 (Constants). We will use the following definitions for the rest of Sec-
tion 5.

— b∗ = b`m/2c,
—Cr = d2 logr 20e,
— for each j ∈ Z≥1, Ij = [(j − 1)(log n)2, j(log n)2].
—m∗ = d5r(log n)3e,
—m′ = m−m∗,
— tmax = n3n,
— tx0

= `mk/(rk(log n)Cr+5), and
— s = d3rtx0

e.
Definition 5.5 (The stopping time Tpa). We define the stopping time Tpa to be the

first time t that one of the following occurs:

(A1) Xt = ∅, or
(A2) |Xt| ≥ m∗, or
(A3) v∗ becomes a mutant in X at time t for the (b∗ + 1)’st time, or
(A4) t ≥ tmax.

The definition of Tpa is motivated as follows. Certainly (A1) must hold when the
process X goes extinct, and (A2) must hold before X fixates. If (A3) holds, we expect v∗

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January 2016.



A:36 Andreas Galanis et al.

to spawn a mutant in X, which makes the process significantly harder to analyse (so
we will stop the analysis before this). Actually, this is also why we stop at m∗ mutants
in (A2) — if the process contains too many mutants then it becomes harder to analyse.
Finally, (A4) ensures that Tpa <∞.

We will prove that, with sufficiently high probability, (A2)–(A4) do not hold, and so
the Moran process X must go extinct by Tpa. To do this, we will group the descendants
of each mutant spawned by x0 in X together and analyse each group as a separate
mutant process.

Definition 5.6 (Strains). Consider the Moran process X with G(X) = Gk,`,m and
X0 = {x0} for some x0 ∈ Vk. For each positive integer i, we define a mutant process Si
(called the i’th strain) with G(Si) = Gk,`,m. Let T ib be the i’th time at which x0 spawns a
mutant in X, or∞ if x0 spawns fewer than i mutants. The subscript “b” stands for the
“birth” of the strain. Clearly, T ib is a function of the evolution of the process X. We let
Sit = ∅ for all t < T ib . If T ib < ∞, then we have T ib = τj for some j. Let ui be the vertex
onto which the mutant is spawned in X, and let Siτj = {ui}. The process Si now evolves
discretely as follows. Suppose we are given Siτa for some a ≥ j. We define Sit = Siτa for
all t ∈ (τa, τa+1). We then define Siτa+1

by dividing into cases.

Case 1: Some vertex u ∈ Siτa spawns a mutant onto some vertex v inX at time
τa+1. If v /∈ V0 ∪ Vk, then we set Siτa+1

= Siτa ∪ {v}. Otherwise, we set Siτa+1
= Siτa .

Case 2: Some vertex v ∈ Siτa dies in X at time τa+1. We set Siτa+1
= Siτa \ {v}.

Case 3: Neither Case 1 nor Case 2 holds. We set Siτa+1
= Siτa .

If T ib = ∞ then we define T id = ∞. Otherwise, we define T id = sup{t | Sit 6= ∅}. The
subscript “d” stands for the “death” of the strain. Note that the definition maintains
the invariant that Sit ⊆ Xt. Finally, we define the notion of a dangerous strain. The
strain Si is said to be dangerous if it spawns a mutant onto v∗ during the interval
[0, Tpa].

Note that we allow Sit and Si
′

t to intersect for i 6= i′. Intuitively, Sit is the set of all
living descendants at time t (within V1 ∪ · · · ∪ Vk−1) of the i’th mutant spawned by x0

in X.
We now set out a list of events P1, . . . ,P8 which, as we will see in the proof of

Lemma 5.28, together imply extinction. We state these events and claim they hold
with reasonable probability in Lemma 5.7.

LEMMA 5.7. There exists n0 > 0, depending on r, such that the following holds. Sup-
pose n ≥ n0, m ≥ r

√
logr n and 2 ≤ k ≤

√
logr n. Suppose x0 ∈ Vk. Let X be the Moran

process with G(X) = Gk,`,m and X0 = {x0}. With probability at least r−k/(log n)Cr+7,
all of the following events occur in Ψ(X).

P1: no star-clock M∗(v∗,v) triggers in [0, 1].
P2: the star-clock N∗(v∗,x0) triggers in [0, tx0

− 2].
P3: im(X, v∗, Tpa) ≤ 1.
P4: Xtmax/2 ∈ {∅, V (Gk,`,m)}.
P5: for all j ≤ dtx0/(log n)2e, x0 spawns at most 2r(log n)2 mutants in Ij in X.
P6: each of S1, . . . , Ss spawns at most log n mutants in (0, Tpa].
P7: for all i ∈ [s], min{T id , Tpa} ≤ T ib + (log n)2.
P8: at most b∗/ log n of S1, . . . , Ss are dangerous.
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The majority of the failure probability in Lemma 5.7 comes from P2. In addition,
P1 and P8 may fail with reasonably high probability, so we will need to be careful
with conditioning for these events. The remaining events each occur with high enough
probability that we can apply a union bound.

We first show that P1 ∩ P2 occurs with reasonable probability.

LEMMA 5.8. There exists n0 > 0, depending on r, such that the following holds.
Suppose n ≥ n0, m ≥ r

√
logr n and 2 ≤ k ≤

√
logr n. Suppose x0 ∈ Vk. Let X be the

Moran process with G(X) = Gk,`,m and X0 = {x0}. Then, in the process Ψ(X),

P(P1 ∩ P2) ≥ 1

rk(log n)Cr+6
.

PROOF. Let n0 be a large integer relative to r. Note that P1 and P2 depend only on
the star-clock process P ∗(G), and so they are independent by the definition of P ∗(G).
The sum of the parameters of the star-clocks in {M∗(v∗,u) | u ∈ Vk} is r, so the definition
of Poisson processes ensures that P(P1) = e−r.

The assumptions in the statement of the lemma guarantee that tx0
≥ 4. The param-

eter of the star-clock N∗(v∗,x0) is 1/(`mk), so

P(P2) = 1− e−(tx0−2)/(`mk) ≥ 1− e−tx0/(2`m
k).

Using (4), we get

P(P2) ≥ 1− e−tx0/(2`m
k) ≥ tx0

4`mk
=

1

4rk(log n)Cr+5
≥ er

rk(log n)Cr+6
.

Since P1 and P2 are independent, the result follows.

LEMMA 5.9. There exists n0 > 0, depending on r, such that the following holds.
Suppose n ≥ n0, m ≥ r

√
logr n and k ≥ 2. Suppose x0 ∈ Vk. Let X be the Moran process

with G(X) = Gk,`,m and X0 = {x0}. Then P(P3) ≥ 1− 1/n.

PROOF. For every positive integer i, we define T im and T in as follows. If v∗ becomes
a mutant at least i times in [0, Tpa] then T im is the i’th time that it does so. Otherwise,
T im = Tpa. If v∗ becomes a non-mutant at least i times in [0, Tpa] then T in is the i’th time
that it does so. Otherwise, T in = Tpa.

By item (A3) in the definition of Tpa (Definition 5.5), v∗ may become a mutant at most
b∗ times in the interval [0, Tpa), so

im(X, v∗, Tpa) =

b∗∑
i=1

(T in − T im).

Now consider any i ∈ [b∗] and any t0 ≥ 0. Consider any possible value f for Ft0(X)
that is consistent with T im = t0. We will show

∀y ≥ 0, P(T in − t0 ≤ y | Ft0(X) = f) ≥ 1− exp(−`m′y). (24)

The event T im = t0 is determined by f . Since T im ≤ Tpa, we have t0 ≤ Tpa. The value f
also determines whether or not t0 = Tpa. If so, then (24) is trivial since T in = Tpa = t0,
so P(T in − t0 ≤ y | Ft0(X) = f) = 1.

From now on, we assume that f implies that Tpa > t0. Since T im = t0, this implies that
v∗ ∈ Xt0 . Let B be the set of all non-mutant clocks with target v∗ and let Ξ encapsulate
the behaviour of every clock in C(Gk,`,m) \ B over the interval (t0, tmax]. (That is, let Ξ
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contain a list, for each of these clocks, of all times that it triggered during this interval.)
Consider any value ξ of Ξ which is consistent with Ft0(X) = f .

We now define a time t′pa which depends only on the values f and ξ. To do so, consider
the situation in which Ft0(X) = f , Ξ = ξ and no clock in B triggers in (t0, tmax], so that
the evolution of X in this interval is entirely determined by f and ξ. Let t′pa be the time
at which Tpa would occur in this situation.

It is easy to see that T in ≤ t′pa. If a non-mutant is spawned onto v∗ in X at some time
t′ ∈ (t0, t

′
pa] then T in ≤ t′ ≤ t′pa. Otherwise, the evolution of X in (t0, t

′
pa] is exactly the

same as it would be if no clocks in B triggered, so Tpa = t′pa = T in .
We will now prove (24). First, if y ≥ t′pa − t0, then since T in ≤ t′pa, we have

P(T in − t0 ≤ y | Ft0(X) = f,Ξ = ξ) ≥ P(t′pa − t0 ≤ y | Ft0(X) = f,Ξ = ξ) = 1. (25)

So suppose y < t′pa − t0. Let t1 < · · · < tz be the times in (t0, t0 + y] at which clocks
in C(Gk,`,m) \ B trigger and let tz+1 = t0 + y. Thus t0 < · · · < tz ≤ tz+1 < t′pa. For all
h ∈ {0, . . . , z}, let χ(h) be the value that Xth would take in the situation where no clock
in B triggers in (t0, th], Ft0(X) = f and Ξ = ξ. Thus t′pa, z, t0, . . . , tz+1 and χ(0), . . . , χ(z)
are all uniquely determined by f and ξ.

For each h ∈ [z + 1], let Eh be the event that a non-mutant is spawned onto v∗ in the
interval (th−1, th). Note that with probability 1, no non-mutant is spawned onto v∗ at
any time th. Thus

P(T in − t0 ≤ y | Ft0(X) = f,Ξ = ξ) = 1− P(E1 ∩ · · · ∩ Ez+1 | Ft0(X) = f,Ξ = ξ) (26)

= 1−
z+1∏
h=1

P(Eh | Ft0(X) = f,Ξ = ξ, E1 ∩ · · · ∩ Eh−1).

Now fix h ∈ [z + 1], and consider any possible value fh−1 of Fth−1
(X) which implies

that Ft0(X) = f and E1∩· · ·∩Eh−1 and is consistent with Ξ = ξ. Consider the evolution
of X given Fth−1

(X) = fh−1 and Ξ = ξ. Since E1 ∩ · · · ∩ Eh−1 occurs, no non-mutant
is spawned onto v∗ in the interval (t0, th−1] and so Xth−1

= χ(h − 1). Moreover, X
remains constant in [th−1, th) unless a non-mutant is spawned onto v∗. Thus, given
the condition that Fth−1

(X) = fh−1 and Ξ = ξ, Eh occurs if and only if a non-mutant
clock whose source is in V1 \χ(h− 1) triggers in the interval (th−1, th). Since th−1 < t′pa,
property (A2) in the definition of Tpa (Definition 5.5) ensures that |χ(h − 1)| < m∗ so
|V1 \ χ(h− 1)| ≥ `m−m∗ ≥ `m′. Thus,

P(Eh | Fth−1
(X) = fh−1,Ξ = ξ) ≤ exp(−`m′(th − th−1)).

Combining this with (26) (by multiplying over all h ∈ [z + 1]), we get

P(T in − t0 ≤ y | Ft0(X) = f,Ξ = ξ) ≥ 1− exp (−`m′y) . (27)

Equation (24) follows from (25) and (27). Equation (24) shows that
∑b∗

i=1(T in − T im) is
dominated from above by a sum S of b∗ i.i.d. exponential random variables with rate
`m′. It follows that

P(P3) = P(im(X, v∗, Tpa) ≤ 1) = P

(
b∗∑
i=1

(T in − T im) ≤ 1

)
≥ P(S ≤ 1).

The hypothesis of the lemma guarantees that m ≥ 4m∗ so b∗ = b`m/2c ≤ 2`(m −
m∗)/3 = 2`m′/3. Therefore, by Corollary 2.4, P(S < 1) ≥ 1− e−`m′/16 ≥ 1− 1/n, where
the last inequality holds since log n ≤ `(m−m∗)/16 by the hypothesis of the lemma.
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LEMMA 5.10. There exists n0 > 0, depending on r, such that the following holds.
Suppose n ≥ n0 and k ≥ 2. Suppose x0 ∈ Vk. Let X be the Moran process with G(X) =
Gk,`,m and X0 = {x0}. Then P(P4) ≥ 1− 1/n.

PROOF. Let n0 be a large constant. For all i ∈ Z≥1, let

J−i = (i− 1)n2, J+
i = in2,

and Ji be the interval (J−i , J
+
i ]. Let v1, . . . , vn be a fixed ordering of V (Gk,`,m). Define an

event Ei as follows. If XJ−i
= ∅, then Ei holds. Otherwise, let j(i) = min{j | vj ∈ XJ−i

}.
Let e(i, 1), . . . , e(i, n− 1) be the sequence of edges returned by a breadth-first search
of Gk,`,m starting from vj(i). Then Ei holds if and only if clocks in C(Gk,`,m) trigger
at least n − 1 times in Ji, and the first n − 1 such trigger events correspond to
Me(i,1), . . . ,Me(i,n−1), in that order. Note that if Ei holds for some i then the Moran
process reaches absorption no later than J+

i .
Now let fi be any possible value for the filtration FJ−i (Ψ(X)). The event
FJ−i (Ψ(X)) = fi contains all information about E1, . . . , Ei−1 and j(i). We will show that

P
(
Ei
∣∣FJ−i (Ψ(X)) = fi

)
≥ 1

(2n2)n
. (28)

First, if FJ−i (Ψ(X)) = fi implies that XJ−i
= ∅, then the probability in (28) is 1.

Otherwise, fi implies that XJ−i
is non-empty and the first n − 1 triggers of clocks in

C(Gk,`,m) in the interval (J−i ,∞) are as in Ei with probability at least(
(r/n)

(1 + r)n

)n−1

≥ 1

(2n2)n−1
.

By Corollary 2.2, the probability that clocks in C(Gk,`,m) trigger at least n times in Ji
is at least 1− e−n2/16. Thus by a union bound, we have established (28).

Let i′ = min{i | Ei holds}. Then i′ − 1 is dominated below by a geometric distribution
with parameter 1/(2n2)n, so

P(P4) ≤ P(i′ > n(2n2)
n
) ≤

(
1− 1

(2n2)n

)n(2n2)n

≤ e−n ≤ 1

n
.

LEMMA 5.11. There exists n0 > 0, depending on r, such that the following holds.
Suppose n ≥ n0 and k ≥ 2. Suppose x0 ∈ Vk. Let X be the Moran process with G(X) =
Gk,`,m and X0 = {x0}. Then P(P5) ≥ 1− 1/n.

PROOF. Let n0 be large relative to r. For each j ∈ Z≥1, the number of times in Ij
that x0 spawns a mutant in X is dominated from above by the number of times in Ij
that mutant clocks with source x0 trigger, which follows a Poisson distribution with
parameter rlen(Ij) = r(log n)2. By Corollary 2.2, we have

P(x0 spawns at least 2r(log n)2 mutants in Ij in X) ≤ e−r(logn)2/3 ≤ e−(logn)2/3.

We have dtx0
/(log n)2e ≤ `mk ≤ n, so the result follows by a union bound over the Ij ’s

with j ≤ dtx0/(log n)2e.
5.4.1. Colonies and spawning chains. To deal with P6, P7 and P8, we will need to analyse

mutant spawns and deaths in strains and in the “bottom layers” of strains. We will use
similar ideas for both cases, so to avoid redundancy we introduce the following general
definitions.
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Definition 5.12 (Colonies). Fix Gk,`,m and fix x0 ∈ Vk. Consider the Moran process
X with G(X) = Gk,`,m and X0 = {x0}. A colony is a mutant process Z with G(Z) =
Gk,`,m satisfying the following conditions.

— For all t ≥ 0, Zt ⊆ Xt ∩ (V1 ∪ · · · ∪ Vk−1).
— If for some t < t′, Zt is non-empty and Zt′ = ∅ then for all t′′ ≥ t′, Zt′′ = ∅.

We define the start and end times of any colony Z as follows. The subscript “s” stands
for “start” and the subscript “e” stands for “end”.

Ts(Z) = min{t ≥ 0 | Zt 6= ∅ or t = Tpa}.
Te(Z) = min{t ≥ Ts(Z) | Zt = ∅ or t = Tpa}.

Further, we say that a colony Z in a Moran process X is hit at time t if t = τj for
some j ≥ 1 and there is a vertex v ∈ Zτj−1

such that some vertex u spawns a non-
mutant onto v in X at time τj .

Since a colony Z is a mutant process but not necessarily a Moran process, vertices
may enter and/or leave Z at any time τj , as long as the conditions of Definition 5.12 are
respected. A colony being hit at a particular time means that a vertex left the colony
at that time specifically because a non-mutant was spawned onto it in the underlying
Moran process.

Note that a strain (Definition 5.6) is a colony. Also, Ts(Si) = min{T ib , Tpa} and Te(Si) =
min{T id , Tpa}.

Definition 5.13 (Spawning chains). Fix Gk,`,m with m > m∗ and fix x0 ∈ Vk. Con-
sider the Moran process X with G(X) = Gk,`,m and X0 = {x0}. The spawning chain Y Z
of the colony Z is a continuous-time stochastic process with states in Z which evolves
as follows. First, for all t ∈ [0, Ts(Z)], we define Y Zt = 1. We next define Y Zt for all
t ∈ (Ts(Z), Te(Z)]. If Ts(Z) ≥ Te(Z) there is nothing to define. Suppose instead that
Ts(Z) < Te(Z), so that Ts(Z) = τi for some i.

Now for any j ≥ i with τj < Te(Z), suppose that we are given Y Zτj . If τj+1 > Te(Z),
then for all t ∈ (τj , Te(Z)], we set Y Zt = Y Zτj . Otherwise, for all t ∈ (τj , τj+1), we set
Y Zt = Y Zτj and we define Y Zτj+1

according to the following cases.

Case 1: Z spawns a mutant at time τj+1. We set Y Zτj+1
= Y Zτj + 1.

Case 2: Z is hit at time τj+1. With probability

m′|Zτj |∑
v∈Zτj

∑
u∈N−(v)\Xτj

(1/d+(u))
(29)

(independently of all other events) we set Y Zτj+1
= Y Zτj − 1; with the remaining probabil-

ity, we set Y Zτj+1
= Y Zτj . We will show below that the probability in (29) is well-defined.

Case 3: Neither Case 1 nor Case 2 holds. We set Y Zτj+1
= Y Zτj .

We have now defined Y Zt for all t ≤ Te(Z). Finally, for t > Te(Z) the spawning chain
Y Zt evolves independently of Ψ(X) as a continuous-time Markov chain on Z with start
state Y ZTe(Z) and the following transition rate matrix.

Ra,b =


r if b = a+ 1,

m′ if b = a− 1,

0 otherwise.
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Definition 5.14 (The process Ψ(X,Z) and its filtration). Fix Gk,`,m with m > m∗

and fix x0 ∈ Vk. Consider the Moran process X with G(X) = Gk,`,m and X0 = {x0}. Con-
sider a colony Z. Let Ψ(X,Z) be the stochastic process consisting of Ψ(X) together with
the spawning chain Y Z whose evolution is coupled with that of Ψ(X) in the manner
described above. The filtration Ft(Ψ(X,Z)) of Ψ(X,Z) consists of Ft(Ψ(X)) together
with all information about the transitions of Y Z up to time t.

Definition 5.15 (The jump chain Ŷ Z). Fix Gk,`,m with m > m∗ and fix x0 ∈ Vk. Con-
sider the Moran process X with G(X) = Gk,`,m and X0 = {x0}. Consider a colony Z.
Then the jump chain Ŷ Z of Y Z is defined straightforwardly. Ŷ Z(0) = Y Z0 = 1, and if
Y Z makes its i’th transition at time t then Ŷ Z(i) = Y Zt .

We now show that the probability in (29) is well-defined. First note that since m >
m∗, the numerator of (29) is positive. Moreover, since Z is hit at time τj+1, there must
be a vertex v ∈ Zτj and a vertex u ∈ N−(v) \Xτj that spawned onto v at time τj+1. So,
certainly, the denominator of (29) is nonzero. Now, let v ∈ Zτj be arbitrary, and let i be
the integer in [k − 1] such that v ∈ Vi. Then since τj < Te(Z) ≤ Tpa, by (A2) we have
|Xτj | ≤ m∗. It follows that∑

u∈N−(v)\Xτj

1

d+(u)
=
|N−(v) \Xτj |

mi
≥
mi+1 − |Xτj |

mi
≥ mi+1 −m∗

mi
≥ m′.

It follows that ∑
v∈Zτj

∑
u∈N−(v)\Xτj

1

d+(u)
≥ m′|Zτj |,

so (29) is, as claimed, a probability.
Note that either Te(Z) = Tpa or Zt = ∅ for all t ∈ [Te(Z), Tpa]. In either case, we see

that spawning chains as defined above satisfy two important properties.

(Z1) {t ≤ Te(Z) | Y Z increases at t} = {t ≤ Tpa | Z spawns a mutant at t}.
(Z2) {t ≤ Te(Z) | Y Z decreases at t} ⊆ {t ≤ Tpa | Z is hit at t}.

Intuitively, we expect that for all t ∈ (Ts(Z), Te(Z)], the spawning chain Y Zt should
behave similarly to a continuous-time Markov chain on Z which increments with rate
r|Zt| and decrements with rate m′|Zt|. For technical convenience we will not prove
this. Instead, we will prove that the jump chain Ŷ Z evolves as a random walk on Z
with appropriate probabilities.

Definition 5.16. Let

A = {M(v∗,u) | u ∈ Vk} ∪ {N(v∗,x0)}, and

A∗ = {M∗(v∗,u) | u ∈ Vk} ∪ {M
∗
(v∗,u) | u ∈ Vk} ∪ {N∗(v∗,x0), N

∗
(v∗,x0)}.

Let Φ contain, for each star-clock C ∈ A∗, a list of the times at which C triggers in
[0, tmax].

The star-clocks in A∗ are part of the star-clock process P ∗(Gk,`,m), so of course the
times in Φ are “local” and don’t necessarily correspond to the times that clocks in A
trigger. However, these are related by Observation 3.7.

In order to prove Lemma 5.7, we will need to show that P8 is reasonably likely to
occur, conditioned on P1∩P2. The following lemma (among others) will be used for this
purpose, so we prove it conditioned on Φ.
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LEMMA 5.17. Let k ≥ 2 and m ≥ 5m∗. Fix Gk,`,m and fix x0 ∈ Vk. Consider the
Moran process X with G(X) = Gk,`,m and X0 = {x0}. Let Z be a colony. Let t0 be a
non-negative real number, and let f0 be a possible value of the filtration Ft0(Ψ(X,Z)).
Let ϕ be a possible value of Φ. If the three events Ts(Z) = t0, Ft0(Ψ(X,Z)) = f0 and
Φ = ϕ are consistent, then conditioned on these three events, the jump chain Ŷ Z evolves
as a random walk on Z with initial state 1 and the following transition matrix.

Ŷ Z(a, b) =


r/(r +m′) if b = a+ 1,

m′/(r +m′) if b = a− 1,

0 otherwise.

PROOF. The definition of the jump chain Ŷ Z implies that Ŷ Z(0) = 1.
Let T0 = t0. For i ∈ Z≥1, let Ti be the random variable that is the time of Y Z ’s i’th

transition.
Now consider an i ∈ Z≥0 and a non-negative real number ti. (If i = 0 then t0 is al-

ready defined in the statement of the lemma. Otherwise, consider any ti ≥ t0.) Suppose
that fi is a possible value for the filtration Fti(Ψ(X,Z)) and that the events Ts(Z) = t0,
Ft0(Ψ(X,Z)) = f0, Φ = ϕ, Fti(Ψ(X,Z)) = fi, and Ti = ti are consistent. Note that all
of these events are determined by Fti(Ψ(X,Z)) = fi and Φ = ϕ, which also determine
Ŷ Z(0), . . . , Ŷ Z(i). We therefore wish to show that

P
(
Ŷ Z(i+ 1) = Ŷ Z(i) + 1

∣∣Fti(Ψ(X,Z)) = fi,Φ = ϕ
)

=
r

r +m′
, and

P
(
Ŷ Z(i+ 1) = Ŷ Z(i)− 1

∣∣Fti(Ψ(X,Z)) = fi,Φ = ϕ
)

=
m′

r +m′
.

(30)

Let ti+1 > ti be arbitrary. Let Ξ contain, for each clock C ∈ C(Gk,`,m), a list of the
times at which C triggers in (ti, ti+1). Suppose that ξ is a possible value of Ξ such that
the event Ξ = ξ is consistent with the events Fti(Ψ(X,Z)) = fi, Ti+1 = ti+1, and Φ = ϕ.
Let F be the intersection of these four events. Namely, F is the intersection of

—Fti(Ψ(X,Z)) = fi,
— Ξ = ξ,
— Ti+1 = ti+1, and
— Φ = ϕ.

Let E1 be the event that Y Zti+1
= Y Zti + 1 and let E2 be the event that Y Zti+1

= Y Zti − 1. By
integrating over all choices of ti+1 and ξ, Equation (30) will follow from

P (E1 | F) =
r

r +m′
, and

P (E2 | F) =
m′

r +m′
.

(31)

Since F implies Ti = ti and Ti+1 = ti+1, it implies E1 ∪ E2. Also, E1 ∩ E2 is empty. F
determines the evolution of Ψ(X,Z) throughout [0, ti+1). In particular, it determines
whether the event Te(Z) < ti+1 occurs. We split into cases accordingly.

Case 1: F implies that ti+1 > Te(Z). In this case, conditioned on F , the behaviour
of Y Zt at ti+1 is governed entirely by the transition rate matrix R and is therefore inde-
pendent of Φ and Ψ(X). The definition of the spawning chain Y Z gives Equation (31).

Case 2: F implies that ti+1 ≤ Te(Z). Let T− = max{τj | τj < ti+1}, and let t− be the
unique value of T− consistent with F . Let χt− be the unique value of Xt− consistent
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with F , and let ζt− be the unique value of Zt− consistent with F . Define

S =
∑
v∈ζt−

∑
u∈N−(v)\χt−

(1/d+(u)),

B1 = {M(u,v) | u ∈ ζt−},
B2 = {N(u,v) | u ∈ V (Gk,`,m) \ χt− and v ∈ ζt−}.

Consider the following events.

— Ê1 is the event that a clock in B1 triggers at ti+1, and
— Ê2 is the event that

— a clock in B2 triggers at ti+1, and
— an (independent) coin toss (part of the spawning chain), with probability m′|ζt− |/S

of coming up heads, comes up heads.

Note that, conditioned on F , event Ê1 coincides with E1 and Ê2 coincides with E2. It is
easy to see, using the definition of a Poisson process, that

P
(
Ê1 | Ê1 ∪ Ê2

)
=

r|ζt− |
r|ζt− |+ S(m′|ζt− |/S)

=
r

r +m′
, and

P
(
Ê2 | Ê1 ∪ Ê2

)
=

m′

r +m′
.

In order to establish (31), we would like to show that conditioning on F is equivalent
to conditioning on Ê1 ∪ Ê2. This is straightforward, apart from the event Φ = ϕ, which
is part of F . Unfortunately, we need the result of the lemma to be conditioned on Φ = ϕ
and not merely on the rest of F , so the rest of this proof is merely technical, and is to
deal with this.

To proceed, we consider the four events making up F .

— First, consider the event Fti(Ψ(X,Z)) = fi. Let f̂i be the induced value of
Fti(Ψ(X)). The value fi consists of f̂i, together with the extra information about the
transitions of Y Z up to time ti (giving the outcomes of the independent coin tosses that
are part of the spawning chain Y Z). The value f̂i contains, for each clock C ∈ C(Gk,`,m),
a list of the times at which C triggers in [0, ti]. It also contains information about the
times that the star-clocks trigger, according to the coupling in Section 3.4. Using Ob-
servation 3.7, we could translate f̂i into a (unique) equivalent event which is a list
of times at which certain star-clocks trigger. We will therefore write F∗ti = f∗i to de-
note the event Fti(Ψ(X,Z)) = fi, expressed entirely in terms of star-clock triggers and
outcomes of spawning-chain coin tosses.

— Similarly, given F∗ti = f∗i , we can uniquely express Ξ = ξ as an event which is a
list of times at which certain star-clocks trigger. We will denote this event as Ξ∗ = ξ∗.
The definitions of t−, χt− and ζt− can be deduced from f∗i and ξ∗.

— Now let B∗1 = {M∗(u,v) | u ∈ ζt−} and B∗2 = {N∗(u,v) | u ∈ V (Gk,`,m)\χt− and v ∈ ζt−}.
Note that for every star-clock with source u in B∗1 ∪ B∗2 the quantities im(u,X, ti+1) and
in(u,X, ti+1) can be deduced from f∗i and ξ∗. Let E∗1 be the event that a star-clock with
source u in B∗1 triggers at im(u,X, ti+1). Note that by Observation 3.7, F∗ti = f∗i and
Ξ∗ = ξ∗ implies that E∗1 is equivalent to Ê1. Similarly, let E∗2 be the event that a star-
clock with source u in B∗2 triggers at in(u,X, ti+1) and the appropriate coin toss comes
up heads, so that F∗ti = f∗i and Ξ∗ = ξ∗ implies that E∗2 is equivalent to Ê2.
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We now have

P
(
E∗1 | F∗ti = f∗i ,Ξ

∗ = ξ∗, E∗1 ∪ E∗2
)

=
r

r +m′
, and

P
(
E∗2 | F∗ti = f∗i ,Ξ

∗ = ξ∗, E∗1 ∪ E∗2
)

=
m′

r +m′
.

Finally, since B∗1 ∪ B∗2 is disjoint from A∗, we conclude that, conditioned on F∗ti = f∗i ,
Ξ∗ = ξ∗, and E∗1 ∪ E∗2 , the event E∗1 is independent of Φ (by independence of star-clocks
in the star-clock process). Thus, we obtain

P
(
E∗1 | F∗ti = f∗i ,Ξ

∗ = ξ∗, E∗1 ∪ E∗2 ,Φ = ϕ
)

=
r

r +m′
, and

P
(
E∗2 | F∗ti = f∗i ,Ξ

∗ = ξ∗, E∗1 ∪ E∗2 ,Φ = ϕ
)

=
m′

r +m′
,

which implies (31) by translating the events back to their original formulation.

We next prove that, with high probability, Y Z transitions many times shortly after
Ts(Z).

LEMMA 5.18. There exists n0 > 0 such that the following holds for all n ≥ n0,
m ≥ 5m∗ and k ≥ 2. Fix Gk,`,m with n vertices and fix x0 ∈ Vk. Consider the Moran
process X with G(X) = Gk,`,m and X0 = {x0}. Let Z be a colony. Let t0 be a non-
negative real number, and let f0 be a possible value of the filtration Ft0(Ψ(X,Z)). If
the events Ts(Z) = t0 and Ft0(Ψ(X,Z)) = f0 are consistent then, conditioned on these
events, with probability at least 1−e−(logn)2/16, Y Z increases at least 2 log n times in the
interval [t0, t0 + (log n)2] .

PROOF. Let P be a Poisson process with rate r. Conditioned on Ts(Z) = t0 and
Ft0(Ψ(X,Z)) = f0, we will couple the evolution of Ψ(X,Z) from time t0 with that of P .
The coupling will have the property that every time P triggers, Y Z increases.

Given the coupling, we can conclude that the probability that Y Z increases at least
2 log n times in the interval [t0, t0 +(log n)2] is at least the probability that P triggers at
least 2 log n times in an interval of length (log n)2. This is the probability that a Poisson
random variable W with parameter ρ = r(log n)2 has value at least 2 log n. We have
2 log n < 2ρ/3, so by Corollary 2.2, P(W ≤ 2 log n) ≤ exp(−ρ/16) ≤ exp(−(log n)2/16).

It remains to give the details of the coupling. Roughly, the coupling will be con-
structed using the sequence τ1, τ2, . . .. However, one technical detail arises, since Te(Z)
might not occur at one of the instants τ1, τ2, . . .. So, for the purposes of the proof, let
τ̂1, τ̂2, . . . be the increasing sequence containing Te(Z) and all τ1, τ2, . . . from Ψ(X) (and
nothing else). This random sequence is a function of the evolution of Ψ(X,Z).

Now, conditioned on Ts(Z) = t0 and Ft0(Ψ(X,Z)) = f0 there is a non-negative inte-
ger j such that τ̂j = t0. We will define the coupling from each τ̂i for i ≥ j.

So consider i ≥ j and suppose that for some time ti and some filtration value fi, we
have τ̂i = ti and Fti(Ψ(X,Z)) = fi. To continue the coupling in the open interval from ti
there are two cases. It is easy to determine which case applies, using fi.

If Te(Z) ≤ ti, then the evolution of Y Z after time ti is a continuous-time Markov
chain with transition matrix R, evolving independently of Ψ(X). The rate of an up-
wards transition in R is r so use the triggering of P to dictate these upwards transi-
tions.

If Te(Z) > ti, then Zti is non-empty, so choose some u ∈ Zti . Now use the triggering
of P to dictate the triggering of the mutant clocks with source u (which together have
rate r). Thus, every time P triggers, a mutant clock in C(Gk,`,m) with source u is chosen
uniformly at random to trigger.
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5.4.2. Continuing the proof of Lemma 5.7. We are now in a position to bound the probabil-
ities with which events P6–P8 occur, using Lemmas 5.17 and 5.18. We start by showing
that, up until Te(Si), the state of the spawning chain Y S

i

is at least as large as the size
of the strain Si (which is a colony).

LEMMA 5.19. Let k ≥ 2 and m ≥ 5m∗. Fix x0 ∈ Vk. Consider the Moran process X
with G(X) = Gk,`,m and X0 = {x0}. Let i ∈ Z≥1. For all t ≤ Tpa, |Sit | ≤ max{Y Sit , 0}.

PROOF. For t ≤ Ts(S
i) we have |Sit | ≤ 1 = Y S

i

t , and for Te(Si) ≤ t ≤ Tpa we have
|Sit | = 0 ≤ max{Y Sit , 0}. Since Si and Y S

i

remain constant except at τ1, τ2, . . . , it suffices
to prove that |Siτj | ≤ Y

Si

τj for all τj ∈ [Ts(S
i), Te(S

i)). We will do so by induction on j.
If Ts(Si) = Te(S

i) = Tpa then there is nothing to prove, so suppose Ts(Si) = τx for
some x. We have already seen that the claim holds for j = x. Suppose that the claim
holds for some j ≥ x, and that τj+1 < Te(S

i). We will now prove the claim for j + 1 by
dividing into cases.

Case 1: |Siτj+1
| > |Siτj |. This case may arise only if Si spawns a mutant at time τj+1.

Thus by (Z1), we have Y S
i

τj+1
= Y S

i

τj + 1 ≥ |Siτj |+ 1 = |Siτj+1
|.

Case 2: Y Si

τj+1
< Y S

i

τj
. This case may arise only if the spawning chain Y S

i

is decre-
mented at time τj+1, which by (Z2) may happen only if Si is hit at time τj+1. Thus we
have Y S

i

τj+1
= Y S

i

τj − 1 ≥ |Siτj | − 1 = |Siτj+1
|.

Case 3: Y Si

τj+1
≥ Y Si

τj
and |Siτj+1

| ≤ |Siτj |. In this case, we have Y S
i

τj+1
≥ Y S

i

τj ≥ |S
i
τj | ≥

|Siτj+1
|.

Thus the claim, and therefore the result, holds in all cases.

COROLLARY 5.20. Let k ≥ 2 and m ≥ 5m∗. Fix x0 ∈ Vk. Consider the Moran process
X with G(X) = Gk,`,m and X0 = {x0}. Let i be a positive integer. Suppose that t ≥ Ts(Si)
and Y S

i

t = 0. Then t ≥ Te(Si).

PROOF. If t ≥ Tpa, then t ≥ Te(S
i) by the definition of Te(Si). Otherwise |Sit | = 0 by

Lemma 5.19, and so again t ≥ Te(Si) by definition.

It now follows by (Z1) and Corollary 5.20 that P6 occurs if, for each i ∈ [s], Y S
i

increases at most log n times before reaching zero. We will then be able to apply
Lemma 5.17 to reduce this to a simple question about random walks. We state the
lemma below somewhat more generally since we will use it again to deal with P8.

LEMMA 5.21. There exists n0 > 0, depending on r, such that the following holds.
Suppose n ≥ n0, m ≥ 5m∗ and k ≥ 2. Fix x0 ∈ Vk. Consider the Moran process X with
G(X) = Gk,`,m and X0 = {x0}. Suppose that i and y are positive integers and that ϕ
is a possible value for Φ. Then, conditioned on Φ = ϕ, the probability in Ψ(X) that Si
spawns at least y mutants in (0, Tpa] is at most (20r/m)y.

PROOF. By (Z1), the number of mutants Si spawns in (0, Tpa] is equal to the number
of times Y S

i

increases in (Ts(S
i), Te(S

i)]. By Corollary 5.20, Y S
i

cannot reach zero until
Te(S

i), and so it suffices to prove that

P
(
Y S

i

increases at least y times before reaching 0
∣∣Φ = ϕ

)
≤ (20r/m)y. (32)
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Let t0 be a non-negative real number and let f0 be a possible value of Ft0(Ψ(X,Si))
consistent with Ts(S

i) = t0 and Φ = ϕ. Recall from Lemma 5.17 the transition proba-
bilities of Ŷ S

i

, conditioned on Ts(S
i) = t0, Ft0(Ψ(X,Si)) = f0 and Φ = ϕ.

For all j ∈ Z≥1, let Ej be the event that Y S
i

takes exactly j forward steps from 1 be-
fore reaching 0. Let E≥y =

⋃∞
j=y Ej . Since m ≥ 5m∗ > r, Y S

i

reaches 0 with probability
1, so we have

P(E≥y) =

∞∑
j=y

P(Ej).

For Y S
i

to reach 0 after exactly j forward steps, Y S
i

must decrease exactly j + 1 times
for a total of 2j + 1 steps. Thus

P(E≥y) =

∞∑
j=y

(
2j + 1

j

)(
r

r +m′

)j (
m′

r +m′

)j+1

≤
∞∑
j=y

22j+1

(
r

r +m′

)j
.

Since 4r/(r +m′) ≤ 1/2, it follows that

P(E≥y) ≤ 2

∞∑
j=y

(
4r

r +m′

)j
≤ 4

(
4r

m′

)y
≤ 4

(
5r

m

)y
≤
(

20r

m

)y
.

Here the penultimate inequality follows since m ≥ 5m∗, so m′ ≥ 4m/5. Thus (32) holds,
and the result follows.

COROLLARY 5.22. There exists n0 > 0, depending on r, such that the following
holds. Suppose n ≥ n0, m ≥ 5m∗ and k ≥ 2. Fix x0 ∈ Vk. Let X be the Moran process
with G(X) = Gk,`,m and X0 = {x0}. Then P(P6) ≥ 1− 1/n.

PROOF. Recall from Definition 5.4 that s = d3rtx0
e. Fix i ∈ [s]. Then by Lemma 5.21,

the probability that Si spawns at most blog nc mutants in (0, Tpa] is at least

1−
(

20r

m

)blognc+1

≥ 1−
(

1

log n

)logn

= 1− e− logn log logn ≥ 1− 1

n2
.

By a union bound, the probability that each of S1, . . . , Ss spawn at most log n mutants
in (0, Tpa] is at least 1− 1/n as required.

Now, P7 is implied by P6 and Lemma 5.18.

LEMMA 5.23. There exists n0 > 0, depending on r, such that the following holds.
Suppose n ≥ n0, k ≥ 2 and m ≥ 5m∗. Fix x0 ∈ Vk. Let X be the Moran process with
G(X) = Gk,`,m and X0 = {x0}. Then P(P7) ≥ 1− 2/n.

PROOF. By applying a union bound to Corollary 5.22 and Lemma 5.18, with proba-
bility at least 1 − 2/n, P6 occurs and, for all i ∈ [s], Y S

i

increases at least 2 log n times
in [Ts(S

i), Ts(S
i) + (log n)2]. By (Z1) and the occurrence of P6, Y S

i

can increase at most
log n times in [Ts(S

i), Te(S
i)), so we must have Te(Si) ≤ Ts(Si)+(log n)2. Thus, P7 occurs

by the definitions of Ts(Si) and Te(Si).

It remains only to bound the probability of P8. Note that while Lemma 5.21 bounds
the number of mutants spawned by any vertex in a strain, to tightly bound the proba-
bility that the strain is dangerous we need to look at the number of mutants spawned
from the “layer” of the strain closest to the centre vertex.
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Definition 5.24 (Head Hit of a strain). Fix Gk,`,m and fix x0 ∈ Vk. Consider the
Moran process X with G(X) = Gk,`,m and X0 = {x0}. For each positive integer i, we
define the head Hi of the strain Si as follows. For t ≥ 0, let

Hit =

{
∅ if Sit = ∅,
Sit ∩ Vmin{j|Sit∩Vj 6=∅} otherwise.

Note that, for all i, Hi is a colony with Ts(Hi) = Ts(S
i) and Te(Hi) = Te(S

i).

The following lemma relates the behaviour of the spawning chain Y H
i

to the ques-
tion of whether or not Si is dangerous.

LEMMA 5.25. Let k ≥ 2 and m ≥ 5m∗. Fix x0 ∈ Vk. Let X be the Moran process with
G(X) = Gk,`,m and X0 = {x0}. Let i be a positive integer. Suppose that Si is dangerous,
spawning a mutant onto v∗ for the first time at some time tsp ≤ Tpa. Then tsp ≤ Te(S

i),
and the following two statements hold in Ψ(X,Hi).

(i) |{t ≤ tsp | Y H
i

increases at t}| ≥ k − 1.
(ii) |{t ≤ tsp | Si spawns a mutant at t}| ≥ (k − 1) + |{t ≤ tsp | Y H

i

decreases at t}|.

PROOF. First note that since tsp ≤ Tpa and Si is non-empty at tsp, it is immediate
that Ts(Si) < tsp ≤ Te(S

i). We now define some notation. Clearly tsp is in the sequence
τ1, τ2, . . ., so write tsp = τj . For t ∈ [Ts(S

i), Te(S
i)), let hi(t) = min{y | Sit ∩ Vy 6= ∅}, so

that Hit = Sit ∩ Vhi(t). Let a = |{t ≤ tsp | Hi spawns a mutant at t}|.
We first bound a below. Recall that hi(Ts(Si)) = k − 1, and note that hi(τj−1) = 1

since Si spawns a mutant onto v∗ at time τj . Moreover, every time hi decreases, it only
decreases by 1 and Hi spawns a mutant. Also, hi increases (by at least 1) at time τx
wheneverHi is hit at τx and |Hiτx−1

| = 1. Finally, note thatHi spawns a mutant at time
τj . Thus

a ≥ (k − 2) + |{x < j | Hi is hit at τx and |Hiτx−1
| = 1}|+ 1

= (k − 1) + |{x ≤ j | Hi is hit at τx and |Hiτx−1
| = 1}|, (33)

where the equality follows since no two clocks trigger at the same time. By (Z1) this
implies part (i) of the result. (In fact it is substantially stronger, and we will use this
extra strength later in the proof.)

We now bound a above. We say that a layer Vy is empty at time t if Sit ∩ Vy = ∅, and
non-empty otherwise. Since tsp is the first time that Hi spawns a mutant onto v∗, every
time Hi spawns a mutant in [0, tsp), a layer must become non-empty in Si. Since Hi
spawns no mutants in [0, Ts(S

i)], it follows that

a = |{t ∈ (Ts(S
i), tsp] | Hi spawns a mutant at t}|

≤ |{t ∈ (Ts(S
i), tsp) | for some y ∈ [k − 1], Vy becomes non-empty at t}|+ 1.

Since Vk−1 becomes non-empty at Ts(Si), it follows that

a ≤ |{t < tsp | for some y ∈ [k − 1], Vy becomes non-empty at t}|.

Every time a layer becomes non-empty in [0, tsp], either it subsequently becomes empty
again in [0, tsp] or it contains at least one mutant at time tsp. Thus

a ≤ |{t ≤ tsp | for some y ∈ [k − 1], Vy becomes empty at t}|+ |Sitsp |.
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If a layer Vy becomes empty at time τx, then Si is hit at time τx and |Siτx−1
∩ Vy| = 1.

Thus
a ≤ |{t ≤ tsp | Si \Hi is hit at time t}|+ |{x ≤ j | Hi is hit at τx and |Hiτx−1

| = 1}|+ |Sitsp |.

Every time a vertex becomes a mutant in Si during [0, tsp], that mutant must either die
in [0, tsp] (at which point Si is hit) or still be alive at tsp. Thus

a ≤ |{t ≤ tsp | a vertex becomes a mutant in Si at t}|
− |{x ≤ j | Hi is hit at τx and |Hiτx−1

| > 1}|.

Since the only time a vertex becomes a mutant in Si without Si spawning a mutant is
Ts(S

i), and Si spawns a mutant onto v∗ at tsp, it follows that

a ≤ |{t ≤ tsp | Si spawns a mutant at t}| − |{x ≤ j | Hi is hit at τx and |Hiτx−1
| > 1}|.

It now follows from (33) that
|{t ≤ tsp | Si spawns a mutant at t}| ≥ (k − 1) + |{t ≤ tsp | Hi is hit at time t}|.

Part (ii) of the result follows immediately from (Z2).

We next prove that Y H
i

is unlikely to increase k − 1 times before decreasing Cr + 2
times. This, combined with Lemma 5.25, will allow us to show that Si is dangerous
with probability at most roughly (r/m)k−1.

LEMMA 5.26. There exists n0 > 0, depending on r, such that the following holds.
Suppose n ≥ n0, m ≥ m∗(log n)3 and 2 ≤ k ≤

√
logr n. Fix x0 ∈ Vk. Let X be the

Moran process with G(X) = Gk,`,m and X0 = {x0}. Let ϕ be a possible value of Φ and let
i ∈ Z≥1. Let Ei be the event in Ψ(X,Hi) that Y H

i

increases k− 1 times before decreasing
Cr + 2 times. Then

P(Ei | Φ = ϕ) ≤ (log n)Cr+3
( r
m

)k−1

.

PROOF. Let n0 be a large integer relative to r. Consider any positive integer t0 and
filtration value f0 such that the events Ts(Hi) = t0, Ft0(Ψ(X,Hi)) = f0 and Φ = ϕ are
consistent. Recall from Lemma 5.17 that, at each step and conditioned on these events,
Ŷ H

i

increases with probability r/(r +m′) and decreases with probability m′/(r +m′).
For 0 ≤ K ≤ Cr + 1, let Ei,K be the event that Y H

i

increases precisely k − 1 times
within its first k − 1 +K transitions. Thus Ei =

⋃Cr+1
i=0 Ei,K .

The number of backward steps among the first k − 1 + K transitions of Y H
i

follows
the binomial distribution consisting of k − 1 + K Bernoulli trials, each with success
probability m′/(r+m′), and Ei,K holds if and only if this quantity is equal to K. Hence

P(Ei,K | Ts(Hi) = t0,Ft0(Ψ(X,Hi)) = f0,Φ = ϕ)

=

(
k − 1 +K

K

)
(m′)Krk−1

(m′ + r)k−1+K
≤ (k − 1 +K)K

mKrk−1

(m′)k−1+K

≤ (log n)Cr+1 · mKrk−1

(m′)k−1+K
= (log n)Cr+1

( r
m

)k−1 (m
m′

)k−1+K

,

where the final inequality holds since k ≤
√

logr n and K ≤ Cr + 1. Moreover,(m
m′

)k−1+K

=

(
1 +

m∗

m′

)k−1+K

≤
(

1 +
2

(log n)2

)k−1+K

≤ e2(k+K)/(logn)2 ≤ e.
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It therefore follows that

P
(
Ei,K

∣∣Ts(Hi) = t0,Ft0(Ψ(X,Hi)) = f0,Φ = ϕ
)
≤ (log n)Cr+2

( r
m

)k−1

.

It now follows by a union bound over K that

P
(
Ei
∣∣Ts(Hi) = t0,Ft0(Ψ(X,Hi)) = f0,Φ = ϕ

)
≤ (Cr + 2)(log n)Cr+2

( r
m

)k−1

≤ (log n)Cr+3
( r
m

)k−1

.

We are now finally in a position to deal with P8.

LEMMA 5.27. There exists n0 > 0, depending on r, such that the following holds.
Suppose n ≥ n0, m ≥ r

√
logr n and 2 ≤ k ≤

√
logr n. Fix x0 ∈ Vk. Let X be the Moran

process with G(X) = Gk,`,m and X0 = {x0}. Then, in the process Ψ(X), P(P8 | P1∩P2) ≥
1/2.

PROOF. Let n0 be a large integer relative to r. Let ϕ be a possible value for Φ so that
the event Φ = ϕ is consistent with P1 ∩ P2. Note that P1 and P2 are determined by Φ.

For each i ∈ [s], consider the process Ψ(X,Hi) on Gk,`,m. Let Ei be the event that Si

spawns at most k + Cr mutants in (0, Tpa] and let E ′i be the event that Y H
i

increases
fewer than k−1 times before decreasing Cr+2 times. We first claim that Ei∩E ′i implies
that Si is not dangerous. Indeed, suppose E ′i holds and Si is dangerous, spawning a
mutant onto v∗ for the first time at some time tsp ≤ Tpa. By Lemma 5.25(i), Y H

i

must
increase at least k − 1 times in [0, tsp], and so since E ′i holds Y H

i

must decrease at
least Cr + 2 times in [0, tsp]. By Lemma 5.25(ii), it follows that Si must spawn at least
k + Cr + 1 mutants in [0, tsp]. Thus Ei cannot hold, and so Ei ∩ E ′i implies that Si is not
dangerous as claimed.

It therefore suffices to prove, conditioned on Φ = ϕ, that with probability at least
1/2, Ei ∩ E ′i holds for all but b∗/ log n of the i ∈ [s].

Fix i ∈ [s]. Then by Lemma 5.21,

P(Ei | Φ = ϕ) ≤
(

20r

m

)k+Cr+1

≤
(

20r

m

)k+Cr

=
20k+CrrCr

mCr

( r
m

)k
,

where

20k+CrrCr

mCr
≤ 20

√
logr n+CrrCr

rCr
√

logr n
=
r(
√

logr n+Cr)(logr 20)+Cr

rCr
√

logr n
≤ r2(logr 20)

√
logr n

rCr
√

logr n
≤ 1.

(For the final inequality, we use the fact that Cr = d2 logr 20e.) Moreover, by
Lemma 5.26 we have

P(E ′i | Φ = ϕ) ≤
( r
m

)k−1

(log n)Cr+3.

From a union bound and the fact that Φ determines P1 and P2, it follows that

P(Si is dangerous | P1 ∩ P2) ≤ P
(
Ei ∪ E ′i

∣∣P1 ∩ P2

)
≤ 2

( r
m

)k−1

(log n)Cr+3.

We now simply apply Markov’s inequality. By linearity of expectation,

E
[
|{i ∈ [s] | Si is dangerous}|

∣∣P1 ∩ P2

]
≤ 2s

( r
m

)k−1

(log n)Cr+3.
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Hence by Markov’s inequality, with probability at least 1/2, at most
4s(r/m)k−1(log n)Cr+3 strains are dangerous. Since tx0

= `mk/(rk(log n)Cr+5),
s = d3rtx0

e ≤ 4rtx0
, and b∗ = b`m/2c, we have

4s
( r
m

)k−1

(log n)Cr+3 ≤ 16rk(log n)Cr+3

mk−1
tx0

=
16`m

(log n)2
≤ b∗

log n
,

so this implies that P8 occurs and the result follows.

Lemma 5.7 now follows from everything we’ve done so far.

LEMMA 5.7. There exists n0 > 0, depending on r, such that the following holds. Sup-
pose n ≥ n0, m ≥ r

√
logr n and 2 ≤ k ≤

√
logr n. Suppose x0 ∈ Vk. Let X be the Moran

process with G(X) = Gk,`,m and X0 = {x0}. With probability at least r−k/(log n)Cr+7,
all of the following events occur in Ψ(X).

P1: no star-clock M∗(v∗,v) triggers in [0, 1].
P2: the star-clock N∗(v∗,x0) triggers in [0, tx0

− 2].
P3: im(X, v∗, Tpa) ≤ 1.
P4: Xtmax/2 ∈ {∅, V (Gk,`,m)}.
P5: for all j ≤ dtx0/(log n)2e, x0 spawns at most 2r(log n)2 mutants in Ij in X.
P6: each of S1, . . . , Ss spawns at most log n mutants in (0, Tpa].
P7: for all i ∈ [s], min{T id , Tpa} ≤ T ib + (log n)2.
P8: at most b∗/ log n of S1, . . . , Ss are dangerous.

PROOF. Let P = P1 ∩ · · · ∩ P8.

P(P) ≥ P(P1 ∩ P2 ∩ P8)− P(P3)− P(P4)− P(P5)− P(P6)− P(P7)

= P(P1 ∩ P2)P(P8 | P1 ∩ P2)− P(P3)− P(P4)− P(P5)− P(P6)− P(P7).

We bound each term on the right-hand side of the above by applying (in order) Lem-
mas 5.8, 5.27, 5.9, 5.10 and 5.11, Corollary 5.22, and Lemma 5.23. This yields

P(P) ≥ 1

rk(log n)Cr+6
· 1

2
− 6

n
≥ 1

rk(log n)Cr+7
,

as required. The final inequality follows since rk ≤ r
√

logr n ≤
√
n.

5.4.3. Applying Lemma 5.7. We now prove that P1 ∩ · · · ∩ P8 implies extinction for the
Moran process X, which together with Lemma 5.7 implies our lower bound on extinc-
tion probability.

LEMMA 5.28. There exists n0 > 0, depending on r, such that the following holds.
Suppose n ≥ n0, m ≥ r

√
logr n and 2 ≤ k ≤

√
logr n. Fix x0 ∈ Vk. Let X be the Moran

process with G(X) = Gk,`,m and X0 = {x0}. Then

P(X goes extinct) ≥ 1

rk(log n)Cr+7
.

PROOF. Let n0 be a large integer relative to r. By Lemma 5.7, it suffices to prove
that P1 ∩ · · · ∩ P8 implies extinction. We first show that we may restrict our attention
to S1, . . . , Ss. Note that by Observation 3.7, P1 ∩ P3 implies that v∗ does not spawn a
mutant in X in [0, Tpa]. Thus the definition of the strains ensures that for all t ≤ Tpa,

Xt \ {x0, v
∗} ⊆

∞⋃
i=1

Sit . (34)
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Let s′ = |{i | T ib ≤ min{tx0 , Tpa}}|. Again by Observation 3.7, P2 ∩ P3 implies that, in
the interval [0, tx0

], either x0 dies in X or Tpa occurs or both. Thus no strains are born
in (tx0

, Tpa], so by (34), it follows that

Xt \ {x0, v
∗} ⊆

s′⋃
i=1

Sit for all t ≤ Tpa. (35)

Moreover, by P5 and the definition of each interval Ij in Definition 5.4, x0 spawns at
most 2r(log n)2 · dtx0

/(log n)2e ≤ 3rtx0
≤ s mutants in [0, tx0

] in X and so s′ ≤ s.
We now show that |XTpa | < m∗, and so (A2) does not hold with t = Tpa. By (35), each

mutant in XTpa \ {x0, v
∗} belongs to Sit for some i ∈ [s′]. By P6, each such Si contains at

most log n + 1 mutants in total. By P7 and the definition of s′, each such Si was born
in the interval [Tpa − (log n)2, Tpa] ∩ [0, tx0

]. This interval spans at most two Ij ’s with
j ≤ dtx0/(log n)2e, so by P5 there are at most 4r(log n)2 such Si’s. Hence

|XTpa | ≤ (log n+ 1) · 4r(log n)2 + 2 < m∗,

and so (A2) does not hold with t = Tpa.
By P8, P6 and (35), v∗ becomes a mutant in X at most (b∗/ log n) log n = b∗ times in

[0, Tpa]. Thus (A3) does not hold with t = Tpa.
Finally, since P4 occurs, Vtmax/2 ∈ {∅, V (Gk,`,m)}. In either case, Tpa < tmax by (A1) and

(A2) and so (A4) does not hold with t = Tpa. Since none of (A2)–(A4) holds at Tpa, (A1)
must hold at Tpa by definition, and so the Moran process X goes extinct as required.

5.5. Proof of the main theorem (Theorem 5.1)
Theorem 5.1 now follows easily from Lemmas 5.2 and 5.28.

THEOREM 5.1. Let r > 1. Then there is a constant cr > 0, depending on r, such
that the following holds for all k, `,m ∈ Z≥1 such that the (k, `,m)-metafunnel Gk,`,m
has n ≥ 3 vertices. Suppose that the initial state X0 of the Moran process with fitness r
is chosen uniformly at random from all singleton subsets of V (Gk,`,m). The probability
that the Moran process goes extinct is at least e−

√
log r·logn(log n)−cr .

PROOF. Let n0 be the maximum of the value n0 in Lemma 5.28 and e2(r+1). Recall
that Cr = d2 logr 20e and take cr ≥ Cr + 8 large enough that the result holds whenever
n < n0 and whenever k = 1. (Note that if k = 1 then Gk,`,m is a star so as n tends
to infinity, the extinction probability tends to 1/r2 [Lieberman et al. 2005; Broom and
Rychtár 2008].)

We now consider the case where n ≥ n0 and k ≥ 2. Consider the coupled process
Ψ(X), with x0 taken uniformly at random from V (Gk,`,m).

If m ≤ e
√

log r·logn then, by Lemma 5.2, we have

P(X goes extinct) ≥ 1

2(m+ r)
≥ 1

2(r + 1)m
≥ 1

2(r + 1)
e−
√

log r·logn ≥ 1

log n
e−
√

log r·logn,

and the result follows. Suppose instead m ≥ e
√

log r·logn = r
√

logr n. Then we have
n ≥ mk, so k ≤

√
logr n. By Lemma 5.3, we have P(x0 ∈ Vk) ≥ 1/2. It follows from

Lemma 5.28 that

P(X goes extinct) ≥ 1

2
r−k(log n)−(Cr+7) ≥ e−

√
log r·logn(log n)−cr ,

and again the result follows.
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6. A LOWER BOUND ON THE FIXATION PROBABILITY OF ΥM

The definition of the (k, `,m)-megastarMk,`,m is given in Section 1.1.3. Note that each
of the cliques K1, . . . ,K` is the vertex set of a complete graph on k vertices (contrary
to the fact that some authors use the notation Ki to denote a complete graph on i
vertices). An infinite family of megastars is identified in Definition 1.5. Recall that

ΥM = {Mk(`),`,m(`) | ` ∈ Z≥1},

where m(`) = ` and k(`) = d(log `)23e.
For convenience, we drop the argument ` in the functions m(`) and k(`) and simply

write m and k. Also, we use M` to denote the megastar Mk(`),`,m(`). We use n = 1 +

`(m+ 1 + k) to denote the number of vertices ofM`. Note that
√
n/2 ≤ `,m ≤

√
n when

` is sufficiently large. Our main theorem is the following.

THEOREM 6.1. Consider any r > 1. There is an `0, depending on r, such that
the following holds for any ` ≥ `0. Consider the Moran process X with G(X) = M`

where the initial mutant x0 is chosen uniformly at random from V (M`). The fixation
probability of X is at least 1− (log n)23/n1/2.

6.1. Glossary

αi = bmax{(2 log n)2,m/(2 log n)2i}c . . . . . . . . . . . . . . . . . . . . . . Definition 6.26, Page 72
βi = bmax{(2 log n)2, `m/(2 log n)2i}c . . . . . . . . . . . . . . . . . . . . . Definition 6.26, Page 72
cr = d2r/(r − 1)e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 6.9, Page 58
(D1), (D2), (D3), (D4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.28, Page 73
∆ = bcr(log n)3c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.11, Page 59
γi = βi(log n)20/k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.38, Page 80
good (filtration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.26, Page 72
Hx;S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 2.9, Page 13
ht0,jin = min{h ∈ Z≥0 | Kj is inactive at T t0,jc (h)} . . . . . . . . . . Definition 6.5, Page 57
Ii = (I−i , I

+
i ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.30, Page 74

I−i = n8 + in(log n)3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.26, Page 72
I+
i = n8 + (i+ 1)n(log n)3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 6.26, Page 72
im(µ, u, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 3.6, Page 16
in(µ, u, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 3.6, Page 16
J i,j(h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.30, Page 74
jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.7, Page 57
k = k(`) = d(log `)23e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 1.5, Page 6
megastar process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 6.2, Page 53
Mk,`,m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 1.1.3, Page 4
M` =Mk(`),`,m(`) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 6, Page 52
m = m(`) = ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 1.5, Page 6
P1(i), P2(i), P3(i), P4(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.26, Page 72
pi,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.9, Page 58
p′i,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 6.8, Page 57
px→y;z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma 2.9, Page 13
Ψ(X ′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Section 3.4, Page 17
r′ = (r + 1)/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.9, Page 58
T i = T i,1 ∪ · · · ∪ T i,` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 6.40, Page 81

T i,j =

{
t ∈ (t−i , t

−
i + γi]

∣∣∣∣ for some v ∈ Rj ,
N∗(v∗,v) triggers at t

}
. . . . . . . . . . Definition 6.40, Page 81

T t0,jc (h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.4, Page 57
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T iend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.28, Page 73
t−i = in(v

∗, I−i ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.40, Page 81
t+i = im(v∗, I−i ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.40, Page 81
T t0,jin = T t0,jc (ht0,jin ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.6, Page 57
T i,vm (h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.29, Page 74
T i,vn (h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.29, Page 74
τi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 3.1, Page 15
Ui = {v ∈ R1 ∪ · · · ∪R` | N∗(v∗,v) triggers in (t−i , t

−
i + γi]} . Definition 6.40, Page 81

ΥM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 1.5, Page 6
W i,j

a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.33, Page 76
W i,j

a (h), W i,j
in (h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.30, Page 74

X ′t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.2, Page 53
Y t0,j(h) = |X ′

T
t0,j
c (h)

∩Kj | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.7, Page 57
Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 6.9, Page 58

6.2. The megastar process
In working with the megastar, it will be helpful to isolate the evolution of the Moran
process inside a clique Kj from the state of the process in the rest of the graph. To
this end we define a new mutant process X ′, which has G(X ′) = M`. It is defined in
the same way as the Moran process X, except that each feeder vertex is forced to be a
non-mutant while its corresponding clique contains both mutants and non-mutants.

Definition 6.2. The megastar process on M` with initial mutant x0 ∈ V (M`) is a
mutant process X ′ with G(X ′) = M` and X ′0 = {x0} defined as follows. Recall that
τ0 = 0 and, for every i ∈ Z≥1, a clock C ∈ C(M`) triggers at τi. For t ∈ (τi−1, τi), we set
X ′t = X ′τi−1

. Then we define X ′τi as follows.

(i) If C = M(u,v) for some (u, v) ∈ E(M`) such that u ∈ X ′τi−1
and u, v /∈ {a1, . . . , a`},

then X ′τi = X ′τi−1
∪ {v}.

(ii) If C = M(aj ,v) for some j ∈ [`] and v ∈ Kj such that aj ∈ X ′τi−1
, and Kj ∩X ′τi−1

= ∅,
then X ′τi = (X ′τi−1

∪ {v}) \ {aj}.
(iii) If C = M(u,aj) for some j ∈ [`] and u ∈ Rj such that u ∈ X ′τi−1

, and Kj ∩X ′τi−1
∈

{∅,Kj}, then X ′τi = X ′τi−1
∪ {aj}.

(iv) If C = N(u,v) for some (u, v) ∈ E(M`) such that u /∈ X ′τi−1
, then X ′τi = X ′τi−1

\ {v}.
(v) Otherwise, X ′τi = X ′τi−1

.

For j ∈ [`], we say Kj is active at time t if

∅ ⊂ X ′t ∩Kj ⊂ Kj ,

and inactive at time t otherwise.

X ′ is the only mutant process that will be considered in Section 6. Note that while
a clique Kj is active, aj is a non-mutant and the evolution of mutants in Kj depends
only on clocks with sources in Kj ∪ {aj} and not on the state of the rest ofM`.

6.3. Proof of main theorem (Theorem 6.1) assuming key lemma (Lemma 6.3)
The key ingredient in the proof of our lower bound (Theorem 6.1) is the following
lemma.
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LEMMA 6.3. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Suppose that x0 ∈ R1 ∪ · · · ∪R`. Then there exists a t ≥ 0
such that P

(
X ′t = V (M`)

)
≥ 1− 42(log n)2/n1/2.

The precise value of t is not important, but in fact, our proof will work with t =
2n8. Most of Section 6 will be devoted to the proof of Lemma 6.3. Before giving the
proof, we show how to use Lemma 6.3 to prove Theorem 6.1, which we restate here for
convenience.

THEOREM 6.1. Consider any r > 1. There is an `0, depending on r, such that the fol-
lowing holds for any ` ≥ `0. Consider the Moran process X with G(X) =M` where the
initial mutant x0 is chosen uniformly at random from V (M`). The fixation probability
of X is at least 1− (log n)23/n1/2.

PROOF. Let X ′ be the megastar process on M` with X ′0 = X0. Recall that both X
and X ′ are defined in terms of the same clock process C(M`). It is therefore immediate
that for all t ≥ 0, X ′t ⊆ Xt. Thus, if X ′ fixates at time t, then Xt = X ′t = V (M`) and so
X must also fixate at or before time t. Thus, P(X fixates) ≥ P(X ′ fixates).

Let R be the event that the initial mutant x0 is in a reservoir. Clearly,

P(R) =
`m

`(k +m+ 1) + 1
>

m

k +m+ 2
> 1− k + 2

m
≥ 1− (log `)23 + 3

m
.

By Lemma 6.3, we have

P(X ′ fixates | R) ≥ 1− 42(log n)2

√
n

.

Therefore,

P(X ′ fixates) ≥ P(R)P(X ′ fixates | R)

≥ 1− (log `)23 + 3

m
− 42(log n)2

√
n

≥ 1− 2−23(log n)23 + 3√
n/2

− 42(log n)2

√
n

,

and the result follows.

The rest of Section 6 is devoted to the proof of Lemma 6.3.

6.4. Sketch of the proof of the key lemma (Lemma 6.3)
In this Section, we give an informal sketch of the proof of Lemma 6.3. The presentation
of the proof itself does not depend upon the sketch so the reader may prefer to skip
directly to the proof. Throughout, we assume that n is “large” relative to r, leaving the
details of how large to the actual proof.

At a very high level, the argument proceeds as follows. We set out some preliminary
results concerning cliques in Section 6.5. With our choice of parameters, x0 is very
likely to spawn inside a reservoir, say R1. Let ∆ = Θ((log n)3) (see the Glossary for
the precise definition), and note that ∆ is much smaller than k. In Section 6.6.1, we
prove that K1 is likely to fill with mutants before x0 dies, and likely to contain at most
∆ non-mutants at time n. In Section 6.6.2, we prove that K1, . . . ,K` are all likely to
contain at most ∆ non-mutants at time n8. Finally, in Section 6.7 we prove that the
process is likely to fixate by time 2n8.

We now discuss each part of the argument in more detail. We say that a clique is
active if it contains both mutants and non-mutants. The key idea of Section 6.5 is that
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since we are working with the megastar process rather than the Moran process, the
behaviour of an active clique is governed by a simple random walk on {0, . . . , k} (see
Lemma 6.8). This walk is forward-biased for almost its entire length, so we dominate
it below by two back-to-back gambler’s ruins (see Definition 6.9 and Lemma 6.10).
This, together with the fact that any clique containing both mutants and non-mutants
changes state with rate at least r, allows us to prove several key properties of cliques
in the megastar process which we state here in simplified form (see Corollary 6.18 and
Lemma 6.19):

(C1) If a clique contains at least one mutant, then with at least constant probability it
fills with mutants within time k log n.

(C2) If a clique contains at most ∆ non-mutants, then with very high probability it
fills with mutants within time (log n)7.

(C3) Let I be an interval with (log n)7 ≤ len(I) ≤ e(logn)2 . Then if a clique contains at
most ∆ non-mutants at the start of I, with very high probability it contains at
most ∆ non-mutants at the end of I and contains at most 2∆ non-mutants at any
time in I.

Finally, we use (C2) and (C3) together with a careful domination to prove upper bounds
on the likelihood of non-mutants being spawned onto v∗ from an active clique (see
Lemma 6.20).

We now discuss Section 6.6.1. Heuristically, the argument is quite simple. Consider
the interval J = [0,

√
n(log n)3]. With probability at least 1 − O((log n)3/

√
n), N(v∗,x0)

does not trigger in J and so v∗ remains a mutant throughout. Conditioned on this
event, by Chernoff bounds x0 is very likely to spawn Ω(

√
n(log n)3) mutants onto a1

in J . Each time a mutant is spawned onto a1, either K1 already contains a mutant or
there is an Ω(1/m) = Ω(1/

√
n) chance of a1 spawning a mutant into K1 before dying.

Whenever K1 contains a mutant, by (C1) there is an Ω(1) chance that K1 will fill with
mutants, so in expectation K1 will fill with mutants Ω((log n)3) times over the course
of J . Finally, when K1 has filled with mutants, by (C3) it is likely to contain at most
∆ non-mutants at time n (see Lemma 6.22). Unfortunately, these events are not inde-
pendent — for example, a mutant may be spawned onto aj while Kj is already active
from a previous spawn — so concentration is not guaranteed. To make the argument
rigorous, we therefore divide J into sub-intervals and apply domination.

Section 6.6.2 is now relatively easy. (C3) tells us that K1 is very likely to remain al-
most full of mutants for a superpolynomial length of time. While we could fill each sub-
sequent clique with a similar argument to that used in Section 6.6.1, we have enough
wiggle room that we can instead use a substantially simpler argument to prove that
K1, . . . ,K` each contain at most ∆ non-mutants by time n8 (see Lemma 6.25). A side
effect of this is that our bound on t in the statement of Lemma 6.3 is very loose.

The meat of the proof is in Section 6.7. Suppose that K1, . . . ,K` each contain at most
∆ non-mutants. Since ∆ is much smaller than k, it is tempting to simply dominate the
number of mutants in reservoirs below by a random walk on {0, . . . , `m}. We could ar-
gue that by (C3), for superpolynomial time most of v∗’s in-neighbours will be mutants,
and so v∗ will spawn far more mutants than non-mutants in this interval. While this
is true, it will only take us so far — even if each clique only contained one non-mutant,
we should still expect v∗ to be a non-mutant for an Ω(1/k) proportion of the time, leav-
ing us with Ω(m/k) non-mutants in each reservoir. However, all is not lost. Intuitively,
when there are many mutants in a reservoir, the corresponding feeder vertex is more
likely to be a mutant and so frequently its clique will contain no non-mutants at all.
Developing this idea yields Lemma 6.27, the main result of the section.
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For all i ∈ Z≥0, let

I−i = n8 + in(log n)3,

I+
i = n8 + (i+ 1)n(log n)3,

Ii = (I−i , I
+
i ],

αi = bmax{(2 log n)2,m/(2 log n)2i}c,
βi = bmax{(2 log n)2, `m/(2 log n)2i}c.

We say that the filtration at time I−i is good if the following events occur.

—P1(i): |(R1 ∪ · · · ∪R`) \X ′I−i | ≤ βi.
—P2(i): For all j ∈ [`], |Rj \X ′I−i

| ≤ αi.
—P3(i): For all j ∈ [`], |Kj \X ′I−i | ≤ ∆.
—P4(i): For all but at most βi choices of j ∈ [`], Rj ∪ {aj} ∪Kj ⊆ X ′I−i .

Lemma 6.27 implies that if the filtration at I−i is good, then with very high probability
so is the filtration at I−i+1. Thus the number of non-mutants in each reservoir drops by
a factor of at least (2 log n)2 to a minimum of b(2 log n)2c, as does the total number of
non-mutants across all reservoirs. Moreover, if i is sufficiently large, then Lemma 6.27
also implies that the process fixates by time I−i+1 with probability at least 1/2.

Note that the filtration at I−0 is good; indeed, α0 = m and β0 = `m, so P1(0), P2(0)
and P4(0) trivially occur, and P3(0) is very likely to occur by Lemma 6.25. It is therefore
relatively easy to prove Lemma 6.3 using Lemmas 6.25 and 6.27 (see Section 6.7.1).

The linchpin of the proof of Lemma 6.27 is a stopping time T iend defined to be the first
time t ≥ I−i such that one of the following holds.

(D1) t = I+
i .

(D2) v∗ spawns βi+1 non-mutants in the interval (I−i , t].
(D3) For some j ∈ [`], v∗ spawns αi+1 non-mutants onto vertices in Rj in the interval

(I−i , t].
(D4) For some j ∈ [`], |Kj \X ′t| > 2∆.

Note that the definition of T iend guarantees, without any need for conditioning, that
throughout (I−i , T

i
end] our cliques remain almost full of mutants and not too many non-

mutants are spawned onto reservoirs. We will therefore work in (I−i , T
i
end] for most of

the proof to facilitate dominations, with the eventual goal of proving that (I−i , T
i
end] =

Ii.
In Section 6.7.2, we prove an upper bound on the number of times cliques are likely

to become active over the interval (I−i , T
i
end] (see Lemma 6.34). In Section 6.7.3, we

apply this together with Lemma 6.20 to prove an upper bound on the length of time
for which v∗ is likely to be a mutant over the interval (I−i , T

i
end] (see Lemma 6.37).

Unfortunately, due to the use of T iend, these proofs require a fairly technical series of
dominations. More details can be found in the relevant sections.

In Section 6.7.4, we put all of this together to prove Lemma 6.27 and hence
Lemma 6.3. The key observation is that Lemma 6.37 combines with Chernoff bounds
on star-clocks to give strong upper bounds on the number of non-mutants spawned
by v∗ in (I−i , T

i
end]. These bounds, together with (C3), imply that none of (D2)–(D4) are

likely to hold at T iend — in which case (I−i , T
i
end] = Ii. Additional Chernoff bounds on

star-clocks then imply that v∗ is likely to spawn a mutant onto every reservoir vertex
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over the first half of Ii, which implies that P1(i + 1) and P2(i + 1) are likely to occur.
Then P3(i+1) is likely to occur by (C3), and P4(i+1) is likely to occur by (C2) combined
with a relatively simple argument. This implies that the filtration at I−i+1 is likely to
be good, as required by Lemma 6.27. This part of the argument is mostly contained in
Lemmas 6.41 and 6.42.

It remains only to prove that if i is sufficiently large, X fixates with probability
at least 1/2. In this case, we use similar arguments to the above to show that with
probability at least 5/6, v∗ spawns no non-mutants at all over the course of Ii. In this
case, similar arguments to those used to deal with P4(i + 1) work to show that X is
likely to fixate as required.

6.5. The behaviour of mutants within cliques
In order to describe the behaviour of mutants in cliques in the megastar process, we
require the following definitions.

Definition 6.4. Given a clique j ∈ [`] and a time t0 ≥ 0, define the following stopping
times T t0,jc (h) for h ∈ Z≥0.

— If h = 0, let T t0,jc (h) = t0.
— If h > 0 and Kj is active at T t0,jc (h− 1), then let

T t0,jc (h) = min
{
t > T t0,jc (h− 1) | X ′t ∩Kj 6= X ′

T
t0,j
c (h−1)

∩Kj

}
.

— Otherwise, let T t0,jc (h) = T t0,jc (h− 1).

The subscript “c” in T t0,jc (h) stands for “change” because if Kj is active at t0, then
T t0,jc (1), T t0,jc (2), . . . are the times at which the number of mutants in Kj changes after
t0 until Kj next becomes inactive. We also use the following definition.

Definition 6.5. Let ht0,jin = min{h ∈ Z≥0 | Kj is inactive at T t0,jc (h)}.

The subscript “in” in ht0,jin stands for “inactive”. Note that ht0,jin is finite with probabil-
ity 1. Thus, with probability 1, the following is well-defined.

Definition 6.6. Let T t0,jin = T t0,jc (ht0,jin ).

Definition 6.7. For every h ∈ Z≥0, let Y t0,j(h) = |X ′
T
t0,j
c (h)

∩ Kj |. For h ∈

{1, . . . , ht0,jin }, we say that Y t0,j jumps at time T t0,jc (h).

We first show that Y t0,j evolves as a Markov chain.

LEMMA 6.8. Suppose ` ≥ 3, and consider any j ∈ [`] and t0 ≥ 0. Let f be any
possible value of Ft0(X ′). Conditioned on the event Ft0(X ′) = f , Y t0,j evolves as a
discrete-time Markov chain on states {0, . . . , k} starting from state Y t0,j(0) with the
following transition matrix.

p′0,0 = 1,

p′i,i+1 =
r(k − i)

(r + 1)(k − i) + 1
for all i ∈ [k − 1],

p′i,i−1 = 1− p′i,i+1 for all i ∈ [k − 1],

p′k,k = 1,

p′i,j = 0, otherwise.
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PROOF. Consider any t′ ≥ t0, any integer h ≥ 0, any y0, . . . , yh ∈ {0, . . . , k} and any
possible value f ′ of Ft′(X ′) that implies that Ft0(X ′) = f , Y t0,j(0) = y0, . . . , Y

t0,j(h) =
yh, and T t0,jc (h) = t′. We will show that, conditioned on Ft′(X ′) = f ′, the distribution of
Y t0,j(h+ 1) is as claimed in the lemma statement.

First, suppose that yh ∈ {0, k}. In this case, Definition 6.4 guarantees that T t0,jc (h+
1) = T t0,jc (h) so Y t0,j(h+ 1) = Y t0,j(h), which is consistent with p′0,0 = p′k,k = 1.

Next, suppose that yh ∈ [k − 1]. Then the clique Kj is active throughout the interval
[t0, T

t0,j
c (h+ 1)). By the definition of the megastar process X ′, the feeder vertex aj is a

non-mutant throughout this interval.
The out-degree of aj and every vertex in Kj is k. There are yh(k − yh) mutant clocks

whose sources are in Kj ∩X ′t′ and targets are in Kj \X ′t′ . Similarly, there are (k− yh +
1)yh non-mutant clocks whose sources are in (Kj∪{aj})\X ′t′ and targets are inKj∩X ′t′ .
Thus after t′, the number of mutants in Kj increases with rate u := ryh(k − yh)/k and
decreases with rate d := (k − yh + 1)yh/k. It follows that

P(Y t0,j(h+ 1) = yh + 1 | Ft′(X ′) = f ′) =
u

u+ d
= p′yh,yh+1,

P(Y t0,j(h+ 1) = yh − 1 | Ft′(X ′) = f ′) = p′yh,yh−1,

as required.

We will dominate the Markov chain Y t0,j(h) in terms of a simpler Markov chain Z,
which is defined as follows.

Definition 6.9. Let cr = d2r/(r−1)e and let r′ = (r+1)/2. Let Z be the discrete-time
Markov chain on states {0, . . . , k} with the following transition matrix.

p0,0 = 1,

pi,i+1 =

{
r′/(r′ + 1) if 1 ≤ i ≤ k − cr,
1/3 if k − cr < i ≤ k − 1,

pi,i−1 = 1− pi,i+1 for all i ∈ [k − 1],

pk,k = 1,

pi,j = 0, otherwise.
Note that the value k used in Definition 6.9 is the same as k = k(`) in our parame-

terisation of the megastar (Definition 1.5). We now show that Y t0,j is dominated below
by Z, starting from state Y t0,j(0).

LEMMA 6.10. Suppose ` ≥ 3, and consider any j ∈ [`] and t0 ≥ 0. Let f be any
possible value of Ft0(X ′). Conditioned on the event Ft0(X ′) = f , Y t0,j is dominated
below by the Markov chain Z, starting from state Y t0,j(0).

PROOF. Given Lemma 6.8, the two things to show are

(i) for all i ∈ [k − 1], p′i,i+1 ≥ pi,i+1, and
(ii) for 0 < i < i+ 1 < k, p′i+1,i+2 ≥ pi,i+1.

Since p′i+1,i+2 ≤ p′i,i+1, it suffices to prove the second of these, together with p′k−1,k ≥
pk−1,k.

We start with the latter. We have

p′k−1,k =
r

(r + 1) + 1
≥ 1

3
,

which gives the desired bound since, from cr ≥ 2, we have k − cr < k − 1 and so
pk−1,k = 1/3.
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So now we must consider i satisfying 0 < i < k−1 and we must show p′i+1,i+2 ≥ pi,i+1.

Case 1: i ≤ k − cr. We have

p′i+1,i+2 − pi,i+1 =
r(k − (i+ 1))

(r + 1)(k − (i+ 1)) + 1
− r′

r′ + 1
.

Since k > i+ 1, the common denominator of these fractions is positive; the numerator
of the difference is easily calculated to be (k − i)(r − r′)− r ≥ cr(r − 1)/2− r ≥ 0.

Case 2: i > k − cr. Since i and k are integers, i + 1 < k implies that 1 ≤ k − (i + 1).
Thus,

p′i+1,i+2 =
r(k − (i+ 1))

(r + 1)(k − (i+ 1)) + 1
≥ r(k − (i+ 1))

(r + 2)(k − (i+ 1))
=

r

r + 2
≥ 1

3
.

As i > k − cr, pi,i+1 = 1/3, so this gives the desired bound.

We now use our observations about the gambler’s ruin problem in Section 2.3 to
derive some simple bounds on the behaviour of the Markov chain Z.

Definition 6.11. Let ∆ = bcr(log n)3c.
Note that k ≥ 2∆ as long as ` is sufficiently large, and that having ` sufficiently large

also implies a lower bound on n.

LEMMA 6.12. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Suppose that Z is started in state k − cr. Then the
following statements hold.

(i) The probability of reaching state k without passing through state k −∆ is at least
1− e−(logn)3 .

(ii) The expected number of transitions that it takes to reach state k or state k − 2∆ is
at most log n.

PROOF. Recall the notationHx;S and px→y;z from Lemma 2.9. We first prove Item (i).
Apply Lemma 2.9 with p1 = r′/(r′ + 1) = (r + 1)/(r + 3) > 1/2, a = k − 2∆, b = k −∆,
c = k − cr and d = k. By Item (i) of Lemma 2.9,

pc→d;b ≥ 1−
(

1− p1

p1

)c−b
2d−c.

Note that (1− p1)/p1 = 2/(r + 1) = 1− (r − 1)/(r + 1) and ∆ ≥ cr(log n)3 − 1, so, for all
n sufficiently large with respect to r, it holds that(

1− p1

p1

)∆−cr
2cr ≤

(
1− r − 1

r + 1

)cr(logn)3

(r + 1)cr+1

≤ exp

(
−cr

r − 1

r + 1
(log n)3 + (cr + 1) log(r + 1)

)
≤ e−(logn)3 ,

where in the second inequality we used (4) and in the last inequality we used the fact
that cr r−1

r+1 > 1. Item (i) thus follows.
We next prove Item (ii). Apply Lemma 2.9 with the same parameters as before. By

Lemma 2.9(ii), E[Hc,{a,d}] ≤ 2d−c+1
(

3p1−1
2p1−1

)
so it suffices to show

2cr+1

(
3p1 − 1

2p1 − 1

)
≤ log n ,
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which again holds as long as n is sufficiently large with respect to r.

Next, we use the domination of Y t0,j by Z (Lemma 6.10) and our observations about
Z (Lemma 6.12) to derive some conclusions about mutants in cliques.

LEMMA 6.13. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let j ∈ [`], t0 ≥ 0, and y0 ∈ {0, . . . , k}. Let f be a possible
value of Ft0(X ′) which implies that Y t0,j(0) = y0. Then the following statements hold.

(i) If y0 ≥ k − 1, then

P
(
∀t ∈ [t0, T

t0,j
in ], |Kj \X ′t| ≤ ∆

∣∣∣Ft0(X ′) = f
)
≥ 1− e−(logn)3 .

(ii) If y0 ≥ k −∆, then

P
(
∀t ∈ [t0, T

t0,j
in ], |Kj \X ′t| ≤ 2∆

∣∣∣Ft0(X ′) = f
)
≥ 1− 2e−(logn)3 .

PROOF. Recall the notation px→y;z from Lemma 2.9. The Markov chain Z is the
same as the chain in Lemma 2.9 with p1 = r′/(r′ + 1), a = 0, c = k − cr and d = k. We
start with simple lower bounds concerning Z.

— From any state i ∈ {k − cr, . . . , k}, Z must reach either state k or state k − cr
before reaching state k − ∆. By Lemma 6.12(i), pk−cr→k;k−∆ ≥ 1 − e−(logn)3 , and we
have

pi→k;k−∆ ≥ pk−cr→k;k−∆ ≥ 1− e−(logn)3 . (36)

— Consider i ∈ {k −∆, . . . , k − cr − 1}. By Corollary 2.8(i),

pi→k−cr;k−2∆ ≥ 1− (r′)−∆ ≥ 1− e−∆(r′−1)/r′ ≥ 1− e−(logn)3 ,

where the last inequality holds for all n sufficiently large with respect to r, using the
fact that cr r

′−1
r′ = cr

r−1
r+1 > 1. It follows from Lemma 6.12(i) that

pi→k;k−2∆ ≥ pi→k−cr;k−2∆ − pk−cr→k−2∆;k ≥ 1− 2e−(logn)3 . (37)

The result now follows easily. By Lemma 6.10, Y t0,j is dominated below by Z with
initial state y0 conditioned on Ft0(X ′) = f . Thus Item (i) follows from (36) and Item (ii)
follows from (36) and (37).

Note that in the process of proving Lemma 6.13, we proved the following (see (36)
and (37)).

COROLLARY 6.14. Consider any r > 1. There is an `0, depending on r, such that
the following holds for any ` ≥ `0. Let y0 be an integer satisfying k − ∆ ≤ y0 ≤ k. The
probability that Z, when started from y0, reaches state k without passing through state
k − 2∆, is at least 1− 2e−(logn)3 .

We now use Lemma 6.12 and Corollary 6.14 to give lower bounds on the probability
that Z reaches k in a relatively short time.

LEMMA 6.15. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Consider the Markov chain Z, starting from y0 ∈ [k − 1].

(i) If k −∆ ≤ y0 ≤ k − 1, then P(Zd15c2r(logn)6e = k) ≥ 1− 3e−(logn)3 .
(ii) If 1 ≤ y0 ≤ k −∆, then P(Zd5c2rke = k) ≥ r−1

5r .
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PROOF. Recall the notation Hx;S and px→y;z from Lemma 2.9. The Markov chain Z
is the same as the Markov chain in Lemma 2.9 with p1 = r′/(r′ + 1), a = 0, c = k − cr
and d = k. Let η = d5ecr∆e d(log n)3e and η′ = d4c2rke.

We first establish Item (i). Note that d15c2r(log n)6e ≥ η, so it suffices to establish the
stronger statement that for all y0 satisfying k −∆ ≤ y0 ≤ k − 1, we have P(Zη = k) ≥
1− 3e−(logn)3 . So suppose k −∆ ≤ y0 ≤ k − 1. Note that

P(Zη = k) ≥ P(Hy0;{k−2∆,k} ≤ η)− py0→k−2∆;k.

Corollary 6.14 shows that py0→k−2∆;k ≤ 2e−(logn)3 . So, to show (i), we will show

P(Hy0;{k−2∆,k} ≤ η) ≥ 1− e−(logn)3 . (38)

To establish (38), we first show the following.

For every integer y satisfying k − 2∆ < y < k, E[Hy;{k−2∆,k}] ≤ 5cr∆. (39)

To see (39), there are three cases to consider.

Case 1: y = k − cr. By Lemma 6.12(ii), we have the (tighter) bound

E[Hy;{k−2∆,k}] ≤ log n. (40)

Case 2: k − 2∆ < y < k − cr. By Corollary 2.8(iii), we have

E[Hy;{k−2∆,k−cr}] ≤
2∆(r′ + 1)

r′ − 1
=

2∆(r + 3)

r − 1
≤ 4cr∆.

Combining this and (40), we obtain

E[Hy;{k−2∆,k}] ≤ E[Hy;{k−2∆,k−cr}] + E[Hk−cr;{k−2∆,k}] ≤ 5cr∆.

Case 3: k − cr < y < k. By Corollary 2.8(ii) we have E[Hy;{k−cr,k}] ≤ 3cr, and so

E[Hy;{k−2∆,k}] ≤ E[Hy;{k−cr,k}] + E[Hk−cr;{k−2∆,k}] ≤ 3cr + log n ≤ 2 log n.

These three cases establish (39). Applying Markov’s inequality gives the following.

For every integer y satisfying k − 2∆ < y < k, P(Hy;{k−2∆,k} ≥ d5ecr∆e) ≤
1

e
. (41)

Now (38) follows by subdividing the set [η] (indexing η transitions from the initial state
y0) into d(log n)3e disjoint sets of contiguous indices, each of size d5ecr∆e, then applying
(41) to each subset.

We next establish item (ii), so suppose 1 ≤ y0 ≤ k − ∆. By Corollary 2.8(iii), for all
y0 ∈ {1, . . . , k − cr}, we have

E[Hy0;{0,k−cr}] ≤
k(r′ + 1)

r′ − 1
=
k(r + 3)

r − 1
≤ 2crk.

Applying Markov’s inequality, we obtain

P(Hy0;{0,k−cr} ≤ d4c
2
rke) ≥ 1− 1

2cr
≥ 1− r − 1

4r
.

Now by Corollary 2.8(i), py0→0;k−cr ≤ 1
r′ . So

P(Hy0;{k−cr} ≤ η
′) ≥ P(Hy0;{0,k−cr} ≤ η

′)− py0→0;k−cr ≥ 1− r − 1

4r
− 2

r + 1
.
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Now, using the fact that, starting from Z0 = k− cr, we have P(Zη = k) ≥ 1− 3e−(logn)3 ,
which we proved in the derivation of (i), we have, starting from Z0 = y0,

P(Zη+η′ = k) ≥ 1−3e−(logn)3− r − 1

4r
− 2

r + 1
= (r−1)

(
1

r + 1
− 1

4r

)
−3e−(logn)3 ≥ r − 1

5r
,

which completes the proof, since η + η′ ≤ d5c2rke (which we will now justify).
To see that η + η′ ≤ d5c2rke, recall from the very start of Section 6 (just before the

statement of Theorem 6.1) that
√
n/2 ≤ ` ≤

√
n so n ≤ 4`2. Furthermore, n ≥ `2 so the

condition ` ≥ `0 in the statement of the lemma also guarantees that n is sufficiently
large.

From the definition at the beginning of the proof, η = d5ecr∆e d(log n)3e, so plugging
in ∆ = bcr(log n)3c (from the glossary in in Section 6.1) and using the fact that n is
sufficiently large, we get η ≤ 6ec2r(log n)

6. Since cr is a constant (depending on r, but
not on n) and n is sufficiently large, this gives η ≤ (log n)

7. Now since n ≤ 4`2 and ` is
sufficiently large, we have log n ≤ 3 log ` so η ≤ 37(log `)

7 ≤ (log `)
8

= (log `)
23
/(log `)

15.
Finally, plugging in k = d(log `)23e (from the glossary in Section 6.1), η ≤ k/(log `)

15.
Since ` is sufficiently large, this is (easily) smaller than d5c2rke−η′ = d5c2rke−d4c2rke.

The following corollary follows immediately from Lemma 6.10 and Lemma 6.15.

COROLLARY 6.16. Consider any r > 1. There is an `0, depending on r, such that
the following holds for any ` ≥ `0. Let j ∈ [`], let t0 ≥ 0, and let y0 ∈ [k − 1]. Let
f be a possible value of Ft0(X ′) which implies that Y t0,j(0) = y0. Then the following
statements hold.

(i) If k −∆ ≤ y0 ≤ k − 1, then

P
(
Y t0,j(d15c2r(log n)

6e) = k
∣∣∣Ft0(X ′) = f

)
≥ 1− 3e−(logn)3 .

(ii) If 1 ≤ y0 ≤ k −∆, then

P
(
Y t0,j(d5c2rke) = k

∣∣∣Ft0(X ′) = f
)
≥ r − 1

5r
.

To translate Corollary 6.16 into a bound on the time it takes Kj to fill with mutants,
we will require the following lemma.

LEMMA 6.17. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let j ∈ [`] and t0 > 0. Let f be a possible value of Ft0(X ′)
which implies that Kj is active at t0. Let t∗ ≥ 16(log n)3. Then, conditioned on the event
Ft0(X ′) = f , with probability at least 1− e−(logn)3 , T t0,jc (dt∗/2e) < t0 + t∗.

PROOF. We will first show that T t0,jc (1)−T t0,jc (0), . . . , T t0,jc (dt∗/2e)−T t0,jc (dt∗/2e−1)
are dominated above by i.i.d. exponential variables with rate 1.

Fix 0 ≤ h ≤ dt∗/2e − 1, let x ≥ 0 and let t0, . . . , th ≥ 0. Suppose fh is a possible value
of Fth(X ′) which implies that T t0,jc (0) = t0, . . . , T

t0,j
c (h) = th and Ft0(X ′) = f . Fix t ≥ 0.

Note that fh determines the event T t0,jin ≤ th, as well as the value of Y t0,j(h) — write
yh = Y t0,j(h). If fh is such that T t0,jin ≤ th, then we have T t0,jc (h+ 1)− th = 0 and so

P
(
T t0,jc (h+ 1)− th ≤ x | Fth(X ′) = fh

)
= 1 ≥ 1− e−x. (42)

Suppose instead that fh is such that T t0,jin > th, so that 1 ≤ yh ≤ k − 1. Then
T t0,jc (h + 1) − th is the amount of time it takes after th for a vertex in Kj ∪ {aj} to
spawn either a mutant onto a non-mutant in Kj or a non-mutant onto a mutant in Kj .
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Thus, conditioned on Fth(X ′) = fh, (see the proof of Lemma 6.8) T t0,jc (h+ 1)− th is an
exponential variable with rate

ryh(k − yh)

k
+
yh(k − yh)

k
+
yh
k
≥ (r + 1)yh(k − yh)

k
≥ (r + 1)(k − 1)

k
≥ 2(k − 1)

k
≥ 1.

In particular, we have shown that

P
(
T t0,jc (h+ 1)− th ≤ x | Fth(X ′) = fh

)
≥ 1− e−x. (43)

By (42) and (43) we have

P
(
T t0,jc (h+ 1)− th ≤ x | T t0,jc (0) = t0, . . . , T

t0,j
c (h) = th,Ft0(X ′) = f

)
≥ 1− e−x,

and so T t0,jc (1) − T t0,jc (0), . . . , T t0,jc (dt∗/2e) − T t0,jc (dt∗/2e − 1) are dominated above by
i.i.d. exponential variables with rate 1 as claimed.

It follows that T t0,jc (dt∗/2e)− t0 is dominated above by a sum of dt∗/2e i.i.d. exponen-
tial variables with rate 1. We have t∗ ≥ 3dt∗/2e/2, so by Corollary 2.4 we have

P
(
T t0,jc (dt∗/2e) < t0 + t∗

)
= P

(
T t0,jc (dt∗/2e)− t0 < t∗

)
≥ 1− e−t

∗/16 ≥ 1− e−(logn)3 .

We now use Lemma 6.13, Corollary 6.16 and Lemma 6.17, to prove three results
which contain all the properties of cliques that we will need to prove our key lemma,
Lemma 6.3.

COROLLARY 6.18. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let j ∈ [`], t0 ≥ 0, and y0 ∈ [k]. Let f be a possible value
of Ft0(X ′) which implies that Y t0,j(0) = y0. Then the following statements hold.

(i) If k −∆ ≤ y0 ≤ k, then

P
(
T t0,jin ≤ t0 + 30c2r(log n)6 and Kj ⊆ X ′T t0,jin

∣∣Ft0(X ′) = f
)
≥ 1− 4e−(logn)3 .

(ii) If 1 ≤ y0 ≤ k −∆, then

P
(
T t0,jin ≤ t0 + 10c2rk and Kj ⊆ X ′T t0,jin

∣∣Ft0(X ′) = f
)
≥ r − 1

6r
.

PROOF. If y0 = k, then T t0,jin = t0 and the result follows immediately, so suppose
instead that y0 ∈ [k − 1]. This implies t0 > 0. Part (i) now follows on applying a union
bound to Corollary 6.16(i) and Lemma 6.17, taking t∗ = 30c2r(log n)6. Part (ii) likewise
follows immediately by applying a union bound to Corollary 6.16(ii) and Lemma 6.17,
taking t∗ = 10c2rk.

We combine Lemma 6.13 and Corollary 6.18 to prove the following.

LEMMA 6.19. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let j ∈ [`]. Let I = (I−, I+] be a time interval with
30c2r(log n)6 < len(I) ≤ e(logn)2 , and let f be a possible value of FI−(X ′) which implies
that |Kj \ X ′I− | ≤ ∆. Then, conditioned on FI−(X ′) = f , with probability at least 1 −
e−

1
2 (logn)3 the following statements all hold.

(i) For all t ∈ I, |Kj \X ′t| ≤ 2∆.
(ii) |Kj \X ′I+ | ≤ ∆.

(iii) For all t0 ∈ [I−, I+ − 30c2r(log n)6), there exists t1 ∈ [t0, t0 + 30c2r(log n)6] such that
Kj ⊆ X ′t1 .
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PROOF. We start with the following mutually recursive definitions. Let Tin(−1) =
I−. Then, for h ∈ Z≥0,

Ta(h) = min{t ≥ Tin(h− 1) | Kj is active at t or t = I+},
Tin(h) = min{t ≥ Ta(h) | Kj is inactive at t or t = I+}.

These definitions of Tin(h) and Ta(h) are local to this proof. The subscript “a” stands for
“active” and the subscript “in” stands for “inactive”. The notation must not be confused
with the global variable T t0,jin . Let ξ = d4rlen(I)e and let κ = 30c2r(log n)6.

We define the following events.

— Let E1 be the event that Ta(ξ) = I+.
— For h ∈ Z≥0, let E2(h) be the event that Tin(h) ≤ Ta(h) + κ.
— The event FI−(X ′) = f determines whether Kj is active at time I−.

— If so, let E3(0) be the event that, for all t ∈ [Ta(0), Tin(0)], |Kj \X ′t| ≤ 2∆.
— If not, let E3(0) be the event that, for all t ∈ [Ta(0), Tin(0)], |Kj \X ′t| ≤ ∆.

— For h ∈ Z≥1, let E3(h) be the event that, for all t ∈ [Ta(h), Tin(h)], |Kj \X ′t| ≤ ∆.
— For h ∈ Z≥−1, let E4(h) be the event that for all t ∈ [Tin(h), Ta(h+ 1)), Kj ⊆ X ′t.

Note that for all h ≥ 0, E3(h) implies E4(h). This is easy to see as long as Kj is
inactive at Tin(h). In this case, E3(h) implies that Kj ⊆ X ′Tin(h) – since the number of
non-mutants is at most 2∆, but it is either 0 or k, it must be 0. On the other hand, if Kj

is active at Tin(h) then Tin(h) = I+ so Ta(h+ 1) = I+ so the interval in E4(h) is empty.
We next observe that FI−(X ′) = f implies that E4(−1) occurs. From the statement

of the lemma, FI−(X ′) = f implies that |Kj \ X ′I− | ≤ ∆. If Kj is inactive at I− then
this implies that Kj ⊆ X ′I− , which implies E4(−1). If instead Kj is active at I− then
the interval in E4(−1) is empty so E4(−1) occurs vacuously.

For any integer q, let Eq2 =
⋂q
h=0 E2(h), Eq3 =

⋂q
h=0 E3(h), and Eq4 =

⋂q
h=−1 E4(h). Let

E2 = Eξ2 , E3 = Eξ3 and E4 = Eξ4 .
We first show that if FI−(X ′) = f and E1, E2 and E3 all occur, then statements (i), (ii)

and (iii) hold. As we have just observed, FI−(X ′) = f and E3 imply that E4 also occurs.
Then E3, E4 and E1 imply (i). They also imply (ii) except in the case where Kj is active
at I− and remains active for all of I. This case is ruled out by E2(0) since len(I) > κ.
We now turn to statement (iii). Consider any t0 ∈ [I−, I+ − κ). Suppose first that Kj

is inactive at time t0. Since (i) holds, Kj ⊆ X ′t0 , so it suffices to take t1 = t0. Suppose
instead that Kj is active at time t0. Then, for some h ≥ 0, t0 ∈ [Ta(h), Tin(h)]. By E1,
h ≤ ξ. By E2(h), we may assume Tin(h) ≤ t0 + κ so we can choose t1 = Tin(h). Since
t0 + κ < I+, t1 < I+ so t1 ∈ [Tin(h), Ta(h+ 1)) and E4(h) guarantees that Kj ⊆ X ′t1 .

During the remainder of the proof, we will show that

P(E1 ∩ E2 ∩ E3 | FI−(X ′) = f) ≥ 1− e− 1
2 (logn)3 . (44)

It is clear that E1 occurs if clocks with source aj trigger (in total) fewer than ξ times
in I. These clocks have total rate 1 + r ≤ 2r, so by Corollary 2.2 it follows that

P(E1 | FI−(X ′) = f) ≥ 1− e−(1+r)len(I)/3 ≥ 1− e−(logn)3 . (45)

Now consider any h ∈ {0, . . . , ξ} and any th ∈ [I−, I+]. If the events Ta(h) = th,
FI−(X ′) = f , Eh−1

2 , Eh−1
3 and Eh−1

4 are consistent then let fh be any value of Fth(X ′)
such that Fth(X ′) = fh implies all of these events. Suppose that Fth(X ′) = fh and
consider how many non-mutants Kj can have at time th.

Case 1. If h = 0 and Kj is active at I− then th = I− and it follows from the assumption
in the statement of the lemma that Kj has at most ∆ non-mutants at time th.
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Case 2. Otherwise, if Tin(h− 1) < I+, then [Tin(h− 1), Ta(h)) is non-empty, so it follows
from E4(h− 1) that Kj has at most one non-mutant at time th.

Case 3. Otherwise, Tin(h− 1) = th = I+ so it follows from E3(h− 1) that Kj has at most
∆ non-mutants at Tin(h− 1) = th.

In any of these three cases, Corollary 6.18(i) implies that

P(E2(h) | Fth(X ′) = fh) ≥ 1− 4e−(logn)3 . (46)

In Case 1, Lemma 6.13(ii) implies that

P(E3(h) | Fth(X ′) = fh) ≥ 1− 2e−(logn)3 . (47)

In Case 2, Lemma 6.13(i) implies that

P(E3(h) | Fth(X ′) = fh) ≥ 1− e−(logn)3 .

In Case 3, Tin(h− 1) = Ta(h) = Tin(h) so E3(h) is implied by E3(h− 1) hence

P(E3(h) | Fth(X ′) = fh) = 1.

Equation (47) gives the worst bound of the three cases. Combining this with (46)
using a union bound, we have

P(E2(h) ∪ E3(h) | FI−(X ′) = f, Eh−1
2 , Eh−1

3 ) ≤ 6e−(logn)3 ,

so

P(E2 ∩ E3 | FI−(X ′) = f) ≥ 1− (1 + ξ)6e−(logn)3 ,

which, together with (45) gives (44).

The final result of Section 6.5 shows that if an active clique is almost full of mutants,
then with high probability it spawns no non-mutants at all onto v∗ before becoming
inactive, and with even higher probability it doesn’t spawn too many non-mutants
onto v∗ before becoming inactive.

LEMMA 6.20. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let j ∈ [`] and t0 ≥ 0. Let f be a possible value of Ft0(X ′)
which implies that k−∆ ≤ |X ′t0 ∩Kj | ≤ k−1. Let S be the total number of non-mutants
spawned onto v∗ by vertices in Kj within (t0, T

t0,j
in ]. Then the following statements hold.

(i) P(S = 0 | Ft0(X ′) = f) ≥ 1− (log n)10/k.
(ii) P(S ≤ (log n)3 | Ft0(X ′) = f) ≥ 1− 7e−(logn)3 .

PROOF. Let E1 be the event that for all t ∈ [t0, T
t0,j
in ], |X ′t ∩Kj | ≥ k − 2∆, and let E2

be the event that T t0,jin ≤ t0 + 30c2r(log n)6. Let A be the set of all clocks which have both
source and target in Kj ∪ {aj}. Let Φ contain, for each clock C ∈ A, a list of the times
at which C triggers in (t0, T

t0,j
in ]. Note that by the definition of the megastar process

(Definition 6.2), for all t ∈ [t0, T
t0,j
in ], aj /∈ X ′t. It follows that for all t ∈ [t0, T

t0,j
in ], Φ and

Ft0(X ′) together uniquely determine Kj ∩ X ′t. They therefore determine T t0,jc (h) and
Y t0,j(h) for all h ≥ 0 and hence they determine whether E1 and E2 occur.

Let χ0 = Kj ∩ X ′t0 . Consider any integer y ≥ 0, any sets χ1, . . . , χy ⊆ Kj and any
t1, . . . , ty > t0. Suppose that ϕ is a possible value of Φ such that f and ϕ together imply
that E1 ∩ E2 occurs, that ht0,jin = y, and that for all h ∈ {0, . . . , y}, we have T t0,jc (h) = th
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and Kj ∩X ′th = χh. If Ft0(X ′) = f and Φ = ϕ, then E1 ∩ E2 occurs and so

|Kj \ χh| ≤ 2∆ for all h ∈ {0, . . . , y}, (48)
ty ≤ t0 + 30c2r(log n)6. (49)

For all h ∈ {1, . . . , y}, let

Sh = |{t ∈ (th−1, th) | N(u,v∗) triggers at time t for some u ∈ Kj \ χh−1}|.

We will show that, conditioning on Φ = ϕ and Ft0(X ′) = f , S1, . . . , Sy are dom-
inated above by independent Poisson variables S′1, . . . , S

′
y, where S′h has parameter

λh = 2∆(th − th−1)/k. Indeed, consider any h ∈ [y]. Consider any integers s1, . . . , sh−1,
and any possible value fh−1 of Fth−1

(X ′) which is consistent with Φ = ϕ and which
implies that Ft0(X ′) = f and S1 = s1, . . . , Sh−1 = sh−1.
Sh is independent of Φ by the definition of C(M`), since no clocks with target v∗ are

contained in A, (th−1, th) is a fixed time interval, and χh−1 is a fixed set. Moreover, Sh
is independent of Fth−1

(X ′) by memorylessness. Thus, conditioned on Fth−1
(X ′) = fh−1

and Φ = ϕ, Sh is simply a Poisson variable with parameter (th − th−1)(k − |χh−1|)/k,
which is at most λh by (48). It therefore follows that for all a ≥ 0,

P(Sh ≤ a | Fth−1
(X ′) = fh−1,Φ = ϕ) ≥ P(S′h ≤ a),

and hence

P(Sh ≤ a | Ft0(X ′) = f,Φ = ϕ, S1 = s1, . . . , Sh−1 = sh−1) ≥ P(S′h ≤ a).

Thus conditioned on Ft0(X ′) = f and Φ = ϕ, S1, . . . , Sy are dominated above by
S′1, . . . , S

′
y as claimed.

Note that with probability 1, no non-mutants are spawned onto v∗ at times t1, . . . , ty,
and so S = S1 + · · ·+Sy. It follows from (49) that conditioned on Ft0(X ′) = f and Φ = ϕ,
S is dominated above by a Poisson variable S′ with parameter

λ1 + · · ·+ λy =
2∆

k

y∑
h=1

(th − th−1) =
2∆

k
(ty − t0) ≤ 60c3r(log n)9

k
.

By a union bound applied to Lemma 6.13(ii) and Corollary 6.18(i), P(E1∩E2 | Ft0(X ′) =

f) ≥ 1− 6e−(logn)3 . Thus for all a ≥ 0 we have

P(S ≤ a | Ft0(X ′) = f) ≥ P(S ≤ a | Ft0(X ′) = f, E1 ∩ E2)− P(E1 ∩ E2 | Ft0(X ′) = f)

≥ P(S′ ≤ a)− 6e−(logn)3 . (50)

It is immediate from (50) using (4) that

P(S = 0 | Ft0(X ′) = f) ≥ e−60c3r(logn)9/k − 6e−(logn)3 ≥ 1− (log n)10

k
,

and so part (i) of the result holds. Moreover, by (50) combined with Corollary 2.3, we
have

P(S ≤ (log n)3 | Ft0(X ′) = f) ≥ P(S′ ≤ (log n)3)− 6e−(logn)3 ≥ 1− 7e−(logn)3 ,

and so part (ii) of the result holds.

6.6. Filling cliques
Recall from Definition 6.2 that X ′0 is the set containing a single initial mutant, and
write X ′0 = {x0}. Because of the megastar’s symmetry, without loss of generality we
may assume that x0 ∈ R1 ∪ K1 ∪ {a1, v

∗}. In Section 6.6, we will further restrict our
attention to the case where x0 is in a reservoir, i.e., x0 ∈ R1.
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6.6.1. The first clique fills with mutants. In Section 6.6.1, we will show that if the initial
mutant of X ′ lies in the reservoir R1, then with high probability K1 is almost full of
mutants at time n (see Lemma 6.22). We first prove an ancillary lemma.

LEMMA 6.21. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Suppose X ′0 ⊆ R1, and write X ′0 = {x0}. Let E1 be the
event that N(v∗,x0) does not trigger in [0, 17m(log n)2]. Let t0 ∈ [0, 17m((log n)2 − 1)], and
let f be a possible value of Ft0(X ′) which is consistent with E1. Then

P(there exists t1 ∈ [t0, t0 + 17m] such that K1 ⊆ X ′t1 | E1,Ft0(X ′) = f) ≥ r − 1

12r
.

PROOF. Let

Ca1 = {N(u,a1) | u ∈ R1} ∪ {M(a1,v) | v ∈ K1}.

For h ∈ {0, . . . , 8m− 1}, let

Th = min{t > t0 + 2h |M(x0,a1) triggers at t or t = t0 + 2h+ 1}.

Let E2(h) be the event that M(x0,a1) triggers at time Th. We have

P(E2(h)) = 1− e−r > 1
2 . (51)

Let

T ′h = min{t > Th | a clock in Ca1 triggers at t or t = Th + 1}.
Let E ′2(h) be the event that some mutant clock with source a1 triggers at time T ′h. Note
that E ′2(h) is independent of E2(h). The probability that some clock in Ca1 triggers in
(Th, Th + 1] is 1 − e−r−m, and the probability that the first clock in Ca1 to trigger in
(Th,∞) is a mutant clock with source a1 is r/(r+m). Hence by (51) and a union bound,

P(E2(h) ∩ E ′2(h)) ≥ 1

2

(
r

r +m
− e−r−m

)
≥ 1

4(r +m)
≥ 1

8m
. (52)

Note that for all h, the event E2(h) ∩ E ′2(h) depends only on fixed clocks in Ca1 ∪
{M(x0,a1)} over the fixed interval (t0 + 2h, t0 + 2h+ 2]. As such, the events E2(h)∩ E ′2(h)
are independent from each other, from E1 and from Ft0(X ′). It follows from (52) that

P

(
8m−1⋃
h=0

(E2(h) ∩ E ′2(h))

∣∣∣∣∣ E1,Ft0(X ′) = f

)
≥ 1−

(
1− 1

8m

)8m

≥ 1− e−1 ≥ 1

2
. (53)

Let E2 be the event that there exists t ∈ (t0, t0 +16m] such that |K1∩X ′t| ≥ 1. We now
show that if E1 ∩E2(h)∩E ′2(h) occurs for some h ∈ {0, . . . , 8m− 1}, then E2 occurs. Since
E1 occurs and Th ≤ 17m(log n)2, we have x0 ∈ X ′Th . Since E2(h) occurs, by the definition
of X ′, either a1 is a mutant at time Th or K1 is active at time Th ≤ t0 + 16m (and hence
E2 occurs). If a1 is a mutant at time Th, then since E ′2(h) occurs, a1 spawns a mutant at
time T ′h ≤ t0 + 16m, and so E2 occurs. Thus in all cases, if E1 ∩ E2(h)∩ E ′2(h) occurs then
E2 occurs. Hence by (53),

P(E2 | E1,Ft0(X ′) = f) ≥ P

(
8m−1⋃
h=0

(E2(h) ∩ E ′2(h))

∣∣∣∣∣ E1,Ft0(X ′) = f

)
≥ 1

2
. (54)

Let

T = min{t ≥ t0 | t = t0 + 16m or |K1 ∩X ′t| ≥ 1}.
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Let E3 be the event that TT,1in ≤ T + m and K1 is full of mutants at time TT,1in . Let
A be the set of all clocks which have both source and target in K1 ∪ {a1}. For every
t ≥ 0, let Φt be a random variable which contains, for each clock C ∈ A, a list of
the times at which C triggers in (t, t + m]. Now consider any t ≥ t0. Let f ′ be any
possible value of Ft(X ′) such that the following events are consistent — Ft0(X ′) = f ,
Ft(X ′) = f ′, E2, T = t, and E1. Note that the first four of these events are determined by
Ft(X ′) = f ′. Conditioned on Ft(X ′) = f ′, E1 and Φt are independent. Also, conditioned
on Ft(X ′) = f ′, E3 is determined by Φt (since the definition of the megastar process
ensures that a1 is a non-mutant throughout [t, T t,1in ]), so, conditioned on Ft(X ′) = f ′, E3
is independent of E1. Now, applying Corollary 6.18, we have

P(E3 | E1,Ft(X ′) = f ′) = P(E3 | Ft(X ′) = f ′) ≥ r − 1

6r
.

Thus,

P(E3 | E1,Ft0(X ′) = f, E2) ≥ r − 1

6r
. (55)

It therefore follows from (54) and (55) that

P(E3 | E1,Ft0(X ′) = f) ≥ P(E3 | E1 ∩ E2,Ft0(X ′) = f) · P(E2 | E1,Ft0(X ′) = f) ≥ r − 1

12r
,

and so the result follows.

We are now able to prove Lemma 6.22.

LEMMA 6.22. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Suppose X ′0 ⊆ R1. Then with probability at least 1 −
19(log n)2/`, K1 contains at most ∆ non-mutants at time n.

PROOF. Let E1 be the event that N(v∗,x0) does not trigger in [0, 17m(log n)2]. For
all i ∈ Z≥0, let E2(i) be the event that there exists t ∈ [17im, 17(i + 1)m] such that
K1 ⊆ X ′t. Let E2 = E2(0)∪ · · · ∪ E2(b(log n)2c− 1). By Lemma 6.21, for all integers i with
0 ≤ i ≤ b(log n)2c−1 and all possible values fi of F17im(X ′) consistent with E1, we have

P(E2(i) | E1,F17im(X ′) = fi) ≥
r − 1

12r
.

Since fi determines E2(0), . . . , E2(i− 1), it follows that

P(E2 | E1) ≥ 1−
(

1− r − 1

12r

)b(logn)2c

. (56)

Moreover, by (4),

P(E1) = e−17(logn)2/` ≥ 1− 17(log n)2

`
.

It therefore follows by (56) that

P(E2) ≥ P(E2 | E1)P(E1) ≥ 1− 18(log n)2

`
. (57)

Now let E3 be the event that |K1 \X ′n| ≤ ∆. Let

T = min{t ≥ 0 | t = 17m(log n)2 or K1 ⊆ X ′t}.
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Consider any t ∈ [0, 17m(log n)2] and any possible value f ′ of Ft(X ′) which is consistent
with E2 and T = t. Then by Lemma 6.19(ii) applied to the interval (t, n], with proba-
bility at least 1− e− 1

2 (logn)3 conditioned on Ft(X ′) = f ′, E3 occurs. Thus, using (57), we
obtain

P(E3) ≥ P(E3 | E2)P(E2) ≥ 1− 19(log n)2

`
,

as required.

6.6.2. The other cliques become almost full. In Section 6.6.2, we will show that if the ini-
tial mutant of X ′ lies in a reservoir, without loss of generality R1, then with high
probability K1, . . . ,K` are all almost full of mutants at time n8 (see Lemma 6.25). The
following lemma will be the linchpin of the proof.

LEMMA 6.23. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let t0 ≥ 0, and let j ∈ [`− 1]. Let f be a possible value of
Ft0(X ′) which implies that for all j′ ∈ [j], Kj′ contains at most ∆ non-mutants at time
t0. Then

P(for all j′ ∈ [j], |Kj′ \X ′t0+20c2rk
| ≤ ∆ | Ft0(X ′) = f) ≥ 1− e−(logn)2 .

Moreover,

P(|Kj+1 \X ′t0+20c2rk
| ≤ ∆ | Ft0(X ′) = f) ≥ 1/n6.

PROOF. The first part of the result follows immediately from Lemma 6.19(ii) and a
union bound over all j ∈ [j′] by taking I = (t0, t0 + 20c2rk].

We now define some stopping times. Let

T1 = min{t ≥ t0 | K1 ⊆ X ′t or t = t0 + 30c2r(log n)6}.

Let T2 be the fourth time after T1 at which a clock in C(M`) triggers. Let

T3 = min{t ≥ T2 | Kj+1 ⊆ X ′t or t = T2 + 10c2rk}.

In addition, we define the following events.

— E1: K1 ⊆ X ′T1
.

— E2: for some v1 ∈ K1, v2 ∈ Rj+1 and v3 ∈ Kj+1, the first four clocks in C(M`) to trigger
in (T1,∞) are M(v1,v∗), M(v∗,v2), M(v2,aj+1) and M(aj+1,v3), in that order.

— E ′2: T2 ≤ T1 + 1.
— E3: Kj+1 ⊆ X ′T3

.
— E4: |Kj+1 \X ′t0+20c2rk

| ≤ ∆.

Our goal is to prove P(E4 | Ft0 = f) ≥ 1/n5.
By Corollary 6.18(i), we have

P(E1 | Ft0(X ′) = f) ≥ 1− 4e−(logn)3 . (58)

It is immediate that

P(E2 | E1,Ft0(X ′) = f) =
r

n(1 + r)
· r

`n(1 + r)
· r

n(1 + r)
· r

n(1 + r)
≥ 1

n5
. (59)

For example, the first r/(n(1 + r)) factor comes from the fact that the total rate of all
clocks is n(1 + r) but the total rate of all mutant clocks with source in K1 and target v∗
is r since there are k such clocks, each with rate r/k.
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Moreover, E ′2 occurs if for all h ∈ {0, 1, 2, 3}, at least one clock in C(M`) triggers in
the interval (T2 + h/4, T2 + (h+ 1)/4]. Hence

P(E ′2 | E1,Ft0(X ′) = f) ≥ 1− 4e−(1+r)n/4. (60)

It follows from (58)–(60) and a union bound that

P(E1 ∩ E2 ∩ E ′2 | Ft0(X ′) = f) ≥ P(E1 | Ft0(X ′) = f)·
(P(E2 | E1,Ft0(X ′) = f)− P(E ′2 | E1,Ft0(X ′) = f))

≥
(
1− 4e−(logn)3

)
(1/n5 − 4e−(1+r)n/4) ≥ 1/(2n5). (61)

Now consider any t2 > t0 and any possible value f2 of Ft2(X ′) which implies that
Ft0(X ′) = f , T2 = t2, and that E1 ∩ E2 ∩ E ′2 occurs. Note that, if Ft2(X ′) = f2 then, since
E1 ∩ E2 ∩ E ′2 occurs, we must have |Kj+1 ∩X ′t2 | ≥ 1. It follows from Corollary 6.18 that

P(E3 | E1 ∩ E2 ∩ E ′2,Ft0(X ′) = f) ≥ r − 1

6r
.

It therefore follows from (61) that

P(E1 ∩ E2 ∩ E ′2 ∩ E3 | Ft0(X ′) = f) ≥ r − 1

12rn5
. (62)

Finally, consider any t3 ≥ t0 and any possible value f3 of Ft3(X ′) which implies that
Ft0(X ′) = f , that T3 = t3, and that E1 ∩ E2 ∩ E ′2 ∩ E3 occurs. Since Ft3(X ′) = f3 implies
that E ′2 occurs, we have

t3 ≤ t0 + 30c2r(log n)6 + 1 + 10c2rk ≤ t0 + 20c2rk − (log n)7.

If Ft3(X ′) = f3 then E3 occurs so Kj+1 ⊆ X ′t3 , which obviously implies |Kj+1 \X ′t3 | ≤ ∆.
It therefore follows from Lemma 6.19(ii) applied to (t3, t0 + 20c2rk] that

P(E4 | E1 ∩ E2 ∩ E ′2 ∩ E3,Ft0(X ′) = f) ≥ 1− e− 1
2 (logn)3 ,

and therefore by (62),

P(E4 | Ft0(X ′) = f) ≥ P(E1 ∩ E2 ∩ E ′2 ∩ E3 ∩ E4 | Ft0(X ′) = f) ≥ 1/n6.

The second part of the result therefore follows.

We now apply Lemma 6.23 repeatedly to prove the following, which shows that,
with high probability, as soon as, for some j, j of the cliques are almost full of mutants
(having at most ∆ non-mutants), after a little while this is true for at least j + 1 of the
cliques (so doing it again and again, we (nearly) fill all of the cliques).

LEMMA 6.24. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let t0 ≥ 0, and let j ∈ [`− 1]. Let f be a possible value of
Ft0(X ′) which implies that for all j′ ∈ [j], Kj′ contains at most ∆ non-mutants at time
t0. Then

P
(
for all j′ ∈ [j + 1], |Kj′ \X ′t0+20c2rn

7k| ≤ ∆ | Ft0(X ′) = f
)
≥ 1− n8e−(logn)2 .

PROOF. For all i ∈ Z≥1, let ti = t0 + 20c2rki. Let E1(i) be the event that for all j′ ∈ [j],
|Kj′ \X ′ti | ≤ ∆. Let E2(i) be the event that |Kj+1 \X ′ti | ≤ ∆. For convenience, let F be
the event that Ft0(X ′) = f . By a union bound, we have

P
(
∪n

7

i=1 E2(i) | F
)
≥ 1− P

(
∩n

7

i=1

(
E2(i) ∩ E1(i)

) ∣∣F)− P
(
∪n

7

i=1E1(i) | F
)
. (63)
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Moreover,

P
(
∩n

7

i=1

(
E2(i) ∩ E1(i)

) ∣∣F) =

n7∏
i=1

P
(
E2(i) ∩ E1(i)

∣∣ ∩i−1
s=1

(
E2(s) ∩ E1(s)

)
∩ F

)

≤
n7∏
i=1

P
(
E2(i)

∣∣ ∩i−1
s=1

(
E2(s) ∩ E1(s)

)
∩ F

)
.

Since for all i, the event
⋂i−1
s=1(E2(s) ∩ E1(s)) ∩ F is determined by Fti−1(X ′), by

Lemma 6.23 it follows that

P
(
∩n

7

i=1

(
E2(i) ∩ E1(i)

) ∣∣F) ≤ (1− 1

n6

)n7

≤ e−n. (64)

We also have

P
(
∪n

7

i=1 E1(i)
∣∣F) ≤ n7∑

i=1

P
(
E1(i)

∣∣ ∩i−1
s=1 E1(s) ∩ F

)
.

Since for all i, the event ∩i−1
s=1 E1(s) ∩ F is determined by Fti−1(X ′), it follows from

Lemma 6.23 that
P
(
∪n

7

i=1 E1(i)
∣∣F) ≤ n7e−(logn)2 . (65)

Hence by (63), (64) and (65), we have

P
(
∪n

7

i=1 E2(i)
∣∣F) ≥ 1− 2n7e−(logn)2 . (66)

Now, let i′ ∈ [n7 − 1]. Since E2(i′) ∩ F is determined by Fti′ (X
′), it follows by

Lemma 6.19(ii) applied to the interval (ti′ , tn7 ] that

P(E2(n7) | E2(i′) ∩ F) ≥ 1− e− 1
2 (logn)3 .

Hence by (66) we have P(E2(n7) | F) ≥ 1 − 3n7e−(logn)2 . In addition, by (65), we have
P(E1(n7) | F) ≥ 1− n7e−(logn)2 . By a union bound, it follows that

P(E1(n7) ∩ E2(n7) | F) ≥ 1− n8e−(logn)2 ,

and so the result follows.

The proof of Lemma 6.25, the goal of Section 6.6, now follows easily from
Lemma 6.24.

LEMMA 6.25. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Suppose X ′0 ⊆ R1. Then with probability at least 1 −
20(log n)2/`, for all j ∈ [`], Kj contains at most ∆ non-mutants at time n8.

PROOF. For each positive integer i, let ti = n + (i − 1)20c2rn
7k. Let Ei be the event

that at time ti, for all j ∈ [i] we have |X ′ti \Kj | ≤ ∆. By Lemma 6.22, we have P(E1) ≥
1− 19(log n)2/`. For all i ∈ {2, . . . , `}, by Lemma 6.24 (applied with j = i− 1 starting at
ti−1), we have

P(Ei | E1 ∩ · · · ∩ Ei−1) ≥ 1− n8e−(logn)2 .

It follows that

P(E`) ≥ 1−
∑̀
i=1

P
(
Ei | E1 ∩ · · · ∩ Ei−1

)
≥ 1− 19(log n)2

`
− `n8e−(logn)2 .
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It therefore follows by Lemma 6.19(ii) applied to the interval (t`, n
8] combined with a

union bound that with probability at least

1− 19(log n)2

`
− `n8e−(logn)2 − `e− 1

2 (logn)3 ≥ 1− 20(log n)2/`,

for all j ∈ [`], Kj contains at most ∆ mutants at time n8 as required.

6.7. Filling reservoirs from cliques
6.7.1. Setting up an iteration scheme — Proof of Lemma 6.3. In this section, we outline an

iterative argument which, together with Lemma 6.25, will allow us to prove our key
lemma, Lemma 6.3.

Definition 6.26. For all i ∈ Z≥0, let

I−i = n8 + in(log n)3,

I+
i = n8 + (i+ 1)n(log n)3,

αi = bmax{(2 log n)2,m/(2 log n)2i}c,
βi = bmax{(2 log n)2, `m/(2 log n)2i}c.

Consider any t ≥ n8. Let i be the integer such that t ∈ [I−i , I
+
i ). Let f be a possible

value of Ft(X ′). We say that f is good if the event Ft(X ′) = f implies that the following
events occur.

—P1(i): |(R1 ∪ · · · ∪R`) \X ′I−i | ≤ βi.
—P2(i): For all j ∈ [`], |Rj \X ′I−i

| ≤ αi.
—P3(i): For all j ∈ [`], |Kj \X ′I−i | ≤ ∆.
—P4(i): For all but at most βi choices of j ∈ [`], Rj ∪ {aj} ∪Kj ⊆ X ′I−i

.

Each interval (I−i , I
+
i ] corresponds to a phase of our iterative argument, which we

state in Lemma 6.27. At the end of each interval, the number of non-mutants in each
reservoir should drop by a factor of at least (2 log n)2 to a minimum of b(2 log n)2c, as
should the number of non-mutants in all reservoirs. In addition, every clique should
remain almost full of mutants, and if there are fewer than ` non-mutants left in reser-
voirs then many branches should be completely full of mutants.

LEMMA 6.27. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let i be a non-negative integer, and let f be a good
possible value of FI−i (X ′). Then

P(FI+i (X ′) is good | FI−i (X ′) = f) ≥ 1− 15e−(logn)2 .

Moreover, if βi = b(2 log n)2c, then

P(X ′
I+i

= V (M`) | FI−i (X ′) = f) ≥ 1/2.

Assuming Lemma 6.27 for the moment, we give the proof of our key lemma,
Lemma 6.3, which we restate here for convenience.

LEMMA 6.3. Consider any r > 1. There is an `0, depending on r, such that the fol-
lowing holds for any ` ≥ `0. Suppose that x0 ∈ R1 ∪ · · · ∪ R`. Then there exists a t ≥ 0
such that P

(
X ′t = V (M`)

)
≥ 1− 42(log n)2/n1/2.
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PROOF. By the symmetry of the megastar, we may assume that x0 ∈ R1.
For a non-negative integer i, let Ei be the event that FI−i (X ′) is good and let E ′i be

the event that X ′
I+i

= V (M`). To prove the lemma, it clearly suffices to show that

P(∪2n
i=0 E ′i) ≥ 1− 42(log n)2

√
n

. (67)

By a union bound, we have

P(∪2n
i=0 E ′i) ≥ 1− P

(
∩2n
i=0

(
Ei ∩ E ′i

))
− P

(
∪2n
i=0 Ei

)
. (68)

For all i ∈ [2n], FI−i (X ′) determines E0 ∩ · · · ∩ Ei−1 and thus, by Lemma 6.27, we have

P(Ei | E0 ∩ · · · ∩ Ei−1) ≥ 1− 15e−(logn)2 . (69)

Also, since x0 ∈ R1, for i = 0, we have by Lemma 6.25 that

P(E0) ≥ 1− 20(log n)2

`
≥ 1− 40(log n)2

√
n

, (70)

since P1(0), P2(0) and P4(0) hold trivially (from α0 = m and β0 = `m). Combining (69)
and (70) we obtain that

P
(
∩2n
i=0 Ei

)
≥ 1− 41(log n)2

√
n

, so P
(
∪2n
i=0 Ei

)
≤ 41(log n)2

√
n

. (71)

For i ≥ n, we have that βi = b(2 log n)2c. Since FI−i (X ′) determines
⋂i−1
h=0(Ei ∪ E ′i) for

all i ∈ {n+ 1, . . . , 2n}, it follows from Lemma 6.27 that

P
((
Ei ∩ E ′i

)
|
(
E0 ∩ E ′0

)
∩ · · · ∩

(
Ei−1 ∩ E ′i−1

))
≤ 1/2.

Hence, we obtain that

P
(
∩2n
i=0

(
Ei ∩ E ′i

))
≤ 1/2n. (72)

Plugging (71) and (72) in (68) yields (67), as wanted.

Recall that we already proved Theorem 6.1 using Lemma 6.3 in Section 6.3. The
remainder of Section 6 will therefore focus on the proof of Lemma 6.27. The following
stopping time will be important in what follows.

Definition 6.28. Consider i ∈ Z≥0. We define T iend to be the first time t ≥ I−i such
that one of the following holds.

(D1) t = I+
i .

(D2) v∗ spawns βi+1 non-mutants in the interval (I−i , t].
(D3) For some j ∈ [`], v∗ spawns αi+1 non-mutants onto vertices in Rj in the interval

(I−i , t].
(D4) For some j ∈ [`], |Kj \X ′t| > 2∆.

Note that if FI−i (X ′) is good then |Kj \X ′I−i
| ≤ 2∆ so T iend > I−i .

The crux of our argument will be a proof that if FI−i (X ′) is good, then T iend = I+
i with

high probability (see the proof of Lemma 6.42).
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6.7.2. Bounding the number of times cliques become active. In Section 6.7.2, we bound the
number of times that cliques become active in the interval (I−i , T

i
end] (see Lemma 6.34).

We require the following definitions, which rely on Definition 6.26.

Definition 6.29. Let v ∈ V (M`) and i ∈ Z≥0. Let T i,vm (−1) = I−i . We recursively
define times T i,vn (h) and T i,vm (h) for integers h ≥ 0 as follows.

T i,vn (h) = min{t ≥ T i,vm (h− 1) | v /∈ X ′t or t = T iend},
T i,vm (h) = min{t ≥ T i,vn (h) | v ∈ X ′t or t = T iend}.

The subscript “m” stands for “mutant” and the subscript “n” stands for “non-mutant”.

Definition 6.30. For each i ∈ Z≥0, let Ii = (I−i , I
+
i ]. Also, for h ∈ Z≥0 and j ∈ [`],

let J i,j(h) be the interval (T
i,aj
n (h), T

i,aj
m (h)), let W i,j

a (h) be the number of times at
which Kj becomes active in J i,j(h), and let W i,j

in (h) be the number of times at which Kj

becomes inactive in J i,j(h).

Note that the intervals J i,j(h) are disjoint from each other and they are all contained
within [I−i , I

+
i ]. Also, the interval J i,j(h) is empty if and only if T i,ajn (h) = T iend. The sub-

script “a” stands for “active” and the subscript “in” stands for “inactive”. The following
lemmas, Lemmas 6.31 and 6.32, are stated only for i ∈ Z≥1 — we will deal with i = 0
in the proof of Lemma 6.34.

LEMMA 6.31. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. For i ∈ Z≥1, let f be a good possible value of FI−i (X ′).
Let j ∈ [`]. Then,

P
(
W i,j

a (h) = 0 for all h ≥ b4αilen(Ii)c+ 1 | FI−i (X ′) = f
)
≥ 1− e−n.

PROOF. We will show that with high probability, the feeder vertex aj becomes a
non-mutant at most b4αilen(Ii)c times within (I−i , T

i
end]. Let E be the event that for all

v ∈ Rj , N(v,aj) triggers at most 2len(Ii) times in Ii. Recall that len(Ii) = n(log n)3, so by
Corollary 2.2 combined with a union bound over all v ∈ Rj , we have

P(E | FI−i (X ′) = f) ≥ 1− e−n.

Suppose that E occurs. Since FI−i (X ′) is good, by P2(i) we have |Rj \ X ′I−i
| ≤ αi.

Moreover, by (D3), at most αi+1 non-mutants are spawned into Rj over the course of
(I−i , T

i
end]. Hence all but at most αi + αi+1 ≤ 2αi vertices in Rj are mutants throughout

(I−i , T
i
end], and therefore do not spawn any non-mutants onto aj within (I−i , T

i
end]. Since

E occurs, the remaining vertices in Rj each spawn at most 2len(Ii) non-mutants onto aj
within (I−i , T

i
end], and so at most b4αilen(Ii)c non-mutants are spawned onto aj in total

over the course of (I−i , T
i
end].

Now, for all h > 0, T i,ajn (h) = T iend or aj becomes a non-mutant at time T i,ajn (h). It
therefore follows that for all h ≥ b4αilen(Ii)c + 1, T i,ajn (h) = T

i,aj
m (h) = T iend so the

interval J i,j(h) is empty and hence W i,j
a (h) = 0 as required.

In Lemma 6.32 we will show that, with high probability, the sum
∑b4αilen(Ii)c
h=0 W i,j

a (h)
is small. We will use this in Lemma 6.34, to show that, with high probability,Kj doesn’t
become active too many times before aj has become a mutant more than b4αilen(Ii)c
times.
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LEMMA 6.32. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. For i ∈ Z≥1, let f be a good possible value of FI−i (X ′).
Let j ∈ [`]. Then

P

b4αilen(Ii)c∑
h=0

W i,j
a (h) ≤ αi

√
n(log n)4 − 1

∣∣∣∣∣FI−i (X ′) = f

 ≥ 1− e−(logn)3 .

PROOF. We define the following random variables for h ∈ Z≥0. These variables are
local to this proof. First, ifKj is inactive at T i,ajn (h) (which is the left endpoint of J i,j(h))
thenQh = W i,j

in (h)+1. Otherwise,Qh = W i,j
in (h). It follows from the definition ofW i,j

in (h)
and W i,j

a (h) that Qh ≥ W i,j
a (h). Next we define variables Th(0), . . . , Th(Qh). First, we

define Th(Qh) = T
i,aj
m (h) (which is the right endpoint of J i,j(h)). If Qh > 0 then we

define the remaining variables as follows.

Case 1. If Kj is inactive at the left endpoint of J i,j(h) then Th(0) = T
i,aj
n (h) and for

q ∈ [W i,j
in (h)], Thin(q) is the q’th time that Kj becomes inactive in J i,j(h).

Case 2. If Kj is active at the left endpoint of J i,j(h) then for q ∈ [W i,j
in (h)], Th(q − 1) is

the q’th time that Kj becomes inactive in J i,j(h).

Now fix an integer h ≥ 0. Consider any time ti,ajn (h) ≥ I−i . Consider any integers
w0, . . . , wh−1 and y ≥ 0, and any times t0, . . . , ty satisfying t

i,aj
n (h) ≤ t0 ≤ · · · ≤ ty.

Suppose that f ′ is a value of Fty (X ′) which implies that

—FI−i (X ′) = f ,

— T
i,aj
n (h) = t

i,aj
n (h),

—W i,j
a (0) = w0, . . . ,W

i,j
a (h− 1) = wh−1,

—W i,j
a (h) ≥ y, and

— Th(0) = t0, . . . , Th(y) = ty.

The event Fty (X ′) = f ′ determines whether or not ty = T
i,aj
m (h). We split the analysis

into two cases.

Case 1. If Fty (X ′) = f ′ implies that ty = T
i,aj
m (h), then since y = Qh ≥ W i,j

a (h) ≥ y,
we have W i,j

a (h) = y, so

P(W i,j
a (h) = y | Fty (X ′) = f ′) = 1. (73)

Case 2. Suppose that Fty (X ′) = f ′ implies ty < T
i,aj
m (h). Let E be the event that

in the interval (ty,∞), some mutant clock with source in Rj ∩ X ′ty triggers before
any non-mutant clock with source in {aj , v∗} triggers. If Fty (X ′) = f ′ then ty <

T
i,aj
m (h) ≤ T iend, so by (D3) and the fact that i ≥ 1, it follows that Rj contains at least
m− αi − αi+1 ≥ m− 2α1 ≥ m/2 mutants at time ty. Hence

P(E | Fty (X ′) = f ′) ≥ 1− 2

2 + rm/2
≥ 1− 5

m
. (74)

We will now prove that if Fty (X ′) = f ′ and E occurs then W i,j
a (h) = y. Let T be

the earliest time in the interval (ty,∞) at which some mutant clock with source in
Rj ∩X ′ty , say M(v,aj), triggers.
If ty < T

i,aj
m (h) then ty ≤ T iend so (D4) implies that Kj has at most 2∆ non-mutants at

ty. On the other hand, Th(y) = ty implies that Kj is inactive at ty. Hence, it must be
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full of mutants at ty. This means that Kj remains inactive after ty until aj spawns
a non-mutant onto a vertex in Kj . If E occurs, then no non-mutant clock with source
aj triggers in (ty, T ], so Kj is inactive throughout (ty, T ].
Recall that v ∈ X ′ty . If E occurs, then no non-mutant clock with source v∗ triggers
in (ty, T ], so v ∈ X ′T also. Hence by definition, v spawns a mutant onto aj at time
T . Moreover, Kj is inactive at time T and so aj becomes a mutant at time T . Thus
T
i,aj
m (h) ≤ T , and so Kj is inactive throughout (ty, T

i,aj
m (h)]. Thus W i,j

a (h) = y when-
ever E occurs, as claimed. By (74), it follows that if f ′ implies that ty < T

i,aj
m (h),

P
(
W i,j

a (h) = y | Fty (X ′) = f ′
)
≥ P

(
E | Fty (X ′) = f ′

)
≥ 1− 5/m. (75)

Combining Cases 1 and 2 by considering all possible f ′, ti,ajn (h), and t0, . . . , ty and
combining Equations (73) and (75), it follows that

P

(
W i,j

a (h) = y

∣∣∣∣∣ W
i,j
a (0) = w0, . . . ,W

i,j
a (h− 1) = wh−1,

W i,j
a (h) ≥ y, FI−i (X ′) = f

)
≥ 1− 5

m
.

Let W ′0,W ′1, . . . be i.i.d. geometric variables with parameter 1 − 5/m. It is immediate
that P(W ′h = y | W ′h ≥ y) = 1 − 5/m. Moreover, P(W i,j

a (h) ≥ 0) = P(W ′h ≥ 0) = 1. It
follows that conditioned on FI−i (X ′) = f , the random variables W i,j

a (0),W i,j
a (1), . . . are

dominated above by W ′0,W ′1, . . . .
Now, note that (log n)3 ≤ 14 · 5(b4αilen(Ii)c + 1)/m ≤ αi

√
n(log n)4 − 1 and that 1 −

5/m ≥ 13/14. It therefore follows by Lemma 2.6 that

P

b4αilen(Ii)c∑
h=0

W ′h ≥ αi
√
n(log n)4 − 1

 ≤ e−(logn)3 .

The result therefore follows.

The following definition is related to Definition 6.30.

Definition 6.33. For each i ∈ Z≥0 and j ∈ [`], let W i,j
a be the number of times in

(I−i , T
i
end] at which Kj becomes active.

We now combine Lemma 6.31 and Lemma 6.32 to show that, with high probability,
Kj does not become active too many times in (I−i , T

i
end].

LEMMA 6.34. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let i be a non-negative integer, and let f be a good
possible value of FI−i (X ′). Let j ∈ [`]. Then

P
(
W i,j

a ≤ αi
√
n(log n)4 | FI−i (X ′) = f

)
≥ 1− 2e−(logn)3 .

PROOF. First, note that Kj can become active either when Kj has no mutants and
a mutant is spawned into it or when Kj is full of mutants and aj spawns a non-mutant
into it. By (D4), Kj has at most 2∆ non-mutants throughout the interval (I−i , T

i
end], so

that

for t ∈ (I−i , T
i
end], Kj can only become active at time t if t ∈ [T

i,aj
n (h), T

i,aj
m (h)]

(with h ∈ Z≥0) and a non-mutant clock with source aj triggers at time t.
(76)

We next consider cases on the value of i, namely, whether i = 0 or not.
First suppose that i = 0, so αi = m. By Corollary 2.2 (see also the proof of

Lemma 6.31), the probability that the non-mutant clocks with source aj trigger more
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than 2len(Ii) times in Ii is at most e−n. It follows from (76) that with probability at
least 1− e−n,

W i,j
a ≤ 2len(Ii) ≤ 4m

√
n(log n)3 = 4αi

√
n(log n)3

as required.
Suppose instead that i ≥ 1. We will show that with probability 1, it holds that

W i,j
a ≤ 1 +

∞∑
h=0

W i,j
a (h), (77)

so that the lemma follows from Lemmas 6.31 and 6.32 (combined with a union bound).
It remains to justify that (77) holds with probability 1. By (76), in the interval

(I−i , T
i
end], Kj can only become active within the intervals [T

i,aj
n (h), T

i,aj
m (h)], h ∈ Z≥0.

By the definition of the W i,j
a (h)’s, (77) will thus follow by showing that with probability

1, Kj becomes active at most once at times t with t ∈ S, where

S := {T i,ajn (h) | h ∈ Z≥0} ∪ {T
i,aj
m (h) | h ∈ Z≥0}.

Note that aj can become a non-mutant either because Kj was empty and a mutant
was spawned into Kj or because a non-mutant was spawned onto aj . Now let h be such
that T i,ajn (h) < T iend. By (D4), it must be the case that a non-mutant is spawned onto
aj at time T i,ajn (h). Thus, for Kj to become active at time T i,ajn (h), it must be the case
from (76) that two clocks triggered at the same time, which happens with probability 0.
Similarly, for all h such that T i,ajm (h) < T iend, we have that a mutant is spawned onto aj
at T i,ajm (h), and thus, with probability 1, Kj does not become active at T i,ajm (h). Thus,
Kj can only become active at a time T

i,aj
n (h) (resp. T i,ajm (h)) if T i,ajn (h) = T iend (resp.

T
i,aj
m (h) = T iend). It thus follows that the number of times that Kj becomes active at

times t ∈ S is at most one (namely when t = T iend), as desired. This proves (77) and
concludes the proof of the lemma.

6.7.3. The behaviour of the centre vertex. In Section 6.7.3, we will show that with high
probability, v∗ does not spend too much time as a non-mutant in the interval (I−i , T

i
end]

(see Lemma 6.39). We first apply Lemma 6.20 and Lemma 6.34, to give an upper bound
for the total number of non-mutants each clique spawns onto v∗ within (I−i , T

i
end].

LEMMA 6.35. Consider any r > 1. There is an `0, depending on r, such that the fol-
lowing holds for any ` ≥ `0. Let i be a non-negative integer, and let f be a good possible
value of FI−i (X ′). Let j ∈ [`]. Then with probability at least 1 − e− 1

2 (logn)3 , conditioned
on FI−i (X ′) = f , vertices in Kj spawn at most 10αi

√
n(log n)17/k non-mutants onto v∗

within (I−i , T
i
end].

PROOF. We start with the following mutually recursive definitions, which are the
same as the ones in Lemma 6.19, except that the endpoint is T iend rather than I+. Let
Tin(−1) = I−i . Then, for h ∈ Z≥0,

Ta(h) = min{t ≥ Tin(h− 1) | Kj is active at t or t = T iend},
Tin(h) = min{t ≥ Ta(h) | Kj is inactive at t or t = T iend}.

For all h ∈ Z≥0, let Sh be the number of non-mutants spawned onto v∗ in (Ta(h), Tin(h))
by vertices in Kj . By (D4), whenever Kj is inactive in the interval (I−i , T

i
end] it contains

no non-mutants. Moreover, with probability 1 no non-mutants are spawned onto v∗ at
any time Ta(h) or Tin(h), except possibly I−i . (If Ta(h) or Tin(h) is in (I−i , T

i
end) this is
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because a clock with source aj triggers at the relevant time and the probability that
two clocks trigger simultaneously is 0. Also, it is clear from the definition of T iend that
the probability that a clock with target v∗ triggers at this time is 0.) Thus precisely∑∞
h=0 Sh non-mutants are spawned onto v∗ in (I−i , T

i
end].

Let E1 be the event that Sh = 0 for all h > bαi
√
n(log n)4c. Let E2 be the event that

Sh = 0 for all but at most 10αi
√
n(log n)14/k values of h ∈ {0, . . . , bαi

√
n(log n)4c}. Let

E3 be the event that for all h ∈ {0, . . . , bαi
√
n(log n)4c}, Sh ≤ (log n)3. Note that to prove

the result, it suffices to show that

P
(
E1 ∩ E2 ∩ E3 | FI−i (X ′) = f

)
≥ 1− e− 1

2 (logn)3 . (78)

By Lemma 6.34, we have

P
(
E1 | FI−i (X ′) = f

)
≥ 1− 2e−(logn)3 .

Now, by P3(i), every clique contains at most ∆ non-mutants at time I−i . Moreover,
by (D4), whenever Kj becomes active in (I−i , T

i
end] it contains only one non-mutant. It

therefore follows that for all h ∈ Z≥0, either Ta(h) = Tin(h) = T iend or |Kj \X ′Ta(h)| ∈ [∆].
Now, consider any integer h ≥ 0 and any time th ≥ I−i . Suppose that fh is a possible

value of Fth(X ′) which implies that th = Ta(h) and FI−i (X ′) = f . If fh implies that
|Kj \X ′th | ∈ [∆], then by Lemma 6.20(i) we have

P(Sh > 0 | Fth(X ′) = fh) ≤ (log n)10/k. (79)

Otherwise, fh must imply that th = T iend and hence Sh = 0, so (79) is valid for all choices
of fh. Moreover, by Lemma 6.20(ii) we have

P(Sh ≤ (log n)3 | Fth(X ′) = fh) ≥ 1− 7e−(logn)3 . (80)

Now, recall that Fth(X ′) determines S0, . . . , Sh−1. It therefore follows from (79) that
the number of integers h ∈ {0, . . . , bαi

√
n(log n)4c} such that Sh > 0 is dominated above

by a binomial variable with bαi
√
n(log n)4c + 1 trials, each with success probability

(log n)10/k. It follows by Lemma 2.5 that

P(E2 | FI−i (X ′) = f) ≥ 1− e−10αi
√
n(logn)14/k ≥ 1− e−(logn)3 .

Finally, by (80) combined with a union bound over all h ∈ {0, . . . , bαi
√
n(log n)4c}, we

have

P(E3 | FI−i (X ′) = f) ≥ 1− 7
(
bαi
√
n(log n)4c+ 1

)
e−(logn)3 ≥ 1− n2e−(logn)3 .

Thus (78) follows by a union bound, which implies the result.

We are now in a position to prove that in total, not too many non-mutants are
spawned onto v∗ over the interval (I−i , T

i
end].

COROLLARY 6.36. Consider any r > 1. There is an `0, depending on r, such that
the following holds for any ` ≥ `0. Let i be a non-negative integer, and let f be a
good possible value of FI−i (X ′). Then with probability at least 1− e−(logn)2 , conditioned
on FI−i (X ′) = f , at most 80βi

√
n(log n)19/k non-mutants are spawned onto v∗ within

(I−i , T
i
end].

PROOF. Let E be the event that for all j ∈ [`], vertices in Kj spawn at most
10αi
√
n(log n)17/k non-mutants onto v∗ over the course of (I−i , T

i
end].
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Suppose that E occurs and that αi > b(2 log n)2c, so

βi ≥ b`m/(2 log n)2ic ≥ `bm/(2 log n)2ic = `αi.

Then since E occurs, at most 10`αi
√
n(log n)17/k ≤ 80βi

√
n(log n)19/k non-mutants are

spawned onto v∗ over the course of (I−i , T
i
end].

Now suppose that E occurs and that αi = b(2 log n)2c. By (D2) and P4(i), for all but
at most βi + βi+1 ≤ 2βi values of j ∈ [`], we have Kj ⊆ X ′t for all t ∈ (I−i , T

i
end]. Cer-

tainly these cliques cannot spawn non-mutants onto v∗ in (I−i , T
i
end], so since E occurs,

it follows that at most
20βiαi

√
n(log n)17/k ≤ 80βi

√
n(log n)19/k

non-mutants are spawned onto v∗ over the course of (I−i , T
i
end].

We have therefore shown that whenever E occurs, at most 80βi
√
n(log n)19/k non-

mutants are spawned onto v∗ over the course of (I−i , T
i
end]. By Lemma 6.35 combined

with a union bound over all j ∈ [`], we have

P(E | FI−i (X ′) = f) ≥ 1− e−(logn)2 .

The result therefore follows.

We now use (D4) to show that when v∗ is a non-mutant in (I−i , T
i
end], the time until

either v∗ becomes a mutant again or the interval ends is dominated above by an expo-
nential variable with parameter `/2. The proof of this lemma is similar to the proof of
Lemma 5.9.

LEMMA 6.37. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let i ≥ 0 and z ≥ 0 be integers, let t0 ∈ [I−i , I

+
i ], and let f

be a good possible value of Ft0(X ′) which implies that t0 = T i,v
∗

n (z). Let S = T i,v
∗

m (z)−t0.
Then for all t ≥ 0,

P(S ≤ t | Ft0(X ′) = f) ≥ 1− e−`t/2.
PROOF. Note that t0 ≤ T iend, and f determines the event t0 = T iend. Moreover, if

t0 = T iend, then S = 0 with probability 1 and the result follows. We may therefore
assume that f implies that t0 < T iend, and in particular v∗ /∈ X ′t0 .

Let A be the set of all mutant clocks in C(M`) with target v∗, and let Φ encapsulate
the behaviour of every clock in C(M`) \ A over the interval Ii. In particular, by (D1),
Φ determines the behaviour of these clocks in the interval (I−i , T

i
end]. Consider any

possible value ϕ of Φ which is consistent with Ft0(X ′) = f .
We now define a time t′end which depends only on the values f and ϕ. To do so,

consider the situation in which Ft0(X ′) = f , Φ = ϕ and no clock in A triggers in
(t0, I

+
i ], so that the evolution of X ′ in this interval is entirely determined by f and ϕ.

Let t′end be the time at which T iend would occur in this situation.
We claim that, if Ft0(X ′) = f and Φ = ϕ, then T i,v

∗

m (z) ≤ t′end. To see this, suppose
that Ft0(X ′) = f and Φ = ϕ. If no mutant is spawned onto v∗ in (t0, t

′
end], then X ′

evolves exactly as it would have done if no clocks in A triggered in (t0, t
′
end], and so

t′end = T iend ≥ T i,v
∗

m (z). If a mutant is spawned onto v∗ at some time t′ ∈ (t0, t
′
end], then

T i,v
∗

m (z) ≤ t′ ≤ t′end. So T i,v
∗

m (z) ≤ t′end in all cases as claimed. Hence if t ≥ t′end − t0,

P(S ≤ t | Ft0(X ′) = f,Φ = ϕ) = 1 ≥ 1− e−`t/2,
as required in the lemma statement. We now consider the case t < t′end − t0.

Let t1 < · · · < ty be the times in (t0, t0 + t] at which clocks in C(M`) \ A trigger,
and let ty+1 = t0 + t. Thus t0 < · · · < ty ≤ ty+1 < t′end. For all h ∈ {0, . . . , y}, let χ(h)

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January 2016.



A:80 Andreas Galanis et al.

be the value that X ′th would take in the situation where Ft0(X ′) = f , Φ = ϕ and no
clock inA triggers in (t0, th]. Thus t′end, y, t0, . . . , ty+1, and χ(0), . . . , χ(y) are all uniquely
determined by f and ϕ.

For each h ∈ [y + 1], let Eh be the event that a mutant is spawned onto v∗ in the
interval (th−1, th). Note that with probability 1, no mutant is spawned onto v∗ at any
time th. Thus

P(S ≤ t | Ft0(X ′) = f,Φ = ϕ) = 1− P(E1 ∩ · · · ∩ Ey+1 | Ft0(X ′) = f,Φ = ϕ)

= 1−
y+1∏
h=1

P(Eh | Ft0(X ′) = f,Φ = ϕ, E1 ∩ · · · ∩ Eh−1). (81)

Now fix h ∈ [y + 1], and consider any possible value fh−1 of Fth−1
(X ′) which implies

that Ft0(X ′) = f and that E1 ∩ · · · ∩ Eh−1 occurs, and is consistent with Φ = ϕ. Consider
the evolution of X ′ given Fth−1

(X ′) = fh−1 and Φ = ϕ. Since E1 ∩ · · · ∩ Eh−1 occurs, no
mutant is spawned onto v∗ in the interval (t0, th−1] and so X ′th−1

= χ(h− 1). Moreover,
X ′ remains constant in [th−1, th) unless a mutant is spawned onto v∗. Thus, given the
condition that Fth−1

(X ′) = fh−1 and Φ = ϕ, Eh occurs if and only if a mutant clock with
source in χ(h− 1) and target v∗ triggers in the interval (th−1, th).

Now, since E1 ∩ · · · ∩ Eh−1 occurs and t′end > th−1, by (D4) we have

|χ(h− 1) ∩ (K1 ∪ · · · ∪K`)| ≥ k`/2.

Hence

P(Eh | Fth−1
(X ′) = fh−1,Φ = ϕ) = e−r(th−th−1)|χ(h−1)∩(K1∪···∪K`)|/k ≤ e−`(th−th−1)/2.

It therefore follows from (81) that

P(S ≤ t | Ft0(X ′) = f,Φ = ϕ) ≥ 1−
y+1∏
h=1

e−`(th−th−1)/2 = 1− e−`t/2.

The result therefore follows.

Definition 6.38. For all i ∈ Z≥0, let γi = βi(log n)20/k.

LEMMA 6.39. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let i be a non-negative integer, and let f be a good
possible value of FI−i (X ′). Then

P
(

len({t ∈ (I−i , T
i
end] | v∗ /∈ X ′t}) ≤ γi

∣∣∣ FI−i (X ′) = f
)
≥ 1− 2e−(logn)2 .

PROOF. For all h ∈ Z≥0, write Sh = T i,v
∗

m (h)− T i,v∗n (h). Consider any s0, . . . sh−1 ≥ 0,
th ≥ I−i , and any possible value fh of Fth(X ′) which implies that FI−i (X ′) = f , S0 =

s0, . . . , Sh−1 = sh−1 and T i,v
∗

n (h) = th. Then by Lemma 6.37, for all t ≥ 0 we have

P(Sh ≤ t | Fth(X ′) = fh) ≥ 1− e−`t/2.

It follows that S0, S1, . . . are dominated above by i.i.d. exponential variables S′0, S′1, . . .
with parameter `/2.

Now, by the definition of T i,v
∗

n (h) and T i,v
∗

m (h), we have that

len({t ∈ (I−i , T
i
end] | v∗ /∈ X ′t}) =

∞∑
h=0

Sh. (82)
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By Corollary 6.36, we have

P
(
Sh = 0 for all h > 80βi

√
n(log n)19/k | FI−i (X ′) = f

)
≥ 1− e−(logn)2 . (83)

Moreover, we have

3

`

(⌊
80βi
√
n(log n)19

k

⌋
+ 1

)
≤ 241βi

√
n(log n)19

k`
≤ βi(log n)20

k
= γi,

and so by Corollary 2.4 we have

P


⌊

80βi(logn)19

k

⌋∑
h=0

Sh < γi

∣∣∣∣∣FI−i (X ′) = f

 ≥ P


⌊

80βi
√
n(logn)19

k

⌋∑
h=0

S′h < γi


≥ 1− e−`γi/32 ≥ 1− e−(logn)2 .

The result therefore follows by (82), (83) and a union bound.

6.7.4. Proving Lemma 6.27. Recall that by Lemma 6.39, v∗ is very unlikely to spend
more than γi time as a non-mutant over the course of (I−i , T

i
end]. This motivates the

following definition.

Definition 6.40. Recall the definition of Ψ(X ′) (Section 3.3). For all i ∈ Z≥0, let
t−i = in(v

∗, I−i ) and let t+i = im(v∗, I−i ). For all j ∈ [`], let

T i,j = {t ∈ (t−i , t
−
i + γi] | for some v ∈ Rj , N∗(v∗,v) triggers at t},

T i = T i,1 ∪ · · · ∪ T i,`,
Ui = {v ∈ R1 ∪ · · · ∪R` | N∗(v∗,v) triggers in (t−i , t

−
i + γi]}.

In particular, if v∗ spends at most γi time as a non-mutant in (I−i , T
i
end], then it only

spawns non-mutants onto vertices in Ui.

LEMMA 6.41. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let i be a non-negative integer, and let f∗ be a possi-
ble value of FI−i (Ψ(X ′)). Then with probability at least 1 − 3e−(logn)2 conditioned on
FI−i (Ψ(X ′)) = f∗, the following statements all hold.

(i) |Ui| ≤ |T i| < βi+1.
(ii) For all j ∈ [`], |Ui ∩Rj | ≤ |T i,j | < αi+1.

(iii) For all v ∈ R1 ∪ · · · ∪R`, M∗(v∗,v) triggers in (t+i , t
+
i + len(Ii)/3].

PROOF. Note that t−i is determined by f∗, and that f∗ does not determine the be-
haviour of star-clocksN∗(v∗,v) in (t−i ,∞). It follows that conditioned on FI−i (Ψ(X ′)) = f∗,
|T i| follows a Poisson distribution with parameter γi = βi(log n)20/k ≤ 1

9
βi

(2 logn)2 .
If βi ≤ (2 log n)4, then this parameter is at most 1

9 (2 log n)2. We also have that βi+1 ≥
b(2 log n)2c. Using also Corollary 2.3, we thus obtain that

P(|T i| < βi+1 | FI−i (Ψ(X ′)) = f∗) ≥ P(|T i| < b(2 log n)2c | FI−i (Ψ(X ′)) = f∗)

≥ 1− e−b(2 logn)2c ≥ 1− e−(logn)2 .
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If instead βi > (2 log n)4, then βi+1 ≥ b βi
(2 logn)2 c ≥ 8γi and so by Corollary 2.3,

P(|T i| < βi+1 | FI−i (Ψ(X ′)) = f∗) ≥ 1− e−βi+1 ≥ 1− e−b(2 logn)2c ≥ 1− e−(logn)2 .

Thus in all cases,

P(|T i| < βi+1 | FI−i (Ψ(X ′)) = f∗) ≥ 1− e−(logn)2 . (84)

By a similar argument to the above, we see that for all j ∈ [`], |T i,j | follows a Poisson
distribution with parameter γi/`. Note that if βi = b(2 log n)2c then γi/` ≤ 1/`, and if
βi = b`m/(2 log n)2ic then γi/` ≤ 1

10
m

(2 logn)2i+2 . Thus γi/` ≤ 1
9

αi
(2 logn)2 in all cases. As in

the above argument, it therefore follows from Corollary 2.3 that

P(|T i,j | < αi+1 | FI−i (Ψ(X ′)) = f∗) ≥ 1− e−b(2 logn)2c.

A union bound over j ∈ [`] thus gives

P(|T i,j | < αi+1 for all j ∈ [`] | FI−i (Ψ(X ′)) = f∗) ≥ 1− `e−b(2 logn)2c ≥ 1−e−(logn)2 . (85)

Finally, let E be the event that M∗(v∗,v) triggers in (t+i , t
+
i + len(Ii)/3] for all v ∈ R1 ∪

· · ·∪R`. Note that t+i is determined by f∗, and that f∗ does not determine the behaviour
of star-clocks M∗(v∗,v) in (t+i ,∞). It follows that conditioned on FI−i (Ψ(X ′)) = f∗, for all
v ∈ R1 ∪ · · · ∪R`, the number of times M∗(v∗,v) triggers in (t+i , t

+
i + len(Ii)/3] is a Poisson

variable with parameter len(Ii)/(3`m) ≥ 1
3 (log n)3. Hence

P(M∗(v∗,v) triggers in (t+i , t
+
i + len(Ii)/3] | FI−i (Ψ(X ′)) = f∗) ≥ 1− e− 1

3 (logn)3 .

Thus by a union bound over all v ∈ R1 ∪ · · · ∪R`, we have

P(E | FI−i (Ψ(X ′)) = f∗) ≥ 1− `me− 1
3 (logn)3 ≥ 1− e−(logn)2 . (86)

The result therefore follows from a union bound over (84), (85) and (86).

The following lemma will be the heart of the proof of Lemma 6.27.

LEMMA 6.42. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let i be a non-negative integer, and let f∗ be a possible
value of FI−i (Ψ(X ′)) such that the induced value f of FI−i (X ′) is good. Then with proba-

bility at least 1− 10e−(logn)2 conditioned on FI−i (Ψ(X ′)) = f∗, the following statements
all hold.

(i) (R1 ∪ · · · ∪R`) \X ′I+i
⊆ Ui.

(ii) If i ≥ 6, then for all j ∈ [`] such that Rj ∩ Ui = ∅ and all t ∈ [I+
i − len(Ii)/4, I

+
i ], we

have Rj ∪ {aj} ∪Kj ⊆ X ′t.

PROOF. We first define events as follows. For all h ∈ Z≥0, let J−h = I−i + len(Ii)/2 +

h(log n)7, let J+
h = J−h + (log n)7, and let Jh = (J−h , J

+
h ].

— E1: len({t ∈ (I−i , T
i
end] | v∗ /∈ X ′t}) ≤ γi.

— E2: for all t ∈ Ii and all j ∈ [`], |Kj \X ′t| ≤ 2∆.
— E3: for all j ∈ [`] and all t ∈ [I−i , I

−
i + 2len(Ii)/3], there exists t′ ∈ [t, t + (log n)7) such

that Kj ⊆ X ′t′ .
— E4: |T i| < βi+1.
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— E5: for all j ∈ [`], |T i,j | < αi+1.
— E6: for all v ∈ R1 ∪ · · · ∪R`, M∗(v∗,v) triggers in (t+i , t

+
i + len(Ii)/3].

— E7: for all j ∈ [`], W i,j
a ≤ αi

√
n(log n)4

— E8: for all j ∈ [`] and all h ∈ {0, . . . , b3αi
√
n(log n)4c}, some clock M(v,aj) triggers in

the interval Jh.

Note that by Observation 3.7, FI−i (Ψ(X ′)) is uniquely determined by FI−i (X ′) and vice
versa. Thus the value f from the statement of the lemma is the unique value of f
such that FI−i (X ′) = f if and only if FI−i (Ψ(X ′)) = f∗, allowing us to apply results
like Lemma 6.39 to X ′ even though we are conditioning on FI−i (Ψ(X ′)) rather than
FI−i (X ′).

Observe that by a union bound over all j ∈ [`] and h ∈ {0, . . . , b3αi
√
n(log n)4c},

P(E8 | FI−i (Ψ(X ′)) = f∗) ≥ 1− `(b3αi
√
n(log n)4c+ 1)e−rm(logn)7 ≥ 1− e−(logn)2 . (87)

Moreover, by P3(i), f satisfies the conditions of Lemma 6.19, which together with a
union bound over j ∈ [`] implies that

P(E2 ∩ E3 | FI−i (Ψ(X ′)) = f∗) ≥ 1− `e− 1
2 (logn)3 ≥ 1− e−(logn)2 . (88)

Thus by Lemma 6.39, (88), Lemma 6.41, Lemma 6.34 and (87) (applied in order),

P

(
8⋂
s=1

Es

∣∣∣∣∣FI−i (Ψ(X ′)) = f∗

)
≥ 1− P(E1 | FI−i (Ψ(X ′)) = f∗)

− P(E2 ∩ E3 | FI−i (Ψ(X ′)) = f∗)

− P(E4 ∩ E5 ∩ E6 | FI−i (Ψ(X ′)) = f∗)

− P(E7 | FI−i (Ψ(X ′)) = f∗)

− P(E8 | FI−i (Ψ(X ′)) = f∗)

≥ 1− 8e−(logn)2 − 2`e−(logn)3 ≥ 1− 10e−(logn)2 . (89)

It therefore suffices to show that when E1 ∩ · · · ∩ E8 occurs, (i) and (ii) both hold.
Suppose E1 ∩ · · · ∩ E8 occurs. First note that since E1 occurs, by Observation 3.7, for

all t ∈ (I−i , T
i
end],

v∗ spawns a non-mutant at time t only if in(v∗, t) ∈ T i.

Since E4 occurs, it follows that v∗ spawns fewer than βi+1 non-mutants in the interval
(I−i , T

i
end], and so (D2) does not hold at time T iend. Likewise, since E1 occurs, for all t ∈

(I−i , T
i
end] and all j ∈ [`],

v∗ spawns a non-mutant onto a vertex in Rj at time t only if in(v∗, t) ∈ T i,j .

and so since E5 occurs it follows that v∗ spawns fewer than αi+1 non-mutants onto
vertices in Rj in the interval (I−i , T

i
end]. Hence (D3) does not hold at time T iend. Finally,

since E2 occurs and T iend ∈ Ii, (D4) does not hold at time T iend. Since none of (D2)–(D4)
hold at T iend, (D1) must hold at T iend and so T iend = I+

i .
Since E1 occurs and T iend = I+

i , it follows that

Throughout Ii, v∗ only spawns non-mutants onto vertices in Ui. (90)
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Also since E1 occurs and T iend = I+
i , we have

len({t ∈ (I−i , I
−
i + len(Ii)/2] | v∗ ∈ X ′t}) ≥

len(Ii)

2
− γi >

len(Ii)

3
.

Thus since E6 occurs, by Observation 3.7, v∗ spawns a mutant onto every vertex in
(R1 ∪ · · · ∪ R`) \ Ui in the interval (I−i , I

−
i + len(Ii)/2]. Thus by (90), every vertex in

(R1∪· · ·∪R`)\Ui is a mutant throughout [I−i +len(Ii)/2, I
+
i ], and in particular (i) holds.

To prove (ii), let i ≥ 6 be an integer and let j ∈ [`] be such that Rj ∩ Ui = ∅. By the
above, we have Rj ⊆ X ′t for all t ∈ [I−i + len(Ii)/2, I

+
i ].

Let

J = {Jh | 0 ≤ h ≤ b3αi
√
n(log n)4c,Kj becomes active in Jh}

J ′ = {Jh | 0 ≤ h ≤ b3αi
√
n(log n)4c, there exists t ∈ Jh such that Kj is active at t.}

From i ≥ 6, we have αi ≤
√
n/(log n)12 and hence Jh ⊆ (I−i + len(Ii)/2, I

−
i + 2len(Ii)/3]

for all h ≤ b3αi
√
n(log n)4c. Since E3 occurs, we have |J ′| ≤ 2|J |. Since E7 oc-

curs, it therefore follows that |J ′| ≤ 2αi
√
n(log n)4, and in particular there exists

h ∈ {0, . . . b3αi
√
n(log n)4c} such that Kj is inactive throughout Jh. Moreover, since E8

occurs and Rj ⊆ Xt for all t ∈ Jh, aj must become a mutant in Jh. Thus Rj ∪ {aj} ⊆ X ′t
for all t ∈ [I−i + 2len(Ii)/3, I

+
i ].

Finally, since E3 occurs, it follows that there exists t ∈ [I−i + 2len(Ii)/3, I
−
i − len(Ii)/4]

such that Kj is full of mutants at time t. It follows that Rj ∪ {aj} ∪ Kj ⊆ X ′t for all
t ∈ [I+

i − len(Ii)/4, I
+
i ]. Thus (ii) holds, and so the result follows from (89).

We are now at last in a position to prove Lemma 6.27, which completes the proof of
Theorem 6.1.

LEMMA 6.27. Consider any r > 1. There is an `0, depending on r, such that the
following holds for any ` ≥ `0. Let i be a non-negative integer, and let f be a good
possible value of FI−i (X ′). Then

P(FI+i (X ′) is good | FI−i (X ′) = f) ≥ 1− 15e−(logn)2 .

Moreover, if βi = b(2 log n)2c, then

P(X ′
I+i

= V (M`) | FI−i (X ′) = f) ≥ 1/2.

PROOF. Consider the process Ψ(X ′). We define the following events.

— E1: for all j ∈ [`], |Kj \X ′I+i | ≤ ∆.
— E2: |Ui| < βi+1.
— E3: for all j ∈ [`], |Ui ∩Rj | < αi+1.
— E4: (R1 ∪ · · · ∪R`) \X ′I+i ⊆ Ui.
— E5: either i < 6 or for all j ∈ [`] such that Rj ∩ Ui = ∅ and all t ∈ [I+

i − len(Ii)/4, I
+
i ],

we have Rj ∪ {aj} ∪Kj ⊆ X ′t.
— E6: Ui = ∅.
— E7: for some v ∈ K1 ∪ · · · ∪K`, M(v,v∗) triggers in (I+

i − len(Ii)/4, I
+
i ].

Note that by Observation 3.7, there exists a unique value of f∗ such that
FI−i (Ψ(X ′)) = f∗ if and only if FI−i (X ′) = f . By P3(i), f satisfies the conditions of
Lemma 6.19, and so by Lemma 6.19(ii) and a union bound over j ∈ [`] we have

P(E1 | FI−i (X ′) = f) ≥ 1− `e− 1
2 (logn)3 ≥ 1− e−(logn)2 . (91)
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Thus, by (91), Lemma 6.41(i) and (ii), and Lemma 6.42 (applied in order) together
with a union bound, we have

P

(
5⋂
s=1

Es

∣∣∣∣∣FI−i (X ′) = f

)
≥ 1− P(E1 | FI−i (X ′) = f)− P(E2 ∩ E3 | FI−i (X ′) = f)

− P(E4 ∩ E5 | FI−i (X ′) = f)

≥ 1− 15e−(logn)2 . (92)

Suppose that E1∩· · ·∩E5 occurs. We claim that FI−i+1
(X ′) is good. Indeed, since E2∩E4

occurs, P1(i+ 1) is satisfied. Likewise, since E3 ∩ E4 occurs, P2(i+ 1) is satisfied. Since
E1 occurs, P3(i+ 1) is satisfied. Finally, since E2 occurs, we have

|{j ∈ [`] | Rj ∩ Ui 6= ∅}| ≤ |Ui| ≤ βi+1.

If i < 6, then βi > ` and so P4(i + 1) holds vacuously. If instead i ≥ 6, then P4(i + 1)
holds since E5 occurs. Thus FI−i+1

(X ′) is good, and so the first part of the result follows
from (92).

Now suppose βi = b(2 log n)2c, so γi ≤ 4(log n)22/k and i ≥ 6. Note that t−i is deter-
mined by f , and that f does not determine the behaviour of clocks N∗(v∗,v) in (t−i ,∞).
It follows that conditioned on FI−i (X ′) = f , |T i| follows a Poisson distribution with
parameter γi. It therefore follows that

P(E6 | FI−i (X ′) = f) = e−γi ≥ 1− γi ≥ 1− 4(log n)22

k
≥ 5

6
.

Moreover, it is immediate that

P(E7 | FI−i (X ′) = f) = 1− e−r`len(Ii)/4 ≥ 5/6.

By Lemma 6.42(ii) and a union bound, it therefore follows that

P(E5 ∩ E6 ∩ E7 | FI−i (X ′) = f) ≥ 1/2. (93)

Suppose that E5 ∩ E6 ∩ E7 holds. Since E5 ∩ E6 holds and i ≥ 6, for all j ∈ [`] and all
t ∈ [I+

i − len(Ii)/4, I
+
i ] we have Kj ∪ {aj} ∪Rj ⊆ X ′t. Since E7 holds, it therefore follows

that V (M`) ⊆ X ′I+i . Thus the second part of the result follows from (93).

7. AN UPPER BOUND ON FIXATION PROBABILITY OF MEGASTARS
The following lemma is similar to Lemma 4.2 for superstars.

LEMMA 7.1. Let r > 1, and let k, ` and m be arbitrary positive integers. Let x0 ∈
Mk,`,m be chosen uniformly at random. Let X be a Moran process with G(X) =Mk,`,m

and X0 = {x0}. Then X goes extinct with probability at least k/(2r(m+ k)).

PROOF. We have

P(x0 /∈ R1 ∪ · · · ∪R`) = 1− `m

`(m+ k + 1) + 1
≥ 1− m

m+ k
=

k

m+ k
.

Moreover, let E be the event that x0 dies before spawning a mutant. Then we have

P(E | x0 ∈ {a1, . . . , a`}) = m/(m+ r),

P(E | x0 ∈ K1 ∪ · · · ∪K`) = 1/(1 + r),

P(E | x0 = v∗) = `/(`+ r).
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Thus we have

P(E) ≥ P(E | x0 /∈ R1 ∪ · · · ∪R`)P(x0 /∈ R1 ∪ · · · ∪R`) ≥
1

1 + r
· k

m+ k
≥ k

2r(m+ k)
.

Since X goes extinct if E occurs, the result follows.

The following lemma is similar to Lemma 4.3 for superstars.

LEMMA 7.2. Let r > 1, and let k, ` and m be arbitrary positive integers with m ≥
12r. Let x0 ∈ R1∪ · · ·∪R` be arbitrary. Let X be the Moran process with G(X) =Mk,`,m

and X0 = {x0}. Then X goes extinct with probability at least 1/(26r2`).

PROOF. Assume, without loss of generality, that x0 ∈ R1. Let ξ = bm/(2r)c, t∗ =
m/(4r2) and J = [0, t∗]. For all t ≥ 0, let E1, E2 and E3

t be events defined as follows.

E1: N(v∗,x0) triggers in J .
E2: M(x0,a1) triggers at most ξ times in J .
E3
t : min{t′ > t | for some u 6= x0, N(u,a1) triggers at t′} <

min{t′ > t | some clock M(a1,v) triggers at t′}.

Finally, let T iv1 be the i’th time at which the clock M(x0,a1) triggers and define E3 =⋂ξ
i=1 E3

T iv1
.

As in the proof of Lemma 4.3 X goes extinct if the events E1, E2 and E3 occur. Fur-
thermore, these events have exactly the same probability as the corresponding events
in the proof of Lemma 4.3, so the result follows.

Our upper bound on fixation probability now follows easily from Lemmas 7.1 and
7.2.

THEOREM 7.3. Let r > 1, and let k, ` and m be arbitrary positive integers. Let x0 ∈
V (Mk,`,m) be chosen uniformly at random. Let X be the Moran process with G(X) =
Mk,`,m and X0 = {x0}. Then X fixates with probability at most 1 − 1/(52r2

√
n), where

n = |V (Mk,`,m)|.
PROOF. We prove the result by dividing into three cases.

Case 1: n ≤ 144r2. In this case, x0 dies with rate at least 1/n and spawns a mutant
with rate r, so x0 dies before spawning a mutant with probability at least

1
n

1
n + r

≥ 1

2rn
≥ 1

24r2
√
n
. (94)

Case 2: n > 144r2 and m ≤ k
√
n. In this case, by Lemma 7.1, X goes extinct with

probability at least
k

2r(m+ k)
≥ 1

2r(
√
n+ 1)

≥ 1

3r
√
n
. (95)

Case 3: n > 144r2, m > k
√
n and ` ≤

√
n. In this case, we have

P(x0 ∈ R1 ∪ · · · ∪R`) =
`m

`(m+ 1 + k) + 1
≥ m

m+ 3k
≥

√
n√

n+ 3
≥ 1

2
.

Moreover, we have m ≥ k
√
n ≥ 12r. Hence by Lemma 7.2, X goes extinct with proba-

bility at least
1

2
· 1

26r2`
≥ 1

52r2
√
n
. (96)
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Since n ≥ `m, we have either m ≤
√
n ≤ k

√
n or ` ≤

√
n, and so the above cases are

exhaustive. The result therefore follows from (94)–(96).

8. A CLARIFICATION OF THE ISOTHERMAL THEOREM
Lieberman et al. [2005] define the Moran process in the more general setting of
weighted graphs. In this section, we consider this generalisation.

In the ordinary Moran process, the offspring produced by reproduction is equally
likely to be placed at each neighbour of the reproducing vertex. Instead, given a
graph G, we may assign to each edge (u, v) a weight wuv, taking wuv = 0 if there is no
such edge. Without loss of generality, we require that, for each vertex u,

∑
v∈V (G) wuv =

1, so the weights are probabilities. When a vertex u is chosen to reproduce in a weighted
graph, its offspring goes to vertex v with probability wuv; the process is, otherwise,
identical to the process on unweighted graphs. Note that the unweighted process is
recovered by assigning wuv = 1/d+(u) for every edge (u, v).

A weighted graph G whose weights are probabilities as above is known as an evo-
lutionary graph and is said to be isothermal [Lieberman et al. 2005; Shakarian et al.
2012] if, for all vertices u,

∑
v∈V (G) wvu = 1. This corresponds to the condition that the

weighted adjacency matrix of G is doubly-stochastic. Broom and Rychtár [2008] show
that an undirected graph, when considered as a weighted graph with edge weights
wuv = 1/d+(u), is isothermal if and only if it is regular.

In the supplementary material to [Lieberman et al. 2005], Lieberman et al. state
and prove the “isothermal theorem”, which states that an evolutionary graph is “ρ-
equivalent to the Moran process” if and only if it is isothermal. Being ρ-equivalent
to the Moran process means that, for all sets X ⊆ V (G), the probability of reaching
fixation from the state in which the set of mutants is X is (1 − 1/r|X|)/(1 − 1/rn).
In particular, this condition implies that the fixation probability given a single initial
mutant placed uniformly at random is ρreg(r, n) = (1− 1/r)/(1− 1/rn).

The isothermal theorem has been incorrectly described in the literature. This may
stem from the ambiguity of the informal statement of the theorem in the main text
of [Lieberman et al. 2005, p. 313]. Shakarian, Roos and Johnson [2012] state the theo-
rem in the following form, which is very similar to the informal statement by Lieber-
man et al.

PROPOSITION 8.1 ([SHAKARIAN ET AL. 2012, THEOREM 1]). An evolutionary
graph is isothermal if and only if the fixation probability of a randomly placed mutant
is ρreg(r, n).

It is true that all n-vertex connected isothermal graphs do have fixation probabil-
ity ρreg(r, n). However, the converse direction of the proposition does not hold. We prove
the following.

PROPOSITION 1.12. There is an evolutionary graph that is not isothermal, but has
fixation probability ρreg(r, n).

A counterexample to Proposition 8.1, proving Proposition 1.12, is the graph shown
in Figure 4. This is an evolutionary graph: the total weight of outgoing edges from
each vertex is 1. It is not isothermal, since, for example, w10 +w20 6= 1. However, it can
be shown that the fixation probability of a randomly placed mutant with fitness r is,
nonetheless, ρreg(r, n).

Towards calculating the fixation probability of the graph shown in Figure 4, let pi be
the probability of reaching fixation when the initial mutant is at vertex i, for 0 ≤ i ≤ 2.
For 0 ≤ i < j ≤ 2, let pij be the probability of reaching fixation from the configuration
with mutants at i and j and a non-mutant at the remaining vertex. Observe that, by
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Fig. 4. A 3-vertex graph which is not isothermal but has fixation probability ρreg(r, 3).

symmetry of the graph, p1 = p2 and p01 = p02. The fixation probability of the graph is
given by 1

3 (p0 + p1 + p2) = 1
3 (p0 + 2p1).

We obtain the following equations:

p0 = 1
r+2

(
r
(

1
2 p01 + 1

2 p02

)
+ 2 · 1

4 p0

)
= 1

r+2

(
rp01 + 1

2p0

)
,

p1 = 1
r+2

(
r
(

3
4 p01 + 1

4 p12

)
+
(

1
2 + 3

4

)
p1

)
,

p01 = 1
2r+1

(
r
(

1
2 + 1

4 +
(

1
2 + 3

4

)
p01

)
+ 1

4 p0 + 3
4 p1

)
= 1

2r+1

(
3
4 r + 5

4 rp01 + 1
4 p0 + 3

4 p1

)
,

p12 = 1
2r+1

(
r
(

3
4 + 3

4 + 2 · 1
4 p12

)
+ 1

2p1 + 1
2p2

)
= 1

2r+1

(
r
(

3
2 + 1

2 p12

)
+ p1

)
.

Rearranging these gives

(2r + 3)p0 = 2rp01 (3r + 4)p01 = 3r + p0 + 3p1

(4r + 3)p1 = 3rp01 + rp12 (3r + 2)p12 = 3r + 2p1 .

Routine solution of this linear system gives

p0 =
r2(2r + 1)

2(r + 1)(r2 + r + 1)
p1 =

r2(4r + 5)

4(r + 1)(r2 + r + 1)
,

which yields the fixation probability

1

3
(p0 + 2p1) =

r2(2r + 1 + 4r + 5)

6(r + 1)(r2 + r + 1)
=

r2

r2 + r + 1
=
r2(r − 1)

r3 − 1
= ρreg(r, 3) .

9. HEURISTIC ANALYSIS OF SUPERSTARS
As noted in Section 1.4, Jamieson-Lane and Hauert [2015] have already provided a
heuristic analysis of the fixation probability of superstars. The heuristic analysis con-
tains good intuition. The purpose of this final section is to explain some of the difficul-
ties that arise when converting such a heuristic argument to a rigorous proof. This sec-
tion is primarily for readers who are already familiar with the argument of [Jamieson-
Lane and Hauert 2015]. This should not be regarded as a criticism of [Jamieson-Lane
and Hauert 2015] — that paper provides an excellent heuristic analysis, so it does
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what it intends. Rather, the purpose of this section is to illustrate the complicating
factors that arise in rigorous proofs (these help to explain why our paper is so long!)

The evolution of the discrete-time Moran process on a superstar is extremely com-
plicated. To avoid detailed analysis, Jamieson-Lane and Hauert [2015, Appendix E.2]
use a simple random walk to stochastically dominate (from below) the number of mu-
tants in reservoirs. They claim that there is always some forward bias in the actual
process, in the sense that the number of mutants in reservoirs is always more likely
to increase than to decrease. They say that the forward bias gets harder to quantify as
the number of mutants increases, but that it is always positive. Thus, the dominating
walk Q that they consider is forward-biased when there are relatively few mutants,
and unbiased when there are more. More specifically, the dominating chain Q(h) is a
simple random walk on {0, . . . ,m`}. If h is below some threshold δ then Q increases
by 1 during each (discrete) step with probability γ/(1 + γ) (for some γ > 1) and de-
creases by 1 with probability 1/(1 + γ). If h is above δ then it increases or decreases
(by 1) with probability 1/2.

There are several problems with this domination. First, the domination is invalid be-
cause there are actually configurations in which the number of mutants is more likely
to decrease than to increase. One such configuration is the configuration in which each
reservoir contains m

2 mutants and m
2 non-mutants and the centre vertex v∗ and all

path vertices are non-mutants. It is easy to see that the number of mutants is more
likely to decrease than to increase from this configuration, and even that the number
of mutants is likely to decrease at least k/(16r) times before it ever increases. Here is
the idea. Before the mutant population of the reservoirs can possibly increase, v∗ must
become a mutant. This takes at least k reproductions: a mutant in a reservoir must re-
produce and a chain of k reproductions must move the mutant down the corresponding
path to the centre. This is very likely to take at least nk/(2r) steps of the process. But
during these nk/(2r) steps, v∗ is very likely to be chosen for reproduction at least k/(4r)
times. Since v∗ is a non-mutant throughout this period, it must send a non-mutant into
some reservoir each time it reproduces. Since half the reservoir vertices are mutants,
it is very likely that these k/(4r) reproductions of the centre will cause the mutant
population of the reservoirs to decrease, not just once, but at least k/(16r) times before
it can even go up at all. Therefore, the assumption that the mutant population of the
reservoirs is as likely to increase as to decrease does not hold for all configurations of
mutants. A rigorous proof needs to cover all such possibilities.

Even in the early evolution of the process, when there are few mutants in reservoirs,
there are still problems with making the domination rigorous. Jamieson-Lane and
Hauert [2015, Section 3.5] say (translating their variable names to ours and adding a
little notation for future reference)

At any given time step, the probability of losing the initial mutant in the
reservoir is p1 := 1/(Ft`m). Based on the dynamics in the path, we derive the
per time step probability that a second mutant is generated in any reservoir
as the product of the probability that a “train” is generated and the prob-
ability that the train succeeds in producing a second mutant, which yields
approximately p2 := r4T/(Ftm`).

Here, Ft is taken to be the overall fitness (sum of individual fitnesses) in the config-
uration Xt and T is the expected length of a “train” which is a chain of mutants at
the end of path. The dominating Markov chain Q is applied with γ ∼ p2/p1 ∼ r4T .
Since Q is a Markov chain, the domination is only valid if it applies step-by-step to
every configuration. It applies, if, from every fixed configuration, the probability that
the number of mutants next goes down is proportional to p1 and the probability that
it next goes up is proportional to p2. But this is not proved. First, note that the event
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that the number of reservoir mutants increases does not occur with probability p2 at
any particular step (conditioned on the configuration prior to the step). Instead, the
expression given in p2 is a heuristic aggregated probability which may, roughly, apply
at some step or block of steps in the future. In order to rigorously dominate the num-
ber of reservoir mutants using the Markov chain Q it is necessary to split the process
into discrete pieces (whose length may be a random variable) so that the number of
reservoir mutants decreases by at most one in each piece. It is important that, condi-
tioned on any configuration at the start of any piece, the probability that the number
of reservoir mutants goes up must be at least p2/p1 times the probability that it goes
down. The paper does not provide such a domination. Nevertheless, we do believe that
there is an infinite family of superstars that is strongly amplifying. Our Theorem 1.6 in
Section 6 demonstrates strong amplification for megastars. A similar approach would
presumably work for superstars, though of course it would not guarantee as strong
amplification as Theorem 1.6, since this is impossible by Theorem 1.8.
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