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ABSTRACT 

The free fatty acid receptor 1 (FFAR1, formerly GPR40), is a potential G protein-coupled receptor (GPCR) target for the 

treatment of type 2 diabetes mellitus (T2DM), as it enhances glucose-dependent insulin secretion upon activation by 

endogenous long-chain free fatty acids. The presence of two allosterically communicating binding sites and the lack of 

the conserved GPCR structural motifs challenge the general knowledge of its activation mechanism. To date, four X-ray 

crystal structures are available for computer-aided drug design. In this study, we employed molecular dynamics (MD) 

and supervised molecular dynamics (SuMD) to deliver insights into the (un)binding mechanism of the agonist MK-8666, 

and the allosteric communications between the two experimentally determined FFAR1 binding sites. We found that 

FFAR1 extracellular loop 2 (ECL2) mediates the binding of the partial agonist MK-8666. Moreover, simulations showed 

that the agonists MK-8666 and AP8 are reciprocally stabilized and that AP8 influences MK-8666 unbinding from FFAR1. 

Keywords: G protein-coupled receptors (GPCRs); FFAR1; GPR40; Molecular dynamics; MD; Supervised Molecular 

dynamics; SuMD. 

1. INTRODUCTION 

The free fatty acid receptor 1 (FFAR1, formerly GPR40) is a G protein-coupled receptor (GPCR) naturally activated by 

saturated C12-C16 or unsaturated C18-C20 free fatty acids [1]. These long chain free fatty acids (LCFA) act as full agonists 

to enhance glucose-stimulated insulin secretion from pancreatic b cells [2], and secretion of the incretins Glucagon-like 

peptide 1 (GLP-1) and Gastric inhibitory polypeptide (GIP) from intestinal enteroendocrine cells [3]. The development 

of drugs activating FFAR1 represent a new potential therapeutic approach against type 2 diabetes mellitus (T2DM -

counting for ~ 90% of all diabetes cases [4]) as the activation of its alternative signaling [5, 6] may avoid the negative 

side effects characterizing the currently approved drugs, such as hypoglycemia and weight gain [7]. 

mailto:ad5288@coventry.ac.uk


          

                  

                

                 

           

          

           

                 

          

                  

         

           

      

    

         

         

            

                

    

       

             

             

    

             

          

           

          

             

      

                   

               

             

                 

           

               

  

  

        

To date, the structure-based design of new compounds [8, 9] can exploit four crystallographic FFAR1 complexes 

(Table S1). In all these structures the receptor is captured in the inactive state, probably due to the stabilizing mutations 

introduced and the insertion of lysozyme T4 into intracellular loop 3 (ICL3) [10]. Moreover, the glycine-rich C-terminal 

segment of transmembrane helix 7 (TM7) and helix 8 (H8) are not resolved. Even though FFAR1 is organized in the GPCR 

structural hallmark seven transmembrane domain (TMD), the conserved structural motifs NP7.50xxY (Figure S1), DR3.50Y, 

and P5.50I3.40F6.44 as well as the “toggle switch” W6.48 [11, 12], are not present. 

Before any FFAR1 structural data were available (Table S1), a pharmacological body of evidence led to the hypothesis 

of up to three different binding sites [13]. In this scenario, full agonists would bind a different site to the partial agonists, 

with positive heterotropic cooperativity between different binding sites. Indeed, the partial agonist fasiglifam (TAK-875, 

Figure 1, discontinued in phase III clinical trials due to liver toxicity) is able to amplify the agonistic activity of endogenous 

LCFA by binding to a largely internal FFAR1 allosteric site [14]. The first published FFAR1 structure [15] located the bound 

TAK-875 enclosed between the top halves of TM3 and TM4 (Figure 1), with the carboxylic moiety pointing into a 

hydrophilic cavity partially buried from the extracellular bulk by extracellular loop 2 (ECL2). TAK-875 participates in an 

extended charge network involving R1835.39, R2587.35, E172ECL2, Y913.37, S1875.43, N2416.52, and N2446.55. The disruption 

of the E1454.64 - R1835.39 and E172ECL2 - R2587.35 salt bridges upon TAK-875 binding have been proposed as contributing 

to receptor activation [13, 16], and corroborated by mutagenesis data on Y913.37 and N2446.55 [14]. In 2017 Lu J. et al. 

[17] resolved FFAR1 in a ternary complex with the partial agonist MK-8666 and the agonist AP8 (Figure 1), revealing a 

second external binding site at the protein/lipid interface, which is responsible for the recognition of full agonists. While 

MK-8666 inserts in the same crevice and forms the same interaction pattern as TAK-875 (site A1 in Figure 1), AP8 

accommodates in a cleft shaped by TM3, TM4, and TM5 (site A2 in Figure 1), where I1304.49, L1334.52, V1344.53, and 

L1905.46 form a hydrophobic pocket for the terminal trifluoromethoxyphenyl moiety of the ligand and Y442.42, Y114ICL2, 

and S1234.42 anchor the carboxylate through polar interactions (Figure 1). A direct comparison between the binary 

FFAR1:TAK-875 and the ternary FFAR1:MK-8666:AP8 complexes shows TM4 and TM5 sliding approximately one-half of 

a helical turn in opposite directions to create a deeper cleft for AP8, which in turn stabilizes ICL2 in a helix conformation. 

The subsequent crystal structure of the binary complex between FFAR1 and the full agonist Compound 1 (Figure 1) 

bound to site A2 sheds further light into the cross-talk between the different binding sites [10]; it shows a rearrangement 

of site A1 in which D1755.31 inserts between R1835.39 and R2587.35 and moves ECL2 towards TM6 and TM7. This 

conformational rearrangement in the absence of partial agonists occupying site A2 prevents the formation of an 

additional proposed solvent exposed binding site between TM1 and TM7 (site A3 in Figure 1b) [15, 18]. 

In this complex scenario, endogenous LCFA are thought to bind to the site A2. An orthosteric binding site exposed 

to the membrane (site A2), responsible for full activation of the receptor, could have evolved along with a different 

structural mechanism of transduction, finely tuned by an allosteric communication network as intriguingly suggested 

by the absence of conserved class A structural motifs. Indeed, a chemical signal (the binding of LCFA) originating from 

the membrane, rather than from the extracellular environment (the case for almost all the other class A GPCRs) could 

underlie the FFAR1 divergence from the consensus structure, and the possibility of a 2:1 stoichiometry between LCFA 

and FFAR1 (with sites A1 and A2 both occupied simultaneously). 

Here we address the FFAR1 activation first describing a putative binding mechanism for the formation of the binary 

FFAR1:MK-8666 complex using supervised molecular dynamics (SuMD) simulations. To date, few ligands accessing a 

http:R2587.35
http:R1835.39
http:D1755.31
http:S1234.42
http:L1905.46
http:V1344.53
http:L1334.52
http:I1304.49
http:N2446.55
http:R2587.35
http:R1835.39
http:E1454.64
http:N2446.55
http:N2416.52
http:S1875.43
http:R2587.35
http:R1835.39
http:P5.50I3.40F6.44


            

                

             

     

         

  

 

               

            

               

   

GPCRs orthosteric site from the membrane have been addressed with atomistic unbiased simulations [19, 20]. Then, 

insights on possible interactions contributing to the allosteric communication between site A1 and A2 from equilibrium 

MD simulations performed on different FFAR1 complexes (Table S2) are presented. Finally, we applied a modified 

version of SuMD to simulate the MK-8666 unbiased unbinding from the binary FFAR1:MK-8666 and ternary FFAR1:MK-

8666:AP8 complexes. Overall, this study produces mechanistic working hypothesis on the allosteric regulation and 

activation of FFAR1. 

Figure 1. Allosteric binding sites A1 and A2 in FFAR1. (a) Chemical structure of the ligands co-crystallized with FFAR1; 

(b) binding sites of the different FFAR1 ligands: TAK-875 (green) and MK-8666 (yellow) bind to site A1, while the AP8 

(magenta) and Compound 1 (blue) bind to site A2 (surface representation). The receptor is shown in cartoon 

representation (PDB ID: 4PHU in green, 5TZY in light-blue, and 5KW2 in sky-blue). Binding site details of (c) site A1 with 



             

        

  

MK-8666 (yellow) and (d) site A2 with AP8 (magenta). The receptor (PDB ID: 5TZY) is shown in cartoon representation, 

while important residues are shown in stick representation. 



  

     

                 

                

            

            

             

           

               

          

     

        

                   

            

         

                

 

 

   

        

             

               

              

          

            

               

           

               

              

            

                

   

               

               

         

            

              

2. MATERIALS AND METHODS 

2.1. System Preparation for the MD 

Since FFAR1 is in the inactive state in all the available crystallographic structures (possibly due to the stabilizing 

mutations and the insertion of T4 lysozyme into ICL3 [10]), the intermediate active structure was retrieved from the 

GPCRdb website (http://www.gpcrdb.org) [21]. All the systems reported in Table S2 were prepared using a combination 

of High-Throughput Molecular Dynamics (HTMD) [22] and Tool Command Language (TCL) scripts. The disulfide bond 

between residues C793.25 and C170ECL2 was included. The receptor orientation was determined from the Orientations of 

Proteins in Membranes (OPM) database entry 5TZY (http://opm.phar.umich.edu/) [23]. The hydrogen atoms were 

added using PDB2PQR [24] and PROPKA [25] software (considering a simulated pH of 7.0) coupled with visual inspection. 

The receptor was embedded in a 85 Å x 85 Å 1-palmitoyl-2-oleyl-sn-glycerol-3-phospho-choline (POPC) bilayer using the 

Visual Molecular Dynamics (VMD) Membrane Builder plugin 1.1 

(http://www.ks.uiuc.edu/Research/vmd/plugins/membrane/) through an insertion method [26] with overlapping lipids 

removed (protein-lipid distance cut-off of 0.6 Å). The addition of the TIP3P water molecules to the simulation box (85 Å 

x 85 Å x 100 Å) was carried out using the VMD Solvate plugin v.1.5 

(http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/). Finally, sodium and chloride ions were added to neutralize 

the system and mimic an ionic strength of 0.150 M using the VMD Autoionize plugin 1.3 

(http://www.ks.uiuc.edu/Research/vmd/plugins/autoionize/). 

2.2. System Equilibration and MD Settings 

The equilibration and productive simulations were performed using ACEMD [27], employing the CHARMM36 force 

field [28, 29]. The ligands AP8 and MK-8666 (Figure 1) were parameterized in the CGenFF force field [30], with the 

exception of the AP8 rotatable C-O bond linking the trifluoromethoxy group to the fluorobenzene ring, and the MK-

8666 rotatable bond involving the carboxylic acid and the cyclopropyl ring. These dihedral terms were respectively 

optimised using HTMD parametrize [22] and the VMD plugin ffTK [31], after fragmentation of the molecule. 

The Langevin thermostat [32] (target temperature: 300 K; low damping: 1 ps−1; positional restraints on protein 

atoms: 1 kcal mol−1 Å−2) and the Berendsen barostat [33] (target pressure: 1 atm) were used for the equilibration in 

isothermal-isobaric conditions (NPT) through a four-stage procedure employing an integration time step of 2 fs. The 

following four-stage procedure was used. First stage: clashes between protein and lipid atoms were reduced through 

2000 conjugate-gradient minimization steps; Second stage: a 2 ns long MD simulation was run with positional restraints 

of 1 kcal mol−1 Å−2 on protein and lipid phosphorus atoms; Third stage: a 20 ns of MD simulation was performed 

restraining only the protein atoms; Fourth stage: positional restraints were applied only to the protein backbone alpha 

carbons, for a further 30 ns. 

Productive trajectories were computed with an integration time step of 4 fs in the canonical ensemble (NVT) at 300 

K using a thermostat damping of 0.1 ps−1. The M-SHAKE algorithm [34] was used to constrain the covalent bonds 

involving hydrogen atoms. A 9 Å cut-off distance was set for electrostatic interactions, with a switching function applied 

beyond 7.5 Å. All simulations performed are summarized in Table S2. The particle mesh Ewald summation method 

(PME) [35] with a mesh spacing to 1.0 Å was employed to handle long-range Coulombic interactions. 

http://www.ks.uiuc.edu/Research/vmd/plugins/autoionize
http://www.ks.uiuc.edu/Research/vmd/plugins/solvate
http://www.ks.uiuc.edu/Research/vmd/plugins/membrane
http:http://opm.phar.umich.edu
http:http://www.gpcrdb.org


 

   

                 

               

            

                     

        

         

              

      

             

            

    

            

                

   

                  

       

              

             

 

   

            

             

               

              

                 

                

                

          

                 

 

            

    

    

2.3. SuMD - binding 

The supervised MD (SuMD) [36, 37] is an adaptive sampling method that uses a tabu-like algorithm to monitor the 

distance between the centers of masses (or the geometrical centers) of the ligand and the predicted binding site, during 

short classical MD simulations. After each simulation, the distances (collected at regular time intervals) are fitted to a 

linear function and if the resulting slope is negative then the next simulation step starts from the last set of coordinates 

and velocities produced, otherwise, the simulation is restarted by randomly assigning the atomic velocities. This 

approach allows simulating the formation of intermolecular complexes in timescales that are one or two orders of 

magnitudes faster than the correspondent classical (unsupervised) MD simulations. Importantly, the sampling is gained 

without the introduction of any energetic bias. 

MK-8666 was placed about 30 Å from its binding site, at the extracellular water/membrane interface, and the 

resulting system was prepared as reported in section 2.1. The distance between the MK-8666 

(tetrahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridine-6-carboxylic) moiety and the FFAR1 centroid computed on 

residues F873.33 and F1424.61 (centroids distance) was supervised during successive 300 ns-long MD time windows. A 

single replica was run until the ligand reached the receptor, then, two different replicas were seeded (Replica 1 and 

Replica 2 in Video S1). 

AP8 was placed about 30 Å from its binding site A2, in the intracellular POPC layer, and the resulting system was 

prepared as reported in section 2.1. The distance between AP8 and FFAR1 (centroid computed on residues A983.44 and 

A993.45) was supervised during successive 300 ns-long MD time windows. No productive SuMD trajectories were 

sampled due to the presence of stable POPC residues at the FFAR1 site A2 (Figure S2). 

2.4. SuMD - unbinding 

Recently, the SuMD approach has been successfully applied to the unbinding of GPCR ligands [38]. In this study, 

giving the extended electrostatic network characterizing MK-8666 in the bound state, we have further modified and 

tested the protocol by supervising, besides the centroids distance, the number of water oxygen atoms that are within 

4 Å from protein atoms involved in hydrogen bonds with the ligand (Figure S3). At the end of each MD time window, 

the simulation was considered productive (and the MD was restarted from it) if the slopes of both the two plotted linear 

functions were positive, or the last centroids distance was longer than the one from the previous productive time 

window. Otherwise, the coordinates from the last productive MD time window were used and the velocities were 

reassigned. The general rationale for this water supervision is that the displacement of ligands strongly stabilized by 

ionic interactions should be facilitated if the hydration of protein hydrophilic spots interacting with the ligand is 

enhanced. 

Differently from the original SuMD binding algorithm, the length (Dt) of the short simulations performed increased 

along the unbinding pathway, according to the formula: 

∆𝑡 = ∆𝑡 𝑁𝑡# (1) 

http:F1424.61


                 

           

                 

           

	 	 	 	 	    

	 	 	 	  	 	   

 	 	 	 	 	 	    

	 	 	 	 	    

                

                

           

  

            

        

         

           

            

           

            

 

           

 

 

     

         

           

  

                

            

             

              

         

              

  

 

  

Dt0 is the duration of the very first MD time window and Nti represents a factor that is picked from three user-defined 

values (Nt1, Nt2, and Nt3), according to the last ligand-protein distance detected. Three distance threshold values (D1, 

D2, and D3) were set and the ligand-protein distance (rL) at the end of each MD run was compared to these threshold 

values, allowing a decision on the value of the Nti factor according to the following conditions: 

𝑟" ≤ 𝐷 → 𝑁𝑡# = 1 (2) 

𝐷 < 𝑟" ≤ 𝐷 → 𝑁𝑡# = 𝑁𝑡 (3) 

𝐷 < 𝑟" ≤ 𝐷! → 𝑁𝑡# = 𝑁𝑡 (4) 

𝐷! < 𝑟" → 𝑁𝑡# = 𝑁𝑡! (5) 

For the FFAR1:MK-8666 unbinding, the initial time window length was 100 ps, with Nt1, Nt2, and Nt3 set to 2, 4, and 8. 

Values of 10 Å, 14 Å, and 18 Å were used as D1, D2, and D3 distances. The goal of increasing the simulation time window 

(Dt in Equation 1) along the unbinding pathway is to facilitate the sampling of metastable states, which could otherwise 

be poorly visited. 

The unbinding was iterated until no ligand-protein van der Waals contact was detected by means of the GetContacts 

scripts tools (https://getcontacts.github.io). The ligand-protein distance and the number of water oxygen atoms within 

4 Å of protein donor/acceptor atoms were computed employing PLUMED 2 [39]. After each productive MD time 

window, the GetContacts script (https://getcontacts.github.io/index.html) was employed to detect and update the 

protein atoms involved in hydrogen bonds with the ligand, considering a distance of 3.5 Å and an angle value of 120° as 

geometrical cut-offs. Notably, if no hydrogen bond between the ligand and the protein was present at the end of a 

productive MD time window, then protein atoms involved in water-mediated or van der Waals interactions were 

considered. 

The FFAR1:MK-8666 and FFAR1:MK-8666:AP8 complexes were prepared for simulations as described in paragraph 

2.1. 

2.5. Analysis of the MD trajectories 

Ligand-protein hydrogen bonds and van der Waals contacts were detected using the GetContacts scripts 

(https://getcontacts.github.io/index.html), setting a donor-acceptor distance of 3.3 Å and an angle value of 150° as 

geometrical cut-offs. Root mean square deviations (RMSD), root mean square fluctuations (RMSF), and dihedral angles 

were computed using VMD [40]. Distances between atoms were computed using PLUMED 2 [39] or VMD. The 

MMPBSA.py [41] script, from the AmberTools17 suite (The Amber Molecular Dynamics Package, at 

http://ambermd.org/), was used to compute molecular mechanics energies combined with the generalized Born and 

surface area continuum solvation (MM/GBSA) method [42], after transforming the CHARMM psf topology files to an 

Amber prmtop format using ParmEd (ParmEd documentation at http://parmed.github.io/ParmEd/html/index.html). 

The Poisson-Boltzmann surface area (PBSA) was not employed to speed up the computation, i.e. the membrane was 

not implicitly modelled. 

2.6. General 

http://parmed.github.io/ParmEd/html/index.html
http:http://ambermd.org
http:MMPBSA.py
https://getcontacts.github.io/index.html
https://getcontacts.github.io/index.html
http:https://getcontacts.github.io


              

 

  

Throughout the text, the Ballesteros-Weinstein GPCR universal numbering [43] is used alongside the normal residue 

numbers. 



  

       

      

                 

                 

             

               

             

          

        

            

    

            

                   

            

               

           

            

           

             

  

 

3. RESULTS AND DISCUSSION 

3.1. Intermediate interactions between MK-8666 and ECL2 drive the FFAR1:MK-8666 complex formation 

The structural data indicates a probable MK-8666 binding route to site A1 between TM3 and TM4 (Figure 1), no 

further experiments have yet confirmed this. Indeed, an alternative path between TM4 and TM5 was not ruled out [15]. 

Overall, the SuMD simulations corroborate the first hypothesis, as a binding path between TM3 and TM4 (Figure 2) was 

sampled without any important steric barrier (differently from AP8 binding to site A2, Figure S2). From the unbound 

state, the ligand approached the FFAR1 extracellular vestibule from the bulk solvent, before moving to the 

membrane/bulk interface and establishing more extensive contacts with the receptor (Video S1). Metastable states 

(M1 in the energy landscape reported in Figure 2) were characterized by MK-8666 carboxylate hydrogen bonds with 

FFAR1 residue S157ECL2 and the backbone, while hydrophobic contacts were formed with L158ECL2, L171ECL2, W174ECL2, 

P803.26, and F1424.61 (Figure 2c,d). A conformational rearrangement of ECL2, with W174ECL2 acting as a sort of 

gatekeeper, allowed MK-8666 deeper into the receptor through the crevice between TM3 and TM4 to reach site A1, 

where it formed electrostatic interactions with R1835.39, R2587.35, and Y2406.51. FFAR1 ECL2, which is rich of hydrophilic 

spots, could drive also the binding of LCFA from the membrane, stabilizing and channeling the polar head groups toward 

the final bound state. Interestingly, SuMD binding trajectories showed the disruption of an ionic lock between R1835.39 

and E1454.64 upon binding of the partial agonist (Video S1); this ionic lock is one of the proposed switches for FFAR1 

partial activation [13, 15–17]. Mutagenesis studies pointed out the E1454.64 - R1835.39 and E172ECL2 - R2587.35 salt bridges 

as possible alternative molecular switches involved in partial agonists binding to site A1 and the inactive/active 

transition of FFAR1. Our results corroborate this hypothesis, as the simulated association mechanism of the partial 

agonists MK-8666 showed the rupture of the E1454.64 - R1835.39 interaction, and the partial break of the E172ECL2 -

R2587.35 ionic interaction, upon MK-8666 binding (Video S1). 

http:R2587.35
http:R1835.39
http:E1454.64
http:R2587.35
http:R1835.39
http:E1454.64
http:E1454.64
http:R1835.39
http:Y2406.51
http:R2587.35
http:R1835.39
http:F1424.61


 

          

         

     

            

 

     

           

      

            

        

       

                

              

                

           

                  

        

Figure 2. FFAR1:MK-8666 SuMD binding simulations. (a) Energy landscape showing the FFAR1:MK-8666 interaction 

energy during the recognition; the x-axis denotes the distance between the ligand and the receptor centroids; (b) MK-

8666 centroid positions colored according to the interaction energy with FFAR1; (c) a representation of the FFAR1:MK-

8666 interactions in the metastable states M1; (d) FFAR1 residues engaged during the simulated binding. 

3.2. MK-8666 and AP8 are reciprocally stabilized during MD simulations 

Simulations performed on the FFAR1 binary and ternary complexes (receptor bound to MK-8666 and AP8, Table S1, 

Table S2) highlighted several differences in the systems’ dynamics. Interestingly, MK-8666 bound to site A1 gained 

stabilization in presence of AP8 (site A2), as shown by the shift of interaction energy towards lower values and the 

decrease of RMSF (Figure 3). This stabilization could be ascribed to improved contacts with FFAR1 residues S773.23, 

P803.26, V843.30, located at the top of TM3, and L1404.59 (Figure 4). 

AP8, on the other hand, even though less influenced, was characterized by a RMSF decrease of the trifluoromethyl 

group (Figure 3b). This part of the molecule is in contact with the backbone of Y913.37, which possibly stabilizes the 

ligand in the ternary complex. A further comparison of the Root Mean Square Fluctuation (RMSF) between the different 

systems (Figure S4) indicates diminished flexibility of ECL2 and the top of TM4 upon binding of MK-8666, possibly 

influencing the site A2 and therefore AP8 stability. The AP8 interaction pattern in the ternary complex, compared to the 

FFAR1:AP8 binary one, was characterized by more contacts with L1895.45, L1905.46, Y144ICL2, Y442.42, P402.38, and fewer 

http:L1905.46
http:L1895.45
http:L1404.59


          

         

             

             

              

 

 

 

         

       

               

          

     

          

  

 

interactions with A923.38 and Y913.37. Interestingly, in the ternary complex MK-8666 formed transient hydrogen bonds 

with the latter residue, losing interaction with Y2406.51 (Table S3, Figure 4). 

In our model, the energy stabilization experienced by MK-8666 (Figure 3) in the ternary complex is putatively due 

to increased contacts with the top of TM3 and, to less extent, with TM4 (Figure 4). AP8, instead, formed better 

interactions with residues located at TM2, along with a general reorganization of the contacts with TM3, TM4, and TM5 

(Figure 4). 

Figure 3. Ligand RMSF (a,b) and GBSA energy (c) distributions. (a) MK-8666 RMSF comparison between FFAR1:MK-

8666 and FFAR1:MK-8666:AP8 complexes; (b) AP8 RMSF comparison between FFAR1:AP8 and FFAR1:MK-8666:AP8 

complexes; the RMSF values (a,b) were computed after superposing the MD trajectories on the initial ligand coordinates 

(blue atoms had lower mobility in the ternary complex, while red atoms had higher mobility). (c) MK-8666 GBSA energy 

comparison between FFAR1:MK-8666 (purple) and FFAR1:MK-8666:AP8 complexes (pink). The shift toward lower 

energy values (of about 10 kcal/mol) of the FFAR1:MK-8666:AP8 complex in the GBSA distribution plot (c) indicates the 

increase in stability of MK-8666 in the presence of AP8. 

http:Y2406.51


 

        

             

           

        

  

    

 

    

               

              

                

              

             

            

           

            

           

               

           

Figure 4. Protein-ligands contact differences between the FFAR1:MK-8666:AP8 ternary complex and the FFAR1:AP8 

(left) and FFAR1:MK-8666 (right) binary complexes. In this figure, the receptor is shown in cartoon representation. The 

colour indicates whether a given residue makes more contacts in the binary complex (blue) or more contacts in the 

ternary complex (red). The contact residues are P402.38, Y442.42, Y913.37, A923.38, Y114ICL2, L1895.45, and L1905.46 on the 

left, and S773.23, P803.26, V843.30, F873.33, Y913.37, L1354.54, G1394.58, L1404.59, V1414.60, G1434.62, E1454.64, G148ECL2, G149ECL2, 

W150ECL2, S157ECL2, L158ECL2, L171ECL2, A173ECL2, and Y2406.51 on the right. 

3.3. MK-8666 modifies the TM6 dynamic 

The main hallmark of the class A GPCR activation is the outward movement of TM6, which, in the resting position, 

is stabilized by the ionic lock between R3.50 and E6.30 that is common to many GPCRs [11]. In FFAR1 the basic residue 

K2196.30 (part of RRK motif) cannot take part in this inter-helix salt bridge with R1043.50. Moreover, TM6 in FFAR1 lacks 

the “toggle switch” residue W6.48, which strongly influences GPCR activation [44]; position 6.48 is 81% tryptophan across 

all class A GPCRs. Position 6.48 in FFAR1 is occupied by V2376.48, which lies just above the A2 binding site (Figure S5). 

The comparison of the V2376.48 dihedral angle distribution shows that the presence of AP8 bound to site A1 (binary 

complex FFAR1:AP8) changed the rotameric state of this residue (Figure S6) blocking a specific configuration, while the 

presence of MK-8666 favored a bimodal distribution. However, this conformational state of V2376.48 did not drive the 

overall flexibility of TM6. Indeed, as a general view, the presence of MK-8666 increased the FFAR1 TM6 flexibility (Figure 

5). While the apo receptor and the binary FFAR1:AP8 complex have a similar dynamic in this region, the partial agonists 

bound to site A1 led to a wider TM6 tilt. It follows that the apoFFAR1 and the FFAR1:AP8 complex appeared constrained 

http:V2376.48
http:V2376.48
http:V2376.48
http:R1043.50
http:K2196.30
http:Y2406.51
http:E1454.64
http:G1434.62
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compared to the FFAR1:MK-8666 complex. In the presence of both ligands (FFAR1:MK-8666:AP8 complex) TM6 

appeared more prone to outward movements, while in the FFAR1:MK-8666 complex TM6 experienced numerous closed 

conformations (Figure 5). This possibly facilitates the recruitment of intracellular effectors (Gi/11, Gs proteins, and b-

arrestins 1 and 2) as the TM6 outward movement is the key feature shaping the binding site of the cognate proteins. 
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Figure 5. Atom positions of the Cα atom of R2216.32. The position of R2216.32 (shown in sticks representation) was taken 

to represent the movement of TM6, which is implicated in activation. Plots (a) to (e) present the x and y coordinates of 

the Cα atom of R2216.32 respectively from (a) the apoFFAR1 (cyan), (b) the FFAR1:MK-8666 complex (yellow), (c) the 

FFAR1:AP8 complex (magenta), and (d) the FFAR1:MK-8666:AP8 ternary complex (blue). On the right, all systems are 

reported in the same plot (e). The triangle indicates the original PDB position of R2216.32 in each system, while the circle 

and the square illustrate the position of R2216.32 respectively in the closest and most open position of TM6 in the 

FFAR1:MK-8666 complex (b,f). TM6 is shown as a ribbon and colored according to the three positions previously 

reported (the triangle indicates the original PDB position of R2216.32; the circle and the square show the position of 

R2216.32 respectively in the closest and most open position of TM6 in the FFAR1:MK-8666 complex). 

3.4. AP8 influences MK-8666 unbinding from FFAR1 

The putative FFAR1:MK-8666 dissociation mechanism (Video S2), simulated using a modified version of SuMD, was 

sampled both in the presence and absence of AP8 bound to site A2. In both of these systems, the ligand left receptor 

site A1 following an unbinding pathway between TM3 and TM4 that resembles the binding pathway (Figure 6a). During 

the unbinding from the binary complex, MK-8666 made more contacts with residues F873.33, V843.30, L1384.57, G1394.58, 

V1414.60, F1424.61, and R2587.35, while in the ternary complex the partial agonist (MK-8666) engaged more resides located 

at the top of TM3 (A833.29, V813.27, P803.26, and S773.23) and on ECL2 (L1444.63 and L158ECL2), as shown in Figure 6c and 

Figure S7. This shift in the barycenter of the interactions favored the retaining of either one of the two electrostatic 

interactions with R1835.39 or R2587.35 during the early step of unbinding. In the absence of AP8, indeed, MK-8666 moved 

from the bound state straight to the metastable configuration M1 (Figure 6a,b), where it engaged R2587.35. In the 

ternary complex, instead, the ligand experienced several metastable states along the path characterized by the ionic 

interaction with R1835.39 (metastable states M2 in Figure 6a,b). Numerous stable states scattered between the bound 

state and the final unbound state of the FFAR1:MK-8666:AP8 complex suggest an influence of the full agonist on the 

dissociation path from site A1. 
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Figure 6. FFAR1:MK-8666 (site A1) SuMD unbinding simulations in the absence (left) and presence (right) of AP8 

bound to site A2. (a) MK-8666 centroid positions colored according to the interaction energy with FFAR1 in the absence 



         

             

              

               

  

  

(left) and presence (right) of AP8; (b) Energy landscape showing the FFAR1:MK-8666 interaction energy during the 

dissociation in the absence (left) and presence (right) of AP8. The distance is between the ligand and the receptor 

centroids; the receptor centroid lies about 20 Å below binding site A1. (c) FFAR1:MK-8666 interactions in the metastable 

states M1 and M2; (d) FFAR1 residues engaged during the simulated binding in the absence (left) and presence (right) 

of AP8. 



  

               

                

           

                  

             

           

            

                 

                

              

           

           

         

              

           

  

               

             

                 

                

                

             

       

            

            

          

       

             

           

               

           

                

              

             

                

 

4. CONCLUSION 

The present computational work addresses the activation of FFAR1 by allosteric ligands. FFAR1, which is involved in 

glycemic control, diverges from the other class A GPCRs as it presents several distinctive structural features. X-ray 

structures of FFAR1 unveiled the presence of two distinct binding sites, namely A1 and A2, responsible respectively for 

the binding of partial and full agonists, and in reciprocal allosteric communication, where site A2 is a novel site on the 

external lipid facing surface of the TM bundle. FFAR1 does not bear the conserved structural motifs NP7.50xxY, DR3.50Y, 

and P5.50I3.40F6.44, the highly conserved “toggle switch” W6.48 or the ionic lock between R3.50 and E6.30 that is common to 

many class A GPCRs [11, 12]. These characteristics, and the absence of a crystallized fully active reference state, ensure 

that the study of the FFAR1 activation mechanism is challenging. The pursuit of novel drugs able to tackle T2DM will 

increasingly consider FFAR1, as the structural knowledge of its activation and the allosteric mechanism is being unveiled 

by means of a plethora of different approaches. The X-ray crystal structures of FFAR1 paved the way for computational 

studies and rational structure-based drug design. This will likely lead to the development of new chemotypes capable 

to overcome the hepatotoxicity that prevented the approval of FFAR1 as therapeutics so far. 

Our findings about the binding mechanism of TAK-875 to site A1 from the lipid/water interface highlighted the role 

of the extracellular vestibule, and ECL2 in particular, is in line with observations for the other GPCRs, where ECLs play a 

fundamental role in ligands binding (and functionality), providing the first interactions and favorably orienting the 

incoming molecule prior to the orthosteric site [45, 46]. 

The allosteric cross-talking between FFAR1 sites A1 and A2 has created difficulties in classifying one of them as the 

orthosteric one. On one hand, site A1 is located within the TMD, consistent with the orthosteric site of other GPCRs, 

but trigger a partial activation, site A2, instead, is linked to a full activation but is located outside the TMD at the 

membrane interface as other GPCR allosteric sites characterized so far. Plausibly, in light of its exposure to the 

membrane, site A2 could be responsible for LCFA recognition under physiological conditions that are close to 

homeostasis, while the binding to the less (kinetically) accessible site A2 could take place when the local LCFA 

concentration increases. Intriguingly, the partial agonist TAK-875 is more effective in recruiting b-arrestins 1 and 2 than 

the endogenous ligands palmitate or oleate, which instead trigger coupling to the Gq/11 path [47]. Such deference in 

signaling profiles may underlie distinct metabolic regulation exerted by site A1 and site A2. 

According to MD simulations of the binary FFAR1:AP8 and FFAR1:MK-8666 complexes and the ternary FFAR1:MK-

8666:AP8 complex, TM3 and TM4 could be fundamental for the allosteric communication between binding sites. The 

simulations pointed out a possible role for Y913.37 at the interface between the sites A1 and A2 [48], as the presence of 

AP8 slightly favored the hydrogen bonding with the MK-8666 carboxylate, thereby stabilizing the latter. 

Focusing on other structural elements of FFAR1, TM6 showed variable degree of flexibility in the different 

complexes. As a general view, the presence of MK-8666 bound to site A1 increased TM6 mobility, with the greater 

flexibility occurring in the ternary complex FFAR1:MK-8666:AP8. In the FFAR1 crystal structures, H8 was not resolved. 

The lack of structure is likely due to the numerous glycine residues in the primary sequence of the receptor. Simulations 

confirmed this instability, as the modelled H8 was unstable and unstructured in the many MD replicas. However, a slight 

tendency to keep helicity was detected when AP8 was bound to A2, probably due to a general stabilization of the 

intracellular side of the receptor. 

http:P5.50I3.40F6.44


          

         

                

                  

        

             

               

            

  

 

  

Finally, SuMD unbinding of MK-8666 highlighted different mechanisms in the presence or absence of AP8. More 

precisely, the MK-8666 contacts with the top of TM3 were improved in the presence of AP8, and this may stabilize the 

ligand and hinder its dissociation, consistent with the slower dissociation rates measured for partial agonists in the 

ternary FFAR1 complexes [13]. For the first time, the SuMD protocol was extended to a second metric of the system, 

beside the distance between the ligand-protein centroids. This implementation could facilitate the unbiased simulation 

of the unbinding of ligands that, like MK-8666, are particularly stabilized by buried (or numerous) hydrogen bonds. 

In conclusion, this work delivered computational insights on some important aspects of the poorly known FFAR1 

activation and allosterism, providing a plethora of working hypotheses that we hope will be experimentally explored in 

future efforts. 
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LIST OF ABBREVIATIONS 

FFAR1 = Free fatty acid receptor 1
&

GPCR = G protein-coupled receptor
&

T2DM = Type 2 diabetes mellitus
&

LCFA = Long-chain free fatty acids
&

MD = Molecular dynamics
&

cMD = Classic molecular dynamics
&

SuMD = Supervised molecular dynamics
&

GIP = Gastric inhibitory polypeptide
&

TMD = Transmembrane domain
&

POPC = 1-palmitoyl-2-oleyl-sn-glycerol-3-phospho-choline
&

RMSD = Root mean square deviations
&

RMSF = Root mean square fluctuation
&

GLP-1 = Glucagon-like peptide 1
&

ICL1-3 = Intracellular loop 1-3
&

TM1-7 = Transmembrane 1-7
&

H8 = Helix 8
&

ECL1-3 = Extracellular loop 1-3
&
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