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Abstract

This work explores the combination of Sparse and Symbolic Regression, here called Deep Symbolic Regression, for
the autonomous reconstruction of orbital anomalies. Orbital anomalies are detectable deviations from the state of an
object that can be predicted from the propagation of some observable initial conditions. We contemplate anomalies
that can derive from unmodelled natural phenomena or from intentional and unintentional orbital manoeuvres: an
accurate modelling of atmospheric density fluctuations, for example, allows informing the space weather.

Leveraging the powerful modelling capacity of symbolic regression and the sparse representability of dynamical sys-
tems in orbital mechanics , the proposed approach allows one to generate a symbolic representation of orbital anoma-
lies from state observations only. In other words, we use sparse measurements of position and velocity, in general
associated with uncertainty, to derive a symbolic representation of the unmodelled part of the dynamics that can ex-
plain the deviations of the propagated states.

The advantage of such an approach, compared to more traditional filtering techniques, is twofold: it provides an ex-
plicit analytical representation of the phenomenon causing the anomaly and it provides a better long term prediction
of the dynamics of the object under consideration. The use of Deep Symbolic Regression outdoes more traditional
Genetic Programming-based approaches in that it is less prone to overfitting and far less computationally expensive.
The explicit dependence, with respect to time, of the symbolic representation, allows one to indirectly model the evo-
lution of unobservable states, whose behaviour can be later inferred from the analysis of the estimated equation itself.
The proposed approach yields solutions that are robust against measurement noise: its estimation can be integrated
into the derivation of the missing part of the dynamics.

The performance of the Deep Symbolic Regression will be assessed against a number of case studies, with a focus on
the interpretability of the obtained solutions, demonstrating the performance of this new tracking data-based algorithm.
Keywords: Anomaly Reconstruction, Manoeuver Detection, Data-driven Orbital Mechanics, Sparse Regression,
Symbolic Regression

1. Introduction tional Space Station [4]].

In order to do this, Symbolic Regression, combined

The context of data-driven dynamical systems is char-
acterized by the goal of automating the discovery of
governing equations from data, for example with Ma-
chine Learning techniques, by means of constructing in-
terpretable, white-box models with both generalizing and
extrapolating capabilities. We here focus on data-driven
Orbital Mechanics; in fact, the field of Orbital Dynam-
ics has a rich history in motivating the development of
techniques in dynamical systems theory, data-driven ones
included. For example, techniques for system identifica-
tion from data have been developed in order to model the
dynamics of the Hubble space telescope and the Interna-
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with Genetic Programming [21], has been one of the
first successful techniques in determining the underlying
structure of nonlinear dynamical systems from data ([2]],
[37)): such an approach has been shown to be successful
in reconstructing common differential equations appear-
ing in orbital mechanics [28]].

Genetic Programming-based Symbolic Regression is
however computationally expensive and prone to overfit-
ting, motivating its combination with physically inspired
approaches [4]. In fact, we are here generalizing the
problem statement given in [28]], aiming at efficiently
modelling orbit anomalies (i.e., detectable deviations of
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the state of an object w.r.t. an expected value) arising
both from natural phenomena and human intervention.
This is needed as, in order to govern the rapid changes
in the space environment due to the launch of NewSpace
systems, space operations timelines need to be updated
[[31]]. In fact, more accurate dynamical models are needed
in order to better predict and therefore avoid collisions.

A number of recent works have focused on informing
with physical principles, such as dimensional analysis,
Machine Learning techniques ([38]], [15], [10]), while
others combined Deep Learning with more traditional
Machine Learning techniques, such as Symbolic Regres-
sion ([[L1], [22]], [17], [32]*); in fact, the computer sci-
ence community is focused on developing techniques for
Anomaly Detection [35], and a lot of this can be applied
for aerospace problems, in particular in Orbital Mechan-
ics [39].

A number of works ([24]], [25]], [26]) aimed at devel-
oping an estimator, similar to the Kalman Filter and in-
corporating optimal control policies, to be used to recon-
struct mismodeled dynamical parameters and perform
manoeuver detection using satellite tracking data. How-
ever, this approach does not abstract the estimated state
into a symbolic equation, which can be subsequently an-
alyzed, in order to infer the causal nature of the anomaly;
also, it often requires an a priori knowledge of the struc-
ture of the unknown perturbation.

In order to overcome these limitations, sparsity pro-
moting techniques [4] can be applied. Such techniques,
naturally compatibile with Symbolic Regression, are
strictly related to Dynamic Mode Decomposition [5] and
the Koopman Operator theory®, the latter being particu-
larly relevant from an optimal control perspective in Or-
bital Mechanics [23]].

2. Methodology

Two different and in may ways complementary ap-
proaches can be used to tackle the problem of inter-
est. In this section the Sparse Regression and the
Genetic Programming-based Symbolic Regression tech-
niques will be presented, together with the proposed ar-
chitecture combining them, here called Deep Symbolic
Regression; having already applied the latter in [28], we
are here generalizing such methodology.

2.1 Background

Orbit anomalies, such as optimal control manoeuvers
performed by tracked object, atmospheric density fluctu-
ations, and behaviours resulting from debris impacts, can

*

The name of the proposed approach has been inspired by this
work.

f In particular, this work is strictly related to methods aiming at
reconstructing Koopman eigenfunctions from data ([27], [7]).
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be modelled as non-linear, non-autonomous dynamical
systems:

8(t) = h(s(t), v(t),1) [1]

It is commonly known [30] that we can, without loss
of generality, construct a first order, autonomous differ-
ential equation, at the expenses of increasing the dimen-
sionality of our system:

x(t) = % [‘S,} = [h(s(t),v(t),t)

from which:
s0 =5 1| = |00 —eve) @

The structure of such differential equation is, in our
context, only partially known: we assume that the mis-
match is linear, so that we can estimate linear parameters
appearing in the known terms; at the same time miss-
ing terms, additive in nature, can be fully reconstructed.
In this context, we have access to a number of measure-
ments, in general noisy, that can be arranged into a snap-
shot matrix:

Y = [yi(t1), ya2(t2), .-, yn(tn)] (4]

We assume that such values are extracted from
tracklet-like observations, allowing to average the ob-
served state over a small time interval (i.e., the com-
puted state can then be associated to the mean observa-
tion time); because of this, we can also estimate the state
derivative of the system associated to the mean observa-
tion time via finite differencing:

oL Y+ AL —y(t+ Al)
y(t) ~ SAL (5]

When dealing with noisy state measurements, it is im-
portant to avoid the noise amplification characterizing
finite-difference methods, and different techniques are
available ([9], [34]]). This can be done, making again use
of the fact that the tracklet-like observation is not sim-
ply characterized by two observation epochs, but by a
sequence of observations, over which some kind of filter-
ing technique, such as the Savitzky-Golay filter [36], can
be applied.

From here, we can construct the snapshot matrix given
in Equation [[6]:

Y = [yi(ta), ¥ata), -, Falta)] (6]
Starting with such data, together with a partial knowl-
edge of the system of interest, our goal is to au-
tonomously identify anomalies in orbital mechanics.
These include:
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e optimal control manoeuvers;

e environmental anomalies (e.g., atmospheric density
fluctuations caused by space weather events);

e dynamics resulting from impacts with debris.

Such behaviours are modelled via non-autonomous
terms appearing in the dynamics: these can be related
to time-varying unobservable states, such as the atmo-
spheric density, the spacecraft attitute or its ballistic co-
efficient.

2.2 Sparse Regression

Focusing on interpretability, sparse regression aims
at constructing parsimonious models, making use of
sparsity-promoting techniques. More formally, it makes
use of the fact that governing equations of physical sys-
tems of interest are sparse in the space of all possible
functions of the state, making the governing equations
sparse in a high-dimensional nonlinear function space
[19]. This is true even for the augmented system given
in Equation [[3]}, allowing us to maintain this formulation
without loss of generality.

Making use of the sparse identification of nonlinear
dynamics (SINDy) algorithm, we seek to approximate
the unmodeled term of the dynamics (the modelled one
being gm(Y)) by the generalized linear model given in
Equation [[7]:

Y =Y — gm(Y) = O(Y)E (7]

In it, the state-dependent matrix is constructed from an
a priori selected library of candidate functions, which in
general are nonlinear and are characterized by nonlinear
parameters; moreover, = is a sparse matrix of constant
coefficients. We solve for = in Equation [[7]] via the Se-
quential Thresholded Least Squares (STLSQ) algorithm,
by which we iteratively cancel out the small coefficients
and optimize for the remaining ones, in a least square
sense.

This technique, robust with respect to measurement
noise, allows one to efficiently estimate the value of the
linear parameters appearing in the = matrix; the method
is convex and scales well with the dimensionality of the
problem, as opposed to brute-force combinatorial alter-
natives. The limiting assumption, however, is that the
a priori selected library of functions used to perform
the regression has to contain the correct terms describ-
ing the dynamics. Moreover, different algorithms have
been developed to deal with nonlinear parameter estima-
tion, such as the Sparse Relaxed Regularized Regression
(SR3) ([40], [8]): however, these are based on local op-
timality conditions and are therefore strongly dependent
on the initial guess. Also, optimizing for the initial guess
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does not lead to global convergence, because of the na-
ture of the fitness function associated to such routine.

Because of such limitations, we also make use of sym-
bolic regression, here briefly outlined.

2.3 Genetic Programming-based Symbolic Regression

Symbolic regression is a method by which data are
fitted using compact, closed-form analytical expressions.
Via the Polish notation, such expressions can be mapped
into tree-like representations (Figure|[T) relating “tokens”
of elementary functions, variables and constants [32].

Fig. 1: Representation of the expression sin(p;
seen by the Symbolic Regression algorithm.

- y), as

Because of the combinatorial nature of the optimiza-
tion problem associated to identifying the best symbolic
expression (i.e., the best tree), Symbolic Regression is
often combined with Genetic Programming: in this way,
algebraic expressions are combined stochastically.

2.3.1 Genetic Operations

Each tree can be constructed using Strongly Typed Ge-
netic Programming (STGP) [[13]]: every function and ter-
minal node (position, velocity, time and parameters) are
assigned to a specific type. For example, the norm opera-
tor can be applied to vectors and its output is a scalar. At
the same time, the output of the SR expression is forced
to be a vector, whose size is given by the degrees of free-
dom of the problem under investigation. Trees are there-
fore initialized randomly satisfying these constraints, and
they can be evaluated in some way; the selection process
is then performed, at the beginning of each generation.

The key operations associated to the evolution, per-
formed with a given probability, are mutation and
crossover. The used mutation operations, randomly ap-
plied to modify the structure of a selected individual, are:

e Shrink;
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e Insert;
e Replace node.

In the crossover step, subtrees of two different indi-
viduals are exchanged at a randomly selected location,
leading to two new individuals to be then evaluated. The
fitness used for this part of the algorithm makes use of
the state observation spanning over the time interval of
interest: it is therefore not related to the local, differen-
tial behaviour of the system, as it is the case in the sparse
regression approach.

In this framework, it is possible to perform nonlinear
parameter estimation, optimizing the values of the sym-
bolic constants appearing in the expressions. However,
while being naturally parallelizable (i.e., individuals of
the same generation can be evaluated in parallel), the pro-
cess is computationally expensive and prone to overfit-
ting.

2.4 Deep Symbolic Regression

At this point, it should be clear why the two ap-
proaches are in many ways complementary. Before
putting them together in a framework here called Deep
Symbolic Regression, we further generalize the Genetic
Programming-based part of the algorithm: in particular,
insipred by multi-gene Genetic Programming [[14], we
identify an individual as a string of n symbolic expres-
sions, from now on called sub-individuals. The genetic
operations can be easily generalized, performing them on
the sub-individuals identifying the ¢ — th component of
the individual.

It is now possible to combine Symbolic Regression
with Sparse Regression: the symbolic expressions iden-
tifying the individual can be used to construct the library
of functions introduced in Equation [[7]]. Evaluating them
against the available state observations leads to the state-
dependent matrix given in Equation

oY) =

AT

In this way, no a priori choice has to be made about
the structure of the state-dependent matrix, since this is
varying for each evaluation of the Genetic Programming
part of the algorithm. Only the number of genes of the
algorithm has to be identified: as long as the number of
unmodeled perturbing forces is smaller than the number
of genes, the sparsity-promoting section of the algorithm
is in principle able to swich-off the meaningless compo-
nents of the individual. Because of the same reason, to-
gether with initializing sub-individuals with a small size,
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overfitting is avoided: sparse regression works as a bot-
tleneck for the complexity of the estimated solution asso-
ciated to the Genetic Programming.

Moreover, the nonlinear parameters appearing inside
the symbolic expressions can be estimated via an inter-
mediate optimizer: the Symbolic Regression treats them
as symbolic constants, without estimating their actual
values. Finally, we are able to make use of the efficiency
of sparse regression when dealing with the linear aspects
of our problem, while we maintain the power of Sym-
bolic Regression when dealing with the non-linear and
combinatorial aspects of our problem.

A more detailed description of the Deep Symbolic
Regression algorithm, combining pySINDy [12] with
DEAP [13], is given in Algorithm [[T]:

Algorithm 1 Deep Symbolic Regression

1: Initialize k individuals of n symbolic expressions
2: fori =1:mn4e, do

33 forj=1:kdo

4 Nonlinear parameters Optimization:
5: Construct O(Y)

6 Estimate = via the STLSQ

7 Compute Local Fitness

8 Propagate estimated model

9: Compute Global Fitness

10:  end for

11:  Perform Crossover Operations

12:  Perform Mutation Operations

13: end for

The main steps of Algorithm [T]are therefore the fol-
lowing: first, the Genetic Programming initialises and
evolves, via mutation and crossover, the population of list
of functions. From there, an optimization is performed
to estimate the value of the set of nonlinear parameter
appearing inside an individual: to do this, for each eval-
uation the library matrix is built and the sparse matrix
estimated, leading to a set of differential equations.

The structure of such algorithm underlines how the
Genetic Programming part does not deal with evaluating
the value of the nonlinear parameters appearing inside
the sub-individuals. These are handled with a separate
global optimizer, not dealing with the stochastic combi-
natory search performed by the outer one. It is also worth
underlining how the fitness used to evaluate the outer op-
timizer is different from the metric used to evaluate the
sparse regression (Local Fitness): the latter only deals
with local, differential aspects of the system, while the
former deals with its long term behaviour. This is a fur-
ther source of robustness with respect to measurement
noise.

The metric function used to evaluate the performance
of the regression and to compute the Local Fitness is the
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coefficient of determination R? [12]. The Global Fitness
function associated to the outer optimizer is given by:

Fi= /  (Xobe(5) — Xeut(5))2ds [9]

to
which is computed numerically, making use of the
available state observations, via the Simpson’s rule. A
propagation is therefore necessary, to evaluate an indi-
vidual. Nevertheless, we are able to efficiently perform
the optimization, as the propagation is just used to opti-
mize the structure of the symbolic expressions.

2.5 Optimal Control

Up to now, no assumption has been made about the
nature of the unmodelled component(s) of the dynamics,
beside the requirement for it to match the available state
observations. Particularly in the low-data limit, however,
including additional assumptions enables one to recon-
struct different families of possible underlying dynamics,
all equally compatible with the available tracking data
[16].

A natural choice is to assume that the unmodeled term
in the dynamics is due to human intervetion (i.e., it is
a manoeuver), so that it respects some optimality cri-
terion [25]. Following previous works, we incorporate
Optimal Control Policies into our framework, which is
naturally compatible with predictive control formulations
(1291, (€], [20]). In particular, we assume that the ma-
noeuver minimizes fuel consumption (equivalent to min-
imizing the integral of the magnitude of the control effort
across the complete maneuver period). We introduce the
quadratic cost function:

ty
B:/ I[u(s)|Pds [10]

to
And we modify the global fitness of Algorithm [[T]] us-
ing Equation [[TT]):

F=Fi+wkF [11]

where w is a weighting parameter. The quantity given
in Equation [[I0] is computed in two different ways, re-
spectively for the optimal manoeuver construction and
for its estimation from tracking data. In the former case,
we make use of Direct Finite Elements in Time (DFET)
to solve optimal control problems [33]], so that the fitness
is computed using Simpson’s rule from the estimated
nodal values. In the estimation part, the approximation
of Equation [[T0]] is computed evaluating the model at the
available state observation epochs.

3. Results

In this section, the presented algorithm will be applied
to a number of dynamical systems, ranging from simple
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problems, based on the driven oscillator, to ones relevant
in Orbital Mechanics: this is to underline how general
and powerful the proposed approach is.

3.1 Driven harmonic oscillators
3.1.1 Time-dependent Perturbation

We start from a driven, damped harmonic oscillators
in which the externally applied force F'(t) is not a func-
tion of the state of the system. Assuming unitary mass,
such a system is described by the following:

2(t) = f(z,%,t) = —kx(t) — cx(t) + Fosin(wt) [12]

in which the various parameters are given by:

k= 4518 kg/s?

¢ = 0376 kg/s [13]
Fy, = 8.865 kgm/s?

w = 1440 s7!

Propagating the initial condition:

2 m
3 m/s

rog =

i [14]

we obtain the reference trajectory given in Figure 2}

4 /\
== True Solution
0+ ® Observations

naia RV ARRIN

x [m]

t[s]

x [m/s]
(=]

= True Solution
~67 @ Observations

tls]

X [m/s?]

= True Solution
@ Observations

0 10 20 30 40 50
t[s]

Fig. 2: State and state derivative associated to the system
given in Eq. [12]].
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In the plot, the 27 observations computed using the
interpolation and finite differencing techniques given in
Section [2.1|are also represented. These can hence be fed
into the Deep Symbolic Regression algorithm in order to
reconstruct the governing equation of the system. Since
in this case the position and velocity of the system are
scalar quantities, there is no need to introduce Strongly-
Type Genetic Programming, being the elementary fuc-
tions used 4+, -, sin(), cos(), ()2, eV); the number of genes
has been set to 4.

The estimated system, obtained using a population of
15 individuals evolved for 20 generations, is given by:

41 v
%17 = —kx(t) — cv(t) + 8.857 fa(x,v,t) | [15]
t 1.000
and the associated Global Fitness is:
Fi1~2357-107° m?s [16]

The correct estimation of the f> function is repre-
sented in Figure 3] together with the associated value of
the estimated parameter. The sparse regression part of
the algorithm has been able to correctly associate to the
meaningless sub-individuals a linear parameter of zero,
so that among the symbolic expression only one is active,
as desired.

Fig. 3: fo(z,v,t), p1 = 1.44000943

Finally, making use of the autonomously constructed
Equation [[T3]], we can propagate the initial condition as-
sociated to the first observation, as given in Figure []
Being interested in investigating the extrapolation per-
formance of the algorithm, we propagate beyond the last
observation epoch: this is particularly important, from a
theoretical point of view, for chaotic systems and for sys-
tems in which an inaccurate estimation of both linear and
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nonlinear parameters leads to bifurcation. Application-
wise, the inferred white-box model can be used to per-
form collision assessment and its extrapolating perfor-
mance is crucial for this.

—— Estimated Model
41 —— True Model
@ Observations
2
E
% 07
—2 1 )
44
t[s]
6
4
2
T
E O
x
24
44
—— Estimated Model
—6 { == True Model
@ Observations

0 10 20 30 40 50
t[s]

Fig. 4: State estimation associated to the system given in

Eq. [T3].

3.1.2 Time- and State-dependent Perturbation

We now modify Equation [I2] in order to intro-
duce an unmodelled term which is both time- and state-
dependent. This allows us to underline a qualitative dif-
ference between the Sparse Regression and Symbolic Re-
gression part of the algorithm: while the former makes
use of the formulation given in Equation [3]], the latter
works with quantities with physical meaning (i.e., posi-
tion, velocity and time separately): this is necessary, in
order to satisfy the sparsity assumption. This new system
is given in Equation [[T7]:

i(t) = —kx(t) — cv(t) + Fou(t) sin(wt) [17]
with
k= 4518 kg/s?
¢ = 0376 kg/s (18]
Fy, = 2865 kgm/s?
w = 1447 st
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Making use of the same initial conditions given in
Equation [[T4]] and the same observation epochs, we ob-
tain the reference results in Figure [5}

2.5
= True Solution

2.0 e Observations

1.5

1.0

0.5 4

0.0 e

R T T T

x [m]

—— True Solution
@ Observations

x [m/s]
b s e N W
?

= True Solution
@ Observations

X [mis?]
Lol
N o @ o BN oo N
N S
?

t[s]

Fig. 5: State and state derivative associated to the system
given in Eq. [T7].

With the same elementary symbols and number of
genes used in the previous case, the algorithm is again
successful in inferring the system’s governing equation
(Equation [[T9]]), obtained using the same number of indi-
viduals and generations as before. The missing term, rep-
resented in Figure[f] is correctly reconstructed and asso-
ciated to good estimates of both the linear and non-linear
parameters.

FRE: v
%170 = —kx(t) — cv(t) +2.865 fo(x,v,t)
t 1.000

[19]

The estimated model is associated to the following
Global Fitness:

F1~3.06-107% m?2s [20]

[AC-20-C1,6,5,x59118

Fig. 6: fo(x,v,t), p1 = 1.44704886

Finally, the dynamics resulting from the estimated
system is represented in Figure[7]

2.5 9 =
—— model simulation
=~ = true simulation

2.04 @ Observations
154
E 1o
x
0.5
0.0 1 =
-0.5
t[s]
31+—% —— model simulation
== true simulation
@ Observations
24
1
)
£
= 0 o
-1
2
T
o 10 20 30 40 50
tls]

Fig. 7: State estimation associated to the system given in

Eq. [19]

3.2 Two-Body problem with Drag

We now apply the proposed methodology to an Or-
bital Mechanics problem: we assume to be tracking an
inactive satellite at the early phases of its re-entry, in or-
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der to be able to predict its impact location. A simplified
dynamics, given in Equation [21]] is used to model such a
scenario.

r Uy

d |6 vy /T )1

dt |v, —p)r? 4+ 02 [r 4 aPRAC (21]
Vg —(vgv,) /1 + aPRAG

We assume that the drag acceleration is time-
dependent due to a time-varying effective area (Equation
[]T_Z[]), associated to the tumbling behaviour of the satellite
resulting from a debris impact (Equation [23])).

1 A(t
L )
2 m

Being able to reconstruct the symbolic structure of this
unmodeled force, allows one to infer the causal nature of
the observed phenomenon and make predictions about it;
moreover, automating such a task allows one to reduce
the analysis time.

A(t) =41 + % sin(wet)] [23]

We assume an average effective area of 10 dm?, a bal-
listic coefficient Cp = 2.2, a mass of 1 kg and a con-
stant atmospheric density, obtained from the exponential
model evaluated at the initial altitude: the trajectory is
such that, during the tracking interval, the altitude is ap-
proximately constant. Finally, the nonlinear parameter is
given by:

2T

=5 [24]

Wt

The initial state used for the propagation is the follow-
ing:

ro = 6521 km
0o =0 rad
vro = 0.05 km/s

vio = /75

[25]

The propagated reference state and state derivative as-
sociated to such a model, together with 30 randomly dis-
tributed observations computed in the usual way, are rep-
resented in Figure[8}

[AC-20-C1,6,5,x59118

— 6525 4 "__.e_-cf.“* T
6500 =
E = True Solution
. 6475 @ Observations
T T T T T
t[s]
0 | — True Solution
% ® Observations
o
—
D o ;
t[s]
—_
Y o0 —— True Solution
E ® Observations
-~
=
< 02
T
t[s]
b -
0 784 —— True Solution
£ ® Observations
~
=
4+ 7.7 .
>
T
t[s]
~  0.0000 =
w0 —— True Solution
E @ Observations
—0.0002 4
~
—
.S -0.0004 4 -
t[s]
—
Nu, = True Solution
E 0.0000 1 g  Observations
-\_‘. —0.0002 4
-~
> — T T T T T ;
] 200 400 600 800 1000 1200
t[s]

Fig. 8: State and state derivative associated to the system
given in Eq. [21]).

In order to reconstruct the missing term, together with
the previously introduced operations, also the norm op-
erator ||()|| is introduced for the Symbolic Regression:
here Strongly-Typed Genetic Programming is necessary,
since both scalars and vectors are taken as inputs.

The number of genes, individuals and generations
have been set to 2, 40, 50, respectively, leading to an es-
timated mismodelled term given in Equation [26]].

r 0.000
B 0.000
55 | = 0.000

i, ~2.9314 - 105 sin(0.1052 - £)||v||v,
¢ 0.000

[26]

As a comparison, the explicit values of the linear and

non-linear parameters to be estimated are —2.9017- 109,

0.1047. The Global Fitness associated to the estimated
system is given by:

F1 ~ 0.2503 [27]

It can be seen how the perturbation in the radial com-
ponent is not recostructed, due to its low amplitude. In
fact, for this case, a rescaling of the unmodeled state
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derivative array has been necessary in order for the coef-
ficients of the sparse regression to be above the threshold
defined in the STLSQ algorithm. Measurements at differ-
ent timescales should be available, in order to reconstruct
low amplitude perturbations such as the unmodeled ra-
dial acceleration [3]]. At the same time, high levels of
signal-to-noise ratio are desirable.

Nevertheless, the structure of the unmodeled force in
the tangential component is correctly identified, together
with a good estimate of the linear and nonlinear parame-
ters, leading to the dynamics represented in Figure [0}

6520 4
—_
E 6500
—
- = Estimated Model
6480 | —— True Model
@ Observations
6460 —— : I ] | | |
t[s]
—— Estimated Model
— —— True Model
v 104 :
= @ Observations
B
.y
— 0.5
©
0.0 1
T T - I ! ! I
t[s]
—— Estimated Model
o == True Model
‘g ® Observations
¥ 0.1+
—
~
>
—0.24
T T - ! | | |
t[s]
7.80 —— Estimated Model
o == True Model
‘LEQ @ Observations
7.75 4
Y3
=
-~
= 7.70

T T T T T T
200 400 600 800 1000 1200

t[s]

o

Fig. 9: State estimation associated to the system given in

Eq. [26]

It is worth underlying how it is not always possible to
infer the causal nature of the underlying physical process
from the symbolic expression representing its effect. In
this problem, for example, there is no obvious way of
autonomously concluding the oscillatory behaviour to be
a consequence of the motion of the spacecraft or of the
behaviour of the atmosphere, for example?.

t As an additional example, we can think about a spacecraft
orbiting the Sun, mainly affected by its gravitational attraction
and the Solar Radiation Pressure. In the presence of a
time-varying parameter, it is not obvious how to associate its
effect on the dynamics to one force or the other.

[AC-20-C1,6,5,x59118

3.3 Optimal Control Manoeuvre

We now make use of the formulation introduced in
Section [2.3] applying it to reconstruct the acceleration
associated to an optimal control manoeuvre in the sense
given in Equation [[I0]. Starting again from the differen-
tial equation associated to the two-body problem, written
in polar coordinates, we introduce a control (Equation
[28])) identifying the acceleration due to a manoeuver.

r Uy

d |6 vy /T

dt v, —p/r% + 02 )r 4+ un(t) (28]
vy —(vevy) /1 4+ ue(t)

We compute the optimal control maneouver leading to
an increase in altitude of 20 km, making use of 7 nodal
points associated to the DFET method. From the initial
condition given by:

ro = 7000 km
0o =0.0 rad
vro=0.0 km/s
vio = /75
we can compute the trajectory and the 16 equally
spaced observations given in Figure[I0}

[29]

7020 A
= True Solution
§ 7010 | ® Observations
.
7000 - T T — T T T T T T T
t[s]
= —— True Solution
:".i: 14 @ Observations
o
@
0+ T T T T T T T T T
tls]
5 0.02 1 —— True Solution
E @ Observations
= 001
=
0.00 < T T T T T T T T T
t[s]
7.55 ] ",././r—'— = 3
H
= = True Solution
& 7541 ® Observations
T T T T e T T T T
le-5
F:“i 15 /—‘
§ L0+ == True Solution
= 0.5 4 @ Observations
T T T T 0 T T T
le—-5
2
:v; —— True Solution
TE‘ 04 @ Observations
=4
5 -
T T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600
tls]

Fig. 10: State and state derivative associated to the sys-
tem given in Eq. [28].
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We make use of 3 genes, 50 individuals and 20 gen-
erations; we change the Global Fitness function using
Equation [TT], using a weighting parameter of 1. Also to
show the possibility of constructing the state-dependent
matrix of the Sparse Regression combining a priori se-
lected functions with expressions associated to Symbolic
Regression, we include a polynomial basis up to degree
2.

With this formulation, we estimate the control law
(Equation [B0])) and the the system’s behaviour associ-
ated to it (Figure [TT).

up = 1071(=2.796t + 19.749r%+
—1633.064¢2 + 0.882t%) km/s?

up = 10714(—6.041¢ + 34.725r%+
—3528.112t% + 1.877t3) km/s?

(30]

The algorithm reconstruct the control law using a
polynomial representation: this is a consequence of its
sparsity-promoting nature. The estimated expressions
contain a state dependent term: again because we are in-
terested in obtaining a compact symbolic representation
of the manoeuver, the algorithm makes use of available
time-dependent functions (i.e. r(t)), if these are useful as
building blocks for the optimal control law.

79209 stimated Model

== True Model

7015 A .
® Observations
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== True Model
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Fig. 11: State estimation associated to Eq. [30]; 16 ob-
servations.
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We can also look at what happens reducing the num-
ber of available observations. Making use of F; to esti-
mate the underlying dynamics, one would have a number
of systems equally compatible with the observed con-
straints; introducing the optimality constrait greatly re-
duces this freedom. In fact, as given in Figure [T2] with
just 4 state observations we are able to have a good esti-
mate of the overall dynamics associated to the manoeu-
ver.

u, = 10714 (—=1150306.278¢+

+21.792r% + 429.116t%) km/s>
uy = 10714 (—2458647.369t+

+39.043r% + 869.123t%) km/s?

(31]
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=3 =
w [=]
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o

t[s]

—— Estimated Model
== True Model
Observations

0.020 +

0.015 +

0.010 +

vy [km/s]

0.005 +

0.000

—— Estimated Model
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7.535 4

0 200 400 600 800 1000 1200 1400 1600
tls]

Fig. 12: State estimation associated to Eq. [31]|; 4 obser-
vations.

In this section, we have been assuming that the
dynamics is continuous inside the observation interval
and, moreover, that the manoeuver’s optimality condi-
tion is associated to the observation interval. Additional
steps are required in the envisioned manoeuver detection
pipeline in order to identify the time interval (in general
a subset of the observation interval) over which there is a
mismatch between the modelled and observed dynamics.

Page 10 of



715t International Astronautical Congress (IAC), The CyberSpace Edition, 12-14t" October 2020.

Copyright (©) 2020 by the authors. Published by the International Astronautical Federation (IAF). All rights reserved.

4. Conclusions & Recommendations

In conclusion, Genetic Programming-based Symbolic
Regression can be successfully combined with Sparse
Regression techniques into what we have here called
Deep Symbolic Regression, in order to estimate govern-
ing equations from data and reconstruct unmodeled com-
ponents, such as anomalies in Orbital Mechanics.

In the proposed architecture, nonlinear parameter esti-
mation is performed in tandem with the construction of a
sparse dynamical model, to be later used in inferring the
causal nature of the observed phenomenon and used for
generalization and extrapolation.

Deep Symbolic Regression has been shown to be nat-
urally compatible with Optimal Control Policies, which
can be used as additional constraints, particularly use-
ful in the context of manoeuver detection in the low-data
limit.

In future works, we aim at testing the algorithm
against real Radar Tracking data. Moreover, in validat-
ing the methodology against real mission scenarios, the
number of data will be greatly reduced, while the length
of each tracklet-like observation will be increased. As-
sessing the performance of the algorithm in the low-data
limit will be the focus of following works. We will also
focus on investigating the robustness of the presented ap-
proach with respect to noisy measurements and on hyper-
parameters estimation.

As discussed in Section [3.3] in an autonomous
manoeuver detection pipeline, the presented approach
should be coupled with algorithms identifying time in-
tervals associated to different dynamical regimes.

Finally, following the Kalman Filter assumption, by
which both measurement noise and modelling mismatch
are stochastic processes (in particular zero-mean Gaus-
sian ones), future works should focus on generalizing the
presented approach in order to deal with Markov pro-
cesses ([IL8&]], [IL]).
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