
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Context Constrained Computation
Robert Atkey

Computer and Information Sciences
University of Strathclyde
robert.atkey@strath.ac.uk

James Wood
Computer and Information Sciences

University of Strathclyde
james.wood.100@strath.ac.uk

1 Introduction
In normal typed λ-calculi, variables may be used multiple
times, in multiple contexts, for multiple reasons, as long as
the types agree. The disciplines of linear types [Girard 1987]
and coeffects [Brunel et al. 2014; Ghica and Smith 2014; Pet-
ricek et al. 2014] refine this by tracking variable usage. We
might track howmany times a variable is used, or if it is used
co-, contra-, or invariantly. Such a discipline yields a gen-
eral framework of “context constrained computing”, where
constraints on variables in the context tell us something
interesting about the computation being performed.

We will present work in progress on capturing the “inten-
sional” properties of programs via a family of Kripke indexed
relational semantics that refines a simple set-theoretic se-
mantics of programs. The value of our approach lies in its
generality. We can accommodate the following examples:

1. Linear types that capture properties like “all list ma-
nipulating programs are permutations”. This example
uses the Kripke-indexing to track the collection of da-
tums currently being manipulated by the program.

2. Monotonicity coeffects that track whether a program
uses inputs co-, contra-, or in-variantly (or not at all).

3. Sensitivity typing, tracking the sensitivity of programs
in terms of input changes. This forms the core of sys-
tems for differential privacy [Reed and Pierce 2010].

4. Information flow typing, in the style of the Depen-
dency Core Calculus [Abadi et al. 1999].

Through discusssion at the workshop, we hope to discover
more applications of our framework. In future work, we
plan to extend our framework with type dependency, and
to explore the space of inductive data types and elimination
principles possible in the presence of usage information.

The syntax and semantics we present here have been for-
malised in Agda: https://github.com/laMudri/quantitative/.
Formalisation of the examples is in progress.

2 Syntax and Typing
We define our type system with respect to a partially ordered
semiringR for tracking how variables are used. A partially or-
dered semiring (R, ≤, 0,+, 1, ·) is a poset (R, ≤), commutative
monoid (R, 0,+), and monoid (R, 1, ·), such that · distributes
over 0 and +, and + and · are monotonic with respect to ≤.
We take ρ,π ∈ R.

PL’18, January 01–03, 2018, New York, NY, USA
2018.

Examples 1. The zero-one-many semiring {0, 1,ω} simu-
lates linear typing in our system. 2. Monotonicity typing uses
the semiring with carrier {0,↑,↓,≡}, where the multiplica-
tive unit is ↑ (covariance). The ↓ represents contra-variance,
and ≡ represents invariance. 3. Sensitivity analysis uses the
semiring with carrier R ∪ {∞} with min and + as the addi-
tion and multiplication. 4. Information flow analysis uses the
semiring with carrier P (L), where L is some set of labels.

The base language we consider is a bidirectional [Pierce
and Turner 2000] simply typed λ calculus with the following
types, where ι ranges over some set of base types:

S,T ::= S ⊸ T | !ρS | 1 | S ⊗ T | ⊤ | S &T | 0 | S ⊕ T | ι

Bidirectional typing reduces the type annotations required.
Since our language is bidirectionally typed, we have two
syntactic categories of terms: s ranges over checked terms,
and e ranges over synthesising terms. We use t for both.

s ::= λx .s | bang s | ∗⊗ | (s0, s1)⊗ | ∗& | (s0, s1)& | inji (s) | e
e ::= x | e s | bmT (e, {x }s) | delT (e, s) | pmT (e, {x ,y}s)

| proji (e) | ex-falsoT (e) | caseT (e, {x }s0, {y}s1) | s : S

where curly braces and λ denote variable binding and we
take i ∈ {0, 1} wherever it appears.

Contexts Γ assign to each variable a type S and a usage ρ ∈
R: Γ = x1

ρ1: S1, . . . ,xn
ρn: Sn . Contexts whose variables and

types match form a left R-semimodule, by pointwise addition
and scaling of the usage annotations. The partial order on
R is extended pointwise to contexts. Typing judgements for
checked and synthesising terms have the same contexts, but
either record that a term is checked against a type (Γ ⊢ T ∋ s)
or synthesise a type (Γ ⊢ e ∈ T).
The typing rules consist of a variable rule, two rules for

change of direction, and introduction and elimination rules
for each type former. The following rules for variables and
function and !ρ introduction and elimination illustrate how
usage information is tracked:

Γ ≤ 0Γ1, x
1: S, 0Γ2

Γ ⊢ x ∈ S

Γ, x
1: S ⊢ T ∋ s[x]

Γ ⊢ S ⊸ T ∋ λx .s[x]

Γ1 ⊢ e ∈ S ⊸ T Γ2 ⊢ S ∋ s Γ ≤ Γ1 + Γ2

Γ ⊢ e s ∈ T

Γ1 ⊢ S ∋ s Γ ≤ ρ · Γ1
Γ ⊢ !ρS ∋ bang s

Γ1 ⊢ e ∈ !ρS
Γ2, x

ρ
: S ⊢ T ∋ s[x]

Γ ≤ Γ1 + Γ2

Γ ⊢ bmT (e, {x }s[x]) ∈ T
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/334954821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/laMudri/quantitative/

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’18, January 01–03, 2018, New York, NY, USA Robert Atkey and James Wood

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Sub-resourcing, weakening (adding 0-use variables to the
context) and substitution are all admissible. In our Agda
formalisation, we have constructed our type system in two
levels: a non-usage tracked simply-typed λ-calculus, with a
usage-tracking system layered above. This emphasises the
use of coeffect annotations as an analysis of programs, they
do not affect the underlying semantics, but comment on it.
We introduce our semantic framework in the next section.

3 Semantics
Underlying Semantics We give a standard semantics of
types and well typed terms into sets and functions. This
semantics ignores the usage information. For types, we have:

JιK = Aι
JS ⊸ T K = JSK→ JT K J!ρSK = JSK
J1K = J⊤K = {∗} JS ⊗ T K = JS &T K = JSK × JT K
J0K = {} JS ⊕ T K = JSK ⊎ JT K

Contexts are interpreted as left-nested products. Terms are
assigned the usual semantics as functions JtK : JΓK→ JSK.

Usage-tracking semantics To derive interesting proper-
ties from our type system, we refine the set-theoretic se-
mantics by Kripke-indexed binary relations. This gives a
fundamental lemma for our system, that when instantitated
in different ways captures the examples in the introduction.

Our framework is parameterised by a categoryW of pos-
sible worlds that track how resources are distributed by pro-
grams. To interpret resource separation, we assume thatW
has symmetric promonoidal structure: profunctors J : 1 7→ W
and P :W×W 7→W such that P⊙(J×1) � 1, P⊙(1×J) � 1,
P ⊙ (1 × P) � P ⊙ (P × 1), and P � P ⊙ (π2 × π1), and the
triangle, pentagon, and hexagon laws hold1.
We now assign to each type T a functor JT KR :Wop →

Rel JT K that captures a notion ofW-indexed “indistinguisha-
bility”. To interpret !ρS , we assume we are given a relation
transformer !A : Rop → Rel(A)Wop

→ Rel(A)Wop that sat-
isfies the axioms of a monoidal exponential comonad. The
interesting cases are for functions, ⊗-products and the !ρ
modality:

JS ⊸ T KR w (f , f ′) =
∀x ,y. P (y,w)x ⇒ ∀s, s ′. JSKRy (s, s ′) ⇒ JT KRx (f s, f ′ s ′)

JS ⊗ T KR w ((s, t), (s ′, t ′)) =
∃x ,y. P (x ,y)w ∧ JSKRx (s, s ′) ∧ JT KRy (t , t ′)

J!ρSKR w (s, s ′) = !ρJSKR w (s, s ′)

Contexts x1
ρ1: S1, . . . ,xn

ρn: Sn are interpreted as if they
were J(· · · (1⊗ !ρ1S1) · · ·⊗ !ρnSn)K. With these definitions, we
can prove the following fundamental lemma for our Kripke-
indexed relational semantics.

Theorem 3.1 (Fundamental Lemma).

Γ ⊢ t : T =⇒ JΓKRw (γ ,γ ′) =⇒ JT KRw (JtKγ , JtKγ ′)
1We don’t need the laws to hold to prove the fundamental lemma.

Example Instantiations The ingredients of our funda-
mental lemma are perhaps well known (relational interpre-
tations, Kripke-indexing), but the value of our framework
lies in the generality of being able to chooseW and its
promonoidal structure, and the interpretion the !ρ modality
as a relation transformer. Examples include:
Permutation Types With the {0, 1,ω} semiring, we take
the categoryW to consist of lists of some type of keys,
and permutations between them. The relation transformer is
defined as: !0R l = ⊤, where⊤ is the total relation, !1R l = R l
and Rω R l = (l = []) ∧ R l . With suitable types of keys and
lists of keys, the fundamental lemma states that all programs
are permutations. This result has already been formalised
in a one-off type system at https://github.com/bobatkey/
sorting-types.
Monotonicity Types WithR the partially ordered semiring
with carrier {0,↑,↓,≡} ordered ≡ ≤ ↑,↓ and ↑,↓ ≤ 0, we take
W to be the one-object, one-arrow category, and define the
relation transformer ! to be:
!0 R = ⊤ !↑ R = R !↓ R = Rop !≡ R = R ∩ Rop

If we let our base type be natural numbers with the relational
interpretation Rnat (n,n

′) ⇔ n ≤ n′, then the fundamental
lemma states that a program of type x ↑: nat ⊢ t : nat is
covariant (and similarly for contravariant and invariant).
Sensitivity Analysis With the R = R ∪ {∞} semiring, we
letW be R as well. The relation transformer is given by
scaling. With a base type of real numbers with relational
intepretation Rreal k (x ,x ′) ⇔ |x − x ′ | ≤ k , then the funda-
mental lemma states that the usage annotations on the input
variables tracks the extent to which the program is sensitive
to changes in those variables.
Information Flow With the R = P (L) semiring, we again
takeW = R, and let the relation transformer to be !lR l ′ =
{⊤ when l ≥ l ′;R otherwise}. Then the fundamental lemma
yields the same non-interference properties as stated by
Abadi et al. for the DCC [Abadi et al. 1999].

Acknowledgments
James Wood is supported by a EPSRC Studentship.

References
M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. 1999. A Core Calculus

of Dependency. In POPL ’99. 147–160.
A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. 2014. A Core Quanti-

tative Coeffect Calculus. In ESOP 2014. 351–370.
Dan R. Ghica and Alex I. Smith. 2014. Bounded Linear Types in a Resource

Semiring. In ESOP 2014. 331–350.
Jean-Yves Girard. 1987. Linear Logic. Theor. Comp. Sci. 50 (1987), 1–101.
Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. 2014. Coeffects: a

calculus of context-dependent computation. In ICFP 2014. 123–135.
Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM

TOPLAS 22, 1 (2000), 1–44.
J. Reed and B. C. Pierce. 2010. Distance Makes the Types Grow Stronger. In

ICFP 2010, P. Hudak and S. Weirich (Eds.). 157–168.

2

https://github.com/bobatkey/sorting-types
https://github.com/bobatkey/sorting-types

	1 Introduction
	2 Syntax and Typing
	3 Semantics
	Acknowledgments
	References

