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In this paper, we study the inverse problem of recovering the spatially vary-
ing material properties of a solid polycrystalline object from ultrasonic travel
time measurements taken between pairs of points lying on the domain bound-
ary. We consider a medium of constant density in which the orientation of
the material's lattice structure varies in a piecewise constant manner, gener-
ating locally anisotropic regions in which the wave speed varies according to
the incident wave direction and the material's known slowness curve. This
particular problem is inspired by current challenges faced by the ultrasonic
non-destructive testing of polycrystalline solids. We model the geometry of the
material using Voronoi tessellations and study two simplified inverse problems
where we ignore wave refraction. In the first problem, the Voronoi geometry
itself and the orientations associated to each region are unknowns. We solve
this nonsmooth, nonconvex optimisation problem using a multistart non-linear
least squares method. Good reconstructions are achieved, but the method is
shown to be sensitive to the addition of noise. The second problem considers
the reconstruction of the orientations on a fixed square mesh. This is a smooth
optimisation problem but with a much larger number of degrees of freedom. We
prove that the orientations can be determined uniquely given enough boundary
measurements and provide a numerical method that is more stable with respect
to the addition of noise.
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1 INTRODUCTION
Tomographic inversion describes the inverse problem of determining the spatially varying material properties inside an
object from scattered wave measurements collected at its boundary. This problem has received much attention within
the seismology and medical imaging fields, where the resulting wave speed maps are routinely used to enhance imaging
and diagnostic capabilities.1-4 In the ultrasonic non-destructive evaluation (NDE) community, inspections are often
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carried out using a single transducer (as opposed to the arrays of sensors available in seismic and medical imaging), and
so until recently, development of tomographic capabilities has been somewhat neglected. However, with the rapid uptake
of ultrasonic phased arrays (which are capable of simultaneously transmitting and receiving ultrasound across multiple
elements5), tomographic inversion is now becoming feasible6-9 and presents a potential solution to the challenge of imag-
ing defects embedded in complex media. There are many cases in industry where, due to manufacturing conditions or
design, heterogeneous and locally anisotropic microstructures can arise10-12 and defect detection can prove difficult. One
particularly challenging example of this occurs in austenitic steel welds where, due to the application of extreme thermal
gradients during the manufacturing process, the primary axes of the microstructural crystals align with the direction of
heat flow.13,14 This results in a highly scattering, refractive and locally anisotropic medium where contributions to the
scattered field by small defects are often obscured. However, it has been shown that a priori knowledge of such microstruc-
tures can be used to compensate for these effects and better focus the defect scattering energy to produce more reliable
flaw reconstructions.7-9,15

Inspired by this particular problem in the ultrasonic NDE community, we propose a new approach to extracting infor-
mation on the spatially varying material properties of this class of locally anisotropic media from travel time information
collected on the boundary of the object. This specific problem has previously been tackled using Markov chain Monte
Carlo (MCMC) methods,7-9 where an ensemble of samples estimating the posterior probability density function is pro-
duced and its associated moments are used to describe the probability distribution of the model given the observed data.
These MCMC methods are generally applicable to most high-dimensional inverse problems but are usually associated
with prohibitive computational costs from the iterative runs of forward models over large and complex parameter spaces,
which are in some cases inefficiently sampled.16 In this paper, we instead cast the problem as a deterministic optimisa-
tion problem, to encourage more efficient sampling of the parameter space and allow better scaling of higher dimensional
problems in future works. A global, multistart, non-linear least squares method is implemented to deal with the noncon-
vex objective function, and the sensitivity of the method to additive noise is examined. Moreover, we introduce a new
geometric inverse problem, (IP1), which we believe is a challenging, interesting mathematical problem in its own right
due to its nonsmooth and nonconvex nature.

1.1 Outline of the paper
In Section 2, we state two inverse problems, (IP1) and a simplified version (IP2). These can be viewed as reduced models
for the non-destructive testing of metals using ultrasound. We show how they are derived in Section 3. We study the first
inverse problem (IP1) theoretically in Section 4.1 (properties of the objective function, non-uniqueness of solutions) and
numerically in Section 4.3. In Sections 5.1 and 5.2, we develop the theory and a numerical method for the simplified
inverse problem (IP2).

2 STATEMENT OF THE INVERSE PROBLEMS

In this section, we give a precise statement of the geometric inverse problems that we study in this paper. These problems
are inspired by the NDE of metals using ultrasonic arrays. In Section 3, we discuss the relation between these mathematical
problems and the physical NDE problem.

2.1 The Voronoi inverse problem
Let Ω ⊂ R2 be open, bounded and convex. Given X = (x1, … , xn) ∈ Ωn, the Voronoi diagram generated by X17,18 is the
collection of sets {Vk(X)}n

k=1 defined by

Vk(X) =
{

x ∈ Ω ∶ |x − xk| < |x − x𝑗| ∀𝑗 ∈ {1, … ,n}∖{k}
}
.

Each Voronoi cell Vk(X) is the intersection of a finite number of half-planes with Ω and is therefore the intersection of
a convex polygon with Ω. Observe that V𝑗 ∩ Vk = ∅ if j≠ k and that the collection of Voronoi cells {Vk(X)}n

k=1 forms a
polygonal partition of Ω (up to a set of measure zero). Sometimes, we simply write Vk instead of Vk(X) if it is not important
to emphasise the generator set X. An edge of the Voronoi diagram is a line segment of the form V𝑗 ∩ Vk such that length
(V𝑗 ∩ Vk) > 0.

We introduce the notion of an oriented Voronoi diagram, which is a Voronoi diagram {Vk(X)}n
k=1 with an orientation

𝜃k ∈ [0, 2𝜋] assigned to each Voronoi cell. Let Θ = (𝜃1, … , 𝜃n) be the collection of all orientations in a diagram. We say
that (X,Θ) generates the oriented Voronoi diagram {(Vk(X), 𝜃k)}n

k=1.
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Given two points a, b∈ 𝜕Ω, let 𝛾a,b ∶ [0, 1] → Ω, 𝛾a,b(s) = (1 − s)a + sb be the line joining a to b. Let 𝜙a, b ∈ [0, 2𝜋) be the
direction of the line 𝛾a, b, defined by

(cos𝜙a,b, sin𝜙a,b) =
𝛾 ′a,b|𝛾 ′a,b| = b − a|b − a| . (1)

Below, we will restrict our attention to lines 𝛾a, b that do not contain any edges of the Voronoi diagram, which
means that

length
(
𝛾a,b ∩ (V𝑗 ∩ Vk)

)
= 0 ∀ 𝑗, k ∈ {1, … ,n}. (2)

Note that this condition does not preclude 𝛾a, b from intersecting edges, only from containing edges, and it is a generic
condition satisfied by ‘almost every’ line 𝛾a, b.

Let S ∶ R → (0,∞) be continuously differentiable and 𝜋/2–periodic. We define the travel time T(a, b; X,Θ) of any line
𝛾a, b satisfying Equation (2) by

T(a, b) = T(a, b;X ,Θ) =
n∑

k=1
length(𝛾a,b ∩ Vk)S(𝜙a,b − 𝜃k). (3)

Note that the kth term in the sum is non-zero if and only if the line 𝛾a, b intersects the Voronoi cell Vk, and ‘most’ terms
in the sum are zero. We refer to S as the slowness function since, if we think of T(a, b) as a time, then S has units of
inverse velocity. We can also interpret T(a, b) as the ‘length’ of the chord 𝛾a, b of the Voronoi diagram with respect to
the weight function S. Indeed, if S takes the value 1 at every point, then T(a, b) = length(𝛾a,b). Observe that the weight
S(𝜙a, b − 𝜃k) depends on the relative angle between the line 𝛾a, b and the orientation 𝜃k of Voronoi cell k. The physically
realistic assumption that S is (𝜋/2)–periodic, and hence 𝜋–periodic, ensures that T(a, b) = T(b, a).

If we define 𝜃 ∶ ∪n
k=1Vk → [0, 2𝜋] by 𝜃(x) = 𝜃k if x∈Vk, then we can write Equation (3) as

T(a, b) = T(a, b;X ,Θ) = ∫
1

0
S
(
𝜙a,b − 𝜃(𝛾a,b(s))

) |𝛾 ′a,b(s)|ds. (4)

This equivalent definition of T(a, b) also requires 𝛾a, b to satisfy Equation (2) since 𝜃 is not defined on the edges of the
Voronoi diagram. The problem is that, while the piecewise constant function 𝜃 is defined almost everywhere (with respect
to the two-dimensional Lebesgue measure), in Equation (4), we are integrating along a one-dimensional set.

We extend the definition of T(a, b) to those lines 𝛾a, b that violate Equation (2) by defining

T(a, b) = inf
{

lim inf
(am,bm)→(a,b)

T(am, bm) ∶ am, bm ∈ 𝜕Ω, 𝛾am,bm satisfy (2)
}
. (5)

This choice ensures that the travel time of each line 𝛾a, b is as short as possible and so seems natural from a modelling
point of view. Other choices are of course possible.

In Section 4, we will study the following inverse problem: fix n,M ∈ N. Given pairs of boundary points {(ai, bi)}M
i=1,

ai, bi ∈ 𝜕Ω, and given {Ti}M
i=1, Ti ∈ (0,∞), find an oriented Voronoi diagram with n generators {(Vk(X∗), 𝜃∗k )}

n
k=1 generated

by (X∗,Θ∗) such that

inf
(X ,Θ)

M∑
i=1

(Ti − T(ai, bi;X ,Θ))2 =
M∑

i=1
(Ti − T(ai, bi;X∗,Θ∗))2. (IP1)

In other words, we want to determine (or fit) an oriented Voronoi diagram from the travel times between boundary points,
or from the ‘length’ of chords of the Voronoi diagram. We refer to Equation (3) as the forward problem and (IP1) as the
inverse problem.

A necessary (but not sufficient) condition for the given travel times {Ti}M
i=1 to be compatible with an oriented Voronoi

diagram (i.e., a necessary condition for the infimum in [IP1] to be zero) is that

length(𝛾ai,bi )min S ≤ Ti ≤ length(𝛾ai,bi )max S ∀ i ∈ {1, … ,M}. (6)

We also assume that S is a nonconstant function; otherwise, T(ai, bi; X,Θ) is independent of (X,Θ), and every oriented
Voronoi diagram satisfies (IP1).
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2.2 The fixed-grid inverse problem
In this section, we state a simplified version of (IP1). Let Ω = (0,L1) × (0,L2) be a rectangular domain. We simplify the
inverse problem (IP1) by taking the Voronoi diagram {Vk(X)}n

k=1 to be a given square grid and by solving (IP1) just for Θ.
To be precise, let h> 0, N𝑗 = ⌊L𝑗∕h⌋, j∈ {1, 2}. For lj ∈ {1, 2, … , Nj}, define xl1l2 ∈ Ω by

xl1l2 =
(

h
(

l1 −
1
2

)
, h

(
l2 −

1
2

))
.

Let Xh denote the set of generators {xl1l2 ∶ l1 ∈ {1, … ,N1}, l2 ∈ {1, … ,N2}}. The Voronoi diagram generated by Xh is
the square grid with Voronoi cells {Vl1l2 ∶ l𝑗 ∈ {1, … ,N𝑗}}, where

Vl1l2 = (h(l1 − 1), hl1) × (h(l2 − 1), hl2),

is a square grid cell of size h for l1 ∈ {1, … , N1 − 1}, l2 ∈ {1, … , N2 − 1}.
In Section 5, we will study the following inverse problem: fix h, M> 0. Given pairs of boundary points {(ai, bi)}M

i=1,
ai, bi ∈ 𝜕Ω, and given {Ti}M

i=1, Ti ∈ (0,∞), find grid orientations Θ∗ = {𝜃∗l1l2
∶ l𝑗 ∈ {1, … ,N𝑗}} such that

inf
Θ

M∑
i=1

(Ti − T(ai, bi;Xh,Θ))2 =
M∑

i=1
(Ti − T(ai, bi;Xh,Θ∗))2. (IP2)

In other words, we want to determine the orientations of the grid cells from the travel times between boundary points.

3 DERIVATION OF THE INVERSE PROBLEMS

In this section, we derive the inverse problems (IP1), (IP2) from the more general setting of travel time tomography in
anisotropic media. Our physical motivation is the determination of metal microstructure and defects from the travel times
of ultrasonic waves.5,8,9,19

We follow the notation of Benmansour et al.20 LetΩ ⊂ R3 be an open, bounded, convex set representing a metal sample,
a∈ 𝜕Ω be the location of an ultrasound transmitter, and b∈ 𝜕Ω be the location of an ultrasound receiver. The time it takes
for an ultrasound wave to travel from a to b is

t𝜉(a, b) = inf
⎧⎪⎨⎪⎩

1

∫
0

𝜉

(
𝛾(s), 𝛾

′(s)|𝛾 ′(s)|
) |𝛾 ′(s)|ds ∶ 𝛾 ∈ C1([0, 1]; Ω), 𝛾(0) = a, 𝛾(1) = b

⎫⎪⎬⎪⎭ , (7)

where the minimisation is over all curves 𝛾 ∶ [0, 1] → Ω (ultrasound rays) joining the transmitter a to the receiver b,
and 𝜉 is an anisotropic metric. Here, 𝜉 ∶ Ω × S2 → (0,∞) has units of inverse velocity, and 𝜉(x, 𝜈) is the slowness of a ray
passing through point x in direction 𝜈. The travel time tomography problem is to approximate an unknown metric 𝜉 from
a collection of travel time measurements {t𝜉(ai, bi)}, ai, bi ∈ 𝜕Ω.

As observed, for example, in Benmansour et al,20 the map 𝜉 → t𝜉(a, b) is the pointwise infimum of a family of linear
functions of 𝜉 and hence is concave. Consequently, the travel time t𝜉 depends in a smooth (Lipschitz continuous) way on
the metric 𝜉. Unfortunately, the inverse problem (IP1) does not enjoy the same smoothness. A further challenge is that
the metric 𝜉 is anisotropic. If we wish to solve the inverse problem numerically using a gradient method, then we need to
compute an element of the superdifferential of the concave function 𝜉 → t𝜉(a, b). This can be done for the isotropic case
(where 𝜉(x, 𝜈) is independent of 𝜈) using for example the supergradient marching algorithm of Benmansour et al,20 which
applies automatic differentiation to a fast-marching algorithm.21 One approach to the anisotropic case could be to gener-
alise Benmansour et al20 to anisotropic metrics, using an anisotropic fast-marching algorithm such as those presented in
other studies,8,22,23 but we do not pursue this here.

For simplicity, we will restrict our attention to two dimensions, Ω ⊂ R2 and 𝜉 ∶ Ω × S1 → (0,∞). We write elements of
S1 as 𝜈𝜙 = (cos𝜙, sin𝜙), where 𝜙∈ [0, 2𝜋). Since our motivation is the non-destructive testing of metals, we assume that
𝜉 has the form
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𝜉(x, 𝜈𝜙) = S(𝜙 − 𝜃(x)), (8)

for some orientation function 𝜃 :Ω→ [0, 2𝜋] and 𝜋/2–periodic slowness function S ∶ R → (0,∞). Here, 𝜃(x) is the orienta-
tion of the metal lattice at point x (we assume that the metal is single-phase, which means that the lattice type is the same
at every point, and polycrystalline, which means that the orientation of the lattice can vary from point to point). Waves
in metals move at different speeds in different directions, due to the preferred directions of the lattice, which is why the
slowness 𝜉(x, 𝜈𝜙) depends on the relative angle between the lattice orientation 𝜃 and the ray direction 𝜙.

In this paper, we work with two different models for 𝜃. In Section 4, we assume that 𝜃 is a piecewise constant function
with respect to a Voronoi diagram {Vk}n

k=1:

𝜃(x) =
n∑

k=1
𝜃k𝟙Vk (x), (9)

where 𝟙Vk is the characteristic function of the Voronoi cell Vk and 𝜃k ∈ [0, 2𝜋]. This choice of 𝜃 has a strong physical
motivation. The microstructure of polycrystalline metals consists of grains, which are regions of (almost) constant lattice
orientation, and grains often resemble Voronoi cells. This resemblance is not coincidental; grains would form a perfect
Voronoi diagram under the highly idealised cooling conditions where a molten metal starts solidifying from several points
(the Voronoi generators) at exactly the same time and solidifies at exactly the same rate in every direction. Consequently,
it is common to model grains as Voronoi cells.24-27 The typical grain size in steels is smaller than the wavelength of ultra-
sound, and so in this paper, we use the term grain somewhat imprecisely to mean an averaged grain cluster of a size that
can be resolved by ultrasound waves. For the choice of 𝜃 given in Equation (9), the inverse problem is to determine the
unknown oriented Voronoi diagram {(Vk, 𝜃k)}n

k=1 from a collection of known travel times {t𝜉(ai, bi)}, ai, bi ∈ 𝜕Ω.
In Section 5, we assume that Ω = (0,L1) × (0,L2) is rectangular and that 𝜃 is a piecewise constant function with respect

to a square grid:

𝜃(x) = 𝜃l1l2 if x = (x1, x2), x1 ∈ h(l1 − 1, l1), x2 ∈ h(l2 − 1, l2), (10)

where h> 0 is the grid size, lj ∈ {1, … , Lj/h}, 𝜃l1l2 ∈ [0, 2𝜋]. This choice of 𝜃 is motivated by electron backscatter diffraction
(EBSD) measurements, where the lattice orientation is measured at each point in a grid on a polished metal surface.
Grouping together, grid cells with the same orientation result in the grains referred above. For this choice of 𝜃, the inverse
problem is to determine the unknown orientations {𝜃l1l2} from a collection of known travel times {t𝜉(ai, bi)}, ai, bi ∈ 𝜕Ω.
Note that we take the grid to be known since each grid cell corresponds to an EBSD pixel.

To arrive at the inverse problems (IP1), (IP2), we make one more simplifying assumption. The travel time (or forward
problem) t𝜉(a, b) defined in Equation (7) is difficult to evaluate since it involves solving a minimisation problem for
the optimal ray 𝛾 . Instead, we simplify the forward problem by replacing the optimal ray 𝛾 with the straight ray 𝛾a,b(s) =
(1 − s)a + sb joining the transmitter a to the receiver b. Therefore, we replace the true travel time t𝜉(a, b) with the
approximate travel time T𝜉(a, b)≥ t𝜉(a, b) defined by

T𝜉(a, b) = ∫
1

0
𝜉

(
𝛾a,b(s),

𝛾 ′a,b|𝛾 ′a,b|
) |𝛾 ′a,b|ds. (11)

This approximation is equivalent to assuming that the inhomogeneity and anisotropy of the material is small. While
this is not always the case for materials of interest in ultrasonic tomography problems, it leads to a challenging, new
mathematical problem that is interesting in its own right.

By substituting the expressions for 𝜉 and 𝜃 from Equations (8) and (9) into Equation (11), we finally arrive at the
inverse problem (IP1), as we now demonstrate. Given a, b∈ 𝜕Ω, let 𝜙a, b be the direction of the line joining a to b, that is,
(cos𝜙a,b, sin𝜙a,b) = 𝛾 ′a,b∕|𝛾 ′a,b|. Then,

T𝜉(a, b) = ∫
1

0
S
(
𝜙a,b − 𝜃(𝛾a,b(s))

) |𝛾 ′a,b|ds

= ∫
1

0
S

(
𝜙a,b −

n∑
k=1
𝜃k𝟙Vk (𝛾a,b(s))

)|𝛾 ′a,b|ds

=
n∑

k=1
length(𝛾a,b ∩ Vk)S(𝜙a,b − 𝜃k).

(12)
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This is exactly the travel time function (3) for the inverse problem (IP1). The advantage of the straight-ray approximation
is that the forward problem (12) is very easy to evaluate. The disadvantage, however, as we shall see in the following
section, is that the travel time now depends in a nonsmooth way on the metric (on the generators of the Voronoi diagram).

A similar calculation to Equation (12) shows that substituting the expressions for 𝜉 and 𝜃 from Equations (8) and (10)
into Equation (11) gives the inverse problem (IP2). This concludes the derivation of the inverse problems.

Finally, a quick remark about the isotropic case, where 𝜉(x, 𝜈) = 𝜉(x) is independent of 𝜈. In this case,
Equation (11) is simply the Radon transform of 𝜉 along the line 𝛾a, b. It follows that the infinite family of travel times
{T𝜉(a, b) : a∈ 𝜕Ω, b∈ 𝜕Ω} uniquely determines 𝜉. This is because 𝜉 is determined by its Fourier transform 𝜉, which is deter-
mined by its Radon transform: recall that if L(𝜈, t) = {t𝜈 + s𝜈⟂ ∶ s ∈ R} is the line in R2 with unit normal 𝜈 ∈ S1 and
signed distance t ∈ R from the origin, then

𝜉(𝜔) = 1
2𝜋∫R2

𝜉(x) exp(−ix · 𝜔)dx

= 1
2𝜋 ∫

∞

t=−∞ ∫L(𝜔∕|𝜔|,t)𝜉(x) exp
(
−ix · 𝜔|𝜔| |𝜔|

)
dl(x)dt

= 1
2𝜋 ∫

∞

t=−∞

(
∫L(𝜔∕|𝜔|,t)𝜉dl

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Radon transform

exp(−it|𝜔|)dt,

(13)

(where we have extended 𝜉 toR2 by zero outsideΩ). Therefore, the inverse problem has a unique solution 𝜉 if we know the
travel time between every pair of boundary points (admittedly an unrealistic requirement in practice). Computation (13)
fails for anisotropic metrics, however, and so we cannot use the Radon transform approach in this paper.

4 SOLUTION OF THE VORONOI INVERSE PROBLEM

In this section, we study the inverse problem (IP1).

4.1 Theory

First, we introduce some notation. For n ∈ N, we let n(Ω) ⊂ Ω
n

denote the set of admissible generators of a Voronoi
diagram of n points:

n(Ω) = {X = (x1, … , xn) ∶ xi ∈ Ω, xi ≠ x𝑗 if i ≠ 𝑗}.

Given M pairs of boundary points {(ai, bi)}M
i=1, ai, bi ∈ 𝜕Ω, ai ≠ bi, and given M travel times {Ti}M

i=1, Ti ∈ (0,∞), we define
the objective function (or energy) F ∶ n(Ω) × [0, 2𝜋]n → [0,∞) by

F(X ,Θ) =
M∑

i=1
(Ti − T(ai, bi;X ,Θ))2, (14)

where T was defined in Section 2.1. The goal of inverse problem (IP1) is to minimise F, that is, to find the oriented Voronoi
diagram (X,Θ) giving the best least squares fit of {T(ai, bi;X ,Θ)}M

i=1 to the travel time data {Ti}M
i=1.

The challenge is that F is nonconvex and nonsmooth (discontinuous) and the graph of F has flat regions where F is
constant, as we illustrate in the following examples. In each example, we use the same slowness function,

S(𝜓) = 1
c1 + c2 cos(4𝜓 + 𝜋)

, (15)

where c1 > c2 > 0 are constants. For appropriate choices of c1 and c2 (c1 = 5621 ms−1, c2 = 540 ms−1) this is a good fit for
the slowness function of austenitic steel.

Example 4.1 (F is nonconvex and discontinuous). The orientation function 𝜃 (defined in Section 2.1) is piecewise
constant and hence not continuous. Consequently, T and F are not continuous. Since bounded convex functions are
continuous, F cannot be convex. For concreteness, we give an explicit example. Let Ω = (−2, 2) × (0, 1), n = 2, M = 1,
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a1 = (0, 1), b1 = (0, 0). Then, 𝜙a1,b1 = 3𝜋∕2. Let T1 = S(𝜙a1,b1 −
3𝜋
2
) = 1∕(c1 − c2). We show that F is not continuous at

the point

X0 = ((−1, 1∕2), (1, 1∕2)), Θ0 =
(3𝜋

2
,

3𝜋
2

+ 𝜋

4

)
.

We have V1(X0) = (−2, 0) × (0, 1), V2(X0) = (0, 2) × (0, 1). The edge V1 ∩ V2 coincides with the line 𝛾a1,b1 . For
t∈ (− 1, 2), let

Xt = ((−1 + t, 1∕2), (1, 1∕2)).

Then, 𝛾a1,b1 intersects V1(Xt) if t> 0, and it intersects V2(Xt) if t< 0, and so

lim
t→0+

F(Xt,Θ) = 0, lim
t→0−

F(Xt,Θ) =
(

1
c1 − c2

− 1
c1 + c2

)2

≠ 0.

Therefore, F is not continuous at (X0,Θ0). Other points of discontinuity include

(X ,Θ) = (((−s, 𝑦), (s, 𝑦)),Θ0) ,

for all s∈ (0, 2), y∈ (0, 1). In general, F is continuous everywhere except at nongeneric points (X,Θ) such that the
Voronoi diagram generated by X has an edge contained in the ray 𝛾ai,bi for some i∈ {1, … , M}.

Example 4.2 (F is not lower semicontinuous). From the previous example, we can also see that F is not lower
semicontinuous. By Equation (5), T(a1, b1;X0,Θ0) = 1∕(c1 + c2). Therefore,

F(X0,Θ0) =
(

1
c1 − c2

− 1
c1 + c2

)2

> 0 = lim
t→0+

F(Xt,Θ) = lim inf
(X ,Θ)→(X0,Θ0)

F(X ,Θ).

Therefore, F is not lower semicontinuous at (X0,Θ0). (T on the other hand is lower semicontinuous, thanks to the
choice (5).)

Example 4.3 (Flat energy landscape, non-uniqueness of minimisers). There are several ways that F can fail to have
a unique minimiser:

(i) Number of constraints M is less than the number of degrees of freedom 3n. This is the case in Example 4.1, where
we have M = 1 rays and 3n = 6 degrees of freedom. For all t∈ (0, 2), 𝜓 ∈ [0, 2𝜋], F(Xt, (3𝜋∕2, 𝜓)) = 0 (since
the ray 𝛾a1,b1 only intersects the cell V1(Xt)) and therefore (Xt, (3𝜋/2,𝜓)) are all minimisers (and there are many
others). Note also that F(Xt,Θ0) =constant >0 for all t∈ (− 1, 0) and so the energy landscape can also be flat in
regions where it is not minimal.

(ii) Lack of injectivity of S. For example, in Example 4.1, where S is the 𝜋/2–periodic function defined
in Equation (15), other minimisers include F(Xt, (0,𝜓)), F(Xt, (𝜋/2,𝜓)) and F(Xt, (𝜋,𝜓)) for all t∈ (0, 2),
𝜓 ∈ [0, 2𝜋].

(iii) Small grains. ‘Small’ Voronoi cells that are not intersected by any of the rays (ai, bi) also give rise to a flat energy
landscape and non-uniqueness of minimisers. For example, let Ω = (0, 1) × (0, 1), n = 2, M = 9 (so that the
number of constraints is greater than the number of degrees of freedom), and

{(ai, bi)}9
i=1 = {((a, 1), (b, 0)) ∶ a, b ∈ {1∕4, 1∕2, 3∕4}} .

Let
X0 = ((3∕4, 1∕2), (7∕8, 1∕2)), Θ0 = (0, 𝜋∕4).

Define Ti = T(ai, bi;X0,Θ0) for all i∈ {1, … , 9}. Then, F(X , (0, 𝜃2)) = 0 for all X sufficiently close to X0 and for
all 𝜃2 ∈ [0, 2𝜋] since none of the rays 𝛾ai,bi intersect V2. Therefore, F has infinitely many minimisers.
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Remark 4.4 (Relaxation and regularisation). In general, establishing the existence of global minimisers of F is chal-
lenging since F is not lower semicontinuous and its domain is not compact, and so we cannot apply the Weierstrass
Extreme Value Theorem.28, p. 3 The set n(Ω) is not compact since you can find a sequence (Xm)m∈N ⊂ n(Ω) con-
verging to X∈Ωn but with xi = xj for some i, j, that is, the Voronoi generators xm

i , x
m
𝑗

collide in the limit. The lack of
compactness of n(Ω) could be circumvented by replacing it by the compact set

𝛿n(Ω) = {X = (x1, … , xn) ∶ xi ∈ Ω, |xi − x𝑗| ≥ 𝛿 if i ≠ 𝑗},

where the Voronoi generators are not allowed to be closer than distance 𝛿 > 0. The lack of lower semicontinuity of
F could be circumvented by replacing it with its relaxation

F(X ,Θ) = inf
{

lim inf
m→∞

F(Xm,Θm) ∶ (Xm,Θm) → (X ,Θ)
}
.

This is lower semicontinuous by definition and hence has a minimiser in the compact set 𝛿n(Ω) × [0, 2𝜋]n. It agrees
with F at all generic points (X,Θ) such that the Voronoi diagram generated by X does not have an edge contained
in a ray 𝛾ai,bi . Alternatively, we could regularise the objective function F. We do not take either of these approaches
however in this paper. In practice, since ‘most’ points in the domain of F are generic, then a gradient method appears
to perform fairly well at numerically minimising F, see Section 4.3.

4.2 The gradient of F
We demonstrate how to compute the gradient of F at generic points where it is differentiable. It is straightforward to
compute 𝜕F/𝜕Θ. The challenge is to compute 𝜕F/𝜕X since this depends on how the lengths of the intersections 𝛾ai,bi∩Vk(X)
vary as X varies.

Fix k∈ {1, … , n} and assume that a, b∈ 𝜕Ω and X ∈ n(Ω) are such that 𝛾a, b intersects Vk(X) in exactly two points and
that neither of these points is a vertex of Vk(X). Define p1 to be the first point where 𝛾a, b intersects Vk(X) and p2 to be the
second point, that is, (p1 − a) · (b− a)< (p2 − a) · (b− a). For j∈ {1, 2}, let pj belong to the edge Ekm𝑗

∶= Vk ∩ Vm𝑗
for some

mj ∈ {1, … , n} ∖ {k}, m1 ≠m2, and let 𝜈𝑗 = xm𝑗
− xk, which is normal to edge Ekm𝑗

. Let 𝜈a, b be normal to 𝛾a, b. We will show
how to compute the derivative with respect to X of

da,b
k = |p2 − p1| = length (𝛾a,b ∩ Vk(X)).

It is easy to see that
𝜕da,b

k

𝜕xl
= 0 unless l ∈ {k,m1,m2},

since 𝜕p1∕𝜕xl = 0 unless l∈ {k, m1} and 𝜕p2∕𝜕xl = 0 unless l∈ {k, m2}. Therefore, we just need to compute the four
derivatives

𝜕p𝑗
𝜕xk

,
𝜕p𝑗
𝜕xm𝑗

, 𝑗 ∈ {1, 2}.

We will do this for the case 𝑗 = 1; the case 𝑗 = 2 is analogous.
Let q = (xk + xm1 )∕2, which lies on the line containing the edge Ekm1 . Since p1 lies on the edge Ekm1 and on the ray 𝛾a, b,

we have
(p1 − q) · 𝜈1 = 0

(p1 − b) · 𝜈a,b = 0

}
⇐⇒ (𝜈1|𝜈a,b)Tp1 =

(
q · 𝜈1

b · 𝜈a,b

)
,

where we have taken 𝜈1, 𝜈a, b to be column vectors. By differentiating this linear system for p1, we see that in order to
compute 𝜕p1/𝜕xk and 𝜕p1∕𝜕xm1 , it is sufficient to compute

𝜕𝜈1

𝜕xk
,
𝜕𝜈1

𝜕xm1

,
𝜕(q · 𝜈1)
𝜕xk

,
𝜕(q · 𝜈1)
𝜕xm1

.
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These can be computed easily from the identities

𝜈1 = xm1 − xk, q · 𝜈1 =
|xm1 |2 − |xk|2

2
.

It is now straightforward to combine these expression to find an (admittedly rather lengthy) expression for 𝜕F/𝜕X, which
we omit due to space restrictions. In the following section, we will use the gradient of F for numerical inversion.

4.3 Numerical inversion
In this section, we solve the inverse problem (IP1) numerically. In all of our numerical experiments we consider a square
metal sample with side length L = 0.06, that is,Ω = (0, 0.06)×(0, 0.06). We assume that a series of m ultrasound transducer
elements are placed on each side of the square. These elements are indexed from 1 to 4 m starting at the bottom left corner
and continuing clockwise. Each element acts as both a transmitter and receiver and is paired with every other element
excluding those on the same edge of the square (since we do not want ultrasound rays 𝛾a, b to lie along edges of the square).
This gives rise to a set of M = 6m2 transmitter–receiver pairs {(ai, bi)}M

i=1 (note that M equals 6 m2 rather than 12 m2 since
it is redundant to include both (ai, bi) and (bi, ai) as T(ai, bi) = T(bi, ai)).

In this section, we consider four distinct numerical experiments, which were chosen to illustrate different aspects of
the optimisation problem. In Examples 4.5 and 4.6, m = 2 transducer elements are placed on each edge of the sample,
giving rise to M = 24 transmitter–receiver pairs (ai, bi) with coordinates

ai, bi ∈ {(0, k1), (0, k2), (L, k1), (L, k2), (k1, 0), (k2, 0), (k1,L), (k2,L)},

where k1 = 0.015, k2 = 0.045. The number of cells n to be recovered and the number of initial guesses used in the multistart
optimisation framework are then varied. In Example 4.7, a more complex geometry with n = 10 cells is studied, and the
number of elements m placed on each side of the boundary is necessarily increased to constrain the problem. These three
examples demonstrate the method's ability to recover the Voronoi diagram in the absence of system noise. The effect of
noise is then examined in Example 4.8, and the subsequent findings motivate the need to consider the alternative inverse
problem (IP2).

Example 4.5. In this example, the objective is to recover the oriented Voronoi diagram with n = 3 generators shown
in Figure 1A from the travel times {Ti}M

i=1 between M = 24 transmitter–receiver pairs {(ai, bi)}M
i=1 (the transducer

elements are shown as green stars in Figure 1B), where the slowness function is as defined in Equation (15). In this
example and the following two examples, we use noise-free synthetic data for the travel times, that is, we take Ti to
be the travel times (3) for the true oriented Voronoi diagram. To solve the optimisation problem (IP1), MATLAB's
lsqnonlin (non-linear least squares method) is used and a multistart framework is implemented to cope with the non-
convex objective function. To begin, 20 arbitrary initial guesses are selected, and we pass lsqnonlin the true gradient
of F (computed in the previous section). A plot of the estimated oriented Voronoi diagram is shown in Figure 1B (only
the best of the 20 simulations is shown). It can be observed that (X,Θ) are recovered very well, exhibiting an L2-error||𝜃true − 𝜃computed||L2(Ω) of only 4.5× 10−11 (where 𝜃true − 𝜃computed is modulo 𝜋/2).
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(A) True Voronoi
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(B) Computed Voronoi

FIGURE 1 (Example 4.5) (A) The true
oriented Voronoi diagram and (B) the
recovered oriented Voronoi diagram. This
reconstruction was achieved using the
MATLAB function lsqnonlin with 20
random initial guesses and 24
transmitter–receiver pairs. The colour of
each Voronoi cell represents the
orientation 𝜃i ∈ [0,𝜋/2] of the cell [Colour
figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 2 (Example 4.6) (A) The true oriented Voronoi diagram and (B–F) the computed oriented Voronoi diagrams recovered by solving
the optimisation problem using a multistart adaptation of MATLAB's lsqnonlin function with 1, 25, 50, 100 and 150 initial guesses,
respectively [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 (Example 4.6) The number of initial guesses
used in the multistart optimisation framework and the
L2-error corresponding to the best initial guess

#initial guesses 1 25 50 100 150
L2-error 1.53E-04 2.29E-05 2.56E-05 2.37E-06 3.97E-07

Example 4.6. This example examines the effect of the number of initial guesses used in the multistart optimisation
framework. This time we take n = 5 Voronoi cells, and the number of transmitter–receiver pairs is the same as in the
previous example. Figure 2A shows the true geometry, and Figure 2B–F shows the Voronoi diagrams recovered using
a multistart adaptation of MATLAB's lsqnonlin function with {1, 25, 50, 100, 150} random initial guesses, respectively
(only the best result is shown in each case). Visually, Figure 2D–F appears to reconstruct the true Voronoi diagram
very well. Table 1 records the number of initial guesses and the associated L2-errors ||𝜃true − 𝜃computed||L2(Ω). It can be
observed that as the number of initial guesses is increased, the L2-errors decrease.

Example 4.7. In Examples 4.5 and 4.6, it was shown that (X, 𝜃) can be accurately recovered for n = 3, 5 with just
m = 2 elements placed on each side of the sample. Here, we consider a more complex geometry where the number of
cells is increased to n = 10. Since this example has 3n = 30 degrees of freedom, more transmitter and receiver pairs
are required to recover (X,Θ) uniquely. We study the cases where m = 2, 3, 4, 5 elements are placed on each side of the
sample (i.e., M = 24, 54, 96, 150 transmitter–receiver pairs, respectively). The optimisation problem is solved using
MATLAB's lsqnonlin function within a multistart framework, implemented with 50 random initial guesses. Figure 3A
depicts the true oriented Voronoi diagram, and Figure 3B–E depicts the computed oriented Voronoi diagrams for the
cases M = 24, 54, 96, 150, respectively. The transducer elements are depicted in Figure 3B–E as green stars. It can
be seen in Figure 3B that for m = 2 (where the number of unknowns 3n is greater than the number of constraints
M = 6m2), the algorithm fails to recover the true Voronoi diagram. Figure 3C–D shows better recovery but still fail
to correctly capture some aspects of the geometry. In this case, we require m = 5 (M = 150) to successfully recover a
Voronoi diagram with a satisfactory L2-error (see Table 2).

http://wileyonlinelibrary.com
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FIGURE 3 (Example 4.7) (A) The true oriented Voronoi diagram and (B–E) the computed oriented Voronoi diagrams recovered using the
lsqnonlin MATLAB function with 50 random initial guesses and m = 2, 3, 4, 5 elements (M = 24, 54, 96, 150 transmitter–receiver pairs),
respectively [Colour figure can be viewed at wileyonlinelibrary.com]

m 2 3 4 5
L2-error 3.31E-04 2.47E-04 1.15E-04 9.10E-06

TABLE 2 (Example 4.7) The number of transducer elements on each side of
the square and the corresponding L2-error

Example 4.8. Here, we study the robustness of the method when the observed data are subject to some noise. The best
case scenarios from Examples 4.5–4.7 are examined again (those which gave rise to the results plotted in Figures 1B, 2F
and 3E), but we now study the cases where noise is added to the travel time data in the following sense. We define
noisy travel times T(a, b) = T(a, b)(1 + 𝜖𝜈), where 𝜈 ∼N(0, 1) is a normally distributed random variable with mean
0 and variance 1, and 𝜖 dictates the level of noise added (the cases where 𝜖 = 0, 0.01, 0.02, 0.05 are studied here). In
Figure 4, the first row shows the true oriented Voronoi diagrams; the second shows the computed Voronoi diagrams
as recovered in Examples 4.5–4.7 and the third, fourth and fifth rows show the computed Voronoi diagrams in the case
where 1%, 2% and 5% noise has been added to the true travel times, respectively. In Table 3, the respective L2-errors
are recorded, and it can be observed that the problem is very sensitive to the addition of noise. For example, in the
case where n = 3, the L2-error with 5% noise is more than double the L2-error observed when there is no noise.

To summarise, we have shown in this section that Voronoi diagrams with n = 3, 5, 10, generators can be recovered
very well provided there are enough transmitter–receiver pairs and enough initial guesses for the multistart optimi-
sation method. However, in the final example, it was shown that the inverse problem (IP1) is very sensitive to the
addition of noise. This motivates the examination of the simplified inverse problem (IP2) in the next section.

5 SOLUTION OF THE FIXED- GRID INVERSE PROBLEM

In this section, we study the inverse problem (IP2).

http://wileyonlinelibrary.com
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FIGURE 4 (Example 4.8) (A–C) The true Voronoi diagrams for n = 3, 5, 10 cells. (D–F) The recovered Voronoi diagrams with 0% noise
obtained using 20, 150 and 50 initial guesses and M = 24,24, 150 transmitter–receiver pairs, respectively. Plots (G–I), (J–L) and (M–O) show
the recovered Voronoi diagrams with 1%, 2% and 5% noise added to the travel time data for the same sets of parameters [Colour figure can be
viewed at wileyonlinelibrary.com]
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n # initial guesses m L2-error
0% noise 3 20 2 3.43E-10
1% noise 3 20 2 8.21E-07
2% noise 3 20 2 5.91E-05
5% noise 3 20 2 7.02E-05
0% noise 5 150 2 2.56E-05
1% noise 5 150 2 3.64E-05
2% noise 5 150 2 8.08E-05
5% noise 5 150 2 1.09E-04
0% noise 10 50 5 9.10E-06
1% noise 10 50 5 4.41E-04
2% noise 10 50 5 4.56E-04
5% noise 10 50 5 2.90E-04

TABLE 3 (Example 4.8) The number of Voronoi cells, the number of initial
guesses used in the optimisation algorithm, the number of transducer elements on
each side of square and the L2-error with and without noise added to the true
travel times

5.1 Theory
Let Ω = (0,L1) × (0,L2), h> 0. Define Xh as in Section 2.2 to be the generators of a grid Voronoi diagram with grid size h.
Let Nh = ⌊L1∕h⌋ · ⌊L2∕h⌋ be the number of grid cells. Given M pairs of boundary points {(ai, bi)}M

i=1, ai, bi ∈ 𝜕Ω, ai ≠ bi,
and given M travel times {Ti}M

i=1, Ti ∈ (0,∞), we define the objective function Fh ∶ [0, 2𝜋]Nh → [0,∞) by

Fh(Θ) =
M∑

i=1
(Ti − T(ai, bi;Xh,Θ))2, (16)

where T was defined in Section 2.1. The goal of inverse problem (IP2) is to minimise Fh, that is, to find the grid orientations
Θ giving the best least squares fit of {T(ai, bi;Xh,Θ)}M

i=1 to the travel time data {Ti}M
i=1.

Unlike in Section 4, the objective function here is continuously differentiable (since the Voronoi diagram is fixed and
since S is continuously differentiable), and its domain is compact. Therefore, the existence of a minimiser of Fh is trivial.
Fixing the Voronoi diagram to be a grid has a disadvantage however from the modelling point of view; in order to represent
well the (approximately polygonal) grain microstructure of a metal (see Section 3), we require many more degrees of
freedom when we use a grid than if we use a Voronoi diagram. Therefore, the price to pay for a smooth objective function
is a larger number of degrees of freedom.

The following theorem shows that the travel times uniquely determine the grid orientations if we have a sufficient
number of transmitters and receivers. Recall that each Voronoi cell in the square grid is denoted by Vl1l2 with the bottom
left cell being V11, the cell above that being V12 and with this first column of cells continuing up to V1N2 . Similarly, to the
right of cell V11 is cell V21 and at the end of this first row is cell VN11. We will need to further develop our earlier notation for
the following theorem. Denote the four edges of each Voronoi cell by V (1)

l1l2
(top), V (2)

l1l2
(bottom), V (3)

l1l2
(left) and V (4)

l1l2
(right),

similarly denote the four edges of the domain by 𝜕Ω(j ), j∈ {1, … , 4}, and denote the orientation in Voronoi cell (i, j) by 𝜃ij.

Theorem 5.1. Let the slowness function S(𝜓) be 𝜋/2-periodic, symmetric about 𝜋/4, and monotonic in 𝜓 ∈ [0,𝜋/4) and
in𝜓 ∈ [𝜋/4,𝜋/2). This means that if S(𝜓1) = S(𝜓2), then either𝜓1 = 𝜓2 or𝜓1 = 𝜋∕2−𝜓2. Given sufficiently many trans-
mitter and receiver pairs {(ai, bi)}, with corresponding travel times {Ti}, then the grid orientations {𝜃l1l2} can be uniquely
determined (up to the symmetries of S) for all grid cells (l1, l2).

Proof. Let us start by positioning a transmitter a1 = (h, 0) ∈ V (2)
11 in the bottom right hand corner of this first grid cell.

Then, position two receivers on the left hand edge of this cell b1 = (0, h∕2), b2 = (0, h), b1, b2 ∈ V (3)
11 so that each of the

rays will have a distinct direction 𝜙a1,b1 and 𝜙a1,b2 . From Equation (12), then,

T(a1, b1; 𝜃11) = length(𝛾a1,b1 ∩ V11)S(𝜙a1,b1 − 𝜃11),

and

T(a1, b2; 𝜃11) = length(𝛾a1,b2 ∩ V11)S(𝜙a1,b2 − 𝜃11).
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Suppose that there are two orientations 𝜃11 and 𝜃̄11 that give rise to the same travel times so that T(a1, b1; 𝜃11) =
T(a1, b1; 𝜃̄11) and T(a1, b2; 𝜃11) = T(a1, b2; 𝜃̄11), then

S(𝜙a1,b1 − 𝜃11) = S(𝜙a1,b1 − 𝜃̄11) and S(𝜙a1,b2 − 𝜃11) = S(𝜙a1,b2 − 𝜃̄11).

From the symmetry of S the first of these equations implies that 𝜙a1,b1 − 𝜃11 = 𝜙a1,b1 − 𝜃̄11 or 𝜙a1,b1 − 𝜃11 = 𝜋∕2 −
(𝜙a1,b1 − 𝜃̄11). That is 𝜃11 = 𝜃̄11 or 𝜃11 = 2𝜙a1,b1 − 𝜋∕2 − 𝜃̄11. Similarly, the second equation implies 𝜃11 = 𝜃̄11 or
𝜃11 = 2𝜙a1,b2 − 𝜋∕2 − 𝜃̄11. Since 𝜙a1,b1 ≠ 𝜙a1,b2 then we must have 𝜃11 = 𝜃̄11. Hence, the orientation is uniquely
determined in cell V11. Let us turn our attention now to cell V12 lying immediately above cell V11. Consider now the
two straight rays going from a1 = (h, 0) ∈ V (2)

11 to b1 = (0, 3h∕2), b2 = (0, 2h), b1, b2 ∈ V (3)
12 , which will therefore have

distinct directions 𝜙a1,b1 and 𝜙a1,b2 . From Equation (12), then,

T(a1, b1; 𝜃12) = length(𝛾a1,b1 ∩ V11)S(𝜙a1,b1 − 𝜃11) + length(𝛾a1,b1 ∩ V12)S(𝜙a1,b1 − 𝜃12),

and

T(a1, b2; 𝜃12) = length(𝛾a1,b2 ∩ V11)S(𝜙a1,b2 − 𝜃11) + length(𝛾a1,b2 ∩ V12)S(𝜙a1,b2 − 𝜃12).

Suppose that there are two orientations 𝜃12 and 𝜃̄12 that give rise to the same travel times so that T(a1, b1; 𝜃12) =
T(a1, b1; 𝜃̄12) and T(a1, b2; 𝜃12) = T(a1, b2; 𝜃̄12). Since the lengths and 𝜃11 are known, then we have

S(𝜙a1,b1 − 𝜃12) = S(𝜙a1,b1 − 𝜃̄12) and S(𝜙a1,b2 − 𝜃12) = S(𝜙a1,b2 − 𝜃̄12).

As before, we can use the symmetries of S to show that 𝜃12 = 𝜃̄12 and hence the orientation is uniquely determined
in cell V12. It is clear that one can continue in this fashion up the first column of cells and uniquely determine each
of their orientations. We turn our attention then to the determination of the orientations in the second column of
cells. Consider the two straight rays which start from a1 = (2h, 0) ∈ V (2)

21 , intersect with the points b̄1 = (h, h∕2), b̄2 =
(h, h), b̄1, b̄2 ∈ V (3)

21 , before arriving at b1, b2 ∈ 𝜕Ω(3). As above, it is clear that these two rays will have distinct directions
𝜙a1,b1 and 𝜙a1,b2 . From Equation (12), then,

T(a1, b1; 𝜃21) =
N1∑

l1=1

N2∑
l2=1

length(𝛾a1,b1 ∩ V(l1,l2))S(𝜙a1,b1 − 𝜃(l1,l2)),

= length(𝛾a1,b1 ∩ V21)S(𝜙a1,b1 − 𝜃21) +
N1∑

l1=1

N2∑
l2=1

(l1,l2)≠(2,1)
length(𝛾a1,b1 ∩ V(l1,l2))S(𝜙a1,b1 − 𝜃(l1,l2)),

T(a1, b2; 𝜃21) =
N1∑

l1=1

N2∑
l2=1

length(𝛾a1,b2 ∩ V(l1,l2))S(𝜙a1,b2 − 𝜃(l1,l2)),

= length(𝛾a1,b2 ∩ V21)S(𝜙a1,b2 − 𝜃21) +
N1∑

l1=1

N2∑
l2=1

(l1,l2)≠(2,1)
length(𝛾a1,b2 ∩ V(l1,l2))S(𝜙a1,b2 − 𝜃(l1,l2)).

Note that given the sequential nature in which the orientations are being determined, all parameters in the latter
summation in both of these equations are known. Suppose that there are two orientations 𝜃21 and 𝜃̄21 that give rise to
the same travel times so that T(a1, b1; 𝜃21) = T(a1, b1; 𝜃̄21) and T(a1, b2; 𝜃21) = T(a1, b2; 𝜃̄21). This implies

S(𝜙a1,b1 − 𝜃21) = S(𝜙a1,b1 − 𝜃̄21) and S(𝜙a1,b2 − 𝜃21) = S(𝜙a1,b2 − 𝜃̄21).

As before, we can use the symmetries of S to show that 𝜃21 = 𝜃̄21 and hence the orientation is uniquely determined in
cell V21. We can continue in this manner up the second column; however, when we get to cell V2N2 , the endpoints of
the rays now lie on the upper edge of cell V1N2 and so b1, b2 ∈ V (1)

1N2
. It is clear by now that one can now continue in the

above recursive and systematic pattern and uniquely determine the cell orientations cell by cell, column by column.
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FIGURE 5 A numerical example to illustrate the algorithm used in the proof of Theorem 5.1. Plot (A) shows the true Voronoi diagram
with the colours representing the orientations in each cell. Plot (B) shows the recovered orientations when no noise was added to the travel
times. Plots (C) to (F) show the recovered orientations when an increasing level of noise is added to the travel times. The corresponding
L2-errors for 0.001%, 0.01%, 0.1% and 1% noise are 6.53× 10−6, 7.41× 10−4, 3.11× 10−2 and 4.35× 10−2, respectively [Colour figure can be
viewed at wileyonlinelibrary.com]

In general, in column m, the two rays start at point a1 = (mh, 0), and to uniquely determine the orientation in cell
Vmn, the rays intersect points b̄1 = ((m − 1)h, (n − 1∕2)h) ∈ V (3)

mn and b̄2 = ((m − 1)h,nh) ∈ V (3)
mn.

The methodology in the proof of this theorem can form the basis of a computer algorithm that, while demonstrating the
correctness of the proof, shows that it is not a practical algorithm for recovering the cell orientations; a very small amount
of noise in the travel time data highlights its instability. Let us consider a domain with L1 = L2 = 0.1, N1 = N2 = 10
and the orientations in each cell randomly assigned from a uniform distribution with range (0, 𝜋/2). An example Voronoi
diagram with the colours representing the orientations is shown in Figure 5A. The travel times T(a, b) for the rays are
calculated, and then, noise is added according to T(a, b) = T(a, b)(1 + 𝜖𝜈) where 𝜈 ∼N(0, 1) is a normally distributed
random variable with mean 0 and variance 1, and 𝜖 dictates the level of noise. The noisy travel time data T̄(a, b) is then used
in the above algorithm to recover the orientations in each cell. In Figure 5B, the recovered orientations are shown when
there is no noise added (𝜖 = 0). Comparing these two plots visually, it can be seen that there is a perfect recovery of the
cell orientations. Figure 5C then shows the recovery when 0.001% noise is added (𝜖 = 0.00001) and a visual comparison
shows that around 75% of the orientations are recovered. As more noise is added, then Figure 5D with 0.01% noise shows
a recovery of around 50% of the orientations, Figure 5E with 0.1% noise shows a recovery of around 40%, and finally,
Figure 5F with 1% noise the recovered orientation map is very poor indeed.

So it is very clear that while this approach does show that with a sufficient number of travel times one can uniquely
determine the orientations of this grid Voronoi diagram, the algorithm is inherently unstable and does not present a
practical solution to this inverse problem. This instability arises for a number of reasons not least of which is that it is
a recursive algorithm and errors in the orientation in one cell are compounded by affecting the calculations of the cell
orientations that follow. In addition, as the algorithm uses the inverse of the slowness curve S−1(𝜓), then if 𝜓 is close to
one of the turning points of S(𝜓), then any small rounding errors are magnified. Also, when recovering the orientation
of a cell that is far from the starting point of the ray, the two rays that traverse this cell are almost parallel and very close

http://wileyonlinelibrary.com
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FIGURE 6 (Example 5.2) (A) The true Voronoi diagram and (B–E) The computed Voronoi diagrams for different numbers of grid cells Nh,
which are found by solving the optimisation problem (IP2) using the MATLAB function lsqnonlin with 100 random initial guesses (only the
best of the 100 simulations is shown). The colours correspond to the orientations of the cells [Colour figure can be viewed at
wileyonlinelibrary.com]
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Nh 32 42 52 62 72 82 92

L2-error 3.40E-04 2.36E-04 2.08E-04 1.68E-04 1.71E-04 1.70E-04 1.44E-04
Nh 102 112 122 132 142 152 162

L2-error 1.44E-04 1.42E-04 1.38E-04 1.46E-04 1.54E-04 1.33E-04 1.49E-04

TABLE 4 (Example 5.2) The L2-errors||𝜃true − 𝜃grid||L2(Ω) for decreasing grid sizes
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FIGURE 7 (Example 5.3) (A) The true Voronoi diagram, (B) the computed Voronoi diagram recovered by solving the optimisation
problem (IP2) with no noise and (C–E) the computed Voronoi diagram with 1%, 2%, 5% noise in travel time data, respectively [Colour figure
can be viewed at wileyonlinelibrary.com]

together. They therefore sample the slowness curve S(𝜓) in close proximity and this can again produce significant errors
in the determination of the cell orientation.

5.2 Numerical inversion
In this section, we present a more practical numerical method for solving the inverse problem (IP2) that is less sensitive
to noise.

Example 5.2. We consider the same square domain Ω and slowness function S as in Example 4.5. We place m = 10
transducer elements on each side of the square (shown as green stars in Figure 6B–O) to give M = 6m2 = 600
transmitter–receiver pairs (see Section 4.3). We define (synthetic, noise-free) travel times {Ti}600

i=1 to be the true travel
times given by Equation (3) for the oriented Voronoi diagram with n = 10 cells shown in Figure 6A. Given a grid size
h> 0, our goal is to minimise Fh (defined in Equation 16) to recover the Nh grid orientations 𝜃l1l2 . In this example, will
illustrate the effect of the grid size. To minimise Fh, we use MATLAB's lsqnonlin (non-linear least squares) function
within a multistart optimisation framework, with 100 random initial guesses. Figure 6B–O shows the reconstructed
grid orientations with a varying number of grid cells Nh ∈ {32, … , 162}. As the number of grid cells Nh increases, the
recovered grid Voronoi diagrams more closely resemble the true Voronoi diagram shown in Figure 6A. The L2-errors||𝜃true − 𝜃grid||L2(Ω) are given in Table 4, and although this shows a generally decreasing trend as the number of grid
cells increases, the improvement is small. This can be attributed to the fact that as the number of grid cells increases,
the number of degrees of freedom Nh of the problem also increases, and it becomes more difficult to find the global
minimum of (IP2).

http://wileyonlinelibrary.com
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Example 5.3 (Effect of noise). In this example, we study the effect of additive noise in the travel time data. We consider
noise of the form T(a, b) = T(a, b)(1+𝜖𝜈) (given in Section 5.1) in the context of Example 5.2 with Nh = 100. Figure 7A
shows the true Voronoi diagram, and Figure 7B–E shows the computed Voronoi diagrams with 0%, 1%, 2% and 5%
noise (𝜖 = 0, 0.01, 0.02, 0.05). The L2-error for 0% noise is 1.44× 10−4, and the L2-error for 1%, 2% and 5% noises are
1.51× 10−4, 1.49× 10−4, 1.92× 10−4, respectively. We see that this numerical method is much more robust to noise
that the exact method given in Section 5.1.

6 CONCLUSIONS

This paper presents two industrially relevant inverse problems from a deterministic perspective. The first, (IP1), consid-
ers the inversion of an oriented Voronoi diagram from ultrasonic travel time measurements made on its boundary. A
non-trivial calculation of the gradient of the objective function with respect to the generators of the Voronoi diagram is
given. By combining this with a multistart non-linear least squares optimisation method, it is shown that, given enough
transmitter–receiver pairs on the boundary of the domain, we can faithfully reconstruct the locally anisotropic metric
in the absence of noise. The second inverse problem, (IP2), studies reconstruction of the orientations only, over a fixed
regular mesh. In this case, it is shown that given enough data measurements on the boundary, the orientations can be
reconstructed exactly and uniquely. However, due to steep gradients present in the slowness curve and cumulative error
propagation, the method is inherently unstable. To remedy this, we presented a numerical method that is inexact but less
sensitive to noise.

Note in both cases, to avoid running a nested optimisation in order to find the shortest ray path between two boundary
points, the simplifying assumption that the rays travel in straight lines has been made. Of course, refraction is important to
model wave front propagation accurately in highly anisotropic media, and it would be interesting to extend our methods
to include ray-bending. Another area for further investigation is the role of regularisation in solving the inverse problem;
due to the nonsmooth underlying metric we wish to reconstruct, it is not immediately clear what type of regularisation
should be applied.
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