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ABSTRACT2

The combination of neuromorphic visual sensors and spiking neural network offers a high effici-3
ent bio-inspired solution to real-world applications. However, processing event- based sequences4
still remain challenging because of the nature of their asynchronism and sparsity behaviour. In5
this paper, a novel spiking convolutional recurrent neural network (SCRNN) architecture that6
takes advantage of both convolution operation and recurrent connectivity to maintain the spatial7
and temporal relations from event-based sequence data are presented. The use of recurrent8
architecture enables the network to have arbitrary length of sampling window allowing the netw-9
ork to exploit temporal correlations between event collections. Rather than standard ANN to10
SNN conversion techniques, the network utilizes supervised Spike Layer Error Reassignment11
(SLAYER) training mechanism that allows the network to adapt to neuromorphic (event-based)12
data directly. The network structure is validated on the DVS gesture dataset and it has achieved13
a 10 class gesture recognition accuracy of 96.59% and 11 class gesture recognition accuracy of14
90.28%.15

1 INTRODUCTION
During the past couple of decades, computer vision applications have become increasingly important16
in many industrial domains such as security systems, robotics, medical devices. Many Deep Neural17
Network(DNN) based algorithms have outperformed human performance in different image recognition18
tasks such as the success of Convolutional Neural Networks (CNN) (Krizhevsky et al., 2012) in the 201219
ILSVRC image classification challenge. However, it remains a challenge to extend the achievements20
in static image recognition to dynamic scene recognition, which has strong both temporal and spatial21
correlations. Human hand gesture recognition is one such problem that is significant for human-computer22
interaction (Rautaray and Agrawal, 2012; Haria et al., 2017; Mitra and Acharya, 2007). The hand’s23
movement conveys certain information that can be used as a tool to communicate with computers. The hand24
gesture recognition has been shown a significant value in applications such as virtual reality (Wickeroth25
et al., 2009; Frati and Prattichizzo, 2011), robot control (Droeschel et al., 2011; Liu and Wang, 2018)26
and sign language recognition (Pigou et al., 2015; Liang and Ouhyoung, 1998; Yang et al., 2010). The27
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importance of developing intelligent models for complex Spatio-temporal processing is widely recognized28
for solving dynamic scene based recognition problems. In recent years, recurrent neural network (RNN)29
structures such as the long-short-term-memory (LSTM) (Hochreiter and Schmidhuber, 1997) have been30
shown to be effective for time-based sequence to sequence classification and prediction tasks. However, the31
LSTM is still inherently inefficient for the dynamic scene recognition since it does not deal with any spatial32
information. Research has shown the effectiveness of combining the recurrent structure and convolution33
operation in the dynamic scene recognition such as CNN-LSTM structure (Wang et al., 2017a; Donahue34
et al., 2017) and convLSTM structure (Shi et al., 2015; Song et al., 2018; Zhou et al., 2018). Such a35
mechanism allows feature extraction to use both temporal and spatial information.36

Concerning the data acquisition side, the traditional vision sensor is a digital camera that repeatedly37
refreshes its entire array of pixel values at a predefined frame rate. However, using the digital camera38
has three drawbacks for dynamic motion recognition. First, a digital camera normally operates with a39
predefined frame sampling rate (typically range 25-50 frames per second), which limits the temporal40
resolution of activities observed. Secondly, consecutive frames and redundant pixels in each frame waste41
significant storage resources and computation. Thirdly, the dynamic range of traditional image sensors is42
limited by its exposure time and integration capacity. Most cameras suffer from saturating linear response43
with dynamic range limited to 60-70dB where light from natural scenes can reach approximately 140dB of44
dynamic range (Posch et al., 2011a).The dynamic vision sensor (DVS) (Lichtsteiner et al., 2008a; Posch45
et al., 2011b; Brandli et al., 2014) provides a solution to these problems. The DVS using address event46
representation (AER) is an event-driven technology based on the human visual system. The benefit of the47
event-based sensor on dynamic scene recognition task is that it offers very high temporal resolution when48
a large fraction of scene changes, which can only be matched by a high-speed digital camera with the49
requirement of high power and significant resources.50

In DVS, information is coded and transmitted as electric pulses (or spikes), which is similar to the51
processing mechanism in biological sensory systems. The output of DVS is generated asynchronously52
by comparing each activity of a retina pixel with a certain threshold. The emergence of dynamic vision53
sensor (DVS)(Lichtsteiner et al., 2008b) demonstrated significant potential in applications of ultra-fast54
power efficient computing. Compared to traditional vision sensors, DVS returns unsynchronized events55
rather than sampled time-based frame series. For a given real-world input, DVS records only changes in56
pixel intensity values and outputs a stream of ON/OFF discrete events regarding the changing polarity.57
Such an event- based acquisition mechanism offers many advantages such as low power consumption, less58
redundant information, low latency and high dynamic range. Despite the advantages of DVS, it is still59
challenging to apply the traditional computer vision algorithms to unsynchronized DVS output data.60

The spiking neural network (SNN) provides an efficient solution to event-based data processing. As the61
DVS mimics the biological retina, spiking neural network (SNN) mimics the human brain’s functionality62
by utilizing bio-inspired neuron and synapse models. The major difference between SNN and traditional63
ANNs is the information carrier between their fundamental processing units. The SNN propagates only64
individual spikes rather than floating-point numbers. Such characteristic provides an effective and low65
power computing strategy for event-driven inputs. Previous work has demonstrated application examples66
of combining SNN and event-based visual sensor such as extracting car trajectories on a freeway[10],67
recognition of human postures (Pérez-Carrasco et al., 2010; Jiang et al., 2019), object tracking(Hinz68
et al., 2017) and human gesture recognition (Amir et al., 2017). However, to our knowledge to date,69
the convolutional recurrent network structure that is particularly designed for gesture recognition has70
not been widely investigated in the SNN domain. Wang et al. (Wang et al., 2019b) presented a spiking71
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recurrent neural network that used for action recognition, but the the term ”spiking” in their work does not72
represent the event-based processing but a spiking signal that was used to help a traditional RNN correct its73
contaminated memory. Vyacheslav et al. (Demin and Nekhaev, 2018) proposed a bio-inspired learning rule74
FEELING with an attempt on the recurrent structure, which is applied to the handwritten digit recognition.75
The FEELING algorithm was further implemented by (Nekhaev and Demin, 2020) with an convolutional76
recurrent structure that is proved to be more energy efficient on hand digit recognition. However, this work77
had not considered the research line that the combination of convolutional and recurrent structure is more78
significant in dynamic scene based recognition(i.e., hand gesture recognition). Besides, this work ignored79
the adaptability of SNN with neuromorphic hardware and sensors.80

In this paper, we present a novel spiking neural network structure that can adapt to neuromorphic vision81
data-based recognition problem especially for those data that contains strong spatiotemporal correlations82
such as human hand gesture recognition. The convolutional operation and recurrent neural network83
connections are combined in an SNN that uses a supervised learning based spiking convolutional recurrent84
neural network (SCRNN). By adjusting the integration period of the input data sequence and convolution85
kernel, SCRNN can achieve arbitrary Spatio-temporal resolution related to the recognition demand.86
Besides, The Spike Layer Error Reassignment (SLAYER) training algorithm (Shrestha and Orchard, 2018)87
is successfully deployed to the SCRNN for the purpose of generalization and training stability. It utilizes88
both temporal error and axonal delay credit assignment to minimize the computational complexity. The89
use of SLAYER effectively prevents the common gradient vanishing and explosion problem associated90
with recurrent neural networks. Since the recurrent propagation between the SCRNN cells relies on the91
information fusion from inputs of current timestamps and output from previous timestamps. Particularly for92
SCRNN, a spiking feature map integration method is developed in the SCRNN cell to maintain information93
continuity in the temporal domain. Furthermore, The SCRNN is validated by a series of experiments on94
the DVS gesture dataset (Amir et al., 2017) to prove its robustness for the motion-based neuromorphic95
action recognition problem.96

The remainder of this paper is organized as follows. Section 2 introduces the related work in the spiking97
recurrent neural network and SLAYER training algorithm. In Section 3, detailed descriptions are provided98
in terms of individual SCRNN cell and overall SCRNN topology. The experiment results on the DVS99
gesture dataset is presented and discussed in Section 4. The experiment result is analyzed and compared100
with previous work. Finally, the conclusions are provided in Section V.101

2 PRELIMINARIES
This section gives an explanation of the background of SNN, the SLAYER training algorithms (Shrestha102
and Orchard, 2018) as well as relevant previous works on convolutional recurrent neural networks.103

2.1 Spiking Neural Network104

In recent years, deep learning technologies have rapidly revolutionized the field of machine learning.105
Traditional deep neural networks are trained using supervised learning algorithms, which are usually106
based on gradient descent backpropagation. A neural network comprises several fundamental computing107
units (neurons) containing weighted and biased continuous activation function. The typical example of108
these activation functions are sigmoid, hyperbolic tangent and ReLU (Nair and Hinton, 2010). With the109
feed-forward and recurrent structure, this computation strategy allows them to be able to approximate any110
analog function universally (Vreeken, 2002).111
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Although DNNs were initially brain-inspired, their structure, neural information processing and learning112
method are still fundamentally different from the brain. One of the most distinctive difference is the means113
in which information is carried between neurons. That is one of the main reasons for the increased interest in114
spiking neural networks (SNNs). SNN raises the level of biological realism of ANNs by utilizing individual115
spikes as information carriers. This allows the network computation and communication to incorporate116
spatial-temporal information. The spikes used in SNN, however, are sparse in time with uniform amplitude,117
but rich in their information content when they occur in time. The information in SNNs is presented by118
spike timing e.g. latency, frequency or the population of the neuron that are emitted spikes (Gerstner et al.,119
2014).120

The SNN is an ideal universal spike generation model that mimics the actual biophysical mechanisms121
describes by Hodgkin and Huxley (Hodgkin and Huxley, 1990a). The spikes are only identified at the time122
instant when they arrive at the post-synaptic neuron. Non-linear differential equations are commonly used123
in SNN neuron modeling to generated the membrane potential through the time (Abbott, 1999; Hodgkin124
and Huxley, 1990b; Teka et al., 2014; Gerstner, 2009). Figure 1 illustrates the basic operating mechanism125
of a spiking neuron. This illustrates a single spiking neuron that receives incoming spike trains from s1,126
s2 and s3 and generates an output spike as shown in Figure 1(a). The incoming spikes to a neuron are127
integrated and transferred to the membrane potential dynamics u(t) as is shown in Figure 1(b). Whenever128
the membrane potential reaches a certain threshold value ϑ, the spiking neuron will emit a spike and reset129
the membrane potential to its resting value urest. After a spike activity, the neuron enters the refractory130
period and cannot fire any further spikes until its membrane potential resets to its resting value.131

Figure 1. The illustration of the spiking neuron operating mechanism. (a): An example of a single spiking
neuron that consists of integrator and threshold operator. (b): A simulation of membrane potential u(t)
change of a spiking neuron
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A typical spiking neuron model can contain additional parameters that approximate the membrane132
potential dynamics in the neural cortex. Commonly used spiking neuron model in SNNs include: Integrate133
and fire neurons(IF) (Feng, 2001; Feng and Brown, 2000), Leaky integrated and fire neurons(LIF) (Liu and134
Wang, 2001), Hodgkin-Huxley model (Bower et al., 1995) and Spike Response Model(SRM) (Gerstner,135
2008) etc.136

Recent research has successfully demonstrated examples of SNN based applications including object137
recognition (Kheradpisheh et al., 2018; Diehl and Cook, 2015), speech processing (Loiselle et al., 2006;138
Tavanaei and Maida, 2017; Wysoski et al., 2010), pattern recognition (Kasabov et al., 2013; Mohemmed139
et al., 2012; Han and Taha, 2010; Dhoble et al., 2012). Furthermore, many developed neuromorphic140
computing platforms have demonstrated tremendous potential in real-world power limited applications.141
The IBM TrueNorth systems consist of 5.4 billion transistors with only 70mW power density consumption,142
which accounts for only 1/10000 of traditional computing units (Akopyan et al., 2015). The SpiNNaker143
platform (Furber et al., 2014, 2013) developed by Researchers at Manchester provides ASIC solutions to144
hardware implementations of SNNs. It utilized multiple ARM cores and FPGAs to configure the hardware145
and PyNN (Davison et al., 2009) software API to enable the scalability of the platform. The Loihi NM146
chip (Davies et al., 2018) is a digital NM computing platform that was recently announced by Intel. One of147
the most attractive features of Loihi is the potential of online-learning. Loihi has a special programmable148
microcode engine for SNN training on the fly. The emergence of these hardware technologies demonstrates149
strong suitability of applying power efficient neuromorphic computing into real-world mobile units.150

2.2 Spike Layer Error Reassignment in Time(SLAYER)151

Currently, the training procedure of most ANNs relies on the combination of continuously differentiable152
activation function and gradient descent convergence algorithm. Spiking Neural Networks are similar to153
traditional neural networks in topology but differ in the way of information carrier and the choice of neuron154
models. The non-differentiable nature of biological-plausible spiking neurons is the main challenge of the155
development of SNN training algorithms. Spike Layer Error Reassignment in Time (SLAYER) alternatively156
approximates the derivative of the spike function based on the neuron state changes and assigns the error to157
previous layers. A description of SLAYER training algorithm is provided in the next subsection.158

The neuron model used for the SLAYER is the Spike Response Model (SRM). The membrane potential159
generation process of a SRM neuron is achieved by convolving a spike response kernel σ(t) with the160
incoming spike train si(t) to this neuron to form a spike response signal as a(t) = (σ(t) ∗ si(t)). Here161
the index i represents the ith input channel. The spike response signal is further weighted by the synaptic162
weight w. Similarly, the refractory response signal can be obtained via convolving a refractory kernel ν(t)163
with the neuron output spike train so(t) as r(t) = (ν(t) ∗ so(t)). The overall neuron membrane potential164
u(t) can be obtained by summing all the spike response signal and refractory response signal as:165

u(t) =
∑

wi(σ(t) ∗ si(t)) + (ν(t) ∗ so(t))

= W>a(t) + r(t)
(1)

The generated membrane potential u(t) is then compared with a predefined threshold ϑ and output spike166
when u(t) > ϑ like is shown in Figure 1. In a multilayer feedforward spiking neural network architecture,167
instead of directly managing the non-differentiable spike neuron equations, SLAYER approximates the168
derivative of the spike function as a probability density function (PDF) of spike state changes. Further169
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details of the model and its use in training the SNN can be found in (Shrestha and Orchard, 2018). With170
a good estimation PDF as the derivative term of spike change state, the SLAYER can easily derive the171
gradient of weights and delays in each layer from a feedforward SNN. This allows the network to adapt172
developed gradient descent method for optimization purpose such as ADAM (Kingma and Ba, 2015),173
RmsProp (Hinton et al., 2012).174

2.3 Convolutional Recurrent Neural Network175

The convolutional recurrent neural network (CRNN) structure has been well studied in the second176
generation of ANNs. The convolution operation in the ANNs usually acts as a spatial visual feature177
extractor that assumes features are in different levels of hierarchy. The recurrent structure introduces178
memory to the network and an ability to deal with sequential data dependently.179

A significant design of the CRNN structure is the ConvLSTM structure (Shi et al., 2015) that was180
initially designed for forecasting precipitation. By replacing the general gate activation by the convolutional181
operation, the network is able to exploit an extracted 3D tensor as the cell state. The ConvLSTM was also182
evaluated on the moving MNIST (Srivastava et al., 2015) dataset and was shown to successfully separate183
the overlapping digits and predicted the overall motion with a high level of accuracy.184

Another CRNN structure CNN-LSTM concatenates a CNN and an LSTM to formulate a collaborative185
network. The LSTM in the structure is placed behind a pretrained CNN that directly takes the output186
feature vector from the CNN as the input sequence. The implementation of this structure however is187
highly dependent on a well pre-trained CNN that was designed for the interest as the feature extractor. The188
CNN-LSTM is proved powerful in many application domains such as acoustic scene classification (Bae189
et al., 2016), emotion recognition (Fan et al., 2016), action recognition Wang et al. (2017b) etc.190

Over the past few years, researchers have successfully applied CRNN in medical applications (Wang,191
Lebo and Li, Kaiming and Chen, Xu and Hu, 2019), speech processing (Tan and Wang, 2018; Cakir et al.,192
2017), music classification (Choi et al., 2017). Adopting a recurrent structure enables the neural network to193
encapsulate the global information while local features are extracted by the convolution layers. Yang et al.194
(Haodong Yang, Jun Zhang, Shuohao Li and Chen, 2018) demonstrated a Convolutional LSTM network195
that was successfully evaluated on various action recognition datasets. The importance of using CRNN196
structure in the application of human action recognition is that unlike action recognition in images, the197
same task in videos relies on motion dynamics in addition to visual appearance. Although CNNs and its198
variants like 3D convolution (Ji et al., 2013; Karpathy et al., 2014) achieves good performance, they still do199
not make sufficient use of temporal relations between frames. More recently, Maj et al. (Majd, Mahshid200
and Safabakhsh, 2019) designed a motion-ware ConvLSTM for the action recognition task which is an201
LSTM unit that considers the correlation of consecutive video frames in addition to the Spatio-temporal202
information.203

However, in the SNN domain, the CRNN structure has not been widely investigated especially for the204
action recognition problem. One of the main challenges in developing a spiking CRNN is how to manage205
the training process of spiking neurons. Besides, the consecutive information recurrency is difficult to206
achieve in the SNN since the traditional probabilistic based functions do not comply with spikes. In this207
paper, the SLAYER algorithm is used as an efficient, general supervised training mechanism for SNNs.208
Based on the spiking model of SLAYER, we design a network structure that can achieve both forward and209
recurrent information propagation.210
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Figure 2. The 3D spiking convolution operation, Red: represents the spiking convolution through a defined
3D volume

3 SPIKING CONVOLUTIONAL RECURRENT NEURAL NETWORK(SCRNN)
In this section, the novel system using SCRNN for action recognition is described. The fundamentals of211
3D spiking convolution and the related SCRNN model are described in the following subsections.212

3.1 Spiking Convolution Operation213

Consider an input sequence S(n), n = 0, 1, 2, ...N as is illustrated in Figure 2. At each time step, S(n) is214
a 3D tensor with shape {u, v, t} where u and v denote the width and height of each frame and t correspond215
to the pre-defined time resolution. For a given event-based video stream, it can be arbitrarily segmented into216
several tensors according to the desired temporal frequency. For example, for a 1.5sec 128x128 resolution217
events data stream with 30ms temporal resolution and 1ms sampling time can form a input sequence218
S(n), n = 0, 1, 2, ...50. For each segments, the tensor shape is {128, 128, 30}.219

The sampled input tensor S(n) with a shape of {u, v, t} is convolved with a 3D convolutional kernel to220
generate a spiking neuronal feature map. The spikes within an arbitrary kernel can be regarded as a bunch221
of spike trains su,v(t) where each spike train corresponds to the spikes at a specific coordinate (u, v) within222
the temporal resolution window t. Each neuron in the feature map receives the spikes from the neurons in223
the 3D convolutional kernel. The spikes in the region of the kernel are integrated to generate membrane224
potential for a single neuron in the feature map. The neurons in a map detect the Spatio-temporal dynamic225
patterns in different 3D volumes. Unlike the standard feature map generated by CNN, the information at226
each coordinate in a spiking feature map is expressed by spike trains which can be considered as a spiking227
representation of detected patterns.228

The convolutional kernel is highly overlapped to make sure the proper detection of features. The SRM229
neuron model is used to describe the 3D spiking convolution operation, which gathers all the input230
spikes from pre-synaptic neurons and outputs spike when the membrane potential reaches the pre-defined231
threshold. In the SLAYER, this is done by convolving the spike trains in the kernel with a spike response232
kernel and followed by the threshold function. Each spike train will be transferred to the spike response233
signal then further to the membrane potential of the postsynaptic neuron. The process can be expressed as:234
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au,v(t) = su,v(t) ∗ σ(t) (2)

uj,k(t) =
K∑

m=1

K∑
n=1

Wm,naj+m−1,k+n−1(t) + (sj,k(t) ∗ ν(t)) (3)

sj,k(t) = 1 & uj,k(t) = 0 when uj,k(t) ≥ Vthr (4)

where W denotes to the synaptic weights. u and v are the vertical and horizontal coordinate index of the235
input tensor. j and k represents the vertical and horizontal coordinate in the feature map. K represents the236
convolution kernel width and height.237

The 3D spiking convolution can decompose the input event based data into several spatio-temporal238
pattern feature maps, where each spike in the map corresponds to a specific pattern. When multiple spiking239
convolution layers are used, the feature in a layer is a combination of several low level features extracted240
from the previous layer.241

Figure 3. The proposed single SCRNN cell. The state spiking feature map and input feature map are
combined in the cell with an output feature map recurrently connected to the cell

3.1.1 SCRNN Cell242

The SCRNN cell is designed as the fundamental unit of the SCRNN system. The idea was inspired by243
the structure of the ConvLSTM cell (Shi et al., 2015). A graphical illustration of a single SCRNN cell is244
shown in Figure 3. The inputs to the cell comprise two parts: First is the spiking feature map generated by245
the outside events(e.g., a fragment from an event-based action data). The second part is the hidden spiking246
states which represent the fused feature map of previous states and the feature map generated by the current247
input. To ensure the state feature map has the same shape as the input, a padding technique is needed248
before the actual convolution operation, which means padding empty events(zeros) on the boundary of249
state maps. This can be viewed as the current state having no prior knowledge in terms of the region outside250
the current receptive field. At zero time index, the internal state needs to be initialized randomly or set251
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empty which represents no prior knowledge at the beginning from the temporal perspective. Consequently,252
the 3D spiking convolution operation is applied to both input-to-internal state transitions and state-to-state253
transitions in an SCRNN cell. The future state to state transition is achieved by utilizing another 3D254
convolution layer that contains a pre-defined number of hidden neurons. Two feature maps are concatenated255
to form a single map. Then the spikes in the same kernel of the fusion map are accumulated and activated256
to generate the membrane potential signal for future states. Consider an input segment Xi. The entire257
computation process within an SCRNN cell can be written as:258

si(t) = θ{
∑

Wih(Xi ∗ σ)} (5)

sh(t) = θ{
∑

Whi(sh(t− 1) ∗ σ)} (6)

sh(t+ 1) = θ{
∑

Whh(si(t) ∗ σ + sh(t) ∗ σ)} (7)

so(t) = θ{
∑

Who(si(t) ∗ σ + sh(t) ∗ σ)} (8)

where θ represents the thresholding operation. Wih, Whi, Whh and Who denotes the weight input to state,259
state to input, state to state and state to output respectively. It can be seen from equation (7) and (8) that the260
output of an SCRNN cell comprises two terms: sh(t+ 1) is the spiking states that can be used for future261
cells and the so(t) represents the output spike train. The output from the cell represents the 3D feature map262
extracted from the current cell that allows the network to go deeper by using the so(t) as the input of the263
next layer.264

Figure 4. The proposed SCRNN structure which is comprised by prior defined individual SCRNN cells.
The information going through the vertical direction in the Figure 4 is the spiking convolutional operation
in the spatial domain. The information processing along with the horizontal direction in the Figure 4 is the
recurrent process between the SCRNN cells which is in the temporal domain. h1, h2 and h3 is the initial
feature map assumption prior to the zero index. Xn and Yn represents the nth input or the output sequences

Frontiers 9



Sample et al. Running Title

3.2 Spiking Convolutional Recurrent Neural Network265

The overall SCRNN architecture shown in Figure 4 comprises a combination of single cells that are266
stacked in both temporal and spatial processing domain. From a temporal point of view, the cells can267
process the input sequence separately using the internal state correlations. Furthermore, the input can be268
further decomposed by adding additional cells at each time step, thus allowing the network to form greater269
computational complexity and processing higher level spatial features. In other words, at a specific time270
step, the concatenated SCRNN cells (layers) can be treated as a standard spiking convolutional neural271
network wherein each input of an SCRNN cell is the output signal of the previous cell. It should be noted272
that additional initial states are needed for every added layer.273

Similarly to the conventional recurrent neural network, the SCRNN can also be unrolled to form a274
short-term feed-forward structure that increases the network parameter capacity. Unrolling a recurrent275
structure represents a trade-off between the network performance and the computational cost. Although276
theoretically the cells can be unrolled up to the length of the input sequence, the computation cost in the277
training process increases dramatically along with the number of cells. Moreover, to guarantee the network278
performance in terms of temporal information, the backpropagation through time (BPTT) (Werbos, 1990)279
is used which is another factor that affects the training speed. BPTT calculates and accumulates errors280
across each time step, which can be computationally expensive as the number of time step increases.281

Figure 5. The demonstration of DVS gesture dataset with integral time of 0.5s. The gesture showing in
the example is hand waving. The green and red edges in each Figure 5 represents the ON/OFF polarities of
spikes

4 EXPERIMENT RESULTS
In this section, the experimental result of action recognition using SCRNN will be presented. To validate282
the robustness of the SCRNN, we evaluated the network structure by performing the recognition task on the283
IBM DVS gesture dataset (Amir et al., 2017). The DVS gesture dataset comprises recordings of 29 different284
actors carrying out 10 different hand gesture actions. All recordings are captured by an Inilabs 128 x 128285
dynamic vision sensor under three different lighting conditions. Each gesture sample has a duration of286
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approximately 6 second. Figure 5 shows an example of hand waving gesture with 0.5s integral time interval287
in nature light condition. The goal is to classify the gesture event video data into a corresponding label.288
The DVS gesture dataset is split as 1176 samples for training and 288 samples for testing as annotated. We289
construct a three layer SCRNN to solve this problem as is shown in Figure 4. The SRM response neuron290
parameters are shown in Table 1.291

Table 1. The neuron parameter setting for the SCRNN simulation.

ϑneuron τneuron τref Cref tauf Cf

5 10 1 2 1 1

The parameters define the standard neuron dynamics behavior which is used in all SCRNN networks.292
Where ϑneuron is the neuron firing threshold. τneuron is the neuron time constant, τref is the neuron293
refractory time constant, Cref is the refractory response scaling coefficient, tauf is the neuron spike294
function derivative time constant, and the Cf is the neuron spike function derivative scaling coefficient.295

As the gesture recognition is a many-to-one problem, only the output from the last layer and last time296
step SCRNN cell are taken into account for the loss calculation. The loss function used in this method is297
defined as the square error based on the number of spikes between the target and actual output in a time298
window according to Shrestha and Orchard (2018). With the So denotes to the output spike train of the last299
layer of SCRNN and Ŝ indicates to the target spike train, the loss function L can be expressed as follows.300

L =
1

2

N∑
1

(∫
So(τ)dτ −

∫
Ŝ(τ)dτ

)2

(9)

where N is the number of output neurons of the last layer. At each time step, the error signal is301
calculated according to the current output spike count and target spike count. It should be noted that302
the backpropagation pipeline covers both spatial and temporal propagating routes through the recurrent303
connection. To save on computation resources, only 1.5s out of 6s of each gesture samples were used for the304
experiment. The input event sequence is integrated into several frames based on pre-defined segmentation305
length ls. The segmentation length significantly affects the sparsity and the number of integrated frames. A306
small ls will results in a large number of sparse frames, on the contrary a chosen of large ls will reduce the307
number of frames but increase the number of events in each frame.308

To evaluate the performance of SCRNN, we carried out different combinations of network parameters309
to perform the action recognition task. The following hyper-parameters were used in the experiments:310
Number of filters in the convolutional layer, the segmentation length(time resolution)ls, the target true311
spike count TgTrue and target false spike count TgFalse. Figure 6 illustrates the output spike activities312
before and after the training of the last layer of the SCRNN. The vertical dash line in the figures simulates313
the time window that spikes will be counted for an input sample. In other words, the spikes between two314
dash lines are the output from a single input instance. The output neuron index from 1 to 10 represents 10315
different gesture classes. The red bars are target spike(labels) and the black bars are actual network output316
spikes. It should be noted that the loss for the SLAYER training algorithms is calculated from the error317
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Figure 6. The last layer SCRNN output: (a)Before Training (b)After Training

signal that was generated according to the difference between the number of actual output spikes from the318
network and the target spikes (TgTrue and TgFalse). If the actual spikes count of output neuron match that319
from the target spike count then a correct prediction is implied. As shown in Figure 6(a), the SCRNN has320
zero output before training and gradually learns to generate spikes that match the target spike in terms of321
the target spike quantity. Figure 6(b) demonstrates the output spike monitoring after-training the SCRNN.322
It can be clearly seen from Figure 6(b) that the actual spikes(shown in black) now have similar spike counts323
as target spikes(shown in red) for the input samples. It should be noted that, the target spikes and actual324
spikes have different spike timings but similar spike counts in each window.325
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Table 2. Comparisons of SCRNNs performance on DVS gesture dataset with different hyper-parameters.
TgTure: The preliminary setting of target True spikes count; TgTure: The preliminary setting of target
False spike count; ls(ms): The segmentation length(time resolution)

Conv1 Conv2 Conv3 FC1 FC2 TgTure TgFalse ls(ms) Trainacc Testacc

5x5x16 3x3x32 3x3x64 1024 512 30 5 25 90.73% 85.23%
3x3x16 3x3x32 3x3x64 512 128 30 5 25 87.92% 84.64%
5x5x32 3x3x64 3x3x128 1024 512 30 5 25 93.54% 89.15%
5x5x16 3x3x32 3x3x64 1024 512 60 10 50 95.45% 91.67%
3x3x16 3x3x32 3x3x64 512 128 60 10 50 95.08% 89.39%
5x5x32 3x3x64 3x3x128 1024 512 60 10 50 98.48% 96.59%
5x5x16 3x3x32 3x3x64 1024 512 80 15 75 95.45% 88.64%
3x3x16 3x3x32 3x3x64 512 128 80 15 75 93.18% 93.56%
5x5x32 3x3x64 3x3x128 1024 512 80 15 75 96.59% 90.90%

The experiment results are shown in Table 2, where each listed architecture is simulated for 100 epoch326
over the full dataset. For each structure listed in the table, the accuracy is obtained by averaging the best327
testing accuracy among 5 repeated experiments with different random initialized weights. Among these328
experiments, the best testing accuracy of 10 class gesture is 96.59% with the 3 layer SCRNN structure329
with the first convolutional layer consisted of 32 5x5 convolutional filters, second and third convolution330
layer has 64 and 128 3x3 convolutional kernels respectively. The ls is 50ms which represents there are total331
1000/50 = 20 time steps. The loss and training curve for the best network structure is shown in Figure 7(a)332
and Figure 7(b). This structure also was used to train the 11 class gesture (plus a random other gesture333
action) and obtained a testing accuracy of 90.28%.334

Figure 7. (a):The training and testing loss changes for 3 layer SCRNN with conv1: 5x5x32; conv2:3x3x64;
conv3:3x3x128; ls=50ms(b):The training and testing accuracy changes for 3 layer SCRNN with conv1:
5x5x32; conv2:3x3x64; conv3:3x3x128; ls=50ms. c: The confusion matrix for 3 layer SCRNN with conv1:
5x5x32; conv2:3x3x64; conv3:3x3x128; ls=50ms; The 0-9 represents the 10 categories of gestures. 0: hand
clapping; 1:right hand wave; 2: left hand wave; 3: right arm clockwise; 4: right arm counter clockwise; 5:
left arm clockwise; 6: left arm counter clockwise; 7: arm roll; 8: air drums; 9: air guitar
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Figure 8. The example of 3 layer SCRNN misclassification case. The 4 figures demonstrate a similarity of
event dynamics between the hand clapping gesture and air drum gesture. Top left: the 3D view of a hand
clapping sample with duration of approximately 1s. Top right: the 2D view of a hand clapping gesture that
integrated all spikes within 1s. Bottom left: the 3D view of a air drum gesture sample with duration of
approximately 1s. Bottom right: the 2D view of a air drum gesture that integrated all spikes within 1s.

Thus, the loss can be very large at the start compared with normal loss value since the network can have335
an empty output with untrained weights and delays. It was found that setting the ls = 50ms produces the336
best result for SCRNN structure which can be explained as follows. First, the time resolution is matched337
with the frame continuity for this dataset, which means the individual segmented frame can either contain338
limited or redundant information with ls = 25ms or ls = 75ms. This can possibly weaken the connection339
between the frames from the perspective of recurrent convolutional operation. Secondly, the spike emitting340
of neurons in each layer is important to the training process. A proper selection of ls can make sure the341
sparsity of frames which guaranteed the stability of the training process.342

The confusion matrix in Figure 7(c) shows a detailed performance of the SCRNN for the 10 gesture343
recognition tasks. Note that the amount of samples of arm roll is twice than other gestures in the original344
dataset. It can be seen that the SCRNN achieved an overall good performance except that the confusion345
between the hand-clapping and air drums gesture where there are totally 3 + 4 = 7 instances that SCRNN346
misclassified the hand clapping or air drum as each other. This is due to the dynamic similarity of these347
two gestures for some instances. Figure 8 demonstrates an example of misclassification which shows both348
3D and 2D view of dynamics of these two gesture. From our observations, some of hand-clapping and349
air drum gestures exhibit a strong similar spike change pattern which is a potential reason that leads to350
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Table 3. Comparison of SCRNN gesture recognition results with previous work

Method Type of processing 10 class 11 class

IBM TrueNorth Eedn (Amir et al., 2017) spiking 96.49% 94.59%
SLAYER CNN (Shrestha and Orchard, 2018) spiking unknown 93.64%± 0.49%
PointNet++ (Wang et al., 2019a) Non-spiking 97.08% 95.32%
SCRNN spiking 96.59% 92.01%

misclassification. This further matches our initial design purpose of SCRNN, which is an action dynamics351
sensitive, event stream pattern based recognition network.352

For comparison purpose, results from previously published work (Amir et al., 2017; Shrestha and Orchard,353
2018; Wang et al., 2019a) on the IBM DVS gesture dataset is carried out which is shown in Table 3. It can354
be seen that the SCRNN approaches the state of the art recognition accuracy and surpassing the benchmark355
accuracy of IBM’s work in 10 categories gesture classification tasks. The original work from IBM that356
running on TrueNorth was trained with Eedn (Amir et al., 2017) and required extra filters and preprocessing357
before the CNN. On the other hand, the SCRNN takes the neuromorphic data directly from the sensor358
and the training process does not require any additional processing to the data. The SLAYER algorithms359
(Shrestha and Orchard, 2018) using CNN with a feedforward structure achieved an accuracy of 93.64%360
on average for the 11 class recognition . Although the SCRNN does not outperform the SLAYER based361
CNN network in 11 class classification, the SCRNN is still competitive at 90.28%. We conclude this362
accuracy drop for the 11 class recognition task is due to the introduction of the additional class of random363
gesture. The ”other” class in the DVS gesture dataset consists of random samples and each of those is364
neither same as other samples nor falls into the first ten categories. The SCRNN with designed recurrent365
convolution operation is found to be less effective to such type of training data. Although the SCRNN366
although does not outperform the SLAYER based CNN network in 11 class classification, the SCRNN367
is still competitive at 92.01%. The pointnet++ (Wang et al., 2019a) processed individual event data by368
an MLP based feedforward neural network which achieved the best accuracy in both 10 and 11 category369
gesture recognition tasks. However, the pointnet++ is not a spiking based training algorithm that has less370
potential to be applied to neuromorphic hardware and the DVS data in their method needs to be modeled as371
multiple points cloud with each spike {x,y,z} is fed into an MLP.372

5 EFFECT OF RECURRENT CONNECTION
To further demonstrate the effectiveness of SCRNN for the category-limited dynamic scene recognition.373
A mini-experiment is designed to directly compare the effect of the recurrence for the 10 class gesture374
recognition. A feedforward spiking convolutional neural network and an SCRNN is designed following a375
”same learning capacity rule” as is shown in Figure 9. The spike pooling operation was applied to reduce376
the computational cost. The pooling was done by reducing all the spikes in a pooling kernel into one over377
the spike presentation time. The two structures are exactly the same in neuron parameters, the number of378
neurons and number of layers except the SCRNN has a recurrent connection in each convolution layer.379
For both structure, with the segmentation length of ls, the first layer is a pooling layer with a kernel size380
of 4x4xls, which reduced the dimension of data from 128x128xls to 32x32xls. The second layer is a381
convolutional layer that has a kernel size of 3x3xls with 16 hidden neurons. The third layer is a pooling382
layer using 2x2 kernels to further reduce the dimension of each feature map to 16x16xls. The fourth383
layer is a convolutional layer with 32 hidden neurons with the kernel size of 3x3xls, which the output is384
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flattened and fed into a fully connected layer with 5256 neurons followed by the output layer to perform385
the classification.386

The feedforward CNN is different from the SCRNN in the training phase. For CNN, the first 1s event387
data of each sample with a temporal resolution of 1ms(ls = 1000) is used as the input data which only388
needs to be fed to the network once per sample. The SCRNN takes the same length of input data in total389
for each sample but a segmentation length of ls = 50 is selected to partition the input into 20 subsets. This390
represents that the SCRNN need to iteratively take the data to perform the recurrent processing.391

Figure 9. The network structure for the experiments of comparison between the feedforward Spiking
Convolutional Neural Network and SCRNN

Both of the designed structures are trained 100 epochs for 5 trials with different weight initializations,392
the averaged testing accuracy dynamics of these two experiments are plotted in Figure 10. The SCRNN393
compared to standard feedforward spiking CNN with a similar learning condition can provide a faster394
convergence speed. As is shown in Figure 10, the averaged testing accuracy of SCRNN is stabilized after395
approximately 40 epochs while the CNN requires about additional 25 epochs to fully converge with the396
data. Besides, the SCRNN without the inference of the unknown class can provide a recognition accuracy397
of 88.64% on the 10 class gesture recognition in this particular structure, while the feedforward CNN only398
achieves 84.09%.399

6 CONCLUSION
In this paper we presented a novel spiking convolutional recurrent neural network that was designed for400
efficient human hand gesture recognition. The individual cell is able to extract the spatial features by 3D401
spiking convolution operation and transferring the information recurrently.402
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Figure 10. The testing accuracy curve for the designed experiments

The SCRNN is successfully deployed to the DVS 128 gesture dataset. The SCRNN tested on the IBM403
DVS gesture dataset achieving an averaged recognition accuracy of 96.59% for 10 category classification404
and 90.28% for 11 category classification. We have shown that the designed SCRNN compared to standard405
feedforward CNN structure performs less competitive for the ’unknown’ class but has the advantages in406
terms of convergence speech and accuracy for the fixed amount of categories.407

However, we believe that the usage of SCRNN is not only limited to action recognition but can be408
extended to various dynamic scene recognition and prediction tasks. A further extension of this work409
could be a spiking-flownet-like network that used for optical flow estimation (Dosovitskiy et al., 2015).410
Additionally, using new neuromorphic hardware with low SWaP(Size, Weight and Power) profile, the411
SCRNN has the potential to be implemented as an efficient training algorithm for neuromorphic action412
recognition based applications. The SCRNN also has a strong potential to be implemented on Loihi chip413
due to the use of SLAYER algorithm.414
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Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al. (2009). PyNN: A441
common interface for neuronal network simulators. Frontiers in Neuroinformatics doi:10.3389/neuro.11.442
011.2008443

Demin, V. and Nekhaev, D. (2018). Recurrent spiking neural network learning based on a competitive444
maximization of neuronal activity. Frontiers in Neuroinformatics doi:10.3389/fninf.2018.00079445

Dhoble, K., Nuntalid, N., Indiveri, G., and Kasabov, N. (2012). Online spatio-temporal pattern recognition446
with evolving spiking neural networks utilising address event representation, rank order, and temporal447
spike learning. In Proceedings of the International Joint Conference on Neural Networks. doi:10.1109/448
IJCNN.2012.6252439449

Diehl, P. U. and Cook, M. (2015). Unsupervised learning of digit recognition using spike-timing-dependent450
plasticity. Frontiers in Computational Neuroscience doi:10.3389/fncom.2015.00099451

Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S., Guadarrama, S., Saenko, K., et al.452
(2017). Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. IEEE453
Transactions on Pattern Analysis and Machine Intelligence doi:10.1109/TPAMI.2016.2599174454

Dosovitskiy, A., Fischery, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., et al. (2015). FlowNet: Learning455
optical flow with convolutional networks. In Proceedings of the IEEE International Conference on456
Computer Vision. doi:10.1109/ICCV.2015.316457

Droeschel, D., Stückler, J., and Behnke, S. (2011). Learning to interpret pointing gestures with a458
time-of-flight camera. In HRI 2011 - Proceedings of the 6th ACM/IEEE International Conference on459
Human-Robot Interaction. doi:10.1145/1957656.1957822460

Fan, Y., Lu, X., Li, D., and Liu, Y. (2016). Video-Based emotion recognition using CNN-RNN and C3D461
hybrid networks. In ICMI 2016 - Proceedings of the 18th ACM International Conference on Multimodal462
Interaction. doi:10.1145/2993148.2997632463

[Dataset] Feng, J. (2001). Is the integrate-and-fire model good enough? - A review. doi:10.1016/464
S0893-6080(01)00074-0465

Feng, J. and Brown, D. (2000). Integrate-and-fire models with nonlinear leakage. Bulletin of Mathematical466
Biology doi:10.1006/bulm.1999.0162467

Frati, V. and Prattichizzo, D. (2011). Using Kinect for hand tracking and rendering in wearable haptics. In468
2011 IEEE World Haptics Conference, WHC 2011. doi:10.1109/WHC.2011.5945505469

This is a provisional file, not the final typeset article 18



Sample et al. Running Title

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker project. Proceedings of470
the IEEE doi:10.1109/JPROC.2014.2304638471

[Dataset] Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al. (2013).472
Overview of the SpiNNaker system architecture. doi:10.1109/TC.2012.142473

Gerstner, W. (2008). Spike-response model. Scholarpedia doi:10.4249/scholarpedia.1343474
Gerstner, W. (2009). Spiking Neuron Models. In Encyclopedia of Neuroscience. doi:10.1016/475

B978-008045046-9.01405-4476
Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal dynamics: From single neurons477

to networks and models of cognition. doi:10.1017/CBO9781107447615478
Han, B. and Taha, T. M. (2010). Acceleration of spiking neural network based pattern recognition on479

NVIDIA graphics processors. Applied Optics doi:10.1364/AO.49.000B83480
Haodong Yang, Jun Zhang, Shuohao Li, J. L. and Chen, S. (2018). Attend it again: Recurrent attention481

convolutional neural network for action recognition. Applied Sciences 8, 383482
Haria, A., Subramanian, A., Asokkumar, N., Poddar, S., and Nayak, J. S. (2017). Hand Gesture Recognition483

for Human Computer Interaction. In Procedia Computer Science. doi:10.1016/j.procs.2017.09.092484
Hinton, G. E., Srivastava, N., and Swersky, K. (2012). Lecture 6a- overview of mini-batch gradient descent.485

COURSERA: Neural Networks for Machine Learning486
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