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Abstract 

Novel manganese (Mn) based antiperovskite material systems have been reported 

to have Temperature Coefficient of Resistance (TCR) in the range of +0.09 to +46 

ppm/˚C. Such extremely low values of TCR make these materials an ideal choice 

to replace existing thin film resistor systems like NiCr and TaN, which are reaching 

their current limit at ±5 ppm/˚C. These ultra-precise passive components find use 

in applications such as medical diagnostics, industrial automation and military 

systems, where they must maintain a stable resistance value across an extreme 

temperature range of -55 to +155 ˚C throughout their lifetime. 

Based on previous literature, Mn based antiperovskites: Mn3AgN, Mn3CuN and 

Mn3Ag(x)Cu(1-X)N were selected to be sputter deposited as thin films on alumina 

and glass substrates using industrial standard fabrication processes to enable 

future scale up of the developed material.  

The experiments within this project focus on fine-tuning key deposition parameters 

of nitrogen flow rate, temperature and pressure to investigate their effect on 

electrical properties of TCR and stability of Mn based antiperovskite thin films. The 

as-grown values of electrical properties are stabilised by finely tuning heat 

treatment temperature, time and environment. To assess the scope of 

improvement in electrical properties, Ag was partially substituted by Cu in the 

Mn3Ag(X)Cu(1-X)N structure. Sputter deposition parameters, heat treatment 

parameters and chemical composition were tuned to target resistive films with TCR 

values lower than ±5ppm/ºC and stability values closer to industry standard of 

0.05%. 

The lowest TCR value achieved for binary Mn3CuN films was +14.25ppm/˚C and 

this was improved to -4.66ppm/˚C by partially substituting Cu with Ag in the films 

to a composition of Mn3Ag(0.4)Cu(0.6)N. The best stability value of 0.57% was 

achieved for Mn3CuN and this value deteriorated with increasing content of Ag in 

the film. The Mn3CuN films also performed extremely well through the industrial 

fabrication stages, yielding a stable variation in TCR value of <±3ppm/˚C. This 

research is an important step in establishing the low TCR nature of Mn based 

antiperovskite materials suitable for industrial scale fabrication of thin film resistors.  
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“You never change things by fighting the existing reality. 

To change something, build a new model that makes the 

existing model obsolete.” 

 

― Buckminster Fuller 
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1.1 Introduction 

In a survey published by the IRE (Institute of radio engineers) in May 1962, it was 

mentioned that: 

“The factor common to all resistors, fixed and variable, which largely determines 
properties and performance, is the resistor element. It has therefore been the 
primary subject of significant investigations which fundamentally resolve into a 
search for new resistive materials. The evolution of the resistor field parallels 
this search.” (Marsten, J, 1962)[1]. 

 

And for the last six decades, the search for novel resistive materials has fuelled the 

research in the resistor industry and the same quest has enabled the 

manufacturers with expertise required to tailor make the properties of their finalised 

resistor product.  In an age where advanced technology makes it possible to fit 

millions of devices in a space no greater than a fingernail, it appears too trivial to 

dedicate a research work to develop resistors with enhanced properties. In general 

perception, it appears that a resistor could be developed by following the 

straightforward Ohm’s law. But contrary to the general perception, resistor 

technology has grown in a very rapid way, and the resultant products exist in 

various shapes, sizes and are very much application specific.  Today developing a 

resistor product takes into consideration the similar complex physical laws that 

govern the functioning and fabrication of an active device. With the size of portable 

devices shrinking rapidly, resistor technology has also embraced the ongoing 

miniaturisation trend to be at pace with rest of the circuit elements. In a period 

between 1991 and 1996, chip resistors reported an annual production increase of 

17%, from 125 billion to 230 billion per year, compared to an average annual 

increase of 5% for integrated circuits from 35 billion to 42 billion [2].  It is better to 

develop passive devices independently, rather than trying to integrate them along 

with active devices to compete for an already scarce real estate on the chip. 

Therefore, a steady demand along with the standalone nature of the resistor will 

be a motivation to conduct this research, to extend the properties of resistors 

beyond the current limits achieved. 

 

Resistors are an integral part of every electronic circuit and the properties of 

resistors required are very much application specific. For example, when a resistor 
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is employed as a temperature sensor, it is required to have a large temperature 

coefficient of resistivity (TCR) so as to sense the miniscule change in temperature, 

but to be employed as a component of a reliable current sensing circuit, a resistor 

is expected to have its TCR as close to zero as possible, so that the device doesn’t 

change its properties and results through its lifetime. 

 

Various technologies of resistor development provide solutions for this varying 

need of resistors. Resistor technology can be broadly classified into four types: 

wirewound resistors, metal foil resistors, thick film resistors and thin film resistor 

technology.  Each of these was developed during different time-periods in the last 

century, has its own strengths and weaknesses and still today specifically caters 

to provide a particular section of the resistor industry. Now the need for portable 

and ultra-precise devices for use in military, communication and scientific 

applications, calls for passive components with performance two or three orders of 

magnitude better than those used for conventional domestic and industrial 

applications. 

 

1.2 Background: A historical development of precision 

With the advent of radio and military requirements for World War 2, the immediate 

need for precise passive components was realised. With the passage of time and 

advancement in technology, this need became stricter in terms of precise 

resistance value without being affected by the ambient or device temperature.  

Therefore, encouraged by this, more and more research was dedicated to study 

the complex interactions occurring at the atomic scale, to extend the performance 

of resistor technologies further closer to the ideal value of zero TCR and stability. 

 

In the late 1940`s, wire wound resistors saw the introduction of new resin materials 

like epoxy and Si for protection from external elements, wires made of novel alloys 

of Ni-Cr-Al-Cu, careful heat treatment, careful construction, all resulted in  space 

saving, and increased temperature stability [1, 2], but these improvements in 

performance were not significant enough to provide a solution for very high 

precision seeking applications. 
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From the mid-1940`s to early 1970`s researchers were focussed on developing the 

performance of metal film resistors. Prominent among these were the works of 

Weber and Johnson [1945] to produce evaporated thin films of Nichrome on glass 

and Stein and Riseman [1954] to control TCR to any desired value very close to 0 

[1]. In 1962, metal foil resistors were introduced, in which resistance change in the 

film, due to thermal expansion of the substrate is adjusted in such a manner so as 

to compensate for the TCR of the film. But these values are not the inherent 

properties of the material and therefore materials with low inherent TCR were of 

great interest to the resistor industry. Metal foil resistors have developed 

significantly to offer performance increases, as required for high precision 

electronics, but they are not able to keep pace with the shrinking size requirement, 

as their superior performance depends upon compensation of TCR by thermal 

expansion. After the 1970s, advancement in technology led to a large number of 

researches in the field of thin film resistors. The bulk property of a material will vary 

significantly when it is deposited as a thin film. Performance of thin film resistors 

could be improved either by improving the existing material system and optimising 

process parameters or by introducing a new material system.  

 

Lots of research has been carried out to improve the existing material systems and 

to optimise the process parameters. Tantalum nitride or TaN is a well-established 

material in the thin film resistor industry and a lot of research has been conducted 

on studying the effect of deposition parameters and annealing conditions on the 

various properties of TaN films [3], including their unique property which makes 

them the best for protection against humidity [4]. TaN was reported to have a NTCR 

or negative TCR [4], and there are suggestions to use TaN combined with TiN 

which has a PTCR or positive TCR to compensate both TCRs and generate a 

NZTCR or near zero TCR material [4]. 

 

Chromium Silicon or CrSi is another well-known material, used specifically for its 

long life stability [5] and high sheet resistance value [6]. Air annealed CrSi gets 

oxidised and shows an increase of resistance and with increasing  concentration 

of Si the sign of TCR shifts from negative to positive [7].  Extremely low TCR values 
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of -6 ppm/°C (parts per million change in resistance per degree change in 

temperature) have been observed for cermets (generic name for materials made 

by combining ceramic with sintered metals) made from CrB2-Si-SiC [6] with sheet 

resistances as high as 1kΩ/□. 

 

Nichrome or NiCr is the most used and most researched material for TFRs. TFR`s 

based on NiCr have been studied for performance at extremely low temperatures 

of 50mK [8, 9], effect of Chromium concentration [10][15], optimisation of sputtering 

parameters [11], effect of annealing on Ni-Cr thin films [12, 13], effect of depositing 

on various substrates such as Al2O3/Copper and foil/Silicone/GaAs [12-15], effect 

of doping with other elements like Ti/Cu/Al/Ge etc. to modify crystal structure [8, 9, 

14], optimising other properties like strain sensitivity [16], developing TFR’s for 

microwave integrated circuits [15], effect of various fabrication process parameters 

[15], and interdiffusion between various layers in a NiCr based TFR [17, 18]. One 

advantage of such an extensive study on a single alloy is that it helps to verify the 

rules governing the electrical resistivity [8] and acts like a reference point for 

material systems investigated in the future. 

 

The implementation of some of the improvements and optimisations mentioned 

above has enabled the industry to set the standard it has today. Only a very few 

high precision thin film resistors in the range of 500Ω to 20KΩ exist in the market 

with TCRs as low as ±5 ppm/ºC. Some of the metal foil resistors offer better stability 

and TCR values, but to keep up with the miniaturisation of portable devices, it is 

very much necessary to develop thin film resistors to the standard of metal foil 

resistors. 
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1.3 Aims and Objectives 

 

The Aims of this research are as follows: 

1. Identify a novel thin film material system, which can be used to develop 

ultra-precision thin film resistors with the performance values equivalent to 

that of metal foil resistor technology. 

2. Develop a deposition process, which could validate the reliability and 

repeatability of the performance values of the thin films of this material 

system in a laboratory environment. 

3. Study the possibility of incorporation of this new material system to fabricate 

thin film resistors as a product on a commercial production scale. 

 

 The objectives of this work are to: 

1. Conduct an extensive literature search to gain an in-depth knowledge about 

the potential material system, which could be used to develop ultra-precise 

thin film resistors and establish a relationship between the performance 

values and the material system. 

2. Deposit thin films of the identified material and fine tune the process 

parameters to attain the following electrical characteristics: 

Sheet resistance     0.5 to 500 Ω/□  

    TCR (20ºC to 70ºC)    < ± 5 ppm/ºC 

3. Characterize the thin film developed under varying process parameters 

using identified techniques to develop a relationship between the observed 

results and the various process parameters. 

4. Verify the validity and repeatability of the results by producing initial batches 

of fully functional thin film resistors on a laboratory set up and study the 

feasibility of this material for commercial production set up. 
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1.4 Thesis outline 

 

Chapter 1: This chapter gives an introduction to the most important performance 

parameters of an ultra-precise thin film resistor followed by an overview of the 

fabrication process and material systems used to fabricate different components of 

a precision thin film resistor.  It will help to understand the need and importance of 

developing a new material for ultra-precision requirements. 

 

Chapter 2: The focus of this chapter is a systematic literature search conducted to 

identify a potential material system which is investigated further as a candidate for 

fabrication of ultra-precise thin film resistors. Mn based antiperovskite is identified 

as a material system with suitable resistivity range, extremely low TCR and stability. 

This literature search also reveals a potential gap in the research conducted to 

develop the Mn based antiperovskite thin film structure for its low TCR property. 

 

Chapter 3:  The aim of this chapter is to present in detail the capabilities of the 

deposition plant and heat treatment equipment present at Northumbria University. 

It explains the basic principles and the working of test equipment available for 

electrical, chemical, and morphological characterization such as Scanning Electron 

Microscope (SEM), Energy Dispersive X-Ray (EDX), profilometer and digital 

multimeter. Initial runs are performed on individual targets first followed by co-

sputtering mode. Thereafter the plant is set up to introduce Nitrogen into the 

chamber to perform reactive sputtering. As grown samples are then heat treated 

in air to investigate the effect of heat treatment on electrical properties. Results 

from these samples help to understand the basic role of individual elements in the 

alloy system and also helps to focus on some deposition parameters like power 

levels on each target, deposition time and thickness. 

 

Chapter 4:  Design of experiment to verify the proposed extremely low TCR nature 

of Mn3AgN and Mn3CuN antiperovskite structure is the primary motive of this 

chapter. Design of experiment (DoE) is executed by varying substrate temperature 

and Nitrogen flow rate to deposit thin films of these antiperovskite binary structures. 
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Electrical, structural and chemical characterizations are performed on samples 

before and after annealing heat treatment in N2. Samples are found to have 

acceptable sheet resistance and TCR values to be considered for further studies. 

However, stability figures are found to be no better than 11% for the thin film 

resistor fabrication. This could be improved with second stage of heat treatment in 

air 

 

Chapter 5:  This chapter investigates the potential to shift the TCR value of 

Mn3AgN closer to zero by partially doping with Cu. Seven compositions are 

prepared ranging from 100% Ag to 100% Cu by incrementing 0.2% atomic 

percentage of Cu in each step. A secondary stabilization heat treatment is 

introduced to improve the stability value. The TCR value of Cu rich 

Mn3Ag(0.4)Cu(0.6)N is found to be the lowest, but stability is better at either end of 

the composition spectrum. Secondary heat treatment improves stability and 

Mn3CuN is found to have the best stability while still maintaining a very low TCR 

value. 

 

Chapter 6:  This chapter strives to find the possibility of improving the TCR and 

stability figure for Mn3CuN, studying the effect of deposition pressure condition. A 

set of samples for Mn3CuN is developed at 3µbar as previously, to verify the 

repeatability and reliability of the data set from the previous chapters. Two more 

set of Mn3CuN are deposited at 2 and 5 µbar. The results are found to be 

repeatable and reliable in the lower working pressure ranges for the Mn3CuN. 

Thereafter, a DoE is carried out to optimize the heat treatment environment to 

further tune the TCR and stability value of Mn3CuN films.  A small set of samples 

are laser trimmed, the next stage in TFR fabrication process, to access material 

potential for commercial application. 

 

Chapter 7:  Finally, this chapter concludes the thesis by summarising the main 

findings of the research and suggests a number of recommendations which could 

be useful to make improvements in the future work related to this area. 
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1.5 Original contribution  

Extremely low TCR was one among the inherent properties of the Mn based 

antiperovskite material system. But most of the works conducted to date were 

concerned with studying these properties and enhancing them in a bulk material 

system, and very few efforts were made to deposit them as thin films. As this 

material system is relatively new, no effort has ever been made to develop this as 

a potential material system for thin film resistor fabrication. This work has 

contributed towards exploring the potential of the Mn3AgCuN material system for 

precision thin film resistor fabrication. It includes fine tuning of sputter deposition 

parameters and heat treatment conditions to fine tune the electrical properties 

close to the values reported in the literature review. By comparing results, 

correlation between the deposition parameters and heat treatment conditions are 

made to the structural, chemical and morphological characteristics which dictate 

conduction mechanisms, thereby fine tuning the electrical properties. Resistive 

films of suitable composition are tested to validate the data collected from the 

project. 

 

1.6 Thin Film Resistors  

While other resistor technologies can compete with thin films in the dimension 

range of 0.127 to 0.254 mm, thin film resistors become the leading choice when 

high precision is required along with small device sizes below 0.127 mm [19]. 

Suitable sheet resistance, temperature coefficient of resistance (TCR), and stability 

of the resistance value during the lifetime are the main performance characteristics 

of thin film resistors. 

Performance Properties of a Thin Film resistor: 

 

Resistance Value: the nominal resistance value of a resistor as R, defined by 

Ohm`s law, only implies that the resistor in question will deliver the same value of 

resistance when the value of applied voltage V, or flowing current I, is changed, 

provided the temperature remains constant. 

     V= 𝐼 × 𝑅          (1.1) 
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In other words, the resistance value of a resistor depends only upon the material 

and its dimensions, at a constant temperature, and is not determined by the amount 

of current or voltage [20]. 

                   𝑅 =  
𝛲 ×𝐿

𝐴
     (1.2) 

Where, 𝛲, is the resistivity of the material, L is the length of the resistor, A is the 

cross section of the resistor, given by A = W × d (assuming the thin film deposited 

bears resemblance to a thin rectangular surface), W is the width of the resistor, d 

is thickness of the resistor 

So the ratio of length to width could be used to visualize a thin film resistor as to 

be made up of number of square sections, 𝑛: 

        𝑛 =  
𝐿

𝑊
     (1.3) 

Resistivity is an inherent property of the material that quantifies how strongly a 

given material opposes the flow of electric current [21] and hence it finds more 

relevance in a research domain where a new material for resistive applications 

needs to be developed. For the design of thin film resistors, sheet resistance is the 

term usually used, which relates this inherent material property to a process 

parameter d, which is the thickness of film, as follows: 

     𝑅𝑠 =  
𝛲

𝑑
     (1.4) 

Sheet resistance is represented as Rs or R□ and quoted as “resistance per square”, 

and in effect conveys the resistance value of a thin square film of material 

deposited by the process. The Resistance value of the overall resistor could in a 

practical sense be attained by multiplying the number of squares in a resistor 

having this unique sheet resistance: 

     𝑅 = 𝑛 × 𝑅𝑠     (1.5) 

In this way resistance value can be expressed in a way which is independent from 

the physical dimensions of the device. So resistivity and sheet resistance are the 

two basic performance parameters to consider while developing a new material for 

thin film resistance. 
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The specified resistance value of the resistor could change depending upon 

various factors like the surrounding temperature, its age, storage environments and 

frequency of applied voltage. Some of these changes are temporary and some are 

permanent in nature. 

 

Temperature Coefficient of Resistance, TCR: is used to represent the change 

in the resistance value as a function of changing temperature. It is most commonly 

denoted by the Greek letter α, expressed as parts per million or ppm/ºC, over a 

specified temperature interval, and is given by the formula [20-22]: 

    𝑇𝐶𝑅, 𝛼 =  
𝑅𝑠−𝑅𝑓

𝑅𝑠(𝑇𝑠−𝑇𝑓)
                                            (1.6)         

Where 𝑅𝑠 is the resistance value measured at starting temperature 𝑇𝑠 and 𝑅𝑓 is 

the resistance value measured at final temperature 𝑇𝑓. 

 

When a resistor dissipates power, its temperature increases and on a crowded 

circuit layout with high power dissipating components, ambient temperature can 

easily reach 70ºC. Varying temperature can result in physical, chemical and 

structural alteration within film of a resistor and it affects the number of electron 

collisions and conduction mechanisms  occurring within the thin film material and 

in turn varies the value of resistivity [20, 21]. Additional scattering processes at the 

surface start to contribute to this when very thin films of material are considered. 

TCR tracking is another term commonly used in data sheets to specify the TCR 

variation of two resistors grown under identical conditions and placed under similar 

environmental factors. TCR tracking appears to be almost one or two orders better 

than TCR, and is often mistaken for a superior performance, when it is only 

representing the ability of one resistor to track the TCR of another resistor grown 

under the same conditions. For applications requiring a high standard of 

performance, as in military applications, the TCR of resistors are tested using MIL-

STD-202 Method 304, over the full military range of operation from -55ºC to 125ºC 

[22]. Whereas, for general purpose applications TCR is generally quoted for the 

temperature interval of 20ºC to 70ºC. While the changes in resistance value 

introduced by variation in temperature are temporary and the resistance will return 
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to its original value when temperature reverts, there are a few possible scenarios, 

which can introduce permanent change of resistance value. 

Stability: during its lifetime of operation, a resistor is subjected to varying 

environments like humidity, temperature, and chemical interaction in its 

surroundings and these interactions bring a permanent change in resistance value. 

In addition, more permanent changes are introduced as the resistor ages. Thin film 

materials like Nichrome have higher performance than Tantalum nitride but are 

observed to have poorer stability results, and have forced the industry to either 

settle with  these lower performance characteristics in harsh environments or to 

develop expensive specialised passivation methods to protect NiCr films [23]. 

Stability of the film is one key performance factor, which determines if a newly 

developed material could find potential application in the thin film resistor industry. 

Stability of thin film resistors are determined by subjecting them to elevated 

temperatures and moisture content, varying from standard to standard, for 

extended durations of time to measure the change in resistance value. Stability 

could be expressed as parts per million changes to original value or as a 

percentage change in the resistance value [24]:  

    
∆𝑅

𝑅
 (𝑃𝑃𝑀) =

𝑅𝑓−𝑅𝑠

𝑅𝑠
                                                (1.7) 

Or as     
∆R

R
 (%) =

Rf−Rs

Rs
× 100  

Where Rf is the final resistance after subjecting the starting resistance value Rs, to 

the stability test.  

 

Along with these major performance characteristics, there are other parameters 

which come into effect under special applications.   

 

Other performance parameters:  

Power rating is one term which is used to define the maximum power at which a 

resistor must be operated, to raise its temperature above an optimum temperature, 

commonly 70ºC to its zero power temperature. Figure 1-1 shows the zero power 

temperature of a thin film resistor, maximum temperature at which a resistor can 

be operated without excessive change in its value, generally given as 150ºC for 
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hermetically sealed resistors and as 125ºC for non-hermitically sealed resistor 

products [22]. Thin film resistors are rarely put to high power application and 

compared to the typical design level of a precision network which can only sustain  

25W/in2 thin films can sustain power densities up to 200W/in2 without 

compromising their integrity [25]. Because of this, power ratings for thin film 

resistors are not as critical as for general purpose networks. Power ratings are 

generally shown as a power derating curve showing the increase of temperature 

with increasing power until it reaches the zero power temperature [26].  

 

 

Fig 1-1 A typical power derating curve of a thin film resistor. [22]. 

 

Parasitic capacitance and inductance could be ignored for low frequency 

applications but for high frequency applications, greater than 100 MHz, these 

effects must be considered and proper care must be taken while designing and 

fabricating the resistor to ensure close to ideal resistor performance of the product.  

The size of the resistor product and trimming are the two prime factors considered 

to affect the parasitic impedance [22]. Another performance parameter which only 

comes into effect at resistance values of mega ohms range, is the voltage 

coefficient of resistance or VCR, it is the change of resistance value with the per 

unit change in voltage. At mega ohm range, this value is typically 0.1 ppm/V [22], 

so for medium range resistor products as concerned with this project, this 

performance characteristic is not identifiable. For resistors with large dimensions, 

thermoelectric voltages  or thermoelectric potential (TEP) may be generated if their 

termination ends are at different temperatures, but because of the small size of thin 

film resistors and substrates effectively spreading out the heat, this value is 

typically less than 0.1 µV/ºC [22]  and can be neglected in this work.  
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Fabrication Process  

In wirewound technology, different resistance values are realised by varying the 

physical length and width of wire and in thick film technology, the individual 

proportion of the components are varied to achieve varying resistivity. Now thin film 

technology has a limited number of successfully established material systems, 

hence design concepts are used to adjust the conductive tracks to realise the need 

for varying resistor values. The sheet resistance of a material, discussed in the 

previous section, becomes very useful in the design phase of thin film resistors.  

From Eq 1.5                                                        

             𝑅 = 𝑛 × 𝑅𝑠      (1.8) 

The maximum value of resistance which can be achieved on a substrate surface 

is dependent upon the maximum number of repetitive squares, n, of sheet 

resistance Rs that could be drawn on it, which is defined by the aspect ratio 

possible by the patterning technique. Therefore, from Eq: 1.3                                                         

  𝑛 =  
𝐿

𝑊
     (1.9) 

Now the patterning technique limits the lowest possible width of line, w, which could 

be drawn on a substrate surface, and in turn pins the upper limit of the aspect ratio 

which can be achieved. To achieve higher resistance values, films of higher 

resistivity or higher substrate area or higher aspect ratio or a combination of these 

options should be realised. Design of a thin film resistor covers a board range of 

topics other than the physical design of resistor. It decides the optimum parameters 

for the thin film deposition, suitable heat treatment for stabilisation of the film, and 

proper trimming method for tight tolerances. 

 

As shown in figure 1-2 (a) and (b), wafers of the selected substrate are subjected 

to thorough cleaning by means of plasma and chemical agents. Dehydrating 

baking might be required to remove moisture content from the substrate surface. 

Removal of contamination from the substrate surface is a must to ensure the proper 

adhesion and integrity of the resistive film [27]. Cleaned substrates are then loaded 

into the deposition chamber maintained at high pressure of the order of 10-5 Pa. 

Sputtering is the most preferred vacuum deposition method employed to deposit 

refractory metals, and since most of  the established thin film resistor material 
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systems are of refractory nature, sputtering is considered as the most suitable 

deposition method for this industry [19, 27]. The chosen material system is 

deposited by means of a perfectly tailored recipe to control working pressure, 

RF/DC power, and substrate speed. Normally deposition is carried out with non-

reactive Argon ions, but in certain cases as in the  deposition of Tantalum nitride, 

the deposition environment is deliberately made reactive by the introduction of 

Nitrogen or Oxygen,  to deposit respective compounds [3].  Multiple cathodes are 

employed to deposit resistive and conductive films which are then subjected to 

photolithographic patterning to form resistive tracks and conductive contact pads. 

 

                                

Fig 1-2 (a) General process flow of TFR fabrication [2] (b) Photolithographic 
deposition of resistive and conductive layers on the substrate [27]. 

 

The patterned thin film resistor structures are then subjected to heat treatment to 

stabilise their properties. The crystal structure of the as-grown film structure has 

many micro-imperfections and vacancies and subjecting them to heat treatment 

brings in structural, and chemical changes in the film by elimination of these 

vacancies and micro imperfections [28]. Stabilization in air leads to formation of an 

oxide layer on top of films, which leads to rapid increase of resistance during the 

initial duration of stabilization, and then settle to the stable resistance value, as 

(b) (a) 
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shown in figure 1-3 (a). Annealing temperature and time should be carefully chosen 

as a longer duration at a higher temperature can result in agglomeration of film 

islands resulting in an exponential irreversible increment in resistance value and 

loss of desirable properties as shown in figure 1-3 (b),  [19, 29].  

 

 

Fig 1-3 (a) Stabilizing effect of heat treatment on 50 and 100 Ω TaN resistors on 
as-fired and polished alumina substrates [30] (b) Graph showing agglomeration 
resulting in irreversible increase of resistance at higher temperature (redrawn 

from source) [19]. 

 

During deposition, the deposition conditions vary slightly from resistor to resistor 

according to its placement on the wafer, and the resulting inaccuracy and variation 

of the resistance value is referred to as the tolerance value of a resistor and is 

generally of the order of ±10% of the total resistance value [27]. Trimming is the 

process applied to bring the tolerance value of a resistor to a tighter value. The 

ratio of trimmed resistance value to untrimmed one is known as the trim factor. 

There are many trimming methods developed like anodization, heat trimming, 

electrical trimming and mechanical trimming, but laser trimming is the most widely 

applied trimming method [25, 27]. An Nd-YAG laser of suitable power is used to 

vaporise the resistive layer with minimum penetration to the substrate layer below, 

figure 1-4 (a) [31].  Component position is determined using a vision system and 

then the laser beam is focussed and moved over the resistive layer. The process 

can be passive, in which the required resistor value is measured to stop the laser 

beam or it could be active in which the laser stops and measures a specified 

parameter of an existing measurement system like AC/DC voltage or frequency 

and repeats the loop until a set value differs from the measured [31].  Laser power, 
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Q-rate (repetition rate), trim speed and bite size are the critical parameters of a 

laser used to form most common patterns of  I, L,  and M shape cuts on the resistor 

film figure 1-4 (b) [31, 32].  

 

 

 

Fig 1-4 (a) Relationship between spot size, bite size, and overlap (b) Different 

trimming geometries introduced by laser on resistive film [31]. 

 

The next stage of TFR fabrication involves coating the resistive film with its alumina 

substrate in a resin encapsulation to protect it against the environment. Materials 

like TaN are self-passivating, which means that the oxide layer formed during the 

heat treatment will safeguard them during the interaction with external elements 

like moisture [30] but for materials like Nichrome, a separate layer of passivating 

film of polyimide is deposited to protect the resistive film from environmental 

conditions [27]. On a wafer scale production, the final step is the singulation of the 

individual chips by dicing the substrate and breaking it into individual resistors and 

attaching the outer termination contacts. The exact sequence of TFR fabrication 

may vary from manufacturer to manufacturer and depends on the finished format 

of the products. Thin film resistors are produced as chip resistor (Surface Mount 

Device (SMD) format) or as axial lead resistors (through hole format)  as shown in 

figure 1-5 (a) and (b) respectively.             

(a) (b) 
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Fig 1-5 (a) Samples of PFC series SMD type resistors (b) CAR series through 
hole precision metal film resistor (image courtesy of TT electronics Ltd.). 

 

Material Selection:  

Performance properties can be improved by tailoring the various steps of TFR 

fabrication but these improvements strongly depend upon the choices made for 

materials systems to be used for individual components.  Different components of 

a thin film resistor are shown in figure 1-6, and it is the combined effect of materials 

in all these parts which grants the final resistor product its performance levels.  

 

 

Fig 1-6 Schematic diagram showing parts of a chip type thin film resistor [33]. 

 

(a) (b) 
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So care must be taken to ensure proper selection of material for each to match 

with the performance of others. Proper material selection is the focus of this project, 

hence a detailed explanation will be made in the second chapter, but to provide an 

overall view of the TFR fabrication process, an introduction to the importance of 

material selection will be presented here.  

 

The substrate is the first material to be handled in a TFR fabrication process and it 

is used as a base to deposit the thin resistive film. Previously the substrate was 

seen only as a mechanical support to provide rigidity and surface adhesion, but to 

push the limits of electronic device performance it is required to consider many 

other factors previously overlooked. For example in metal foil resistors, substrates  

of comparatively smaller coefficient of thermal expansion than foil, are used to 

create stresses in the foil which results in negative TCR, to counter balance the 

positive TCR of the foil in the free state, to  produce near zero TCR resistors [2]. 

Similarly surface roughness is reported to have an effect on sheet resistance, 

stability and TCR [19].  Surface smoothness, coefficient of thermal expansion, and 

surface uniformity, are some of the important substrate properties which bear an 

effect on the performance of thin film circuitry formed on them [27]. While 

mechanical strength, thermal conductivity, chemical inertness, electrical resistance, 

and cost, are some of the properties which decide if a particular substrate would 

be able to withstand the manufacturing process. The choice has to be made 

keeping in mind the effect substrate properties will have on the thin film but also on 

the ability of the substrate to pass through the manufacturing process. There does 

not exist one substrate for all thin film applications, but rather it is a choice made 

upon the acceptable compromise of these properties satisfying the need of the 

specific application. Alumina, glass, beryllia, aluminium nitride, silicon and metals 

are some of the commonly used substrates, and of these, alumina is the most 

commonly used substrate in thin film resistor fabrication. 

 

The resistive material is the functional material system on the thin film resistor 

product, and hence the most important because all the other decisions from 

substrate material to deposition process, up to storage are made to work for the 

choice made for this resistive film. Most of the performance parameters discussed 
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in the previous sections are inherent properties of the material system chosen; they 

are fine tuned to the limits by strictly controlling the fabrication steps. There are 

many microstructure defects like dislocations, vacancies, interstitials, grain 

boundaries, impurities, island structures, agglomeration, etc., brought during the 

deposition. Material systems exhibit very different and generally preferential 

properties when deposited as thin films, because many of these defects which 

were dormant and hence ignored at bulk level, become dominant and effective 

when film thickness is comparable to their size.  

 

Material systems successfully tried out in the resistor industry could be categorised 

under three classes: single metal system, metal alloy system and cermets [19, 34]. 

Tantalum nitride is the most successful example of single metal system, and is 

used to fabricate thin film resistors of very good stability in humid environments. 

Nichrome, an alloy of nickel and chromium is the most suitable and widely used 

example of a metal alloy system used to produce high precision TFR’s. Nichrome 

resistors lag behind TaN resistors in stability performance in humid environments. 

A good example of a cermet would be the Cr-SiO system, which is observed to 

have very high sheet resistance and shift the TCR sign from negative to positive 

with annealing. A lot of research and studies are already conducted to improve the 

performance of these materials. An ideal ultra-precision thin film resistor material 

system will have sheet resistance in the range of 10 to 300Ω/□ with inherent TCR 

close to ±5 ppm/ºC and very high stability and be easy to incorporate into the 

existing fabrication process.  

 

External environmental factors like humidity, temperature, and chemical agents 

affect the performance parameters of a resistor by degrading resistor tracks, as 

seen in figure 1-7. Hence, suitable protection must be provided to the thin film 

resistor to safeguard it from degrading under these conditions. Silicon monoxide is 

one such coating layer which is used to provide stability to Nickel-Chromium films 

under various atmospheric conditions. Polyimide is another material which is used 

to passivate Nichrome films to protect them under operating conditions involving 

higher load, humidity and temperature [35]. Specialised passivation techniques 

employed by manufacturers have the capability to drastically improve the stability 
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performance of Nichrome film resistors equal to or better than that of Tantalum 

nitride resistors [23]. Tantalum pentoxide, Ta2O5 is formed during anodization of 

tantalum films and acts as a protective layer. The most important requirement for 

a protective coating and its application process, is that it should not interfere with 

the performance of the resistive film [27, 35]. 

 

 

Fig 1-7 Microscope image of film resistor showing degradation of tracks [23]. 

 

Normally three different layers of material are deposited to provide external 

electrical contact to the resistive film. It is preferred to deposit the first or inner 

conductive layer after depositing the resistive layer to avoid the thinning of the 

resistive film at the step formed between conductive layer and substrate [19]. The 

Inner conductive layer ensures proper connection of external solder to the resistive 

thin film. Gold-platinum, palladium-gold and palladium-silver are some of the 

material systems commonly used to form the inner conductive layer [2, 36] where 

platinum or palladium ensures proper adhesion of the film, gold/silver provides the 

conductive nature of this layer. A thin layer of Nickel is generally used as a middle 

level termination or barrier layer to prevent diffusion between the contact pad and 

inner conductive layer [37, 38]. This layer also helps the films to withstand the wire 

bonding process [27]. Tin (Sn)-Lead (Pb) alloy or gold (Au) is the preferred 

termination finish provided by most manufacturers. Contact materials are exposed 

to external environments on a regular basis. This is of major concern when the 

external environment contains reactive agents like sulphur. Because of its greater 

affinity towards silver, sulphur can leach through external wrap around terminations, 

react with the silver present in the Pd-Ag contact layer to form silver sulphide and 

result in an open circuit [39]. For this reason, products like the WIN series resistors 
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from TT Electronics are manufactured with anti-sulphur terminations made by 

properly chosen material provides adequate protection. 

 

1.7 Summary  

It is evident from this introduction that performance parameters of thin film resistors 

depend upon the material system chosen and the fabrication process employed to 

bring these individual components together. Table 1-1 provides a summary of 

different material system used in various parts of a thin film resistor. 

 

Table 1-1 Material systems employed in a typical TFR fabrication 

Component Material systems available 

Substrates Alumina 

Resistive films TaN, NiCr, Cr-SiO 

Protective coatings SiO, Polyimide, Ta2O5 

Contacts Inner Pd-Ag, Pd-Au, Pt-Au 

Middle Ni, Cr, Ti, 

External Sn, Sn-Pb, Au 

And choosing the right resistive material is the most important and the one which 

brings the revolutionising change in the performance parameters. NiCr and TaN 

have been in existence for a long time and are reaching their performance limits. 

Only limited improvement could be achieved by trying to optimise the fabrication 

process and choosing suitable supporting materials. There is an increase in 

demand for higher precision passive devices for accurate current measurement in 

medical (e.g. diagnostic equipment like MRI operating at high temperature), 

industrial (e.g. automation control circuits working under high temperature within 

industrial settings) and military and aerospace (e.g. precision guided Unmanned 

Aerial Vehicles and weapon systems). Therefore, it could be lucrative to keep 

researching and modifying the already existing material systems and fine tuning 

process parameters, but the interest to explore a new novel material system to 

develop thin resistive films, with better performance parameters needs to be taken 

further. It is therefore a big challenge to identify a novel material which could be 

fine-tuned beyond the limits of the already existing material systems whilst also 

being suitable for scale up for volume production.  
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CHAPTER 2 Literature review
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2.1 Introduction 

A basic literature search on thin film resistor returns a high volume of work 

published on resistive materials used in the fabrication of these devices and major 

developments in fine-tuning their properties, most of them on the established NiCr 

or TaN or CrSi systems. But there were also some notable attempts to develop low 

TCR property by exploring novel material compositions like co sputtered SiO2-Pt 

[40],  TiNxOy [41], CuAlO  [42], Ruo2-Tio2 [43],Ta3N5-Ag [44] etc. However, most of 

these works were not able to extract any property better than NiCr.  

 

2.2 Manganese: A starting point in the search 

A further literature review for material with low TCR property revealed Mn based 

alloys like Zeranin and Manganin, which had extremely low TCR values and were 

in the same resistivity range as NiCr. Material data sheets published by precision 

material supplier Isabellenhütte shows a very low value of ±10ppm/ºC for Manganin 

(an alloy of Mn:Cu:Ni = 12:86:2) and Zeranin (an alloy of Mn:Cu:Sn =7:90:3). 

Another product from Isabellenhütte called Noventin (a Cu:Mn:Ni ratio of 65:35:10) 

is also reported to have very low TCR of ±10ppm/ºC [45-47]. This caused particular 

interest in low TCR behaviour of alloys having Manganese and Copper 

constituents.  

 

Some of the earliest attempts to make thin film resistors out of Mn and its alloys 

were made in the late 1960s and 1970s. Hammond et al 1968 [48] and  Olumekor  

1977 [49] independently, make mention of achieving high resistivity and near zero 

TCR films by flash evaporation of mixtures containing cermets containing 

Manganese. It was Angadi et al (1984) who conducted a systematic study about 

the low TCR nature of pure Mn films and observed that they showed a near zero 

TCR of 30ppm/ºC with a fairly good stability of resistance value while having a 

resistivity in the range of 400 µΩ-cm [50]. Angadi`s group [51] believed that 

Manganese could be used as a new material system to fabricate TFR`s and 

claimed  these to be better than the tantalum based material systems employed by 

industry. Their work also claimed that the TCR value and adhesion of Mn thin films 
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could be improved by changing the deposition parameters like substrate 

temperature. Their work further showed that Manganese thin films exhibit very low 

values of TEP (thermo-electric potential) which will contribute in the reduction of 

noise of junctions held at different temperatures. By adding a small layer, 50 nm, 

of SiO it was shown that resistance variation due to aging could also be reduced, 

hence improving stability. In summary Angadi et al. showed that pure Mn thin films 

have better resistivity, TCR and TEP, and lower cost when compared to tantalum 

films as shown in table 2-1. Another study performed by A.H. Ammar in 1996 [52] 

achieves similar results as Angadi et al. in 1984.  

 

Table 2-1 Table showing electrical properties for thin TaN and Mn film. 

Material 

Bulk 

Resistivity 

(Ρb in µΩ-cm) 

Film 

resistivity (Ρf 

in µΩ-cm) 

TCR 

(ppm/ºC) 

TEP 

(µV/ºC) 

Cost 

material 

(US$/g) 

Manganese 185 375 ±5 0.7 0.37 

Tantalum 13 180 ±100 -0.9 to 

+1.5 

1.5 

 

Current research being carried out at Northumbria University on Manganin based 

shunt resistors also suggests that Manganese based resistors have good stability 

and tolerance of resistance [53]. While these works give really good results 

supporting Mn thin films as a good material for thin film resistor fabrication, because 

of lack of further work from these or other authors, this work could only be taken, 

at best, as a milestone arrow pointing in the right direction towards narrowing the 

search for the material system suitable for ultra-precise thin film resistors.  

 

2.3 Introduction to the Perovskite structure: 

As discussed in chapter 1, alloying different metals in suitable proportions (NiCr) 

or depositing metals in a reactive environment (TaN) is seen to bring resistivity and 

TCR in a suitable range for thin film resistor fabrication. But further literature study 

has revealed a recent rise of interest among researchers for a structure called 

antiperovskite: X3AB [23], with repeated mention of thin films of this structure with 

Manganese having extremely low TCR [54]. Thus, this literature review will start 
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with an introduction to the much researched perovskite structure, and then develop 

its discussion to the antiperovskite structure that is obtained by exchanging the 

position of cations and anions in unit cell of the perovskite structure.   

 

Calcium titanate (CaTiO3) or Perovskite is a mineral, which was discovered in the 

Ural Mountains by German mineralogist Gustav Rose in 1839 and named after 

Count Lev Aleksevich von Perovski (1792-1856), a well-known Russian noble and 

mineralogist. Victor Moritz Goldschmidt, developer of Goldschmidt classification of 

elements, first described this structure in his work on tolerance factors in 1926 [55] 

and the perovskite name was given to a class of compounds with similar structure 

to that of calcium titanate CaTiO3. The general formula of Perovskite compounds 

are: ABX3, where A is a monovalent cation and B is divalent metallic cations of 

different sizes and the X site is occupied by a monovalent anion which bonds to 

both of them [56]. Goldschmidt described that stability of perovskite structures can 

be determined by the ionic radius of the individual species participating to form the 

structure by the following equation [56, 57]:  

 

𝑡 =
𝑅𝑎+𝑅𝑥

√2(𝑅𝑏+𝑅𝑥)
       (2.1) 

And axes of the unit cell can be given by:   

  𝑎 = √2(𝑅𝑎 + 𝑅𝑥) = 2(𝑅𝑏 + 𝑅𝑥)      (2.2) 

Where t represents Goldschmidt’s tolerance factor, and Ra, Rb and Rx represent 

the ionic radii of elements occupying A, B and X sites in the perovskite structure 

respectively. 

 

The shape of the unit cell for a perovskite is determined by the value of its tolerance 

factor. For a value above 1 the structure will be hexagonal, while for a value 

between 0.9 to 1 it will shift to cubic and for those between values of 0.71 and 0.9 

the shape will be orthorhombic or rhombohedral, and below a value of 0.7 another 

structure called Ilmenite will be formed [56-58]. Perovskites are of different types, 

like simple Perovskite , antiperovskite, inverse Perovskite, double Perovskite, and 
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double antiperovskite, according to composition and chemical interaction of the 

constituent elements within the compound [58]. 

 

Perovskite structures have been extensively studied because of their interesting 

properties like superconductivity, magnetoresistance, ionic conductivity and many 

others[59]. The Perovskite structure has found application in many research fields 

like solid oxide fuel cells, capacitors, optoelectronics devices, magnetic field 

detectors and sensors, and many more. However, photovoltaics is the subject for 

which perovskite structures have been extensively studied. Perovskite solar cells 

first made an appearance around 2009 with an efficiency of just 3.9% [60] but 

because of very high levels of interest in this material structure much progress has 

been made. One such example is Prof. Charles Chee Surya, of The Hong Kong 

Polytechnic University who, in 2016 developed a perovskite-Silicone tandem solar 

cell with the world’s highest efficiency of 25.5% [61]. 

 

As the name suggests the antiperovskite structure is realised by exchanging the 

positions of cations and anions in the unit cell of a perovskite structure. For 

antiperovskite, the X is an electropositive cation situated at the face of the unit cell 

cube with a coordination number of 6. While B represents a divalent anion at the 

octahedral positions at the unit cell corners and A is a small interstitial element 

forming a monovalent anion sitting at the centre of unit cell cube. Figures in 2-1(a) 

and 2-1(b) show this exchange of ions within unit cell between both the structures.  

Roughly a decade after perovskites were described by Goldschmidt, F.R Morral, 

in 1934 [62] described a cubic cell structure having heavy iron atoms at the cubic 

face and aluminium at the cubic corners with a trapped C atom in its cubic centre 

which is an antiperovskite structure.  The same formula for tolerance factor and 

unit cell size from perovskites applies to antiperovskite as well, and just like 

perovskites, the properties of antiperovskite depend greatly upon the individual 

elements of the structure and it can be fine-tuned by varying the concentration of 

constituent elements in the structure.  
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Fig 2-1 Simplified representation of cubic unit cell (a) perovskite structure (b) 
antiperovskite structure [54]. 

 

Despite having all these common factors and being introduced around the same 

time, research interest gathered very quickly for the perovskite structure while 

antiperovskites didn’t catch attention until late 1980`s. As of March 2018, a basic 

search on databases of peer reviewed literatures, like Scopus website, with the 

word “perovskite” returned a total of 1,80,006 documents with the earliest 

document recorded in 1934 (yearly rise represented in figure 2-2) and on a similar 

database from web of science website returned 62,501 documents with the earliest 

one recorded in 1970.  

 

 

Fig 2-2 Graph showing no of articles published on perovskite research since 
1920 on yearly basis. [Source Scopus] 
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The late rise of interest is evident from the number of documents found for the 

antiperovskite structure which is comparatively very low with 1411 documents from 

Scopus with the earliest recorded in 1989 (yearly rise represented in figure 2-3) 

and web of sciences with 390 documents with the earliest record in 1992. This 

gives a strong indication that study related to the antiperovskite structure is still in 

its infancy and this indication will be strengthened in further sections below. This 

will also form the basis for the original contribution to knowledge by supporting the 

fact that the antiperovskite structure has not been scientifically explored for its 

unique properties.  

 

 

Fig 2-3 Graph showing the no of publication related to antiperovskite structure 
since 1920 on yearly basis [source Scopus]. 
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2.4 Antiperovskites and their unique properties: 

According to Bilal et al. [58] there are two types of antiperovskites: group II- A 

based antiperovskites where the A site at the unit cell face centres are occupied 

by metals from group II, but these are mostly insulators or semiconductors. There 

is a second group of antiperovskite known as transition metal based 

antiperovskites in which a transitional metal occupies the face centre, and cubic 

corners are occupied by a metal or semiconductor element and the cubic corner 

by interstitial like C or N.  

 

2.4.1 Unique properties of the antiperovskite structure:  

These antiperovskite structures are reported to have functionalities such as: 

superconductivity (SC), giant magnetostriction (MS), large magnetocaloric effect 

(MCE), negative or zero thermal expansion (N or ZTE), giant magneto resistance 

(GMR), piezo magnetic effect, and near zero temperature coefficient of resistance 

(NZTCR) [54, 63]. Discovery of superconductivity in Ni3MgC by He et al [64] in 

2001 led to renewed interest in the properties of the antiperovskite structure. Since 

then many other antiperovskites have shown superconductivity like Ni3CuN [65], 

and Ni3CdC [66]. Giant magnetostriction is a property by which a material can 

change its shape when subjected to a changing magnetic field by realigning the 

micro magnetic domains without changing the actual volume of material. Because 

of this exchange between magnetic field and mechanical form, these materials are 

of importance for actuator and sensor application [67]. Giant magnetostriction is 

observed in Mn3CuN (up to 2000ppm) [68] and Mn3SbN (up to 1000 ppm) [69].  

The magnetocaloric effect is the thermal response of a material when subjected to 

a magnetic field. Developing a refrigeration system based upon magneto-caloric 

effect will help get rid of current refrigeration system which uses  ozone depleting 

chemicals [70]. Mn3GaC antiperovskite structures have shown very large 

magnetocaloric effect [71] and continued research in this field has led to the 

development of Fe3Sn1− x GaxC [72], (antiperovskite structure of Fe and Sn with Ga 

partially replacing Sn) with  relative cooling power or RCP of 3.22J/cm3 which is 

comparable to the RCP of Gadolinium (Gd) a naturally occurring element having 

high magnetocaloric effect. Most of the material expands upon heating, but 

materials which contract upon heating or those having negative thermal expansion 
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coefficient, would find a wide range of application from dental fillings to high 

precision optics [73]. antiperovskite structures like Mn3CuN, Mn3GaN and Mn3ZnN 

[74, 75] have shown very high NTE around -30ppm/K which is better than other 

well-known  NTE materials like ZrW2O8. Giant magnetic resistance is a property by 

which the electrical resistance of a material changes depending upon the magnetic 

field which realigns the magnetic domains in a parallel or antiparallel manner and 

can find application in magnetic field sensors and hard drive read heads etc. [76]. 

Mn3GaC and Zn doped Mn3GaC are reported to exhibit enhanced giant magneto 

resistance [77, 78]. 

 

2.4.2 Low TCR properties of the antiperovskite structure: 

Therefore, we can see that transitional metal based antiperovskite structures have 

many interesting and highly sought after properties. Manganese based 

antiperovskites are a member of this family and have unique properties for which 

this particular structure is well known. Near zero TCR experiments reported so far 

are based upon this family of antiperovskites. Low TCR behaviour is reported by 

the Mn3AN structure with Ni, Ag, Co, Zn, and Cu at the cubic corners represented 

by the flat nature of curves after magnetic reordering temperature Tc, in the figure 

2.4, [79]. Most of these experiments use Kelvin scale to represent lower 

temperature ranges as well, the dotted line represents the region of interest in 

Celsius scale lying between 0˚C and 70˚C required for this project. 

 

Fig 2-4 Graph showing the low TCR nature of members from Mn based 
antiperovskite family [79]. 
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Manganese –Copper antiperovskite structure:  

In 2001 Chi et al., reported a very low value of TCR for Mn3CuN, of around 46 

ppm/ºC which is two orders of magnitude less than their constituent elements and 

with a high value of resistivity between 2000-3000 µΩ-cm [80]. This work opened 

a new scope for antiperovskite material to be developed into standard and 

precision resistive applications. Chi et al observed a sharp drop of resistivity value 

around a transition temperature Tc, at which the magnetization data also showed 

a transition from a paramagnetic to ferrimagnetic phase. In addition, at this 

temperature the shape of the unit cell is seen to change from tetragonal to cubic.  

Moreover, after these transitions, the resistivity curve is seen to be independent of 

change in temperature see figure 2-5 (a). Another point observed by Chi et al. is 

that even though it looks like the low TCR nature coincides with rearranged 

magnetic alignment, the nature of TCR after realignment is independent of the 

surrounding magnetic field, and becomes an inherent nature of this material above 

its transition temperature Tc as seen in figure 2-5 (a).  

 

 

Fig 2-5 Graph of temperature dependent variation of resistivity for (a) Mn3CuN  
[80] (b) Mn3Ag(1-X)Sn(X)N, x representing the content of Sn in the film [81]. 

 

But when experiments were conducted by Ying Sun et al [82, 83], thin films of 

Mn3CuN exhibited a resistivity curve similar to a semiconductor material in which 

the resistivity was found to decrease with increasing temperature, unlike the bulk 

sample prepared by Chi et al., which exhibited the metallic property of increasing 

resistivity with temperature. A similar kind of magnetic transition from paramagnetic 

to ferromagnetic was observed by Ying sun et al (2011) in one of their films. Both 

(a) (b) 
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of these studies agree on the transition temperature for Mn3CuN structure (bulk or 

thin film) to be around 143K at which the structure starts showing low TCR nature, 

thereby making it suitable for room temperature applications. Deposition 

parameters like substrate temperature, target to substrate distance, partial 

Nitrogen pressure and total pressure can be used to fine tune the electrical and 

magnetic properties of these structures [83, 84].  

 

Manganese –silver antiperovskite Structure:  

Similar low TCR values are observed in Mn3AgN [81] with a TCR value of 102 

ppm/ºC  and a resistivity value of 154 µΩ-cm in bulk samples prepared by solid 

state sintering. Mn3AgN also shows metallic behaviour and increases its resistivity 

with temperature and its resistivity value shows a sudden independence above the 

transition temperature of 274K. The Magnetic transition from paramagnetic to 

antiferromagnetic phase is observed around 260K.  By doping this system with Sn 

or Zn it was possible to reduce the TCR value to 31 and 36 ppm/ºC respectively. 

The lowest value of 23ppm/ºC was observed in Mn3Ag(1-x)S(x)N with a value of 

X=0.4. These values were observed to be stable and reproducible as seen in figure 

2-5(b).  

 

Manganese-nickel antiperovskite structure:  

Mn3NiN is another member of the Mn based antiperovskite family which exhibit the 

metallic nature in bulk with resistivity in the region of 500µΩ-cm and very low TCR 

of 123ppm/ºC [85]. Magnetic transition for this material system occurs above 250K 

from ferromagnetic to paramagnetic phase. In thin films of Mn3NiN semiconducting 

nature was observed [86] unlike its bulk counterpart . A High level of MR effect (up 

to 31%) was observed in these thin films, which was also not found in their bulk 

counterpart. Similar differences in nature of resistivity change and MR effect were 

observed between thin films and bulk samples of Mn3CuN samples. Thin film 

characteristics of Mn based antiperovskite differ to a great extent from their bulk 

counterpart but most of the experiments conducted in this family of material system 

are mainly done on bulk samples [82, 86].  
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Ternary Manganese antiperovskite structures:  

The TCR results from binary antiperovskite films are still much higher than the 

required TCR of 5ppm/ºC to find application in the fabrication of ultra-high precision 

thin film resistors. Partial substitution of the transition metal by a third metal is seen 

to provide better control to fine tune these properties. For example by varying the 

partial concentration of Cu in the Mn3AgN system, K. Takenaka et al (2011) were 

able to achieve TCR values as low as 6ppm/ºC in a temperature range of 280K to 

322K having a resistivity value between 200 to 300µΩ-cm [79], see figure 2.6(a). 

It was observed that the Mn3AgN structure undergoes a transition from the 

paramagnetic phase to the antiferromagnetic phase at 280K whereas Mn3CuN 

exhibits a transition from paramagnetic to ferromagnetic phase at 143 K [87]. 

Moreover, since TCR also suddenly drops closer to zero at this point, it is expected 

that rearrangement of magnetic domains cause the extremely low TCR nature of 

this solid solution.  

 

Takenaka et al. were successful is achieving extremely low TCR values of 

0.42ppm/ºC for a resistive block of Mn3Ag0.6 Cu0.4N having a resistance value of 

0.88Ω [87]. T.Oe. et al. (2013) were able to supress the drift rate of  Mn3Ag0.7Cu0.3N 

samples to low values of 9.1µΩ/Ω/year by annealing at high temperatures and by 

use of proper contact materials [88].  Lei Ding et al in 2011 did the same experiment 

by partially substituting Ni in Mn3NiN by Cu thereby making Mn3Ni(1-x)Cu(X)N [89]. 

For a value of X=0.3 i.e. Mn3Ni0.7Cu0.3N a resistivity value close to 800 µΩ-cm and 

a TCR value of 22 ppm/ºC was obtained for a very broad temperature range of 

260K to 360K, figure 2.6(b). And for X= 0.5 i.e. Mn3Ni0.5Cu0.5N a TCR value of 0.09 

ppm/ºC is obtained within a temperature range of 300 to 330K for a resistivity value 

of 280µΩ-cm [89]. 
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Fig 2-6 Graph showing effect of ternary doping on TCR values of (a) Mn3Ag(1-

X)Cu(X)N [79] (b) Mn3Ni0.7Cu0.3N  [89]. 

 

While some experiments and results were available on thin film deposition of binary 

Mn3AN structures like Mn3AgN and Mn3CuN, no publications were found which 

contained experiments of ternary metal introduced into the Mn3AN system. All of 

the ternary depositions were performed on bulk samples made by solid state 

sintering [79, 87, 88]. In 2016, N.P.Lu et al., for the first time achieved a low TCR 

value of 20ppm/ºC in ternary thin films of Mn3 Ag(1-X)MnXN, for a resistivity value of 

250-350µΩ-cm. Mn4N can be seen as an antiperovskite structure of Mn3NMn, with 

Mn on both face centre and cubic corners. The Ternary film of Lu et al is achieved 

by replacing Mn atoms at the cubic corner which are weakly bonded with Ag atoms 

[90]. According to Lu et al., with increasing concentration of Ag, the conductive 

behaviour of Mn4N changes from metallic to semiconductor. For Mn3Ag(1-X)Mn(X)N 

this border between metallic and semiconductor state is observed at X= 0.81 and 

it is at this border where lowest TCR is also observed [90]. 

  

Despite all these previous experiments there are no unified and widely accepted 

theories explaining the low TCR nature of the Mn based antiperovskite structure. 

Most of the experiments performed on antiperovskite structure makes use of 

magnetic property measurement system (MPMS) to correlate the effect of 

changing magnetic domains orders with changing temperature on the electrical 

properties of these materials. It is obvious to believe that underlying physics 

change slightly with each element varying at the cubic corner or with partial 

substitution of elements at cubic corners. However, the presence of a low TCR 

(b) (a) 
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nature in so many Mn based antiperovskite structure stands for the fact that a there 

should be a very basic underlying principle which governs its existence irrespective 

of the changing element at the cubic corner. Some of the proposed theories for 

Low TCR behaviour of antiperovskite structures are:  

 

1. Temperature dependence of Carrier density and carrier mobility: Chi et al 

believed that a low resistivity slope (dρ(T)/dT) in combination with a large 

resistivity (ρ0) is considered to be the reason for the low TCR of Mn3CuN [80]. 

For Mn3NiN, it is explained as a delicate balance between carrier mobility and 

carrier density, (which are both temperature dependent) at the transition 

temperature being responsible for its low TCR [85]. And because of this 

dependence on carrier mobility and carrier density, Y.Sun et al believes that 

the low TCR nature relates to the outer electronic structure of the metals at 

the X sites (cubic corners) [85]. This relationship looks possible because all 

the three metals Ni, Cu and Ag lie adjacent to each other in the periodic table 

and hence have similar electron configuration.  

 

2. Restructuring of magnetic domains above the transition temperature: For all 

antiperovskite structures a sharp transition in physical and electrical properties 

is observed at the magnetic transition temperature, above which magnetic 

domain orders re arrange [54]. Lei Ding et al (2011) explains that in the 

Mn3NiCuN structure, resistance keeps increasing with increasing temperature 

because of long range order, and above the transition temperature this 

increasing magnetic domain disorder destroys the long range order, making 

the short range domain orders more effective [89]. This is understood that for 

long range orders, band structure are arranged so that transfer of electron 

from valance band to conduction band becomes easier and upon increase of 

temperature, these electrons collide with each other and increases resistance 

thereby showing PTCR effect. De Gennes and Friedel explained that the short 

range magnetic orders exhibit negative TCR [91] and thereby balance the 

positive TCR produced by the vibrating electrons, making the net effective 

TCR value of the overall structure closer to zero.   
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3. Resistivity saturation effect: In the resistivity saturation effect the mean free 

path of conduction electrons becomes shorter than the interatomic distances 

because of a collapse of quasi particles, and thereby inhibits further increases 

in resistivity with increasing temperature [92, 93]. For Mn3AgN, TCR is 

observed to reach its lowest value when resistivity is seen to approach its 

maximum value after its transition temperature, so the  resistivity saturation 

effect can be related to the low TCR nature [81]. This same phenomenon is 

believed to be at play in Mn3AgCuN, but the improvement of TCR value from 

102 ppm/ºC in Mn3AgN to just 6 ppm/ºC in Mn3AgCuN was ascribed to the 

partial substitution of silver atoms at the cubic corner by Copper atoms thereby 

optimizing the electronic structure close to the fermi level [79].  

 

2.4.3 Existing TFR material systems with Mn based AP structures 

Table 2-2 shows the comparisons of the electrical properties of established thin 

film resistor material systems like NiCr against members of the Mn based 

antiperovskite family. From the table one can observe that partially substituted Mn 

based antiperovskite structures have electrical properties suitable for high 

precision thin film resistors. Comparing the values of NiCr to Mn3AgCuN, one can 

clearly see the potential of the latter for resistive applications: similar resistivity 

range and better or similar TCR values. Since the primary motive of experiments 

conducted on the antiperovskite structure were not to develop a material suitable 

for the resistor industry, the stability figures are absent for most of them. However, 

the drift rate value for Mn3AgCuN is shown to be 9.1µΩ/Ω/year, which can be used 

as a very good indicator of stability during shelf life for a resistor product.  Though 

the certain composition (X =0.5) of Mn3NiCuN has shown  TCR values as low as 

0.09ppm/ºC [89], the inherent magneto-resistive nature of Mn3NiN will result in a 

resistive product made out of it to change its resistance value if a magnetic field is 

produced within an electric circuit and hence discourages its use in thin film resistor 

production [86].  
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Table 2-2 Table showing electrical properties of established TFR materials 

against members of Mn based antiperovskite family 

Material 

systems 

Nature 

of 

material 

Resistivity    

(µΩ-cm) 

TCR 

(ppm/ºC) 

NiCr[94, 95] Thin film 200-500 ±5 

TaN[96, 97] Thin film 242-1126 ±15 

Mn[49, 50] Thin film 375 ±5 

Manganin[46] Bulk 43 ±10 

Mn3CuN[80] Thin film 2000-3000 +46 

Mn3AgN[81] Thin film 140-200 +102 

Mn3NiN[85] Thin film 500 +123 

Mn3AgCuN[87, 88] Bulk 200-300 0.42-6 

Mn3NiCuN[89] Bulk 800 0.09-22 

 

As discussed in chapter one, NiCr, TaN, and Ru containing compounds are the 

industries favourite material systems for high precision thin film resistor fabrication. 

However, they have their own shortcomings. Virtually every chromium ore contains 

hexavalent ion Cr+6 and compounds containing this ion are regarded to be a 

genotoxic carcinogen [54, 98]. Chronic inhaling of this ion in the work environment 

can substantially increase the risk of lung cancer. Ruthenium is a rare earth 

element and hence increases the cost of production significantly. Hence, 

successful implementation of Mn based antiperovskite structure for production of 

ultra-precise thin film resistors will be a benefit in both an economic and 

environmental sense. 

 

Because of the relatively uncharacterized nature of the antiperovskite structure, 

much less information is available about the preparation and analysis of its thin film 

form. In addition, the information pertaining to its underlying physics that gives 

these unique properties is also not well known. This will be a new approach in the 

field of TFRs, to move away from the established material system and to 

experiment with a new one. Hence, it will be a challenge to narrow down the proper 

deposition parameters, data analysis and feasibility studies for its commercial 

application. 
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2.5 Methodology 

TT Electronics PLC, Bedlington, UK, is an innovative global electronics company, 

supplying passive components to world leading manufacturers in transportation, 

industrial, aerospace, defence and medical markets. TT Electronics PLC has 

joined in this project as a collaborative partner along with Northumbria University, 

Newcastle upon Tyne, UK, to develop a material system suitable to fabricate thin 

film resistors with very high precision and stability. The flowchart in figure 2-7 

shows a generalised version of the process flow followed by TT Electronics in their 

Bedlington facility to fabricate high precision chip resistors.  

 

Start 

1. Print, Dry and Fire rear and 
front conductor

2. Print and Dry Front Facing 
resistor mask

3. Plasma Clean and Sputter 
deposit the resistor film

4. Wash mask off the subs

5. Heat treat
1. N2 environment : time and 

temperature according to resistor 
material

2. Prolonged duration in air to 
stabilise

6. First Laser Trim 

7. Stabilise the film

8. Second Laser Trim

9.Print , dry and cure protective 
layers

10. Stripulate: break into strips

11.Coat and cure 
wraparound terminations 

12.Singulate into Individual 
chips

13.Plate termination 

14.Sorting, inspecting and 
grading

15.Testing and packing

Release 
product

 

Fig 2-7 Typical process flow for chip resistor fabrication [courtesy TT Electronics, 
UK]. 

 

The project is designed to be carried out on a small scale in Northumbria University 

facilities and in a way to stay as close to the original process flow engaged in the 

industry. This project aims to cover from step 1 up to step 8 of the commercial TFR 

fabrication process in Figure 2-7 to determine the most suitable composition of the 
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novel antiperovskite material system. This will make it easier to transfer the 

developed process on to a commercial scale later on.  Figure 2-8 shows the 

methodology (colour coded according to the chapters of this thesis) designed to tie 

in the three main stages of the project with its aim as discussed in chapter 1: 

 

1. Deposition and characterization of Mn3AgN and Mn3CuN binary thin film 

antiperovskite structure to investigate the low TCR nature of these structures. 

In this stage, it is aimed to identify proper deposition parameters to achieve 

results as mentioned in the literature search. 

 

2. Deposition and characterization of Mn3Ag(1-x)Cu(X)N ternary thin film 

antiperovskite structure by substituting Cu in Mn3AgN under the deposition 

parameters identified in first stage, to explore the possibility of pushing TCR 

values closer to zero, as found in  literature search.   

 

3. Test the response of the most suitable university developed thin film 

composition towards the commercial laser trimming process using the 

facilities at TT Electronics Bedlington, UK; to anticipate the expected final 

performance of the fabricated thin film resistors made with Mn based ternary 

antiperovskite thin film.  
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Project development of Ultra precise thin film resistor

Literature Review 

Material Procurement 

Thin film Deposition and charcterization 
systems set up

Suitable electrical 
properties.?

Modify Deposition 
parameters

Submit Project and thesis. 

No

Binary Antiperovskite film depostion: 
Mn3AgN and Mn3CuN

Tuning heat treatment temperature and 
treatment time duration

Suitable electrical 
properties.? 

Modify Deposition 
parameters

No

Ternary  Antiperovskite film depostion: 
Mn3AgCuN 

Tuning heat treatment temperature 
and stabilization treatment condition 

yes

Effect of pressure on most suitable  
composition, Tuning heat treatment 

environment

Response of material system 
commercial laser trimming process

 

Fig 2-8 Flowchart showing the stages as per performed in further chapters. 
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2.6 Summary 

The literature review conducted in this chapter has explained that the family of Mn 

based antiperovskite structures exhibit many interesting properties and extremely 

low TCR is one among them. The outcome of this review strongly favours a study 

of a Mn based antiperovskite structure, with Cu partially replacing Ag as a potential 

candidate for this project. This material system has a resistivity range similar to 

current material systems like NiCr and TaN, with better promise of TCR values.  It 

is also evident from this literature search that very few works exist which deal with 

the development of these structures for thin film resistor applications. Therefore, 

this will be a new approach for TFRs, to move away from the established material 

systems and to experiment with new ones. Binary films of Mn3AgN and Mn3CuN 

will help to narrow down to suitable deposition parameters. Ternary films of 

Mn3AgXCu(1-X)N developed from these results could be used to develop test 

samples helping to analyse the feasibility of this material system in the TFR 

industry. This new approach will potentially have rewards and risks of its own. 
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CHAPTER 3 Thin film deposition 

and characterization system



 

3-2 

 

3.1 Introduction  

 

As explained in chapter 1, the main objective of this work was to identify a novel 

material system with electrical performance values comparable to metal foil resistor 

technology, and study the deposition process suitable to produce repeatable and 

reliable results, which could later be incorporated into industrial scale production.  

In addition, from chapter 2, Mn based ternary antiperovskite thin film structures 

were identified to hold favourable electrical properties for use in precise thin film 

resistor fabrication.  

 

Bulk samples used in most of the above mentioned literature review  were 

produced by solid state sintering, mixing precisely calculated amounts of 

constituent materials (Mn2N, Ag/Cu) in the presence of a plasma or high pressure 

[79, 88, 99, 100], thereby creating the stoichiometric composition required for the 

antiperovskite structure. Whereas, to deposit thin films of antiperovskite structure, 

most of the groups have preferred physical vapour deposition like sputtering. Both 

RF [90] and DC [75, 82-84] sputtering have been used by various groups to 

produce thin film antiperovskite structures.  

 

A sputtering system is made up of many subsystems as shown in figure 3-1, of 

which primary importance are: vacuum system, target biasing system, substrate 

stage, gas inlet system and target cooling system. A vacuum system creates a 

vacuum environment inside the chamber in which controlled amounts of inert 

(Argon) or reactive (Ar+N2/O2 etc.) gas species are introduced by the gas inlet 

system. When biased, Argon is stripped of its outer electron creating Ar+ ions. The 

target biasing system biases the targets made out of the required material to be 

deposited. This accelerates the Ar+ ions towards targets and these ions on impact 

knocks out target material into the chamber environment and deposits them onto 

the substrate held by the substrate stage. The target gets heated up in this process 

and is cooled by the target cooling system. In addition, there could be other 

systems in place to perform additional functions like substrate rotation, substrate 

heating, in-situ measurements, etc. Understanding the capabilities and limitations 
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of the in house deposition system helps in better design of the experiments for 

further stages.  
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3.1.1 Deposition system:  

 

The depositions of binary and ternary samples were carried out in a Teer Coating 

UDP 350 multi-cathode sputtering plant. This deposition system had 4 magnetrons: 

two rectangular and two circular, with a target in each, see figure 3-1. Three of 

these magnetrons were configured for DC sputtering mode and one in RF or DC 

mode. The Teer Coatings UDP 350 lacks a load lock system, and multiple pressure 

gauges were connected to the main chamber using feedthrough valves. The 

pumping speed of the system was very slow and took approximately 24 hours to 

reach an acceptable base pressure range of 1 x 10-5 mbar allowing only one 

deposition per day. 

 

The substrates were loaded onto a substrate holder, as shown in figure 3-2, which 

were then attached to vertical poles of a circular carousal. The carousel was free 

to rotate on its axis, and in one rotation, the carousel exposed the substrate to 

plasma plumes from each of the four magnetron targets. The substrate to target 

distance using this carousel is 130mm. 

 

There were four gas inlets to the chamber to allow reactive sputtering. Mass flow 

controllers attached to each inlet provided precise control over the flow rate of each 

gas.  Argon was connected to gas line 1 and was the primary gas used for the non-

reactive sputtering. A supply of Oxygen or Nitrogen could be given to the second 

and third gas inlets, controlled by mass flow controller 2 as shown in figure 3-1, to 

allow for reactive environment in the chamber. The fourth inlet provides Nitrogen 

to vent the chamber to atmospheric pressure after deposition. 
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Fig 3-2 Cross-section diagram of inner arrangement of the UDP 350 plant 
showing vertically loaded substrate. 

 

3.1.2 Target Materials:  

 

In the publications related to thin films of the antiperovskite structure, it was found 

that the authors have used a Manganese disk as the primary target and then placed 

calculated amounts of Copper on top of this target to achieve the required atomic 

ratio of 3:1. However, for an investigative approach it was deemed better to explore 

a wider composition and then narrow down to the most suitable. For this purpose, 

having an individual target for each element provides room for flexibility and more 

control to fine tune the deposition rate of each target by varying its power setting. 

To manage the cost, it was decided to order smaller circular targets of Manganese 

and silver, and have a larger rectangular target of Copper. Testbourne Ltd were 

commissioned to manufacture a circular Manganese target of 100 mm diameter 

and 2 mm thickness with 99.95% purity (figure 3-3-(a)), a circular silver target of 

100 mm diameter and 3 mm thickness and 99.99% purity (figure 3-3-(b)). Copper 

was made as a rectangular target of 248mm by 133mm by 10 mm thickness with 

99.99% purity and positioning holes machined in pre-specified positions, (figure 3-
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3-(c)). The targets were loaded onto their respective magnetrons and then the 

water flow system was attached to the backing plates of each target, to maintain a 

steady flow of cold water to cool down the targets during operation. A tightly 

clamped magnetron with an O-ring between the target and magnetron ensures that 

a proper seal is maintained and no water vapour escapes into the chamber during 

deposition. 

 

  

 

Fig 3-3 Targets manufactured by Testbourne Ltd (a) circular Mn (b) circular Ag 
and (c) rectangular Cu in their magnetrons 

 

3.1.3 Substrate material:  

 

Soda lime glass (SLG) slides and pre scribed 96% alumina (Al2O3) wafers with 

screen-printed Ag conductor pads were used as substrates. Part of the conductor 

pads on the alumina substrates were screen-printed with an over glaze mask, 

which could be washed off with Isopropyl Alcohol (IPA) solution after deposition of 

(c) 

(a) (b) 
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the resistive thin film, as shown in figure 3-4 (a). The over glaze mask applied in 

this case is Okuno G1-1178 mask, which primarily consists of quartz sand mixed 

in a binder and colouring pigment. This mask ensures proper overlap of the 

deposited film with the conductor pad while leaving sufficient space for manual 

soldering of lead frames for electrical measurements after deposition. The alumina 

substrate was specifically designed for use within the university with larger 

individual chip size of 0.4 inch by 0.25 inch (10.16 mm by 6.35 mm, as seen in 

figure 3-4 (b), detailed dimension diagrams attached in appendix 1). The larger 

sized design was used in the University where soldering and TCR testing is carried 

out manually. Films deposited on soda lime glass were used for structural and 

chemical analysis. The glass slides were thoroughly cleaned in 1:5 ratio of 

DECON90 solution to water for 60 seconds, rinsed in deionised water and dried off 

with a Nitrogen blast to clean off residues and particles. 

 

  

Fig 3-4 (a) Image of university designed alumina substrate plate (b) Individual 
chip showing areas of film deposited on individual chip. 

 

3.1.4 Characterization equipment 

 

a. Electrical Characterization: 

Electrical properties like TCR and electrical stability are calculated from the 

resistance value; hence, precise measurement of resistance is very important. 

Generally, resistance values are measured by connecting the device across two 

probes of a multimeter. This is known as the Two-wire method. Most of the portable 
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digital multimeter (DMMs) employ this model, wherein the device under test (DUT) 

is connected to two probes of the meter as shown in figure 3-5. Because of the 

high impedance of the voltmeter, almost all of the source current goes through the 

probe and passes through the DUT completing the circuit [101]. Though the 

disadvantage of this technique is that the voltage Vm measured by voltmeter is the 

summation of resistance of the RDUT as well as the two lead probes (Rlead). Even 

though the Rlead values are small and considered negligible for high resistance 

devices or for most general purposes. Lead resistance value can range from 1Ω to 

10Ω. But for applications requiring measurement of accurate value of resistance or 

for resistance values smaller than 10Ω, this adds up-to a large error [101]. For 

example, two probes of 1Ω each when measuring a 10Ω device will give the result 

in total as 12Ω (R DUT plus 2 R leads), which equals to 20% error in the 

measurement. 

 

 

Fig 3-5 Two wire measurement technique showing the flow of source current 
through both Rleads and RDUT [101]. 

 

To avoid this limitation for precision applications or for low resistance devices, the 

four-wire method is preferred (see figure 3-6). It is also known as the 4-wire Kelvin 

method. As the name suggests, this technique employs 4 wires to measure the 

resistance value instead of 2. Two wires known as source leads are used to feed 

the current through the DUT, and two leads known as sense leads are used to 

measure the voltage drop across the device. And because of the high impedance 

of the voltmeter only a very small source current (of the order of 100pA) passes 
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through Rleads of the sense wires [101]. Therefore, for all practical sense the Vm 

measured by the voltmeter is equal to Vr. 

 

 

Fig 3-6 Four - wire Kelvin measurement technique showing the flow of source 
current through Source Rleads and RDUT, and Vr measured by Sense leads [101]. 

 

Using a four-wire measurement technique can improve the accuracy of 

measurement but equally important is the resolution of the meter used to measure 

the resistance values. For a DMM the resolution is the smallest unit of resistance 

that can be measured by the DMM. This is very important when it comes to TCR 

and stability calculations as a meter with an insufficient number of decimal places 

hinders the accurate calculation of these parameters. As shown in table 3-1, for a 

20Ω resistor as an example, one unit change on a DMM with 0.1Ω resolution will 

only give the ability to measure TCR values above 100ppm/ºC whereas on a DMM 

displaying up to a 4th decimal (100µΩ) can be used to calculate TCR as small as 

0.1 ppm/ºC. Industrial standard for stability on the other hand, is in the range of 

0.05% change in the resistance value, so a multimeter with 2 decimal places could 

be safely used to measure the resistance variation for stability purposes, but for 

precise TCR measurement a multimeter with capability to display more than 4 

decimal places is required. In this work, the resistance values are measured using 

an Agilent 3458A digital multimeter. The multimeter is able to display 7 digits 

excluding the decimal and can switch between 2 wire and 4 wire measurement 

mode. 
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Table 3-1 Table of TCR and stability measurement limits for multimeter resolution. 

No. of places 

after decimal 

1 unit change in 

resistance 

Lowest TCR measurable 

(ppm/ºC) 

Lowest Stability 

figure (ΔR%) 

1 20.0 to 20.1 100 0.5 

2 20.00 to 20.01 10 0.05 

3 20.000 to 20.001 1 0.005 

4 20.0000 to 20.0001 0.1 0.0005 

 

To measure TCR, it is required to have a suitable medium in which the resistor 

circuits could be subjected to accurate temperature changes. In real life, test 

circuits are encapsulated inside a resin protective coating and therefore, when the 

resistor is heated up during its operational lifetime, its resistive element is not 

subjected to the external environment. It is required that the medium in which the 

TCR test is conducted should uniformly heat the resistor surface and should not 

react with the resistive film itself.  Mineral oil is an excellent choice to mimic the 

increase in the temperature around the resistor while exposing it to minimal 

external elements during testing.  

 

To determine TCR, thin films deposited on alumina substrates are subjected to 

varying temperatures in a Grant LTC1 oil bath kit with GD120 thermostat. The 

Grant LTC1 kit has a 5-litre tank capacity. The GD120 is a general-purpose stirred 

thermostat that can uniformly maintain the temperature of the liquid (generally oil 

or low temperature liquid) anywhere between -30ºC and 120ºC. The thermostat 

has the capability to control and maintain temperature at 0.1ºC resolution. For the 

purpose of TCR measurement, the value is varied between 20ºC to 70ºC to mimic 

the real life circuit temperature and the real temperature measured with an 

externally calibrated thermocouple was within ±0.5ºC. The device was calibrated 

with 6 pre-tested standard resistors supplied by TT Electronics. Resistors from the 

MAR series of resistance value 1197Ω and 250Ω with very low TCR values (below 

5ppm/ºC) are used to test the capacity of the Grant LTC1/GD120 oil bath along 

with the Agilent 3458A multimeter, (see table 3-2). 
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Table 3-2 Calibration result for LTC Grant oil bath Kit with GD120 Thermostat 
and Agilent 3408A multimeter. 

Resistance 

Value (kΩ) 

Sample 

no. 

RTstart  

20ºC  

R Tfinal  

70ºC  

TCR 

(ppm/ºC) 

TCR from 

TT 

(ppm/ºC) 

1.197 

1 1196.966 1197.268 5.14 5 

2 1197.554 1197.620 1.12 1 

3 1196.771 1196.903 2.25 2 

0.250 

1 249.9967 249.9578 -3.2 -3 

2 249.9939 249.9513 -3.5 -3 

3 249.9965 249.9439 -4.3 -4 

 

It is seen from the calibration table that the Grant LTC1/GD120 with Agilent 3458A 

is able to successfully measure the low TCR value and can record resistance 

values with high precision up to 7 digits, irrespective of the decimal point. To 

measure the resistance value of thin films deposited on glass substrates, a Jandel 

4 probe head with Keithly 2602 multimeter is used. This is identical to a 4-wire 

measurement system but instead of two wires, 4 micro probes are lowered onto 

the surface of the thin films and used as a 2 source, 2 sense set up as previously 

described. To measure the stability, samples are loaded into the tube furnace set 

at 155ºC, in open-air environment. Resistance measurements are made every 24 

hours until 168 hours (7 days). The percentage change in resistance after every 

24 hour gives an indication of the stability of the resistance.  

 

b. Film Thickness:  

A profilometer is a device used to measure the variation in the Z-axis or thickness 

(d) of a thin film in the range of 50nm to 150µm. In simple terms, the profilometer 

is made up of two main parts: a sample stage and a detector, and the sample stage 

moves to slide the sample across the detector to make a Z-axis profile of the 

surface. The detection of Z-axis height could either be made by using a physical 

probe like a stylus tip as a detector of height or by a using  light to make an optical 

profilometry of the surface [102].  In a stylus profilometer, a physical probe is run 



 

3-12 

 

along the surface of the film to determine the surface height. A continuous feedback 

loop monitors the force by which the film surface pushes against the probe as it 

moves along [103]. This feedback is used to keep a constant torque on the probe 

thereby moving the probe arm as the height of the sample changes. This recreates 

the surface Z profile. While this method is extremely sensitive and gives excellent 

resolution of the Z value, the relatively hard probe can scratch the sample surface 

if it is soft [102-104]. 

 

The Dekatak XTL stylus type profilometer is set up with a 12.5µm tip. Because of 

its high Z-resolution, high sensitivity, ease of use and immunity to surface vibration 

the Dekatak XTL stylus profilometer was used for most of the experiments to 

measure the film thickness. A step is created by sticking a strip of kapton tape on 

the substrate, prior to deposition that is peeled away later. This creates a step of 

the exact thickness of the deposited film and which is then measured using the 

Dekatak XTL probe based profilometer. 

 

c. Surface topology:  

Optical microscopy struggles to reproduce images of structures smaller than 

500nm, because of white light reaching its diffraction limits. A scanning electron 

microscope (SEM) employs a beam of electrons, which has a much lower 

wavelength to capture images of nanoscale features [105]. In a SEM an electron 

gun produces a steady beam of electrons from a cathode in a column, which is 

accelerated and shape modified by a series of electromagnetic lenses [106], On 

interaction with samples this beam can either transmit through the samples without 

interaction or collide with the sample and be reflected back (as seen in figure 3-7). 

If the incident electrons collide with loosely bound electrons in the conduction band, 

then they will emit secondary electrons and this emission rate is highly sensitive to 

the height difference in the surface [105, 106].  
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Fig 3-7  Schematic diagram of electron beam interaction with sample [107]. 

 

Older generation of SEM`s used an Everhart-Thornley detector which converted 

the collected secondary electrons into flashes of photons, then multiplied them in 

a photomultiplier tube to create a 2-D image on a screen [106, 108]. Newer 

versions of SEMs employ a Si-Drift Detector (SDD) which measures the amount of 

ionization produced by the incoming charged species on a high purity Si screen, 

resulting in very high count rates and raster speed, thereby achieving high 

resolution images at higher speeds [109].  

 

d. Chemical composition:  

In 1968, Fitzgerald, Keil and Heinrich developed the idea of Energy Dispersive X-

ray analysis to study the element composition [105]. As seen in figure 3-7, element 

specific X-Rays are produced in an SEM if the incident e-beam knocks out an 

electron in the inner shell and an electron from outer shells has to fall down to fill 

this newly created vacancy [106]. The emitted X-ray is studied for its energy in a 

technique known as Energy Dispersive X-ray system or EDX.  The energy of this 

X-Ray is measured by a specially arranged Si-Li drifted detector [105, 106].  

Imaging of the samples was done by using a Mira Tescan system, equipped with 

an Oxford instruments X- Max 150 EDX detector.    
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SIMS or Secondary Ion Mass Spectroscopy is another instrumental technique used 

to analyse the elemental composition of solid thin films. It is one of the destructive 

analysis techniques in which an energised ion species (several KeV), commonly 

O2
+ or Ar+ is fired from an ion gun onto the sample surface, which on impact blasts 

out surface atoms and molecules from the thin film [110]. The ejected particles are 

detected using a mass spectrometer, which measures the mass of the secondary 

ions ejected. The most important advantage of SIMS is that it has very high 

sensitivity to most of the elements in the periodic table and hence can detect even 

the smallest amount of concentration. But the major disadvantage of SIMS is that 

the quantification of the SIMS result to get exact composition is not very reliable, 

hence SIMS is more suitable to develop a depth profile of elemental concentration 

across film thickness [110]. SIMS system assembled by Hidden Analytical 

equipped with IG20 type gun, and quadruple system based detector with 1-1000 

atomic mass unit (a.m.u) range is used for this work.  

 

e. Surface roughness:  

Different techniques are applied to measure the roughness value of substrates, 

which is usually in the range of 100s of nanometres compared to that of thin films, 

which are generally under 10 nanometres.  For substrates with higher roughness 

values, non-contact optical focus variation techniques can be used to create a 3-

dimensional image of the substrate surface from which surface roughness values 

can then be calculated [111]. This technique is suitable for non-reflective surfaces 

like alumina and transparent glass substrates. For this work, the Alicona Infinity 

focus with 10X lens is used to measure the surface roughness of the substrates.  

For thin film surfaces, atomic force microscopy (AFM) is a more suitable technique 

for measuring surface roughness. AFM makes use of a Silicon cantilever equipped 

with an ultra-sharp probe of 5-15 nm at its tip. The tip raster’s the sample surface, 

either in continuous contact or intermittently tapped. A laser reflecting from the 

cantilever onto a photodetector, measures the vertical tip movements and records 

them as a 3-D image of the surface [112]. AFM has very high resolution because 

of its small tip dimension and can be used to support the topology of film surfaces 

generated from SEM techniques. In this work, a Digital instrument DimensionsTM 
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3100 AFM system manufactured by Veeco Metrology group is used to measure 

and generate the surface 3D plots.  

 

f. Structural analysis:  

The same order magnitude of wavelength of X-rays as with the lattice parameters 

of crystalline structure causes the x-rays to diffract at the crystal planes. X-rays 

generated by the source material are made incident upon the samples surface, 

which after incidence get diffracted and form constructive and destructive 

interferences as per  Bragg`s Law [113]. These interferences produce a diffraction 

pattern and each material has its own standard diffraction pattern. The diffraction 

pattern generated in the system can be compared to the diffraction patterns saved 

for the same material in an international database by a committee known as the 

Inorganic Crystal Structure Database (ICSD) [114]. By comparing diffraction 

patterns, important information about the material can be developed like: preferred 

orientation of the crystals, grain size, internal strain and the lattice parameters [115].  

In this work, the diffraction patterns for materials are generated using a Siemens 

Diffraktometer D5000 system employing a Cu Kα radiation of wavelength, λ = 

1.54184 Å. The XRD measurements were made for a 2θ range of 20º to 90º in 

steps of 0.02º. The Patterns were analysed using Origin 8.1, graphing and analysis 

software from Origin lab and Fityk data processing and nonlinear curve fitting 

software. Figure 3-8 below shows the main diffraction peaks for Mn3AgN and 

Mn3CuN antiperovskite structures with corresponding miller indices.  

 

Fig 3-8 XRD pattern for Mn3AgN and Mn3CuN antiperovskite structure [116].  
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3.2 Setting up the deposition and characterization equipment: 

 

The next section will explain the procedures undertaken to understand the 

capabilities of the deposition system, Nitrogen inlet system, heat treatment furnace 

and characterization equipment. The flowchart in figure 3-9 shows the sequential 

set up of the Teer coating deposition chamber for individual target sputtering, co-

sputtering of two targets, co-sputtering in reactive environment and then setting up 

of the tube furnace for heat treatment of as grown films. The expected outcome 

from each stage is mentioned in the blue hexagon alongside.  

 

 

 

 Fig 3-9 Process flow showing deposition and heat treatment system setup. 
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3.2.1 Setting up the deposition plant to run individual targets: 

Firstly, it is necessary to establish the deposition rate of individual elements by 

sputtering them at varying powers and for varying times. This will help to 

understand the limitations of the deposition plant and to know the relationship 

between the power levels on the target to the deposition rate of each element. Thin 

films of individual elements were deposited on SLG substrates that were loaded 

on the carousel, set to rotate at a constant speed of 5rpm, and at a target to 

substrate distance of 130 mm. With 24 hours of pumping, a base pressure of 1.1e-

5 mbar was achieved. A working pressure of 3 µbar was reached by setting the 

flow of Argon to 30 sccm. The deposition parameters which were kept constant are 

listed in table 3-3 below. Mn was sputtered using RF power on magnetron 2, 

because of its reduced efficiency on DC sputtering mode as a result of its magnetic 

nature. DC power was used to sputter Ag and Cu on magnetron 3 and magnetron 

4 respectively.  Substrates were masked with high temperature kapton tape to 

create a step feature, which could be used to measure the film thickness later with 

a profilometer.  

 

Table 3-3 Deposition parameters for initial deposition in UDP 350 plant. 

Deposition parameter Value 

Base pressure 1.1 e-5 mbar 

Working pressure 3 e-3 mbar 

Target to substrate distance 130mm 

Argon flow rate 30 sccm 

Carousel rotation speed 5 rpm 

Substrate temperature none 

 

Twelve sets of depositions at four power levels of: 150W, 200W, 250W and 300W, 

in combination with three time durations of 30, 60 and 90 min as shown in table 3-

4, were performed to determine the sputter rate of the Mn target. Plotting the 

thickness of the film against the time duration for each power setting revealed that 
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the deposition rate of Mn is linear, see figure 3-10. Calculated deposition rates 

were 2.66, 3.39, 4.09 and 5.06 nm/min for 150, 200, 250, and 300W respectively. 

 

Table 3-4 Table of varying power and time to determine Mn sputter rate.  

Sample 

No 

Power in 

W 

Time in 

mins 

Thickness  

(nm) 

TC 278 150 

 

30 81 

TC 277 60 160 

TC 279 90 238 

TC 282 200 

 

30 102 

TC 272 60 206 

TC 273 90 308 

TC 281 250 30 120 

TC 276 60 248 

TC 280 90 375 

TC 294 300 

 

30 150 

TC 293 60 306 

TC 295 90 453 

 

 

Fig 3-10 Graph showing thickness variation for Mn with varying time and power 
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DC sputtering of Ag and Cu only allows the current to the magnetron to be 

controlled and calculates the corresponding power according to the target 

resistance. Nine sets of depositions were carried out for Ag (table 3.5), with three 

power levels of 50, 30 and 23 W with three time durations of 30, 60 and 90 mins. 

It was not possible to strike and sustain a plasma below 0.05 A. So the minimum 

power was restricted to 23 W. Plots of time versus thickness for Ag were also linear 

as seen in figure 3-11 and sputter rates were determined to be: 1.79, 2.35, and 

3.95 nm/min for 23, 30 and 50W power settings.  

 

Table 3-5 Table of varying power and time to determine Ag sputter rate. 

Sample No. Power in W 

(current in A) 

Time 

(minutes) 

Thickness  

(nm) 

TC 290 

23 ( 0.05 A) 

30 55 

TC 291 60 107 

TC 292 90 160 

TC 287 

30 ( 0.06 A) 

30 73 

TC 288 60 138 

TC 289 90 211 

TC 284 

50 ( 0.09 A) 

30 125 

TC 285 60 231 

TC 286 90 348 

 

 

Fig 3-11 Graph showing thickness variation for Ag with varying time and power 
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Twelve sets of depositions (table 3.6) with four power levels of 15, 55, 99 and160 

W and the same time durations of 30, 60 and 90 minutes were carried out for Cu.  

Plots of time vs thickness for Cu are also linear (see figure 3-12) and sputter rates 

were determined to be 0.60, 1.99, 4.73 and 6.95 nm/min for 15, 45, 99 and 160 W 

power settings. 

 

Table 3-6 Table of varying power and time to determine Cu sputter rate 
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Sample 

No. 

Power in 

W 

Time in 

minutes 

Thickness 

in nm Tc 354 15 

 

30 15 

Tc 353 60 35 

Tc 352 90 67 

Tc 351 45 

 

30 56 

Tc 343 60 126 

Tc 350 90 183 

Tc 349 99 

 

30 154 

Tc 344 60 283 

Tc 348 90 392 

Tc 347 160 

 

30 205 

Tc 345 60 422 

Tc 346 90 630 

Fig 3-12 Graph showing thickness variation for Cu with varying time and power. 
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It is evident from the figure 3-13, that the individual deposition rate of Mn is very 

slow when compared to Ag and Cu. Because of this difference in the sputter rates 

of the materials, to achieve the required 3 times atomic ratio of Mn to Ag or Cu, it 

becomes very necessary that the deposition system should be used at the 

extremes of its capabilities. The highest possible power ( ̴300W) for magnetron 2 

having Mn target while operating Ag and Cu at lower power settings  (around 23 

W and 28 W for Ag and Cu respectively) required to achieve lower Ag/Cu 

concentration in the film.  

 

 

Fig 3-13 Graph comparing the deposition rates of Mn, Ag and Cu 
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Table 3-7 Table of varying power on Mn and Ag target in co-sputtering mode 

Sample 

No. 

RF Power 

on Mn (W) 

DC Power 

on Ag (W) 

Time duration 

(minutes) 

TC 296 250 48 120 

TC 297 300 28 120 

TC 298 300 22 120 

TC 299 350 22 120 

 

Once the power levels are established for the required stoichiometric ratio, it is 

important to find out the suitable thickness of films to deposit in the subsequent 

runs. The deposition system has a shutter that is closed during the pre-sputter 

cleaning of target step and swings open to reveal the target plasma plume during 

the coating step. During this coating time the plume deposits on the substrate 

surface loaded onto the rotating carousel, as well as onto the entire carousal 

surface and the chamber walls. The Teer coating UDP 350 is a huge industrial type 

deposition system to be used primarily for coating of surfaces with metal thin films 

and hence has limited capacity to control the plume direction, spread or carousal 

to target distance. Moreover, because of this limited control and industrial nature 

of the deposition plant, running the process recipe for 120 minutes for each 

individual deposition, to achieve a film thickness of 1µm on the substrate, will lead 

to huge wastage of precious target material deposited on the rotating carousal and 

chamber walls. Hence, it is important to find a film thickness that is thick enough 

for characterization while minimizing wastage for each deposition cycle. Once the 

power setting required to achieve a 3:1 ratio was determined, the deposition time 

was varied from 120 minutes to 100 seconds to achieve films of varying thickness, 

see table 3-8. These films were then analyzed under EDX to determine the 

chemical composition of films of varying thickness. 
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Table 3-8 Table of varying the deposition time in Mn:Ag co-sputtering mode 

Sample 

No. 

RF power 

on Mn (W) 

DC power 

on Ag (W) 

Deposition time 

in (minutes) 

TC 298 300 22 120 

TC 300 300 22 60 

TC 301 300 22 30 

TC 302 300 22 7 

TC 303 300 22 100 sec 

 

Similar to co-sputtering of Mn-Ag, Mn and Cu targets were also co-sputtered at 

varying power levels to establish the settings required to achieve the 3:1 

stoichiometric ratio in Mn-Cu binary films. The RF power on the Mn target was 

varied from 250W to 300W and DC power on Cu was varied from 90-10W, see 

table 3-9.  

 

Table 3-9 Table of varying power on Mn and Cu target in co-sputtering mode 

Sample 

No. 

RF power 

on Mn (W) 

DC power 

on Ag (W) 

Time in 

(minutes) 

TC 355 250/90 90 90 

TC 356 250/43 43 90 

TC 357 300/37 37 90 

TC 358 300/28 28 90 

TC 359 300/16 16 90 

TC 360 300/10 10 90 

 

3.2.3 Reactive sputtering in Nitrogen: 

To make the deposition environment reactive, reactive gas species is introduced 

into the chamber along with the inert argon. Mass flow controllers (MFC) control 

the gas inlet into the chamber. There are two MFCs; MFC 1 controls the argon flow 

into the chamber and MFC 2 is used to let in the reactive gases like Nitrogen or 

Oxygen into the chamber. Three initial depositions were performed using Mn and 
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Ag held at constant power levels and partial Nitrogen percentage in argon varying 

from 0-16.66%, see table 3-10. This will help to decide the design of experiments 

for the next cycle based upon the atomic percentage of Nitrogen included in the 

film from the reactive environment.  

 

Table 3-10 Table of varying partial Nitrogen environment in the chamber 

Sample 

No. 

RF power /DC 

power (Watts) 

Ar flow 

(Sccm) 

Nitrogen 

flow (Sccm) 

Partial Nitrogen 

in chamber (%) 

Time 

(mins) 

TC301 300/22 30 0 0 30 

Tc 311 300/21 29 1 3.33 30 

Tc 310 300/22 27 3 10 30 

Tc 309 300/22 25 5 16.66 30 

 

3.2.4 Setting up the tube furnace for heat treatment:  

The production line procedures followed by the TFR industry performs a heat 

treatment on the deposited samples to tune the TCR closer to zero. Mn-Ag samples 

were subjected to heat treatment in a Carbolite tube furnace TZF 12/75/700e with 

a quartz tube of 75 mm external diameter. The tube furnace has a horizontal quartz 

tube, which could be sealed off at each end with a cap to isolate the internal 

environment from Oxygen and contamination particles from the external 

surroundings. This furnace could reach up to a maximum temperature of 1200ºC 

and has a heated zone 700mm long of which 540mm is uniformly heated to ±5ºC. 

This is a three-zone heater set up; the 540 mm of uniform heated zone is heated 

up by three independent heating elements with individual PID heat controllers. A 

Eurotherm 2132 is used to control the side zones while the heating element in the 

main zone is controlled by a Eurotherm 210 controller.  This means that the entire 

length of 540 mm could be set at one required temperature with a temperature 

variation of ±5ºC. The Mn-Ag samples deposited at various thicknesses were heat 

treated at 300ºC to study the effect of heat treatment on the TCR and resistance 

values.  
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3.3 Results and Discussion 

 

3.3.1 Thickness and magnetron power level calibration: 

After deposition, the kapton tape was peeled and thickness measurements were 

taken using the Dekatak profilometer at 6 different regions of the exposed strip. 

Thereafter the average thickness was calculated for each film and the difference 

in uniformity of film thickness was expressed. Table 3-11 below shows the 

measured average thickness of each of the Mn-Ag films.  The films were then 

loaded into the SEM chamber and the EDX measurement verified the composition 

ratio of individual constituents, see table 3-11.  

 

Table 3-11 Table of results for thickness and composition with varying Mn/Ag 
power levels 

Sample 

No. 

RF Power 

on Mn (W) 

DC Power 

on Ag (W) 

Time 

(minutes) 

Thickness 

(nm) 

Atomic % of 

Mn: Ag  

TC 296 250 48 120 984 ± 10 52:48 (1.08:1) 

TC 297 300 28 120 878 ± 10 68:32 (2.1:1) 

TC 298 300 22 120 812± 10 76:24 (3.16:1) 

TC 299 350 22 120 826± 10 79:21 (3.96:1) 

 

Overall, the film thickness is observed to decrease with decreasing DC power on 

the silver target, even though the RF power is increased considerably on the Mn 

target. With lower power on the Ag target, less silver is deposited in the film. The 

sputter yield of Mn is reported to be 1.3 while that for Ag is almost three times 

higher at 3.4 and for Copper is almost twice that of Mn at 2.4 atoms/ion (calculated 

for a bombarding Ar+ ion of 600ev) [19]. Because of the low sputter yield of Mn, the 

increase in RF power on Mn is not sufficient to overcome the reduction of film 

thickness caused by lowering the power on the Ag target, which has very high 

sputter yield. 300W of RF power on Mn and 22W of DC power on Ag results in 

Mn:Ag  composition ratio of close to 3:1. 
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By comparing the EDX spectrum of films at various thicknesses (samples from 

table 3-12), it was observed that for films below 400-500 nm thickness that 

composition of film varies even though power is kept constant. It is because, the 

interaction volume for incident electron beams goes up to a depth of 500 nm and 

for films thinner than this thickness, the electron beam generates a considerable 

amount of X-rays specific to other elements related to common elements of SLG. 

Therefore, the counts of elements like Si, Mg, Ca, K, and Na increases dramatically. 

This leads to an error in the composition estimation of the film itself. Even though 

the power is kept constant the Mn:Ag ratio is observed to deviate much more for 

thinner films.  While films deposited for 120 mins having thickness ~900nm are 

good for EDX measurements, these will also lead to more wastage of target 

material and increase deposition time. Therefore, a deposition time of 90 mins is 

more suitable giving a thickness of 500nm, which is just at the same value as the 

electron beam interaction volume.  

 

Table 3-12 Table of Mn:Ag film resistivity with increasing concentration of Mn 

 

 

 

 

 

 

 

Similarly, in the case of Mn-Cu films, it was observed (see table 3-13) that reducing 

the DC power level of the Cu target had a significant effect on the thickness of the 

film. A 300W of RF power on Mn and 28W of DC power on Cu was observed to 

produce a near 3:1 stoichiometric ratio of Mn: Cu.  

 

 

 

 

Sample 

No. 

Thickness  

(nm) 

Atomic % of 

Mn:Ag 

TC 298 812± 10 76:24 (3.16:1) 

TC 300 382± 10 76:24(3.16:1) 

TC 301 195± 10 77:23(3.5:1) 

TC 302 41± 10 79:21(3.76:1) 

TC 303 14± 10 80:20 (4:1) 
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Table 3-13 Table of thickness and composition variation with Mn/Cu power levels 

Sample 

No. 

RF power 

on Mn (W) 

DC power 

on Cu (W) 

Thickness 

(nm) 

Ratio of Mn:Cu 

(at %) 

TC 355 250 90 748 22:78 (1:3.54) 

TC 356 250 43 518 58:42 (1.38:1) 

TC 357 300 37 575 66:34 (1.94:1) 

TC 358 300 28 529 73:27 (2.7:1) 

TC 359 300 16 477 83:17 (4.88:1) 

TC 360 300 10 442 88:12 (7.33:1) 

 

3.3.2 Initial electrical measurement:  

While overall film thickness is heavily affected by the sputter power on secondary 

targets like Ag and Cu, electrical resistivity of the film is affected largely by the Mn 

concentration in the film. By taking the general electrical resistivity values  of Mn, 

Ag and Cu elements at room temperature, it is seen that Mn has almost 2 orders 

of magnitude higher electrical resistivity of 1.5µΩ-m, while that of Cu is 0.02µΩ-m, 

and that of Ag is only 0.015 µΩ-m [117]. The films deposited on glass were 

measured using the Jandel 4 probe head attached to a Keithly 2602 digital 

multimeter. By measuring the resistivity of Mn-Ag films deposited on glass, it can 

be clearly seen that resistivity increases with the increasing concentration of Mn. 

The resistivity of the Mn-Ag films deposited on glass was observed to increase 

from 110 to 158 µΩ-cm with increase Mn: Ag ratio, see figure 3-14.  

 

Fig 3-14 Graph of resistivity for Mn:Ag films with at% of Mn in films . 
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Films deposited on alumina substrates along with their glass counterparts, 

exhibited significantly higher resistivity values. For the Mn:Ag ratio of 4:1, resistivity 

was noted to be 250 µΩ-cm, which is 60% higher than that for the same 

composition on glass. This increase can be explained by the  relatively high surface 

roughness of the alumina substrate, which plays a dominating role in scattering of 

electrons and thereby reduces their mean free path leading to increased resistivity 

[118]. The Average roughness value (Ra) derived for blank alumina substrates by 

studying three substrates under an Alicona Infinity Focus roughness measurement 

system, gives a Ra of 390 ±15nm. After coating with Mn-Ag binary composition, 

this roughness decreases to 347±10nm. However, this surface roughness is still 3 

times the average roughness of their glass counterparts, which had a surface 

roughness of only 100±10nm increasing to 120±10nm when deposited with Mn-Ag 

film.  

 

For a constant Mn:Ag ratio of 3:1, decreasing the thickness of the binary thin film 

from 800 to 14 nm resulted in increases in resistivity from 155 to 205 µΩ-cm on 

glass substrates and 250 to 613 µΩ-cm on alumina substrates, see Figure 3-15. 

This can be explained as a result of the discontinuous nature of the film increasing 

with the decrease in its thickness, which results in an increase in resistivity [28]. 

Shivprasad [51] and Ammar [52] reported resistivity above 300 µΩ-cm for a 160 

nm thick Mn film deposited on glass, higher than the bulk resistivity of Mn (185µΩ-

cm). It is evident by comparison that the introduction of the Ag conductive element 

into the Mn thin film has reduced the overall resistivity of the film significantly. 

Resistivity values of binary Mn-Ag films deposited on alumina substrates are 

comparable to those of NiCr (200-400 µΩ-cm) and TaN (250-300 µΩ-cm), 

materials which are at present used by the thin film resistor industry [2].  

 

The TCR value of bulk material varies greatly in the literature, but by comparing 

various sources on TCR values for individual elements, we can see that bulk silver 

and Copper registers very high TCR values of 4000 ppm/ºC. The figure for 

Manganese is lower by more than one order and is in the range of 100 ppm/ºC. 

Figure 3-15 shows that the TCR of the binary Mn-Ag 3:1 ratio film, is observed to 

fluctuate between -98 to -154 ppm/ºC with the decrease in film thickness. Another 
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point to be noticed from these results is that even though the individual constituent 

materials in bulk registered a positive TCR, when deposited as thin films they show 

a negative TCR.  

 

 

Fig 3-15 Graph of resistivity and TCR variation for Mn:Ag 3:1 film with film thickness 

 

Shivprasad and Angadi [28, 50] summed up that when metal is in its bulk form, it 

contains a large number of free electrons which are the main charge carriers and 

with the increasing energy, the random collisions between neighbouring electrons 

increases, resulting in an increased electrical resistance for the given same shape. 

But in thin film form, as the thickness of the film decreases, island structures take 

shape, and voids between these islands are dominated more by thermally 

activated conduction mechanisms which are known to exhibit negative TCR [28]. 

Now the island structure of a thin film is affected by various deposition parameters 

such as substrate temperature, film thickness, and the nature of target materials 

[119].  

 

The literature review also suggests that variation in TCR can be related to the 

difference in the values of coefficient of thermal expansion (CTE parts per million 

change in length per degree Celsius or ppm/ºC) for the substrate and film that leads 

to changes in the distance between the island structures of the thin film. Published 
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work from many other authors [19, 28] have also supported this. A progressively 

positive nature of TCR is seen on gold [with low CTE  ̴14 ppm/ºC] films deposited 

on Teflon substrates [with large CTE  ̴80 ppm/ºC] with increasing film thickness 

because of the increasing distance between the island structures of the gold film 

as the Teflon substrate expands [19]. By this reasoning, Mn and Ag with higher 

CTE values [̴19 and 22 ppm/ºC respectively] than alumina [6̴.4 ppm/ºC] are 

expected to show a positive nature of TCR with decreasing thickness. The TCR 

value of the thin film is therefore a combined outcome of multiple phenomenon, 

and the direction of its final value is steered by the phenomena, which is most 

dominating out of all these. Difference between CTE for substrate and thin film are 

known to create adhesion issues, but for all the samples in this project when tested 

with high strength masking tape no flaking or peeling off was ever observed. 

Therefore assuring proper adhesion of film to substrate. 

 

3.3.3 Basic effects of introducing reactive Nitrogen:  

 

Now with the introduction of N2 in the film, it was observed that, for a constant film 

thickness of 200 nm and Mn:Ag ratio of 3:1, the resistivity of binary films of Mn:Ag 

increased linearly from 231.9 to 551.2 µΩ-cm with increase in Nitrogen flow rate 

from 0 to 5 sccm (0-16% partial Nitrogen concentration in the chamber), see figure 

3-16. For each percentage increase in Nitrogen concentration in the deposition 

chamber, the resistivity of the resulting film increased by ~20 µΩ-cm and the TCR 

became increasingly negative, varying from -93 ppm/°C at 0% Nitrogen to -300 

ppm/°C at 16% Nitrogen.  

 

These distinct variations in electrical properties of the thin films can be related to 

the Nitrogen introduced from the reactive environment, which becomes trapped 

inside the film and eventually migrates to and diffuses along grain boundaries much 

faster than in bulk materials. Hence the increased resistivity could be explained as 

the result of grain boundaries which are electrically discontinuous even if physically 

continuous [28]. 
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Fig 3-16 Graph of varying resistivity and TCR of Mn:Ag films with N2 flow rate.  

 

This could also explain the increased negativity of TCR, as the electrically insulated 

grain boundaries can effectively be viewed as the voids between islands structures. 

Matthiessens rule supports that  deliberate introduction of external defects like 

oxiding, nitriding corrosion effects etc., will increase the resistivity of a material 

system, not only because it distorts the crystal lattice structure leading to more 

scattering, but the introduction of such species also removes one or more 

conduction electrons and thereby effectively reduces carrier concentration per unit 

volume [2].  

 

3.3.4 Basic effects of heat treating TFR films 

 

Figure 3:17 shows the resistivity and TCR values before and after heat treatment 

for binary films of Mn:Ag in 3:1 ratio, deposited in pure argon for 1 hour at 300ºC 

in air environment resulted in a small decrease in resistivity value with increasing 

film thickness. However, for films thinner than 200nm, the resistivity is observed to 

increase, this increase is very large for 41 nm thick TC 302 where its resistivity 

value increased significantly from 237 to 2028 µΩ-cm.  
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 Fig 3-17 Graph of resistivity and TCR variation with film thickness for Mn-Ag 
films heat treatment. 

 

A literature search reveals two main effects which heat treatment in air has on 

resistivity of thin films: healing of defects which reduces material resistivity 

according to Matthiessen rule [2] and surface oxidation with the potential to 

increase film resistance [12, 120]. At higher thicknesses above 200 nm, healing of 

defects appears to be dominant, slightly reducing the resistivity of the Mn-Ag films. 

These effects compensate each other for thickness of ~200 nm while as the films 

continue to get thinner, the effect of surface oxidations is dominant, increasing 

resistivity drastically. The secondary Y-axis of Figure 3-17 shows that the TCR of 

the Mn-Ag films has shifted from negative to positive for all film thicknesses 

following heat treatment. The trend line developed by TCR points becomes 

progressively positive with decreasing thickness and is in agreement with earlier 

explained effect of the CTE making the TCR positive.  

 

Figure 3-18 shows that heat treatment of Mn-Ag films of thickness ~200nm, 

deposited in Nitrogen environment, results in an increase in resistivity value with 

increasing concentration of Nitrogen. This result could be explained by the 

enhancement of diffusion of Nitrogen around grain boundaries during heat 

treatment, which makes them more electrically isolated [121].  Films deposited in 

a Nitrogen environment also show a migration of TCR towards the zero TCR line 

following the heat treatment, as seen on the secondary Y- axis of Figure 3-18.   
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Fig 3-18 Graph of resistivity and TCR variation with N2 flow rate for Mn-Ag film. 

 

Another important property of TFRs is stability. From table 3.14, the final 

percentage change in the resistance value for films without Nitrogen, after 

subjecting to heat treatment, is seen to be around 6% for TC301 sample. For films 

deposited in reactive Nitrogen, the stability figure is seen to improve with 2% 

change in resistance for TC311. Similar to the TaN material system, it is observed 

that introduction of Nitrogen results in an improvement of stability, but these values 

are still extremely high to be of any use for practical TFR fabrication purposes [122]. 

Stability values could be improved by heat treating samples in Nitrogen/vacuum 

[123] environment instead of open air. This will minimize the oxidation of the film 

surface at higher temperature. Therefore, by optimizing the heat treatment 

process, stability figures could be improved.  

 

Table 3-14 : Table of resistance change after each 24 hours. 

Sample 

No. 

N2 

Flow 

(Sccm) 

Film 

Thickness 

(nm) 

Resistance value each 24 hour ( Ω) 
DΩ/Ω% each 24 

hour 

0 24 48 72 24 48 72 

Tc 309 5 201 78.01 81.102 82.086 82.197 3.96 5.22 5.37 

Tc 310 3 198 58.44 59.223 60.012 60.173 1.34 2.69 2.97 

Tc 311 1 195 38.3 38.748 38.926 39.182 1.17 1.63 2.30 

Tc 301 0 195 31.63 32.229 33.048 33.62 1.89 4.48 6.29 
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3.4 Summary  

 

To summarise, this chapter explains the setup and functioning of the deposition 

system, heat treatment furnaces and functioning of characterization equipment. 

From deposition of individual elements, it is observed that Ag has the highest 

deposition rate followed by Copper and Manganese is observed to have the 

slowest deposition rate. Through co-sputtering it is seen that 300W RF/22W DC 

power is required on Mn/Ag combination to achieve a 3:1 ratio, while for Mn/Cu it 

required 300W RF/28W DC. A deposition time of 90 minutes is more suitable to 

minimise the target wastage while giving sufficient thickness for EDX 

measurements. The resistivity of the as deposited films was observed to increase 

from 220 to 613 µΩ-cm with decreasing film thickness, which is suitable for 

midrange resistive applications, with TCR in the range of -98 to -154 ppm/ºC.  

Increasing the concentration of Mn, increasing the concentration of Nitrogen in the 

film or decreasing film thickness are cases in which the film resistance is observed 

to increase.  In further chapters, the concentration of Mn is required to be fixed at 

60 atomic % (3:1:1 ratio of Mn:Ag/Cu:N) and film thickness is fixed to ~500nm. 

Films with Nitrogen exhibited resistance in the range of 231 µΩ-cm to 551 µΩ-cm 

with TCR values from -180 ppm/ºC to -300 ppm/ºC. After heat treatment, resistance 

values increased slightly while TCR values had a positive shift closer to the zero 

line, at -67 ppm/ºC. Now, in the further chapters the optimum Nitrogen 

concentration in the film needs to be identified, which is set by the optimum partial 

Nitrogen pressure inside the chamber. The best stability figure of 2% change in 

resistance was observed, while this value is very large to be used as a TFR, these 

films were heat treated in air, and with heat treatment in Nitrogen, the stability figure 

could be further reduced. These initial results show that bulk Mn or Ag or Cu when 

deposited as a Mn-Ag/Cu-N thin film structure, exhibits a negative TCR which can 

be positive shifted by right process parameters. Mn based antiperovskites 

developed by optimising N2 content, deposition parameters and heat treatment can 

be expected to be fit for ultra-precise thin film resistors.   
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CHAPTER 4 Study of 

Mn3AgN and Mn3CuN thin films
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4.1 Introduction 

In Chapter 3, thin films from preliminary runs on Mn and Ag/Cu targets in reactive 

nitrogen environment, were shown to exhibit negative TCR, which on subsequent 

heat treatment showed migration towards the positive direction. Sputter deposition 

and subsequent heat treatment consist of a very wide range of process variables, 

and studying the effects of each process variable simultaneously will increase the 

number of experiments considerably. The focus of this chapter was to identify the 

key deposition and heat treatment process variables and study their effect in 

achieving desirable electrical properties in Mn based antiperovskite structures.   

 

Sputtering power in Watts, applied on individual targets is one of the most important 

variables in deciding the electrical properties of thin films. M. Yoshitake et al (1991) 

in their work to develop a thermally stable resistor from Zr-N, used RF power as a 

parameter to control electrical resistivity of films [124]. Similarly, H.Toku et al (2010), 

showed that varying target power leads to a change in the phase structure of the 

material system thereby altering its properties [125].  But between the lowest power 

required to ignite the plasma and highest power to keep the Teer coating plant 

within a safe usage limit, the sputter power level combinations to achieve the 

required 3:1 ratio of Mn:Ag and Mn:Cu is fixed to be 300W-RF/ 23W-DC and 300W-

RF/28W-DC respectively.  

 

There are three process parameters related to the vacuum and gas inlet systems: 

Base pressure, Working pressure and Reactive species partial pressure. There is 

less information about the effects of base pressure on electrical properties of thin 

films; A Asthana et al (2008), suggested that a lower base pressure is helpful to 

lower the kinetic ordering temperature which in turn lowers the annealing 

temperatures in FePt thin films [126]. On the Teer coatings plant, a lack of load 

lock, lack of better pumping system, multiple external attachment ports etc. limits 

the lowest possible base pressure to 1.0e-5 mbar. Adding 30 sccm of gas into the 

chamber raises its pressure from base pressure to working pressure of 3µbar. If 

the sputtering is performed in non-reacting (inert) environment, then the working 

pressure is dependent only on the volume of inert Ar introduced, but if a reactive 
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N2 is introduced, the working pressure is expressed as the partial N2 /Ar+N2 % 

pressure. There is lot of research conducted on thin film resistors, that has 

concluded that the working pressure or partial N2 pressure has the most significant 

impact on the morphology, and crystal structure of the film, thereby changing its 

electrical properties [29, 127-131]. Setting the correct amount of partial Nitrogen is 

important to ensure the right amount of Nitrogen in the thin film as well. 

Experiments in this chapter will be planned to deposit Mn-AgN and Mn-CuN thin 

films with varying Nitrogen content in them.  

 

J. Mashaiekhy et al (2012) in their work found that electrical resistivity of thin silver 

films varies with varying substrate temperature they are deposited at. They 

observed a growth in grain size in direct relation to increasing substrate 

temperature and correlated it to the varying electrical resistivity [132]. From various 

literature sources, substrate temperature is seen to be an important process 

parameter when depositing thin film resistive films [133, 134]. The Teer coating 

UDP has a heating element situated along its chamber wall, which was used to 

heat the substrates rotating on the centre carousal (see figure 3-1). Substrate 

temperature is known to have effects on the resistivity of Mn3CuN antiperovskite 

structures also [83, 84]. Substrate temperature will be the second parameter varied 

in correlation with partial N2 pressure to deposit thin films of Mn-AgN and Mn-CuN.  

 

Film thickness is another important variable which leads to changes in electrical 

properties, by changing the internal strain within the films and by affecting the 

conduction mechanism [132]. This is also shown in chapter 2, where the thickness 

of the Mn-Ag film affects the resistivity of the film. However, film thickness is 

resultant of varying power level and deposition duration, hence is less of a process 

variable and more of a film property. To satisfy the EDX requirements and to avoid 

wastage of precious target material, (as explained in chapter 2) the thickness of 

the film is kept constant at around 500 nm. With both power level and required 

thickness fixed, the duration of deposition is automatically fixed to 90 min.    
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The distance between the target to substrate is a process variable which affects 

the deposition rate and therefore influences the thickness of the film formed. H.B. 

Nie et al (2001) observed that even under constant gas pressure, the growth 

mechanism of TaN films were greatly affected by the target to substrate distance 

[128]. In a work published by H.Toku et al (2010), TiO2 films are seen to change 

from a well crystallised anatase phase to  low crystalline structure, with the 

increasing distance between substrate and target [125]. The Teer coating UDP 350 

system has one single circular carousel with 6 substrate holders set at equal 

constant distance of 130mm from all of the targets and cannot be changed.  

 

From chapter 3, the as-grown TCR values are observed to be negative and 

resistance values to be unstable. Heat treatment at higher temperature heals the 

defects and increases the crystalline nature of TaN films thereby shifting their as 

grown negative TCRs in a positive direction [135]. The duration of heat treatment 

time is seen to affect the resistivity of NiCr thin film resistors [136]. Therefore, 

temperature and duration of post deposition heat treatment is very important to 

tune the TCR values closer to zero and impart resistance stability.  

 

The figure 4-1 below shows the process flow for the first stage in which binary films 

of Mn-CuN and Mn-AgN will be deposited under varying partial Nitrogen pressures 

and substrate temperatures. As-grown films will be heat treated under varying 

temperatures, from 200 to 400ºC in steps of 100ºC, and for varying time durations 

from 1 hour to 5 hours, to tune the electrical properties of as grown thin films close 

to the desired values. The combination of deposition parameters, which yield the 

closest value, will be narrowed down and electrical properties of these films will be 

analysed to validate results from the literature search. Results from the binary films 

will be used to proceed to ternary deposition in the second stage. 
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Fig 4-1 Process flow to deposit Mn based Ag or Cu binary thin films.  

 

4.2  Design of Experiment:  

 

From the previous section, four of the process parameters were selected to study 

their effect on the material system. Two of them were sputter deposition 

parameters: N2 partial pressure and substrate temperature, and the other two were 

post deposition heat treatment parameters: temperature and duration.  

 

N2 partial pressure percentage for deposition was calculated by taking the ratio of 

N2 flow per minute over the combined flow of N2 and Ar into the chamber per 

minute, as given by:  
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 𝑁2 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 % =
𝑁2 𝑓𝑙𝑜𝑤 𝑖𝑛 𝑠𝑐𝑐𝑚

𝑁2 𝑓𝑙𝑜𝑤 (𝑖𝑛 𝑠𝑐𝑐𝑚)+𝐴𝑟 𝑓𝑙𝑜𝑤 (𝑖𝑛 𝑠𝑐𝑐𝑚)
× 100 (4.1) 

 

The total amount of gas flow (N2+Ar) into the chamber was kept at a constant value 

of 30 sccm. Four levels of N2 flow rates were achieved by increasing the N2 flow as 

1, 2, 3 and 5 sccm for Mn-AgN films and 2, 3, 5, and 6 sccm for Mn-CuN films. For 

each increase in N2 flow, Ar flow was adjusted accordingly, to keep the total gas 

flow constant at 30 sccm. By using the eq. 5.1, the N2 flow rates could then be 

converted to the following N2 partial pressure percentages of: 3.33, 6.66, 10, 16.66 

and 20% for N2 flow rates of 1, 2,3,5,and 6 Sccm.  

 

Substrate heating was achieved by a heating plate situated inside the deposition 

chamber. Y.Na et al (2011) have deposited Mn3CuN antiperovskite structures at 

higher TS  of 180ºC, and Aoyama et al (2013) have also observed very flat 

temperature dependence of resistivity at intermediate TS levels of 75 and 100ºC 

[83, 84]. The highest temperature possible on a substrate kept inside the Teer 

coating plant was 130ºC. Three levels of substrate temperature were used: film 

deposition without substrate heating, at 50, and 100ºC.  

 

DoE to deposit Mn-AgN and Mn-CuN films, by varying two of the sputter deposition 

parameters: Substrate temperature and N2 partial pressure over different levels are 

as detailed in table 4-1 

 

Table 4-1  DoE for 2 deposition factors used to deposit binary films of Mn-AgN 
and Mn-CuN. 

Factors Material system 
No of 

levels 
Level values 

Factor 1: N2 flow rate 

(sccm) 

Mn-Ag-N films 4 1,2,3,5 sccm 

Mn-Cu-N films   4 2,3,5,6 sccm 

Factor 2: Substrate 

Temperature ( ̊ C) 

Mn-Ag-N films 3 Without Tsub, 50ºC,100ºC 

Mn-Cu-N films   3 Without Tsub, 50ºC,100ºC 
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For each material system, the number of deposition conditions generated is given 

as  

 

No. of deposition conditions = No. of level factor 1 X No of levels factor 2   (5.2) 

Using this,  

No of deposition conditions for Mn-AgN + 

No of deposition conditions for Mn-CuN 

= (4x3) + (4X3) = 24 

The 24 sets of depositions along with their material type, process parameters, and 

levels of process parameters are as shown in table 4-2. After as grown 

measurements, samples from these sets were subjected to heat treatment. Heat 

treatment was carried out in closed tube furnace and in flowing Nitrogen 

environment, with constant flowing rate of 2l/min. Three separate batches of 

samples from as grown film plates were subjected to three levels of heat treatment: 

200ºC, 300ºC and 400ºC, incrementing in steps of 100ºC. The lowest temperature 

was chosen as 200ºC to keep it above the dry heat stability test temperature of 

155ºC. One more batch was heat treated later at 350ºC when it was noticed that 

crossing of the zero TCR line takes place between 300 and 400ºC. The film 

samples showing the lowest TCR values were chosen to experiment for the time 

duration of heat treatment.  Time duration was varied from 1 hour to 5 hours with 

one-hour increments.  

 

4.3 Results and Discussion 

 

The following three main electrical properties were measured for each batch of 

samples: Electrical sheet resistance at room temperature, Rs (Ω/□), TCRavg. 

between 20ºC and 70ºC (ppm/ºC), and Resistance Stability ΔΩ/Ω, (%). Resistance 

measurement and TCR measurement was made both on as-grown and heat 

treated samples. Dry heat stability tests were only made on the heat-treated 

samples that showed lowest TCR values.  
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4.3.1  Effect of Nitrogen flow rate on as grown films: 

Chemical composition and thickness analysis: 

Chemical compositions of as-grown films were measured using the EDX system, 

for five sites across the length of the glass slide for each sample. The average 

values for each sample were calculated as atomic percentage ratio of each 

constituent material and then rounded off to the next closest whole digit. Thickness 

for each sample was measured using the DEKATAK profilometer. Six 

measurements were made across the artificial step created by the kapton tape 

during deposition. The average thickness values in nm and atomic percentage ratio 

for deposition sample set are presented in table 4-2.  

 

As can be seen, the N2 flow rate is a more significant factor in deciding the atomic 

composition of the films as compared to the substrate temperature. The Mn:Ag:N 

ratio of 3:1:1 required for formation of Mn3AgN antiperovskite composition is 

obtained at the 3 sccm flow rate of N2 or at 10% partial N2 percentage in the 

chamber. For the formation of Mn3CuN antiperovskite composition, it requires a 

higher N2 flow rate of 5 sccm or 16.66% of partial N2 pressure. Previous work done 

has experimented with varying Nitrogen partial pressure to successfully fabricate 

these structures, for example, Y. Sun et al (2010) [82] and  Y. Na et al (2011) [75] 

were able to realize the Mn3CuN structure at  10% N2 partial percentage, whereas 

work done by M. Aoyama et al (2013) [84] required this parameter to be 50%. So 

the N2 flow rate required to form the structure will be related to the individual sputter 

machine dimensions and other working recipe parameters like working pressure, 

which will decide the amount of Nitrogen species available in the plasma plume for 

the sputtered atoms to react with.  

 

From table 4-2 it can be seen that Mn-AgN films are deposited with a higher 

thickness of ̴ 600 nm, compared to Mn-CuN films which are deposited in the range 

of ̴ 500 nm. With the same deposition time and almost same deposition power, it 

can be concluded that the reason for increased thickness for Mn-AgN films is the 

higher deposition rate of Ag compared to Cu. Figure 4-2 (a) shows the side profile 

images of Mn-AgN deposited at 3 sccm N2 flow and without any substrate 
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temperature (Tsub), and figure 4-2 (b) shows the side profile for Mn-CuN deposited 

at 5 sccm N2 flow rate and without Tsub. The thickness values achieved from the 

profilometer measurements are strongly supported by the side profile images of 

these films taken on the SEM. Neither N2 flow rate or substrate temperatures 

seems to have any major effect on the thickness variation.  

 

Table 4-2 Table of thickness and composition analysis for as-grown samples of 
Mn-AgN and Mn-CuN films. 

Material Tsub (ºC) N2  Flow 

rate (sccm) 

EDX ratio of 

Mn:Ag:N (at %) 

Thickness 

(nm) 

Sample 

No 

Mn-AgN 

Without 

Substrate 

heating 

1 64:31:5 586 1 

2 58:28:14 612 2 

3 59:21:20 617 3 

5 39:20:39 614 4 

50 

1 68:32:0 604 5 

2 59:29:12 629 6 

3 54:21:25 635 7 

5 36:20:44 628 8 

100 

1 69:31:0 548 9 

2 60:26:14 605 10 

3 58:20:22 635 11 

5 31:20:49 621 12 

 

Mn-CuN 

Without 

Substrate 

heating 

2 77:23:0 498 13 

3 70:20:10 493 14 

5 60:21:19 488 15 

6 54:20:26 497 16 

50 

2 75:24:1 504 17 

3 69:22:9 496 18 

5 62:20:18 486 19 

6 56:20:24 490 20 

100 

2 76:24:0 517 21 

3 69:22:9 505 22 

5 60:20:20 499 23 

6 53:19:28 511 24 
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Fig 4-2 Cross section images of (a) Mn3AgN films (sample no 2: deposited at 3 
sccm and without Tsub) (b) Mn3CuN films (sample no 12: deposited at 5 sccm 

and without Tsub). 

 

Electrical analysis of as grown film: 

Figures 4-3 (a) and (b) show the as-grown average electrical sheet resistance of 

the Mn-AgN and Mn-CuN films respectively, with increasing substrate temperature 

for the three varying N2 flow rates discussed above. The average value of sheet 

resistance is calculated from a sample of 6 resistors taken from the central region 

of the alumina plate.   

 

The lowest value of sheet resistance for Mn-AgN is seen to be 4.28 Ω/□ for films 

grown at 1 sccm of N2 and without any Tsub whereas the highest value is recorded 

to be 8.54 Ω/□ for films grown at 5 sccm and a Tsub of 50ºC. For Mn-AgN films, 

the sheet resistance is seen to increase with increasing N2 flow rate, as more 

Nitrogen atoms become available in the film to migrate towards grain boundaries 

making them more resistive [137]. At lower N2 flow rates the substrate temperature 

is not as effective in increasing the sheet resistance value, but for higher N2 flow 

rates the resistance increases with the increased substrate temperature. Similar 

increases in sheet resistance observed at increased Tsub are explained by the 

migration of N2 species to grain boundaries at higher Tsubs, which reduces the 

hole mobility leading to an increase in sheet resistance [138-141]. The sheet 

resistance value of Mn3AgN structure formed at 3 sccm of N2 flow rate lies in 

between the other two flow rates.  

 

(b) (a) 
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For Mn-CuN films, the lowest value of 12.42 Ω/□ is obtained for the films grown at 

2 sccm of N2 flow with a substrate temperature of 100ºC and the highest value of 

27.90 Ω/□ is obtained for the films grown at 6 sccm of N2 flow at 100ºC. Sheet 

resistance is seen to be comparatively higher than Mn-AgN films by a factor of 2 

to 3. This could be a combined effect of the higher resistivity of Cu than Ag and the 

comparatively thinner films of Mn-CuN samples.  It is seen that with each 

increasing N2 flow rate there is a 20-30% increase in the sheet resistance of the 

film. So again similar to Mn-AgN films, increase in N2 flow rate results in a 

significant increase in sheet resistance values. For lower N2 flow rates, sheet 

resistance values decrease with increasing substrate temperature, which could be 

seen as the result of defect healing, caused from the increased energy from the 

substrate temperature, which leads to better conductivity in the film. However, for 

the Mn3CuN films deposited at 5 and 6 sccm of N2 flow rate, the higher Nitrogen 

content in the film migrates easily to grain boundaries with increasing substrate 

temperature. This make the films more resistive as it overcomes the decrease in 

the resistance caused by the defect healing caused by higher temperature [142].  
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Fig 4-3 Graph of sheet resistance values of as-grown films with increasing 
substrate temperature for 4 varying N2 flow rates (a) Mn-AgN films (b) Mn-CuN 

films  
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Figures 4-4 (a) and (b) show the as-grown TCR of the Mn-AgN and Mn-CuN films 

respectively, with increasing substrate temperature for the three varying Nitrogen 

flow rates discussed above. The average resistance values are calculated from the 

same 6 resistor circuits used for the sheet resistance measurement.  

 

The as-grown TCR values of all the Mn-AgN and Mn-CuN films are as presented 

in figure 4-4 (a) and (b). For Mn-AgN films, as shown in figure 4-4-(a), the most 

negative TCR of -235 ppm/ºC is obtained for films grown at 3 sccm of N2 flow rate 

grown without Tsub. Whereas for the films grown at 5 sccm and 100ºC Tsub the 

TCR value moves much closer to 0 at -87ppm/ºC. There is a negative shift in the 

TCR value for an increase in N2 flow rate from 1 to 3 sccm, but from 3 to 5 sccm 

there is a massive positive shift in the TCR closer to zero. It is expected for a 

material system to exhibit negative TCR with incrementing concentration of 

dopants like O and N in the TFR material systems, but the behaviour of films grown 

at 5 sccm is deviating from the trend. For a constant N2 flow rate, TCR is observed 

to shift in a positive direction with increasing substrate temperature. Voids and 

defects which commonly acts as a source of negative TCR get healed with the 

increasing substrate temperature which results in a positive shift of TCR [143, 144] . 

The Mn3AgN antiperovskite structure formed at 3 sccm is seen to exhibit the lowest 

TCR for all the substrate temperatures. 

 

The as-grown TCR values of Mn-CuN films are more negative than Mn-AgN films. 

The lowest TCR of -363 ppm/ºC is observed for Mn-CuN films grown at 6 sccm 

and without Tsub and the highest value for TCR is observed to be -287 ppm/ºC for 

films grown at 2 sccm and 100ºC. Unlike Mn-AgN films, the TCR values of Mn-CuN 

films show a consistently negative shift with increasing N2 flow rate, though the shift 

between 3 and 5 sccm line is barely visible. The positive shift in TCR with 

increasing substrate temperature for each N2 flow rate is present, possibly because 

of defect and void healing at higher temperature, but its effect is not very strong as 

seen in TCR lines of the Mn-AgN samples.    
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Fig 4-4 Graphs of TCR values of as grown films with increasing substrate 
temperature for 4 varying N2 flow rates (a) Mn-AgN films (b) Mn-CuN films  
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Structural and topographical analysis of as-grown films at varying N2 flow rates: 

As-grown samples were analyzed in a Siemens D5000 X-Ray diffractometer to 

identify the nature of crystal structure formed under these varying deposition 

parameters. Samples were measured at room temperature for 2θ values from 20 

to 90  ̊with a step increment of 0.02 ̊. Figure 4-5 (a) and (b) shows the XRD peaks 

for Mn-AgN and Mn-CuN films deposited at increasing N2 flow rate.  

 

 

Fig 4-5 XRD spectrum (a) Mn-AgN films (b) Mn-CuN films at increasing N2 flow 
rates and without Tsub. 

 

According to the Inorganic crystal structure database (ICSD) the most distinctive 

peaks for Mn3AgN antiperovskite occurs at 38.8 and 45.11  ̊and represents planes 

with miller indices of (111) and (200) respectively. These are represented as black 

sharp peaks in figure 4-5 (a) along with the other less dominant peaks for the 

material system as shown in fig-3-18. By comparing these peaks to the XRD 

spectrums of films of Mn-AgN, it can be seen that the films have a preferential 

orientation along these two planes compared to other planes reported for the 

material structure. At the lowest N2 flow rate of 1 sccm, one small peak exists in 

the spectrum to suggest presence of some kind of crystalline structure but the 

curve is far away from the expected position for antiperovskite structures. At 2 

sccm, the peak previously observed appears to grow and two peaks are visible 

with a broad shoulder between them both. With the further increase in N2 flow rate 

to 3 sccm, both the peaks become separate and align with the central peak position 

for the Mn3AgN structure, indicating the structure formation at this flow rate. At a 

still higher N2 flow rate of 5 sccm, the (111) plane reduce in intensity while (200) 

(a) (b) 



 

4-16 

 

plane undergoes a shift from the original position, indicating internal strain in the 

film because of higher Nitrogen content in the film. Introduction of dopants with 

varying radii can initiate strain in the crystal lattice of cubic antiperovskite which are 

then manifested in XRD spectrums as a shift of the central peak [81]. 

 

Peak positions for Mn3CuN are recorded to be 40.11 and 46.65 ̊ representing (111) 

and (200) crystal lattice planes and are shown as black peaks in figure 4-5(b).  As 

opposed to Mn3AgN, no distinctive antiperovskite peaks are formed at lower N2 

flow rates for Mn3CuN. However, a very clear peak at 46.6 ̊ is seen for XRD 

spectrums of samples deposited with 5 sccm of N2 flow rate, indicating preferential 

growth only along (200) crystal lattice planes. For this flow rate it can be seen that 

no other peaks exist to suggest existence of Manganese or Copper in any other 

form, either pure or as an oxide and it can be stated that the film is in a pure 

antiperovskite phase [82]. Most of the work done on thin film deposition of Mn3CuN 

have achieved single phase Mn3CuN with crystal orientation in the (200) plane [75, 

82-84, 89]. The peaks achieved in the films in this work are considerably broader, 

for both Mn3AgN and Mn3CuN films, when compared to the XRD spectrums of 

recorded specimens. In XRD analysis, the grain size decreases with the increasing 

width of the peak. So the sharp peaks suggest a crystalline nature of  film, the width 

of the peaks suggest a very small crystallite size  therefore it can be concluded that 

the films exists in a nano - crystallized state [82]. 

 

Figure 4-6 (a) - (c) shows the effect on the shape and size of grains of Mn-CuN 

films grown with increasing Nitrogen flow rate. The triangular structure of Mn3CuN 

films developed at 5 sccm of N2 flow rate (figure 4-6(c)) is very similar to the grain 

shape achieved by Y.Na et al [75] in their work with Mn3CuN thin films, figure 4-6 

(d) (inset a). The figures in 4-6 (d) (inset b-d) show the degradation of Mn3CuN 

grain shape after introduction of Ge in their work and these images bear 

resemblance to the Mn-CuN attempts at lower N2 flow rates, figure 4-5 (a) and (b). 

 

From EDX composition, XRD spectrums and SEM imaging it can be seen that N2 

flow rate plays an important role in determining the antiperovskite structure for the 
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Mn based group. So after annealing heat treatment (in section 4.3.3) if the samples 

grown at these N2 flow rates (3 sccm Mn-AgN and 5 sccm for Mn-CuN films) lead 

to stable near zero TCR values, the potential of antiperovskite for the TFR industry 

could be justified, and N2 flow rates for experiments in further chapters could be 

fixed.  

 

  

  

Fig 4-6 Surface images of Mn-CuN film grown at (a) 2, (b) 3 and (c) 5 sccm of N2 
flow rate(without Tsub). (d) Published images of Mn3CuN antiperovskite shows 
deteriorating of antiperovskite structure (from inset a to d) with increasing Ge 

content [75]. 

 

  

(b) (a) 

(c) (d) 
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4.3.2 Effect of substrate temperature on as-grown film: 

 

Figure 4-7 (a) and (b) gives another perspective of the results described in the 

previous section, to emphasize the role of substrate temperature on the as-grown 

sheet resistance of the Mn-AgN and Mn-CuN films being studied. Each line in their 

respective plots represents as-grown sheet resistance values of Mn-AgN and Mn-

CuN films deposited at increasing substrate temperature, plotted for their sheet 

resistance against N2 flow rate. In both cases, the lines deposited on increasing 

substrate temperature are spaced much closed to each other. Substrate 

temperature has more effect on sheet resistance of Mn-AgN films than on Mn-CuN 

films, but for a constant N2 flow rate, no combination of substrate temperature could 

produce a change in sheet resistance greater than +/- 2.79 Ω/□ (15>20%), in either 

set of Mn-AgN and Mn-CuN films. Lower N2 flow rates show decreasing sheet 

resistance with increasing substrate temperatures possibly due to increasing 

crystallization. At higher N2 flow rates, substrate temperatures aid more outflow of 

N2 to grain boundaries, which begins to overcome the reduction in Rs from 

crystallization and starts increasing sheet resistance.  

 

Figure 4-8 (a) and (b) shows a similar effect of increasing substrate temperature 

on TCR of Mn-AgN and Mn-CuN films respectively, plotted against increasing N2 

flow rate. Each line of TCR plotted for increasing substrate temperature shows a 

clear shift in the positive direction, irrespective of N2 flow rate. One major reason 

to experiment with the substrate temperature during deposition stage was to see if 

near zero TCR values could be achieved by this step alone, thereby avoiding an 

additional annealing step currently used to tune TCR value closer to zero. While 

the shift for Mn-AgN is more pronounced than for Mn-CuN, the effect of substrate 

temperature is not pronounced enough, on either of the material systems, to shift 

the TCR values to a near zero value without additional annealing treatment. Near-

zero as-grown TCR values might be possible with still higher substrate 

temperature, especially for Mn-AgN films, but the effect of such a deposition 

technique on electrical stability would then have to be further studied. 
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Fig 4-7 Graph of sheet resistance values of as-grown (a) Mn-AgN (b) Mn-CuN 
films plotted against increasing N2 flow    
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Fig 4-8 Graph of TCR values of as-grown (a) Mn-AgN (b) Mn-CuN  films plotted 
against increasing N2 flow  
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Structural and topographical analysis of films grown at varying Tsub:  

Comparison between XRD spectrums of Mn3AgN and Mn3CuN (constant Nitrogen 

flow rate of 3 sccm for Mn-AgN and 5 sccm for Mn-CuN) films grown at varying 

substrate temperatures are shown in figure 4-9 (a) and (b). It is very hard to see 

the small increase in crystallization of Mn3AgN films when grown at different 

substrate temperatures. The noticeable change occurs for the (200) planeof 

Mn3CuN, which is seen to have become more developed when grown at Tsub of 

100ºC.  

 

 

Fig 4-9 XRD spectrum of (a) Mn3AgN antiperovskite structure (b) Mn3CuN 

antiperovskite, deposited at increasing substrate temperature 

 

The XRD plot can be used to calculate the average crystallite size by using the 

Scherrer formula and could be used to verify the increasing crystallinity of the film. 

The Scherrer formula is given as  

𝜏 =
𝐾 𝜆

𝛽 cos (𝜃)
    (4.3) 

Where 𝜏 is the crystallite size of the film, K is is the Scherrer’s constant with a value 

of 0.9, λ is the wavelength of incident Cu (Kα) radiation (1.5418 Å), β is the Full 

Width Half Maximum (FWHM) of the peak, and θ is Bragg’s angle of the peak. 

Because of the high level of background noise, it is very hard to establish the 

FWHM of the peaks and therefore calculating the grain sizes for Mn3AgN peaks. 

The table 4-3 presents the observed FWHM and calculated mean grain sizes for 

(b) (a) 
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the (111) peak of Mn3AgN samples deposited at increasing substrate temperature 

and suggests that the higher substrate temperature does lead to a small increase 

in crystallization of the Mn3AgN antiperovskite structure formed.  

 

Table 4-3 Table of FWHM and calculated mean grain size for Mn3Agn and 

Mn3Cun films deposited at increasing substrate temperature. 

Material 
Substrate 

temperature ( ̊ C) 
FWHM 

( ̊ ) 
Mean grain 
size (nm) 

Mn3AgN 

0 0.68 14.58 

50 0.68 14.47 

100 0.66 15.50 

 

Mn3CuN 

0 2.62 9.89 

50 2.42 11.05 

100 2.00 12.95 

 

On the other hand, for Mn3CuN films a very clear distinction could be seen for films 

grown at different substrate temperature, from figure 4-9 (b). The Table 4-3 

presents the value for crystallite size in the (200) plane for the Mn3CuN structure 

and a difference of ~3 nm in crystal size is calculated between films grown without 

Tsub and those grown at 100ºC. Work done by Tan et al (2015) reports crystallite 

sizes of 12 nm for Mn3CuN samples developed by the spark plasma sintering 

method which employs high preparation temperatures and supports that higher 

preparation temperatures are beneficial for development of larger crystallite size 

[145]. The increasing crystallization from Tsub decreases sheet resistance and 

adjust TCR closer to 0, but the effect itself is small and could be realized better by 

an additional process of annealing treatment.  

 

SEM images showing the grains of the Mn3AgN films deposited at various 

substrate temperatures are shown in figure 4-10 (a), (b) and (c), and appear to be 

very similar in size. SEM shows presence of larger grain sizes but the majority of 

the grain sizes appear to be very close to the size figures calculated by the Scherrer 

equation above. The SEM analysis along with the XRD results, strongly suggests 
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that substrate temperature leads only to a minor increase in the crystalline nature 

of the film. So after annealing heat treatment (section 4.3.3), if samples deposited 

at elevated substrate temperature do not lead to a clear improvement in electrical 

values when compared to ones grown without Tsub, it would be reasonable to 

continue the further experiments without Tsub. 

 

  

 

Fig 4-10 Mn3AgN films grown at Tsub (a) without Tsub, (b) 50 and (c) 100ºC. 

 

4.3.3 Effect of annealing temperature on film properties 

 

The sheet resistance and TCR of Mn-AgN and Mn-CuN films deposited at four 

levels of Nitrogen flow and three levels of substrate temperature were measured 

after heat treating them at 200, 300, and 400ºC, in a flowing Nitrogen environment. 

An additional treatment temperature of 350ºC was added later when TCR was 

observed to cross over the zero line between 300 and 400ºC. From results on as-

(c) 

(a) (b) 
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grown films, it is observed that, the substrate temperature produces only a small 

effect on the electrical properties due to crystallization resulting from increased 

Tsub. However, N2 flow rate on the other hand is seen to affect chemical 

composition, structure, and electrical properties significantly. Therefore, in the 

proceeding sections, sheet resistance and TCR measured after heat treatment will 

be studied primarily for films grown without Tsub, at various N2 flow rates. Later, 

comparison of results for films grown at increasing Tsub and fixed N2 flow rate will 

aim to clarify if Tsub is in fact able to produce any favorable effect on the electrical 

properties of antiperovskite films after annealing heat treatment. 

 

Mn-AgN Sheet Resistance  

Figure 4-11 shows the effect of various annealing temperatures on the sheet 

resistance of Mn-AgN films grown with increasing N2 flow rate. Each line in the 

graph represents one N2 flow rate. It can be seen that for heat treatment 

temperatures up to 300ºC, the sheet resistance is slightly decreasing for lower flow 

rates of 1, 2 and 3 sccm. For the lowest flow rate of 1 sccm, the resistance 

decreases at every step of increasing annealing temperature from 4.20 to 2.96 Ω/□. 

Sheet resistance, for the films deposited at 2 sccm decreases from 6.05 to 4.66 

Ω/□, for heat treatment temperatures up to 300ºC and thereafter gradually 

increases with further increase in temperature up to 7.61Ω/□. A similar trend is 

shown by films deposited at 3 sccm of N2 flow, Rs decreases from 6.53Ω/□ to 

5.98Ω/□ for heat treatment up to 300ºC, but for temperatures above 300ºC shows 

an increasing trend ending at 11.87Ω/□ after heat treatment at 400ºC. For the 

highest flow rate of 5 sccm, the resistance shows an increasing trend even for the 

lowest of the heat treatment temperatures, and becomes very steep for higher heat 

treatment temperature up to a maximum of 30.36 Ω/□ following treatment at 400ºC. 
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Fig 4-11 Graph of sheet resistance values of Mn-AgN film (without substrate 
temperature) with increasing annealing temperature.  

 

To analyses the effect of substrate temperature after heat treatment, figure 4-12 

compares the sheet resistance value of Mn3AgN formed at 3 sccm of N2 flow rate. 

Visible difference in the sheet resistance values for films grown at varying substrate 

temperatures only occurs at temperatures above 300ºC. One common trend 

between Figure 4-11 and figure 4-12 is that, irrespective of deposition parameters, 

the resistance values are observed to increase very steeply for films heat treated 

at 300ºC and above. While decrease in resistance at lower heat treatment 

temperature could be a result of defect healing and increased crystallization, the 

steep increase in sheet resistance at higher heat treatment temperature could be 

explained by increased oxidation of the top layer, which starts to compensate and 

overcome the decrease by the other two phenomena, (shown later in the EDX 

measurements). 
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Fig 4-12 Graph of sheet resistance of Mn3AgN film (3 sccm N2 flow) with 
increasing annealing temperature.  

 

Structural and topographical changes after annealing treatment: 

After heat treatment at four different temperatures, the size of the sample set 

increased four times. The time consuming nature of XRD limited the analysis of the 

entire sample set. XRD spectra were developed only for heat treatment 

temperatures of 300 and 350ºC. These temperatures were chosen as TCR values 

were observed to be closest to zero between these two values of heat treatment 

and they could subsequently be compared against the spectra for the as-grown 

samples. XRD spectra in figure 4-13 (a) to (d) show the effect of heat treatment 

temperature on the crystal structure of Mn-AgN films deposited with increasing N2 

flow rate.  

 

The protrusion observed for the as-grown 1 sccm film (fig 4-13 (a) red line), 

becomes more pronounced with increasing heat treatment temperatures, and at 

350 °C of heat treatment could be seen to shift closer to the (200) central peak 

than in the as grown state. A secondary peak very close to [111] appears after heat 

treatment at 300 C. It can be concluded that energy provided by heat treatment 

aids in rearrangement of elements into some form of crystalline formation with 

similarity to a strained antiperovskite structure. The as-grown sample at 2 sccm of 

N2 flow rate has a peak very close to the (111) crystal peak position, and after heat 
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treatment at 300ºC appears to align more towards the 38.8 ̊ central position. But it 

is joined by a very broad shoulder passing well beyond the (200) plane position at 

45.1.̊  While the strong peaks after 300ºC could suggest a structure under 

formation, the absence of a similar strength of peak after heat treatment at 350ºC, 

along with spectra of those at 1 sccm, indicates that the structure formation is not 

very reliable when films are deposited in a N2 deficient environment. The films 

deposited at 3 sccm show consistent development of the antiperovskite structure 

when treated at increasing annealing temperature.  

 

 

  

Fig 4-13 XRD spectrums of Mn-AgN deposited at (a) 1 , (b) 2, (c) 3,  and (d) 5 

Sccm before and after heat treatment. 

 

After heat treatment at 350ºC the (200) plane becomes the dominant phase 

compared to, the (111) plane up to 300ºC. The films deposited at 5 sccm of N2 flow 

rate also show presence of a dominant (200) phase but the shift from the central 

(b) 

(d) 

(a) 

(c) 
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peak position indicates a strain in the film [114]. With the increasing heat treatment 

temperature, the shift increases towards a lower angle indicating an increasing 

strain within the film. It can be concluded that the right amount of N2 flow rate 

dictates the amount of Nitrogen in the film, which  governs the formation and 

stability of the antiperovskite structure during the heat treatment process.  

 

The effect of substrate temperature on the crystal structure of Mn3AgN thin films 

before and after annealing heat treatment is presented in figure 4-14 (a) to (c). 

These three images compare three Mn3AgN films (at 3 Sccm of N2 flow rate) 

deposited at increasing Tsub, as they are heat treated at increasing annealing 

temperatures.  For films grown without Tsub, after annealing at 350ºC the (200) 

peak gets sharp and dominant, but no clear difference is observed for the (111) 

peak. For films deposited at 50ºC of Tsub, the dominative nature of the (200) plane 

starts early after annealing at 300ºC, compared to films without Tsub. For the films 

deposited at 100ºC of Tsub, both the (111) and (200) peaks get sharper from 300ºC 

onwards, with the intensity of the (200) plane marginally higher than that of the 

(111).  

 

The observed FWHM and crystallite size for the (200) peak is presented in table 4-

4. It can be seen that there is an increase of 3.5 nm in grain size after heat 

treatment for samples grown without substrate temperature. Whereas samples 

deposited at 50 and 100ºC of Tsub only showed an increase of 1.63 and 0.9 nm 

respectively. Therefore, the rate of growth of crystal size after heat treatment 

appears to reduce for films deposited at higher substrate temperatures.  
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Fig 4-14 XRD spectrums before and after heat treatment for Mn3AgN  films grown 
(a) without Tsub (b) Tsub = 50ºC (c) Tsub = 100ºC. 

 

Table 4-4 Table of FWHM and calculated crystallite grain size for Mn3AgN 
samples before and after heat treatment  

Material Tsub  

( ̊ C) 

Annealing 

temperature ( ̊ C) 

FWHM  

( ̊ ) 

Mean Grain 

Size (nm) 

Mn3AgN 

Without 

Tsub 

As-Grown 2.38 3.69 

300 2.26 4.15 

350 1.3 7.17 

50 

As-Grown 2.72 3.79 

300 2.56 4.50 

350 1.72 5.42 

100 

As-Grown 1.96 5.09 

300 2.04 5.90 

350 1.52 5.99 

(b) (a) 

(c) 
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Side profile imaging of the samples after heat treatment, in figure 4-15, reveals that 

a secondary layer is formed on the top of the thin films. The Mn3AgN film (3 sccm 

and at room temperature) had an as-grown thickness of 625 nm when analyzed, 

but after heat treatment at 350ºC the thickness of film increased to 748 nm, with 

the newly formed top layer having a thickness of 196 nm. The new layer on top 

could be an oxide layer formed during the heat treatment. There are cases of 

material systems in TFRs where oxide layers formed on top are known to protect 

the underlying layers from further degradation thereby making the thin film resistor 

stable [34]. Analyzing the heat-treated samples under the SEM verified the 

presence of larger structures on the top surface of the film but the grain boundaries 

are not very well defined like seen in as-grown films. 

 

  

Fig 4-15 (a) Cross section (b) top profile of Mn3AgN, grown at 3sccm N2 flow and 
without Tsub, after heat treating at 350ºC . 

 

EDX analysis performed on the Mn3AgN shows rapid oxidation of the film, table 4-

5. The films were annealed in a closed tube furnace with flowing Nitrogen 

environment.  So the presence of Oxygen to this level is not expected. The tube 

furnace lacked an externally controlled stage movement, hence after 1 hour at 

elevated temperature, a small opening is created to move the samples to a colder 

region to cool down and then it is sealed again in a flowing Nitrogen environment. 

This would introduce a considerable amount of Oxygen into the tube, which could 

be oxidizing the upper layers of film. The effects of heat treatment environment are 

further explored in section 6.3.2. After heat treatment at 300°C, 9% of Oxygen is 

(a) (b) 
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observed in the film, while heat treatment at 350°C accelerates this value to 23%. 

Comparing with SEM images it could be expected for the upper layer to be Oxygen 

rich. Therefore, major trend changes observed in both the sheet resistance and the 

TCR for Mn3AgN film between 300 and 350ºC, could be very reasonably related to 

the combined effect of increased oxidation along with defect healing and 

crystallization of the film. 

 

Table 4-5 Table of EDX composition of Mn3AgN samples measured before and 
after heat treatment. 

Mn3AgN samples 

(3 sccm/0 Tsub) 

As-grown 

(Mn:Ag:N:O) 

Heat treated (ºC) 

300 (Mn:Ag:N:O ratio) 350 (Mn:Ag:N:O ratio) 

Composition (at %) 59:21:20:0 55:19:17:9 61:9:7:23 

 

Mn-AgN TCR  

Figure 4-16 shows the effect of various increasing annealing temperatures on the 

TCR of Mn-AgN films grown with increasing N2 flow rate. Each line in the graph 

represents increasing heat treatment temperature. The as-grown film is seen to 

have the most negative TCR and with each successive increase in heat treatment 

temperature, the TCR shifts in the positive direction, irrespective of the N2 flow rate. 

The rate of positive shift is highest for films deposited at 1 sccm. But contrary to 

expectations, the films deposited at 5 sccm is the next set to show a higher degree 

of positive shift compared to films grown at 2 or 3 sccm. This behavior forms a 

depression in the TCR curve attaining its lowest TCR at 3 sccm and this trend is 

maintained for all the steps of heat treatment.  The zero TCR line lies in between 

the 300 and 350ºC regime of heat treatment for films grown at 2 and 3 sccm but 

films grown at 1 and 5 sccm attains positive value of TCR at 300ºC itself.  
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Fig 4-16 Graph of TCR values of Mn-AgN films grown (without Tsub) with 
increasing N2 flow rate. 

 

To better compare the relative TCR values between each N2 flow rate, the same 

values of TCR are plotted against increasing annealing temperature for each N2 

flow rate in figure 4-17. It can be clearly seen that the films deposited at the higher 

N2 flow rate of 5 sccm demonstrate a positive TCR when compared with the TCR 

values of lines representing 2 and 3 sccm. The 5 sccm line is only lower than the 

line representing 1 sccm. The 1 sccm and 5 sccm lines cross over the 0 TCR before 

300ºC and the 2 sccm and 3 sccm lines crosses over the 0 TCR line in between 

300 and 350ºC. From the previous sections, it is expected that the Mn3AgN 

antiperovskite structures are formed at an N2 flow rate of 3 sccm.  The TCR value 

for Mn3AgN films (3 sccm line) remains the least negative and after heat treatment 

at 300ºC attains -54 ppm/ºC and after heat treating at 350ºC a closer to zero value 

of 24 ppm/ºC is achieved. It could be possible to attain a closer to zero TCR by 

heat-treating these films at a treatment temperature between 300 and 350ºC. 
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Fig 4-17 Graph of TCR values of Mn-AgN films grown (without Tsub) with 
increasing annealing temperature. 

 

In the section 4.3.2, for as-grown films, it was seen that the substrate temperature 

shifts the TCR values of the as-grown Mn-AgN films in the positive direction 

(irrespective of N2 flow rate). In figure 4-18, the TCR values of Mn3AgN films 

deposited at varying substrate temperature are plotted against increasing heat 

treatment temperature. It can be observed that up to 350ºC, the lines depicting 

successive increments in substrate temperature remain shifted higher in the 

positive direction, and thereafter the TCR value becomes independent of the effect 

of substrate temperature. It is reasonable to conclude that the increment in TCR 

value registered at the time of deposition, because of substrate temperature is 

carried forward for lower regimes of heat treatment temperature. However, the 

effect of substrate temperature is not strong enough to produce any visible 

difference in TCR values of films grown at different Tsub values when heat-treated 

at temperatures above 350ºC. 
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Fig 4-18 Graph of TCR values of Mn3AgN antiperovskite films (3sccm N2 flow) 
with increasing annealing temperature. 

 

Mn-CuN Sheet Resistance  

 

Mn-CuN films also show trends similar to those observed after annealing heat 

treatment of Mn-AgN films. Figure 4-19 shows the effect of increasing annealing 

temperatures on the sheet resistance of Mn-CuN films grown with increasing N2 

flow rate. It can be seen that for each successive increase in N2 flow rate, the sheet 

resistance value is higher than the previous N2 flow rate and this is maintained at 

every point of annealing heat treatment. Similar to Mn-AgN films, for heat treatment 

temperatures up to 300ºC, Mn-CuN films show a decrease in the sheet resistance 

value and are consistent for all three N2 flow rates. Moreover, for heat treatment at 

350ºC and 400ºC, a sharp rise in sheet resistance is observed for all Mn-CuN films. 

Films deposited at 1 sccm had the lowest mean value for as-grown sheet 

resistance at 13.62 Ω/□ and after heat treatment at 300ºC decreased to the lowest 

value at 10.38 Ω/□ before rising again to 20.92 Ω/□ when heat treated at 400ºC. 

For films deposited at 2-sccm flow rate, the sheet resistance decreased to 10.38 

Ω/□ from their as-grown value of 13.62 Ω/□. For films deposited at 3-sccm this 
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decrease was from 19.21 Ω/□ to 16.82 Ω/□ and for films deposited at 5 sccm, the 

value dropped from 23.31 Ω/□ to 18.27 Ω/□. Maximum sheet resistance value for 

3, 5 and 6-sccm N2 flow rate appears to level off around 26.57, 28.82, and 29.09 

Ω/□ respectively after heat treatment temperatures above 350ºC.  However, this 

levelling off cannot be confirmed without further heat treatment at higher 

temperatures going beyond 500˚C. 

 

 

Fig 4-19 Graph of Rs values of Mn-CuN film with annealing temperature.  

 

In order to study the effect of substrate temperature, samples deposited at 5 sccm 

of N2 flow rate are selected, because it is at this flow rate that Mn3CuN 

antiperovskite structures are realized. Figure 4-20 compares the effect of annealing 

temperature on the Mn3CuN films grown at varying initial substrate temperature. 

The general trend of initial decrease in sheet resistance for lower annealing 

temperatures followed by a steep rise in sheet resistance for higher annealing 

temperatures is observed for all the films irrespective of substrate temperatures. 

However, it is expected that the onset of this steep rise is effected to some degree 

by the initial substrate temperature. The films deposited without substrate 

temperature show the rising Rs values for heat treatment temperatures above 
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300ºC. Whereas for films deposited at Tsub of  50ºC and 100ºC, the Rs value starts 

reversing the direction of change from 200ºC. However, other than the early onset 

of resistance reversal, there is no major difference observed as result of introducing 

substrate temperature. 

 

 

Fig 4-20 Graph of sheet resistance values of Mn3CuN film (5 sccm N2 flow) with 
increasing annealing temperature.  

 

Structural and topographical changes after annealing treatment: 

 

Mn-CuN samples heat-treated at 300 and 350ºC were chosen to study the crystal 

structure and then compared with respect to the as-grown films to measure the 

changes happening in XRD spectrums as a result of annealing heat treatment.  

Figure 4-21 shows the XRD spectrums achieved from Mn-CuN films deposited at 

different N2 flow rates stacked together to compare the varying crystalline nature 

when heat treated.  

 

For samples deposited at the lowest N2 flow rate of 2 sccm a very sharp peak 

occurs at 42.44 ̊. With each successive heat treatment, this peak is observed to 

get more and more crystallized with a shift towards higher angles. A central peak 
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of 42.2 exist for the (131) phase of Mn2N0.86, which indicates a Manganese 

structure developed in a Nitrogen deficient condition [ICSD database]. This peak 

is not visible for samples deposited at a higher N2 flow rate of 3 sccm, although a 

considerable swell is observed around 41.88  ̊for films heat treated at 300ºC, but 

this does not repeat itself when heat treated at a higher temperature of 350ºC.  No 

antiperovskite peaks are observed for as-grown films for either of the flow rates, 

though a small bump starts to appear around 46.42 ̊ when the sample deposited 

at 3 sccm is heat treated at 350ºC.  

 

 

 

Fig 4-21 XRD spectrums of Mn-CuN films grown at (a)2 , (b) 3, (c) 5, and (d) 6 
sccm N2 flow rate after heat treatment. 

 

For samples deposited at 5 sccm there is a very clear peak formed at 46.5  ̊

representing a (200) preferential orientation. Upon increasing the heat treatment to 

300 and 350ºC the peak at (200) continues to become sharper indicating growth 

of single phase antiperovskite Mn3CuN thin films. Absence of any other peaks or 

(d) 

(a) (b) 

(c) 
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shifts in the existing peak indicates that the Mn3CuN antiperovskite structure 

formed with (200) phase remains stable throughout the heat treatment regime. 

Absence of other peaks along with increasing crystallization of a single-phase 

structure also supports that, with increasing heat treatment, inter-planar defects 

and irregularities are healed which leads to a reduction in the sheet resistance as 

seen before. This absence of defects also supports shifts of TCR in the positive 

direction as defects and irregularities in the film are factors contributing towards 

negative TCR. For the as grown samples at 6 sccm of N2 flow rate, peaks were 

observed to shift towards higher angles. It is reasonable because the increment of 

N2 species in the film, which has smaller atomic radius compared to Cu atoms, the 

films experience contraction, which is observed as a shift in the higher angle. In 

figure 4-21 (d) it can be seen that this shift increases with increasing heat treatment 

temperature.  

 

To further explore the role of substrate temperature on the physical structure of the 

films, XRD spectrums are taken from Mn3CuN films (deposited at 5 sccm) 

deposited at increasing Tsub before and after annealing heat treatment, see figure 

4-22 (a)-(c). No other peaks except that for (200) were found, even when Mn3CuN 

films are deposited at higher substrate temperature.  One thing which is very clear 

and which was also explained previously along with the as-grown films, is that with 

increasing substrate temperature, the as-grown Mn3CuN film increases in 

crystallization, indicated by the peak for (200) phase getting sharper. This first 

stage of crystallization as a result of substrate temperature affects the further rapid 

crystallization when an annealing heat treatment is introduced later. This can be 

seen in figure 4-22 below as well as in the mean grain size calculated for each 

case as presented in the table 4-6 below. The average grain size for films deposited 

without substrate temperature increases from 9 nm to 26 nm whereas films 

deposited at 100ºC Tsub shows an increment from 12 nm to 29 nm. It can be seen 

that antiperovskite structure formation is determined by the partial pressure of 

reactive N2 in the chamber, which is related to N2 flow rate. The substrate 

temperature helps in early crystallization of the film, which can also be achieved by 

annealing later. This is correlated to the observation that increased crystallization 

as a result of substrate temperature shifts the TCR of Mn3CuN early in a positive 
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direction, which can also be achieved by a dedicated annealing stage later in the 

process. 

  

 

Fig 4-22 XRD spectrums of Mn3CuN films grown (a) without Tsub, (b) 50 and (c) 
100ºC after heat treatment. 

 

Table 4-6  Table of  FWHM and calculated crystallite grain size before and after 
heat treatment, for Mn3CuN samples deposited at increasing Tsub. 

Material Tsub (ºC) Annealing 

temperature (ºC) 

FWHM  (º) Mean Grain 

Size (nm) 

Mn3CuN 

Without 

Tsub 

As-Grown 2.62 9.88 

300 2.12 13.03 

350 1.16 26.46 

50 

As-Grown 2.42 11.04 

300 1.72 18.54 

350 1.22 26.14 

100 

As-Grown 2 12.95 

300 1.24 29.12 

350 1.12 29.62 

(a) (b) 

(c) 
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Analyzing the side profile of a Mn3CuN film showed the presence of secondary 

layer on top of the thin film similar to that observed on Mn3AgN films. In the case 

of Mn3CuN films, the thickness only registered a minor increase of 25 nm going 

from 496 nm for the as grown film to 521 nm after heat treatment at 350ºC as seen 

in figure 4-23(a).  The thickness of the top layer formed is also less at 86 nm 

compared to the Mn3AgN film at 196 nm. In comparison to Mn3AgN, the layer on 

top of Mn3CunN looks denser and well adhered to antiperovskite film at the bottom 

layer. The top layer could be assumed to be an oxide layer formed by the residue 

Oxygen within the annealing tube at high temperature but will have to confirmed 

by SIMS or low voltage EDX in further chapters. The top profile analysis of the film 

shows a definite increment in the grain size when compared to the as grown 

Mn3CuN films validating the structural analysis from the XRD results.  

 

  

Fig 4-23 (a) Cross section (b) Top profile of Mn3CuN films grown at 5 sccm N2 
flow rate and without Tsub, after heat treating at 350ºC. 

 

EDX analysis performed on the heat-treated sample revealed increased Oxygen 

content in the film, presented in table 4-7. As explained with heat treatment of 

Mn3AgN before, the source of Oxygen could be identified as the opening created 

within the tube to allow movement of samples to a colder region. However, unlike 

Mn3AgN films, Mn3CuN films registered much lower content of Oxygen in the film 

after heat treatment. After 300ºC only 5% of Oxygen is detected in the film which 

increases to 16% after heat treatment at 350ºC. This data correlates with the SEM 

(b) (a) 



 

4-41 

 

images where the upper protective oxide layer formed is much thinner when 

compared to upper layer seen in Mn3AgN films.  

 

Table 4-7 Table showing EDX composition of Mn3CuN samples before and after 
heat-treating.  

Mn3CuN samples 

(5 sccm/No Tsub) 

As-grown 

(Mn:Cu:N:O) 

Heat treated (ºC) 

300 (Mn:Cu:N:O) 350 (Mn:Cu:N:O) 

Composition 60:21:19:0 58:20:17:5 50:19:15:16 

 

Therefore, the correlation between upper layer thickness and Oxygen content 

detected in film, lends credibility that the concentration of Oxygen is mainly in the 

upper layer and not throughout the film depth. Moreover, if found to be true it could 

be acting as a protective layer for the underlying antiperovskite structure. EDX 

analysis of the cross section is performed for films tested under different heat 

treatment conditions in section 5.3.3 to further prove this point. 

 

Mn-CuN TCR  

Figure 4-24 plots the shift in the TCR values for Mn-CuN films grown at varying N2 

flow rate as they are heat treated at 4 different temperatures after deposition. One 

point very clear from the figure is that with each successive increment in heat 

treatment temperature, the TCR values shift in a positive direction. This is as 

expected and similar to the previously seen results after heat treatment of Mn-AgN 

films. The zero TCR line for the most part, again lies in between the 300 and 350ºC 

heat treatment limits. But in comparison to the Mn-AgN films, where some results 

were already positive at 300ºC if not close to zero in the negative TCR region, for 

Mn-CuN films the heat treatment temperature of 350ºC is not sufficient to shift the 

entire line of films deposited at 5 sccm to the positive TCR region. This means that 

Mn-CuN can withstand higher temperature before shifting NTCR to PTCR values. 

Mn-CuN films continuously become negative in TCR with N2 flow rate and this trend 

remains throughout the heat treatment regime, though the difference between the 

TCR values for 3, 5 and 6 sccm films are significantly less.  From previous results, 
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the films grown at 5 sccm of flow rate are known to form the Mn3CuN antiperovskite 

structure and these samples are still negative after heat treatment at 350ºC.  

 

 

Fig 4-24 Graph TCR values of Mn-CuN films (without Tsub) with N2 flow rate. 

 

Mn3CuN films exhibit the lowest TCR value of -19 ppm/ºC for the sample set after 

heat treatment at 350ºC. Figure 4-25 presents the data set for individual N2 flow 

rates when heat-treated.  As expected, the TCR continues to grow negative with 

each increment in N2 flow rate and this relationship is maintained throughout the 

entire heat treatment regime. The lowest value of TCR is observed for Mn3CuN 

films. While the effect of N2 flow rates on TCR of Mn-CuN films is very clear to 

observe, the same cannot be said about the effect of substrate temperature. Figure 

4-26 shows the effect of substrate temperature on the TCR values of Mn3CuN films 

(5-sccm flow rate). The lines for films deposited without Tsub barely separates from 

the TCR lines of films grown at 50 and 100ºC of substrate temperature. After heat 

treatment at 350ºC, films grown without Tsub register a negative TCR of -19 

ppm/ºC, whereas films grown at 50 and 100ºC are shifted into the positive TCR 

region and register values of +20 ppm /ºC and +42 ppm/ºC respectively. Similar to 

earlier films of Mn3AgN, it can be seen that the effect of substrate temperature on 

the TCR of Mn3CuN films is to provide an initial shift to the TCR in the positive 

direction but is not sufficient enough to push the TCR value closer to the zero TCR 
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line. Additional heat treatment will need to be provided to fine tune TCR values 

closer to zero.  

 

 

Fig 4-25 Graph of TCR values of Mn-CuN films grown (without Tsub) with 
annealing temperature. 

 

 

Fig 4-26 Graph of TCR values of Mn3CuN films (5 sccm N2 flow) with annealing 
temperature. 
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4.3.4 Effect of annealing time on properties of film 

 

From previous results, N2 flow rate, substrate temperature and annealing 

temperature are narrowed down to achieve the lowest TCR possible. In 

experiments so far heat treatment is performed for 1 hour. To determine the effect 

of annealing treatment time on properties of Mn3AgN and Mn3CuN films, samples 

are heat treated at 350ºC for 1, 2, 3, 4 and 5 hours in the same tube furnace with 

flowing Nitrogen environment.  

 

From figure 4-27 (a) and (b) it can be seen that increasing the time duration doesn’t 

change the sheet resistance of film more than 1 Ω/□ for both Mn3AgN and Mn3CuN 

films. They appear to reach a stable sheet resistance after 3 hours of heat 

treatment. Increasing the time duration of heat treatment is seen to shift the TCR 

values in the positive direction for both Mn3AgN and Mn3CuN films. For Mn3AgN 

the value shifts from +28 ppm/ºC and begins to settle around +47 ppm/ºC after 3 

hours of heat treatment.  For Mn3CuN films also the TCR value settles around 20 

ppm/ºC after 3 hours at 350ºC.  
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Fig 4-27 Graph of Rs and TCR values of (a) Mn3AgN films (without Tsub) (b) 

Mn3CuN films (without Tsub) with annealing duration. 

 

4.3.5 Electrical resistance stability of antiperovskite films 

 

The stability of the resistance value was measured by subjecting the samples to 

open air at elevated temperature of 155ºC for 1 week (168 hours). This is based 

on Mil-PRF 55342 standard for military grade resistor products and mimics the 

worst-case scenario that an encapsulated resistor product can face in a printed 

circuit and measures the resistance change during this time[146].  

 

Mn3AgN and Mn3CuN samples deposited at three varying substrate temperature 

levels are subjected to dry heat stability test to check if the elevated substrate 

temperatures have any effect on improving the stability figures for these films. In 

the previous sections, no commercially favourable improvements are observed in 

TCR or sheet resistance values as a result of increased substrate temperature. A 

favourable effect of substrate temperature on electrical stability can justify the use 

of elevated substrate temperature for the experiments in the further chapters.  As 

grown samples were heat treated at 350ºC for 3 hours in flowing Nitrogen 
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environment and then after cooling kept at 155ºC for 1 week in open air 

environment with 4-wire resistance measurement made every 24 hours. Figure 4-

28 (a) and (b) shows the percentage change in resistance value in every 24 hours 

for Mn3AgN and Mn3CuN samples deposited at varying substrate temperatures.  

 

The data shows that antiperovskite film structures are not stable after the first 

annealing treatment. In the Mn3AgN set of films shown in figure 4-28 (a), the best 

stability figure achieved was for the films grown without substrate temperature, and 

it was not better than 15% after 1 week at 155ºC. With increasing substrate 

temperature, the stability figure worsened to 21% for the films grown at 100ºC Tsub 

after 1 week. Comparatively, the Mn3CuN set of films showed better stability values 

in figure 4-28 (b), but that was also no better than 11% for the best case for films 

grown without Tsub. For films grown at elevated substrate temperature of 100ºC 

the resistance values of films changes more than 15% after 1 week. As compared 

to Cu, Ag was seen to be more susceptible to oxidation when subjected to elevated 

temperature therefore the relatively higher degree of instability in Mn3AgN films 

when subjected to 155ºC for 168 hours is expected. Further, for Mn3AgN films the 

graphs are observed to have extremely large error bars faring the worst value of 

8% on each side of average value for films grown at Tsub of 100ºC. While for 

Mn3CuN this the error bars never gets wider than 1.3% on either side of average 

value for any of the Tsub condition. However, these values are excessively high to 

be considered for a commercial application in thin film resistor fabrication. Typical 

industrial standards require thin film resistors to show figures better than 0.5% [147] 

for the dry heat stability test and high stability products like WIN series resistors 

have stability values better than 0.03% after 100 hours at 150ºC [96].  
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Fig 4-28 Graph of electrical resistance stability in DR/R% after heat treatment at 

350ºC for (a) Mn3AgN  films (b) Mn3CuN films  

 

Having said that, in figure 4-29, the curves having the best stability figures from 

both set of materials can be seen together and a sharp bend can be observed at 

24-hour mark, for both sets of films. This suggest that the films have a tendency to 

settle down to a stable resistance value as the dry heat test progresses. In addition, 

the key difference in the industry measurements for stability and measurements 

performed in the university, is that the industry standards are derived by testing 

resistor films after they are subjected to a second stage of stabilization treatment 
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and resin encapsulation. Therefore, a stabilization stage of heat treatment could 

be further explored to investigate the possibility of improving stability values by 

performing a secondary stage of stabilization heat treatment and if found suitable 

could be further tested with an encapsulation process in industry.  

 

 

Fig 4-29 Graph of electrical resistance stability of Mn3AgN and Mn3CuN films 

after heat treatment at 350ºC. 

4.4  Summary  

The results presented in this chapter support the findings of the literature review 

that the Mn based antiperovskites: Mn3AgN and Mn3CuN, have very low TCR 

values and could be taken further for studies to be developed into a potential 

material system for thin film resistor fabrication.  

 

The films deposited at varying N2 flow rate showed that the amount of Nitrogen 

present in the chamber plays a major role in deciding the electrical, structural, 

chemical and morphological characteristics of the films. 3 sccm of N2 flow rate (10% 

partial Nitrogen pressure) is required to realise Mn3AgN antiperovskite structure 

which bears structural, chemical and morphological resemblance to the previously 

published works, whereas for Mn-CuN films, 5 sccm of N2 flow rate or 16.66% of 

partial Nitrogen pressure is required to grow Mn3CuN antiperovskite structures 

similar to those published in the previous work. Substrate temperature is seen to 

0

5

10

15

20

25

0 24 48 72 96 120 144 168 192

S
ta

b
il
it

y
, 
D

R
/R

  
%

No of hours at 155ºC 

dR/R  % -Mn3AgN

dR/R % -Mn3CuN



 

4-49 

 

play a role in in-situ crystallization of the as-grown samples, which in turn affects 

the as grown electrical properties. Although, this is not something exclusive to 

substrate temperature and could be realised later with a separate annealing 

treatment to a greater extent. 

 

The as-grown TCR value is seen to be negative: between -180 and -235 ppm/ºC 

for Mn3AgN and -324 and -355 ppm/ºC for Mn3CuN films. This as-grown negative 

TCR showed a shift in the positive direction with increasing heat treatment in 

flowing Nitrogen environment. For 1-hour heat treatment, both sets of films crossed 

the zero TCR line between 300ºC and 350ºC. 3 hours of heat treatment at 350ºC 

was found to be sufficient to stabilize the TCR value of Mn3AgN to +47 ppm/ºC and 

that of Mn3CuN to +21 ppm/ºC. Table 4-8 provides a summary of the best results 

achieved for the Mn based system and shows that for similar process conditions, 

Mn3AgN has more positive TCR values than Mn3CuN structure. Therefore, it is 

possible for a ternary antiperovskite structure formed by partial substitution of Cu 

into the Mn3AgN system to achieve TCR values closer to zero by heat-treating at 

a temperature lower than 350ºC.  The dry heat stability test showed stability figures 

no better than 11% for either set of films, which is not acceptable for industry 

standards by a far margin. The rapid attack from Oxygen in the environment might 

be leading to the degradation of resistance values in these films. It is expected that 

by introducing a secondary stage of heat treatment in an optimum environment, a 

good improvement in stability can be achieved.   

 

Table 4-8 Table with summary of electrical properties achieved on Mn3AgN and 

Mn3CuN films heat treated at 350ºC for 3 hours.  

Material 

Process setting 

Sheet 

resistance, 

RS (Ω/□) 

TCR 

(ppm/ºC ) 

Stability 

figure 

(ΔR/R%) 

Tsub 

( ºC) 

N2 

flow 

rate 

(sccm) 

Heat 

Treatment 

Temperature 

( ºC) 

Heat 

treatment 

Time 

(hours) 

Mn3AgN Without 

Tsub 

3 350 3 9.15 47.2 14 

Mn3CuN Without 

Tsub 

5 350 3 29.13 21.0 11 
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CHAPTER 5  Partial substitution 

of Cu in Mn3AgN
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5.1 Introduction 

 

The low TCR values of binary depositions of Mn3AgN and Mn3CuN antiperovskite 

structures achieved in chapter 4 are in agreement with the literature review 

conducted in chapter 2. After heat treating at 350ºC, low TCR values of +47 and 

+21 ppm/ºC are seen for Mn3AgN and Mn3CuN samples respectively. With 

increasing stages of heat treatment, the TCR value crosses over the 0 ppm/ºC line 

somewhere in between 300 and 350ºC. It should therefore be possible to achieve 

a closer to zero value of TCR by investigating this region of heat treatment.  

Another interesting trend observed in the TCR curves is that Mn3AgN samples are 

consistently more positive than Mn3CuN samples for the same level of heat 

treatment. It should also be possible to explore an option to partially substitute Cu 

in Mn3AgN to form a ternary structure with an intermediate TCR value. 

 

Intermixing thin film material systems with positive and negative TCR values is one 

of the researched techniques to achieve close to zero TCR values by 

compensating TCR values of each other [148]. This technique has been 

successfully researched on all of the TFR industry favorites like TaN [4, 44, 149], 

NiCr [14], and Ru based materials [43]. J.C.Lin et al (2011) explored the doping of 

the existing antiperovskites having low TCR with a ternary element as an effective 

way to further reduce their TCR value closer to zero [150]. They were able to 

reduce the TCR value of Mn3CuN antiperovskite from 25 ppm/ºC to 1.29 ppm/ºC 

by partially substituting Carbon (C) at N positions to form Mn3CuN(X)C(1-X). Similarly, 

work done by Y. Sun et al (2014) noticed that partial doping of Mn3AgN with Sn 

and Zn effectively reduced the TCR value from 102 ppm/ºC to 31 and 36 ppm/ºC 

respectively  [81]. Another work done by N.P. Lu et al (2015) achieved a low TCR 

value of 20 ppm/ºC by doping Ag  into Mn4N to create Mn3Ag(0.81)Mn(0.19)N [90]. But 

it is the detailed work published by K. Takenaka and group [79, 87, 88, 99, 100] on 

the extremely low TCR values observed by partial substitution of Cu into Mn3AgN 

which is the main encouragement for further research with these material systems. 

Depending upon the dopant concentration of Cu in Mn3Ag(1-X)Cu(X)N, Takenaka 



 

5-3 

 

and group were able to observe low TCR values between 0.42 ppm/ºC [87] to 9.77 

ppm/ºC [99]. 

 

Based upon the literature review in chapter 2 and the results from chapter 4, the 

following flowchart is drawn for the incremental doping of Cu by increasing the 

value of X from X=0 to X=1 in steps of 0.2 in Mn3Ag(1-X)Cu(X)N as shown in figure 

5-1 below. 

Develop method to slow down the 

Ag deposition rate 

Perform deposition by varying value 

of X= 0 to X=1  in Mn3Ag(1-X)Cu(X)N

Characterization of ternary film

Introduce two stage heat treatment 

Suitable electrical 

properties 

?

Analyse combined effect of all the 

process stages on one chip

Subject to further parameter 

optimization

Do Chip survive the 

sequential process run

?

Reject Material 

systemNo

Yes 

yes

No 

 

Fig 5-1 Process flow for deposition and heat treatment optimization of Mn3Ag(1-

X)Cu(X)N ternary samples 
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5.2 Experimental  

 

Two main objectives are realized by the experiments carried out in this chapter: 

doping of Mn3AgN with Cu to explore the possibility of further reduction of TCR 

values, and to study the combined effect of the heat treatment stage on the thin 

films.  

 

5.2.1 As grown ternary films of Mn3Ag(1-X)Cu(X)N : 

 

In order to realize the ternary antiperovskite structure Mn3Ag(1-X)Cu(X)N, it is 

considered to increase the Cu dopant concentration by 0.2 atomic % in the Mn3AgN 

structure, thereby realizing 6 different compositions, ranging from pure Mn3AgN to 

pure Mn3CuN, as shown in table 5-1. 

 

Table 5-1 Table of Cu doping increment planned in the Mn3Ag(1-X)Cu(X)N. 

Sample 

No. 

Value of X in  

Mn3Ag(1-X)Cu(X)N 

Ternary 

composition 

1  0 Mn3AgN 

2  0.2 Mn3Ag0.8Cu0.2N 

3  0.4 Mn3Ag0.6Cu0.4N 

4  0.6 Mn3Ag0.4Cu0.6N 

5  0.8 Mn3Ag0.2Cu0.8N 

6  1.0 Mn3CuN 

 

The Copper target employed for this project was able to maintain plasma at very 

low power and therefore able to contribute a small dopant concentration of Cu (as 

in sample no 2 and 3), in the film. However, the main problem with this plan is to 

achieve the smaller concentration level of Ag as required in sample No 4 and 5. 

The Ag target is running at its lowest possible power of 23 W in order to realize 

sample no 1, with a 3:1 ratio between Mn and Ag, because of its higher sputtering 
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rate compared to Mn. Any further reduction in DC power to sputter a smaller 

concentration of Ag in the film will lead to plasma failure on Ag target.  

 

To reduce the silver concentration in the film a new shutter was designed, as shown 

in figure 5-2. By varying the shutter along three positions, it was possible to partially 

shadow the plasma plume from magnetron 4 on which the Ag target was loaded. 

This allowed more control over the portion of Ag plume exposed on the rotating 

carousel and therefore controlling the amount of Ag in the film. 

 

 

Fig 5-2 Top view of chamber showing shutter arrangement designed for 

magnetron 4 to lower Ag deposition rate. 

 

By adjusting power levels of Ag in accordance with power levels of Cu and shutter 

position it was possible to realize the 6 required compositions of ternary Mn3Ag(1-

X)Cu(X)N. In the previous chapter, it was seen that N2 flow rate is critical for the 

formation of antiperovskite structures. With increasing power on the Cu target, N2 

flow rate was also increased to cater for the increased amount of Cu in the film. 

The N2 flow rate was increased at 1 sccm for every 0.4 ratio increment in Cu 

concentration. From the previous chapter it was also seen that the substrate 

temperature brings no additional benefit that cannot be achieved by a heat 

treatment stage later on, hence no substrate heating was introduced for 

depositions of ternary antiperovskite films.  The final deposition matrix explaining 
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the power level on the Ag, Cu and Mn targets along with N2 flow rate and substrate 

temperature is as shown in table 5-2. 

 

Table 5-2 Table of deposition parameters for ternary antiperovskite films.  

Sample 

No. 

X (at. 

ratio) 

Required 

composition ratio 

Power on Target (W) Shutter 

position 

N2 flow 

rate 

(Sccm) 
Mn Ag Cu 

1 0 Mn3AgN 300 23 0 Open 3 

2 0.2 Mn3Ag0.8Cu0.2N 300 31 6 Pos 1 3 

3 0.4 Mn3Ag0.6Cu0.4N 300 37 11 Pos 2 4 

4 0.6 Mn3Ag0.4Cu0.6N 300 23 19 Pos 2 4 

5 0.8 Mn3Ag0.2Cu0.8N 300 23 20 Pos 3 5 

6 1.0 Mn3CuN 300 0 28 closed 5 

 

5.2.2 Two stage heat treatment of ternary films: 

In a typical TFR fabrication line, the deposited thin films are subjected to two stages 

of heat treatment: the first stage is carried out at a higher temperature within a 

closed oven in vacuum with inert gas or dopant gas species like N2, to tune the 

TCR value close to zero. This is followed by a second stage of stabilization heat 

treatment in open air. The temperature for stabilization heat treatment is set lower 

than at the first stage but higher than any temperature encountered in all the further 

fabrication process stages. This way the stabilization heat treatment stage ensures 

that no resistance drift will take place in further fabrication process stages, by 

curing the resistor circuits at higher temperature compared to all the further process 

stages. In chapter 4, the secondary stage of stabilization heat treatment was not 

applied to samples. This could be considered as a primary reason for the unstable 

nature of the films, when subjected to 1 week of dry heat test at 155ºC. 

 

To verify the effectiveness of this secondary stage of heat treatment in improving 

the stability figure of sheet resistance, the as-grown ternary films were subjected 

to two stages of heat treatment. In the first stage, 10 samples from substrate plates 

are subjected to four levels of heat treatment temperature starting from 300ºC and 
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increasing in steps of 25ºC up to 375ºC. This stage of treatment was performed for 

3 hours in a sealed tube furnace with a 2 l/min flowing Nitrogen source connected. 

After three hours, the seal is broken to shift the samples to a cooler region and 

then cooled to room temperature. After this, five samples are removed to perform 

TCR measurements while the remaining 5 samples were subjected to a secondary 

stage of stabilization heat treatment. The stabilization heat treatment was 

performed in an open-air environment in the same tube furnace at an elevated 

temperature of 260ºC for 16 hours. At the end of 16 hours’ the samples were moved 

to a cooler region to cool down to room temperature. After this, the samples were 

measured for their TCR values. The dry heat stability test was then performed on 

the samples that were subjected to the second stage of heat treatment for 168 

hours at 155ºC.  

 

5.3 Results and Discussion 

 

As in previous chapters, three main electrical properties were studied for the 

samples:  

1. Electrical sheet resistance at room temperature, Rs (Ω/□) 

2. TCR avg. between 20 ̊ C and 70  ̊C (ppm/ ̊ C) 

3. Resistance Stability ΔΩ/Ω, (%) 

Sheet resistance and TCR measurements were made before and after heat 

treatment of samples, for the six resistor circuits from each of the varying 

compositions. Dry heat stability tests were conducted after films were subjected to 

stabilization heat treatment at 260ºC for 16 hours.  

 

5.3.1 As grown ternary films of Mn3Ag(1-X)Cu(X)N  

Chemical composition and thickness: 

EDX analysis was performed on five sites across the glass substrate deposited 

with ternary thin films. The expected film composition and the film composition 

achieved after deposition is as shown in table 5-3. The atomic composition 

achieved for ternary films are very close to the required value set in table 5-2. 



 

5-8 

 

Sample no. 1 is seen to deviate from the expected value with an Mn:Ag:N ratio of 

2.47:1.53 as opposed to the required ratio of 3:1.  Mn3AgN films deposited using 

the ternary deposition plan registered a thickness value of 560 nm using the 

profilometer, which is also lower when compared to the thickness of 617 nm for 

Mn3AgN films achieved in section 4.3.1. Sample no. 6, Mn3CuN films also show 

higher deviation from the expected Mn:Cu ratio of 3:1 to the achieved value of 

2.85:1.15, though the thickness value of 498 nm is comparable to that achieved in 

section 4.3.1. As the targets are used repeatedly, more and more of the material is 

removed from their surface and this gradually changes their electrical resistance, 

leading to changes in the corresponding current and power values. This slowly 

changes the sputtering calibration set between the targets as in section 3.2.2. The 

rest of the compositions are much closer to the expected atomic composition.  

 

Table 5-3 Table of film thickness and composition for Mn3Ag(1-X)Cu(X)N films. 

Sample 

No 

 

Value 

of X  

Expected 

Ternary 

composition 

Atomic % of 

Mn:Ag:Cu:N 

Ternary 

composition 

achieved 

Film 

Thickness 

(nm) 

1  0 Mn3AgN 57:20:0:23 Mn2.85AgN1.15 560 

2  0.2 Mn3Ag0.8Cu0.2N 59:15:5:21 Mn2.95Ag0.75Cu0.25N1.05 545 

3  0.4 Mn3Ag0.6Cu0.4N 61:14:6:19 Mn3.05Ag0.7Cu0.3N0.95 523 

4  0.6 Mn3Ag0.4Cu0.6N 60:9:11:20 Mn3Ag0.45Cu0.55N1 529 

5  0.8 Mn3Ag0.2Cu0.8N 60:4:17:19 Mn3Ag0.2Cu0.85N0.95 532 

6  1.0 Mn3CuN 56:0:23:20 Mn2.8Cu1.20N 498 

 

Electrical Analysis of as-grown ternary films: 

 

Average values of electrical sheet resistance and TCR values observed for 6 

different compositions of Mn3Ag(1-X)Cu(X)N with increasing concentration of X from 

0 to 1 in steps of 0.2 are plotted in figure 5-3. The average sheet resistance is 

observed to increase from 7 Ω/□ to 21.9 Ω/□ for X=0 to X=1. Bulk Cu has higher 

sheet resistivity than bulk Ag, therefore this increment in sheet resistance is 
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reasonable [151].  At the same time the TCR value drops from -233 ppm/ºC for 

X=0 to -351 ppm/ºC for X=1. These values of TCRs are in agreement with the TCR 

values achieved in section 4.3.2 for Mn3AgN and Mn3CuN samples deposited 

without any substrate temperature. 

  

 

Fig 5-3 Graph of sheet resistance and TCR values of as grown ternary Mn3Ag(1-

X)Cu(X)N films with increasing Cu doping concentration in the film. 

 

Figure 5-4 shows the XRD spectrums developed for each of the ternary 

compositions. For X=0, a very faint protrusion is visible close to the (111) peak 

position expected for Mn3AgN films. It is very hard to call this a definite peak, as it 

is not prominent enough. From section 4.3.2 it is known that Mn3AgN peaks are 

not as prominent as for Mn3CuN films. The reason for the shift from the central 

(111) position could be explained by the presence of a higher than required ratio 

of N2 in the film, as observed in the EDX analysis. Therefore, there exists a higher 

probability that some kind of antiperovskite structure with (111) phase does exist 

for sample 1 with X=0.  For the sample with an X value of 0.2, two peaks are visible, 

corresponding to the (111) and (200) phases. The peaks for (111) and (200) phase 

are expected at 38.8º and 45.12º for Mn3AgN, and at 40.10º and 46.64º in the case 

of Mn3CuN. However, because of the presence of Cu in the film, the (111) and 

(200) peaks, observed for samples with an X value of 0.2, shifts to a position in 

between both the pure phases. Further, for samples with X values of 0.4 and 0.6, 
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only a single peak corresponding to the (200) phase is clearly visible, and with 

increasing concentration for Cu dopant, the peak shifts towards higher angles. The 

temperature within the deposition chamber increases when three targets plasma 

plumes are simultaneously depositing and this rise in temperature could assist in 

defect healing and better crystallization of the film. Surprisingly no peaks are 

observed for X=0.8 and 1. It is explored further if heat treatment would enable the 

crystallization of Cu rich Mn3Ag0.2Cu0.85N0.95 and Mn2.85Cu1.15N and if any peaks 

would appear. 

 

 

Fig 5-4 XRD spectrums of as-grown films of Mn3Ag(1-X)Cu(X)N with increasing 
value of X from 0 to 1.  

 

5.3.2 Two stage heat treatment of ternary films 

 

The as-grown samples were heat treated for 3 hours in a flowing N2 environment 

at a narrowed temperature range between 300 and 375ºC. The effect of heat 

treatment on sheet resistance of Mn3Ag(1-X)Cu(X)N films for each increasing 

concentration of Cu is plotted in figure 5-5. The progressive shift of each line 

towards higher values shows that the mean value of sheet resistance increases 

with increasing concentration of Cu in the film and this remains true throughout the 

heat treatment regime as all the lines stay independent of each other in direction. 
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In the X direction, all of the compositions show a decreasing trend for the sheet 

resistance value up to 325ºC and thereafter start increasing. This increase 

becomes steeper at 375ºC.  

 

As-grown samples with X=0, show the lowest mean value of sheet resistance of 

7.01Ω/□ which further decreases to 6.60 Ω/□ after heat treating up to 325ºC and 

thereafter increases to 12.03 Ω/□ at 375ºC. The highest mean sheet resistance 

value is observed for as grown Mn3CuN films (X=1) at 21.95 Ω/□, which decreases 

to 18.90 Ω/□ after heat treatment at 325ºC and with further increment in heat 

treatment temperature to 375 ºC the value increases to 27.97 Ω/□. These trends 

are in agreement with sheet resistance trends previously observed for Mn3AgN and 

Mn3CuN films in section 4.3.3.  

 

Fig 5-5 Graph of sheet resistance values of Mn3Ag(1-X)Cu(X)N ternary films with 
heat treatment temperature between 300 and 350ºC. 

 

The samples from each of the ternary compositions registered a negative as grown 

TCR value. TCR values achieved after heat treatment between 300 and 375ºC are 

plotted in figure 5-6 to precisely locate the zero TCR line cross over temperature. 

TCR remains negative for all the compositions for heat treatment up to 325ºC. The 

lowest value of TCR is observed to be -4.66 ppm/ºC for Mn3Ag0.45Cu0.55N (X=0.6) 

films after heat-treating at 350ºC. The lowest average TCR value achieved for 
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Mn3AgN and Mn3CuN films is -18 and -25 ppm/ºC respectively, after heat-treating 

at 325ºC. 

 

 

Fig 5-6 Effect of Cu dopant concentration on TCR values of Mn3Ag(1-X)Cu(X)N 

 ternary films with increasing heat treatment temperature. 

 

Figures 5-7 (a) – (f) show the XRD spectrums of the 6 compositions of Mn3Ag(1-

X)Cu(X)N in increasing value of X from 0 to 1 in steps of 0.2, as-grown and after heat 

treatment at 4 different temperatures from 300 to 375ºC. It can be observed that 

all of the samples develop sharp peaks when heat treated at higher temperature. 

Not all of the compositions show the very clear XRD peaks in their as grown state, 

like Mn3AgN films (X=0), but as seen in figure 5-7 (a), with increasing heat treating 

this composition starts to show growing peaks representing (111) and (200) planes. 

With increasing heat treatment temperature, the peak at 45.1º becomes stronger 

than the peak at 38.8º, indicating a preferential arrangement along the (200) crystal 

plane with increasing temperature. With the increasing value of X, the peak 

representing the (200) plane gradually shifts its position from 45 to 46º, indicating 

formation of more Mn3CuN structure within film [151]. For films with X values of 0.4 

and 0.6, a clear shoulder exists along with the main peak at 46.6º. The merged 

nature of the peaks suggests that the antiperovskite phase of both Mn3AgN and 

Mn3CuN exists in the film. The peak for Mn3AgN gradually starts to disappear from 

the main (200) peak, while increasing concentration of Cu causes the Mn3CuN 
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peak to rise, see figure 5-7 (c) and (d). For films with X values of 0.8 and 1.0, the 

XRD spectrums suggest that the films exist in a pure Mn3CuN antiperovskite phase 

with preferential arrangement along the (200) plane. Heat treating Cu rich samples 

(X=0.8 and 1.0) also begins to show a growing peak at 68.1º which is 

representative of the (220) plane of the Mn3CuN antiperovskite structure.   

 

 

 

 

Fig 5-7 ) XRD spectrums of 6 different compositions of Mn3Ag(1-X)Cu(X)N, X= (a) 0, 
(b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8, and (f) 1.0 before and after heat treatment. 
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Four peaks of lower intensities at 32.4, 35.2, 40.8 and 58.9º are very clearly visible 

for films with X values of 0 and 0.2. These peaks could easily be related to planes 

of Manganese oxide, MnO [152]. It is interesting to note that with increasing 

concentration of Cu in the film, most of the peaks representing oxides of 

Manganese start to disappear. This suggests that while all compositions do 

undergo oxidation, films richer in Ag are more prone to oxidation. Only the peak at 

32.4º is observed consistently for all of the films irrespective of Cu concentration. 

It is also observed that peaks representing oxides become sharper above 325ºC. 

This observation supports the reduction in sheet resistance up to 325ºC because 

of increasing crystallinity but higher Oxygen content in film starts to occur above 

this temperature, which increases the sheet resistance again.  

 

Topographical images of sample no’s 1, 4 and 6 with X values 0, 0.6 and 1, before 

and after heat treatment at 325˚C are shown in figure 5-8 (a) to (f), and further 

support the XRD results. The as grown crystals of Mn3AgN samples are spherical 

in shape but have grains of varying sizes, figure 5-8 (a). With inclusion of Cu 

dopant, the grains appear to elongate and become more elliptical as shown in the 

SEM images of films with an X value of 0.6, in figure 5-8 (b). The grains appear to 

be bigger in size and uniform across the film surface compared to the Mn3AgN 

topology. For the Mn3CuN (X=1) films in figure 5-8 (c), a higher number of grains 

appear triangular with sizes smaller than those of Mn3Ag0.45Cu0.55N films. The 

bigger size justifies the presence of a sharper (200) peak for the as grown 

Mn3Ag0.45Cu0.55N compared to Mn3AgN and Mn3CuN films in figure 5-7 (a) (d) and 

(f). After heat treatment, the topology of the Mn3AgN film in figure 5-8 (d) appears 

to be more porous with increased grain boundaries. Whereas the grains in the films 

rich in Cu (X=0.6 and 1) appear to merge with each other to form a more continuous 

upper layer, figure 5-8 (e) and (f).  
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Fig 5-8 SEM images showing the topology of Mn3Ag(1-X)Cu(X)N with X = 0, 0.6 and 
1  as grown, (a) (b) and (c) and after heat treatment at 325ºC (d) (e)  and (f) 

respectively. 

 

Figure 5-9 (a) to (f) shows the side profile imaging of sample no’s 1, 4 and 6 with 

X values of 0, 0.6 and 1 respectively. The thickness values of as grown films 

measured in the SEM side profiles match very well with the profilometer readings 

(a) (d) 

(f) (c) 

(e) (b) 
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presented in table 5-4. The as grown films have a columnar structure for all values 

of X, with Mn3AgN having really good uniformity of column width in 5-9 (a) but 

column width becomes more random from figure 5-9(a) to (b) and then to (c). After 

heat treatment at 325˚C, the side profile of the Mn3AgN film in figure 5-9 (d) appears 

to be most degraded. The porous nature mentioned in the topography is very 

clearly visible in the side profile as well. For films with higher content of Cu (X=0.6 

and 1) the side profile looks more intact. It gives the impression that the upper layer 

acts like a protective layer for the underlying, thereby protecting from further 

degradation. It is presumed that the film is being attacked by the Oxygen present 

in the air when moved between different regions within the tube furnace. The 

images in figure 5-9 (d) to (f) also suggest that the increment in overall thickness 

and thickness of the upper layer also depends upon the composition of the film, 

tabulated in table 5-4. The Mn3AgN film increases in overall thickness more than 

150 nm to 694 nm of which 201 nm is the upper layer.  Cu rich films (X=0.6 and 1) 

show comparatively much lower increases in thickness. The Mn3Ag0.45Cu0.55N 

increases by 55 nm to an overall thickness of 558 nm, of which the upper layer 

constitutes 107 nm. The pure Mn3CuN film (X=1) only shows a moderate increment 

of 17 nm to form a 533 nm thick film, of which 89nm is clearly visible as the upper 

layer. If the upper layer is assumed to be rich in oxides then the higher thickness 

of the upper layer for Mn3AgN films compared to Mn3CuN films, ties very well with 

the presence of pronounced manganese oxide peaks in the XRD spectrums for Ag 

rich Mn3Ag(1-X)Cu(X)N (figure 5-7 (a)-(f)). It can be reasoned that the presence of Ag 

because of its higher surface activity makes the Mn3AgCuN structure less stable 

so that at higher temperature the cubic structure disintegrates into its individual 

components. Transition metals then migrates to sub surface, leaving Mn available 

for oxidation. This is supported by the SIMS depth profile performed further on. 

 

Table 5-4 Table of film thickness as grown and post heat treatment for value of X. 

Sample no As grown (nm) 
After heat treatment at 325ºC (nm) 

Upper layer Total thickness 

1 (X=0) 546 201 694 

4 (X=0.6) 503 107 558 

6 (X=1) 516 89 533 
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Fig 5-9 SEM images showing the cross section of Mn3Ag(1-X)Cu(X)N with X = 0, 
0.6 and 1 as grown (a) (b) and (c) and after heat treatment at 325ºC (d) (e)  and 

(f) respectively. 

 

The thickness of the upper layer is not only dependent on the composition of the 

film. Figure 5-10 (a) (b) and (c) shows the side profile imaging of Mn3CuN samples 

(a) (d) 

(b) (e) 

(c) (f) 
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after heat treating at 300, 350 and 375ºC respectively. After heat treatment at 

300ºC the upper layer is observed to be only 56 nm thick, which increases to 89 

nm when heat treated at 325ºC, as seen in figure 5-9 (f). For 350ºC of heat 

treatment, there is a drastic increase in the upper layer thickness to 157 nm and 

after heat treatment at 375ºC this layer thickness increases to 175 nm. The drastic 

increase in upper layer thickness at 350ºC correlates very well with the trends 

observed in sheet resistance variation and XRD.  If the upper layer is an oxide of 

Manganese or the transition metal (Ag/Cu), the increase in sheet resistance is 

expected. For heat treatment up to 325ºC, the increment in sheet resistance 

because of this layer can be presumed as being compensated or even overcome 

by the crystallization and defect healing, which appears as a reduction in sheet 

resistance. However, after 350ºC the effect of crystallization is not strong enough 

to overcome the sheet resistance increment produced by the thicker upper layer, 

which could be primarily oxides  

 

   

Fig 5-10 SEM images showing the cross section of Mn3Ag(1-X)Cu(X)N with X=1 
after heat treatment at (a) 300ºC (b) 350ºC and (c) 375ºC . 

 

The general EDX analyses the composition of the film within the whole interaction 

volume where the electron beam interacts with the surface, which is generally 500 

nm of thickness. This is not suitable for application where composition analysis of 

much smaller and specific sections of films is required, like the upper layer of the 

films shown in figure 5-10. For these purposes, two other techniques could be 

used: SIMS (Secondary ion mass spectroscopy) or Low voltage cross section EDX. 

SIMS as explained in section 3.1.4, is a destructive technique, which bombards 

accelerated ions onto the film surface, and then detects the particles ejected out. 

(a) (b) (c) 
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In this way, it creates a depth profile of each element in the film.  Figure 5-11 (a) to 

(d) shows the depth profile for Mn+, Cu+, N2
+ and O2

- ions from SIMS analysis of 

Mn3CuN films (Composition 6) before and after heat treatment at 325ºC. For the 

as grown film, represented by the blue line, it can be seen that the concentration 

of Mn, Cu and N2 ions are very consistent throughout the film thickness. Time 0 

sec indicates the start point on the surface of the film and the sharp drop in the 

element concentration represents the interface between the film and the glass 

substrate. The film appears to be around 2300 seconds thick. Although quantitative 

analysis is not a strength of SIMS, it is evident that the intensity of Cu and N are 

equal as expected and that for Mn is almost three orders higher. This is in 

agreement with the general EDX result of the Mn3CuN films.  

 

  

 

Fig 5-11 Graphs showing elemental depth profile of (a) Mn+(b) Cu+ (c) N+ and 
(d)O- ions in Mn3CuN films (X=1.0) before and after heat treatment at 325ºC .  
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After heat treatment, films are seen to be 500 seconds thicker (represented by red 

lines for each element), suggesting a grain growth, which is again in agreement 

with the SEM images studied earlier. By comparing the two curves for Manganese, 

it can be seen that there is a migration of Mn ions towards the film surface post 

heat treatment for roughly 500 seconds. This corresponds very well with the 

approximate 500 seconds for which the Copper and Nitrogen ions withdraw from 

the upper layer to lower layers.  The first 500 seconds for a 3000-second thick film 

roughly translates to 16.6% of the total thickness being the upper layer. With this 

expectation, for a 550 nm thick Mn3CuN film nearly 91 nm should be upper layer, 

which matches very well with the SEM images. Therefore, from comparing SIMS 

and SEM data, it can be said that the upper layer seen in SEM images are richer 

in Mn ions as Cu and N2 ions move lower into the film. It is not a surprise as Cu 

with a density of 8.96 gcm-3 could easily sink below Mn ions, which only has a 

density of 7.43 gcm-3.  However, in figure 5-11 (d) the absence of Oxygen in the 

upper layer of approximately 500 seconds is very surprising and contradictory to 

the XRD results. SIMS identifies the ions based upon their atomic mass unit 

(a.m.u), therefore while looking for specific species of elements, if their molecules 

are ejected out, SIMS can miss them because the combined a.m.u of the molecules 

not matching with the individual a.m.u`s of either of the species. The presence of 

Oxygen in the lower layers could be explained as to be coming from the Al2O3 

(Alumina) substrate. Because of uneven nature of alumina substrate thin film 

deposited on these substrate are extremely thin at certain place (as shown in 

Figure 5-12)  and could be eroded much faster to reach the substrate layer beneath 

thereby registering presence of oxygen in the lower layers.  

 

 

Fig 5-12 Cross section image showing thin deposition of film in the valley between 
two alumina grain responsible for detection of O- in the SIMS 
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To confirm the chemical composition low voltage EDX has to be performed on the 

side profiles of samples, which can pick up the oxygen even if bonded in oxide form 

but without picking up from substrate layer. Low voltage side profile EDX was 

performed across the various sites on the side profile image of as-grown and heat 

treated sample 6, as shown in figure 5-13. The EDX results from these sites are 

presented in table 5-5. From table 5-5, it can be clearly seen that the as-grown film 

follows the composition very uniformly throughout the depth of the sample. The 

decrease in the copper and nitrogen content also agrees very well with the SIMS 

result. However, unlike the SIMS result, the upper layer is seen to be very rich in 

oxygen, which is also supported by the presence of manganese oxide peaks on 

the XRD spectrum.  

 

   

Fig 5-13 Sites at the side profile image of Mn3CuN films for EDX analysis of (a) 
as-grown (b) heat treated at 325ºC . 

 

To summarize, from XRD it can be concluded that manganese oxide peaks arise 

more prominently for Ag rich antiperovskite films. SEM images show the 

development of a secondary layer after heat treatment and its thickness depends 

heavily on the composition of the film and on the heat treatment temperature. SIMS 

proves that Manganese ions move towards the surface during heat treatment while 

side profile EDX concludes that the upper layer is rich in oxygen as well.  

 

 

(a) (b) 
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Table 5-5 Table showing composition from cross section of Mn3CuN films as-
grown and after heat treatment at 325ºC . 

Spectrum Label: As grown Mn Cu N O Si Total 

Spectrum 179 

AP layer 

60.46 19.88 19.66   100 

Spectrum 180 60.66 20.03 19.31   100 

Spectrum 181 60.84 19.26 19.9   100 

Spectrum 182 substrate    63.98 36.02 100 

Heat treated Mn Cu N O Si Total 

Spectrum 165 Upper layer 47.85 0.61 2.31 49.23  100 

Spectrum 166 
AP layer 

54.65 19.71 18.65 6.99  100 

Spectrum 167 56.1 22.09 18.66 3.16  100 

Spectrum 168 substrate    67.38 32.62 100 

 

Second stage of heat treatment: 

The role of the first stage of heat treatment is to tune the TCR value closer to zero. 

The second stage of heat treatment was performed to improve the stability of the 

performance-tuned resistors. Five samples from each of the 6 compositions were 

first heat treated at 325ºC in a closed N2 environment for 3 hours and then 

stabilization heat treated at 260ºC in open air for 16 hours. Figure 5-14 shows the 

values of sheet resistance observed before and after performing stabilization heat 

treatment. Most of the compositions show 5 to 10% change in resistance after 

stabilization treatment in open-air environment. Whereas, sample sets with X=0.2 

and X=0.6 showed comparatively high percentages of resistance change of 17.9 

and 27.9% respectively.  
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Fig 5-14 Graph of sheet resistance values before and after introducing second 
stage of heat treatment.  

 

The total percentage change in resistance observed after the dry heat stability test 

for 168 hours is shown in the figure 5-15 below. With increasing concentration of 

Cu in the Mn3Ag(1-X)Cu(X)N film, the stability figure improves considerably. For the 

Mn3AgN film (X=0) the average stability figure observed is 13.97% after 1 week 

with quite wide error bars and none of the samples in the composition showed 

better values than 12.34%. However, with a mere 0.2 atomic % increment in Cu 

concentration, the stability figure almost improves by a factor of 2 to 7.98%, and 

with each successive increments of 0.2 Cu concentration, the stability figure 

improves to 5.48, 3.39, and 2.57% respectively. For films without any Ag or 

Mn3CuN films, the average stability figure falls below 1% to a value of 0.85% with 

the best figure seen of 0.67%. The improvement in the stability figure to 0.85% for 

the Mn3CuN samples with stabilization heat treatment stage introduced, is very 

clear when compared to the stability figure measured for Mn3CuN films without 

stabilization heat treatment stage, where the best stability figure registered was at 

11.3% (section 4.3.5). 
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Fig 5-15 Graph of percentage change in resistance for six composition of 
Mn3Ag(1-X)Cu(X)N ternary films with increasing Cu dopant concentration  

 

The dry heat stability test conducted on the samples clearly shows the beneficial 

effect of stabilization heat treatment. Even though the samples were subjected to 

two stages of heat treatment and 1 week of dry heat stability test, the electrical 

parameters were not measured as-grown or after the first stage of heat treatment. 

So far, none of the sample set has been subjected to the entire process stages 

with all the electrical parameters measured after each stage. In order to study the 

combined effect of all the process stages run sequentially, on the electrical 

parameters of ternary films, 9 samples each from composition 1, 4 and 6 (X=0, 0.6 

and 1) were first measured for as grown electrical properties. Then they were heat 

treated in flowing N2 environment for 3 hours at 325ºC, and after this, their heat 

treated electrical parameters were measured. Later these same films were 

subjected to 16 hours of stabilization heat treatment at 260ºC in open-air 

environment. Electrical parameters were once again measured after stabilization 

heat treatment and then these films were subjected to 1 week of dry heat stability 

test at 155ºC for 168 hours with electrical resistance measured every 24 hours.  

After 1 week, the electrical parameters were measured once again to finish the 

process.  

 

Figure 5-16(a) shows change in the sheet resistance at each key stage for the 

compositions of Mn3Ag(1-X)Cu(X)N with x = 0, 0.6 and 1. For the Mn3AgN films, the 

average sheet resistance value of 9.02 Ω/□ decreases by 1.7% to 8.86 Ω/□ after 
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the first heat treatment stage and thereafter increases by 4.6% to 9.27 Ω/□ after 

the stabilization heat treatment. After one week at 155ºC this film changes its 

resistance value by 13.14%. The copper rich film of Mn3Ag(1-X)Cu(X)N with x = 0.6, 

decreases 6% from its as-grown sheet resistance of 17.87 Ω/□ to 16.70 Ω/□. During 

the stabilization heat treatment, the sheet resistance of this film increases 

dramatically to 27.90 Ω/□, increasing by 67%. However, during the 1 week of dry 

heat test this film only increases its sheet resistance by 7.7% comparatively better 

than Mn3AgN films. Most stable of the group are the Mn3CuN films, which decrease 

by 1.5% after the heat treatment stage from 19.18 Ω/□ to 18.88 Ω/□. During the 

stabilization heat treatment in open air this film changes its resistance value by 

10.4% to 21.08 Ω/□. During 1 week of dry heat stability test, this film only changes 

it sheet resistance by a tiny percentage of 0.55% to 21.20 Ω/□.  

 

Similar to sheet resistance, TCR values were measured before and after each of 

the process stages. The variation of TCR for three compositions of Mn3Ag(1-

X)Cu(X)N with x = 0, 0.6 and 1 are shown in figure 5-16 (b). After the first stage of 

heat treatment, the Mn3AgN films shift their average TCR value from -240.6 ppm/ºC 

to -19.6 ppm/ºC but after stabilization heat treatment in air this average TCR value 

shoots up to +88.8 ppm/ºC and thereafter remains fairly constant after 1 week of 

dry heat stability test. The Mn3Ag(1-X)Cu(X)N with X=0.6 shifts its TCR value from -

312.4 ppm/ºC  to -51.2 ppm/ºC  which quickly rises to 74.1 ppm/ºC  after 

stabilization treatment. After 1 week at 155ºC for the dry heat stability test, this set 

of films register an improvement in TCR value to + 68.21 ppm/ºC. Mn3CuN that 

registered the most negative as-grown TCR of -327.0 ppm/ºC shifts to -21.0 

ppm/ºC after the first stage of heat treatment. After the stabilization heat treatment 

stage, this value moderately increases to +19.8 ppm/ºC. After 1 week at 155ºC this 

set of films moves closer to the zero TCR line by registering an average TCR value 

of +14.25 ppm/ºC.   
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Fig 5-16 Graph showing variation in (a) Sheet resistance (b) TCR values of three 
composition of Mn3Ag(1-X)Cu(X)N with X=0,0.6 and 1, with each process stage 

 

Figure 5-17 (a) to (c) shows the side profile imaging carried out on films of Mn3Ag(1-

X)Cu(X)N on alumina substrates with X= 0, 0.6 and 1, to visualize the effect of 

sequential process run on film morphology. Mn3AgN films which had registered a 

total thickness of 694 nm with 201 nm of upper oxide layer after the first heat 

treatment stage increases to 755 nm with 281 nm of upper oxide layer after all 
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process stages are run in sequence, figure 5-17 (a). Mn3Ag0.4CuXN appears to be 

the sample most adversely affected when process stages are run in sequence as 

it shows a tripling of the upper oxide layer thickness from 107 nm to 307 nm in 

figure 5-17 (b) when the total thickness of the film only increases from 558 nm to 

629 nm. Again, the Mn3CuN sample set shows the best stability in film morphology 

as the increment in film upper oxide layer from 89 nm to 93 nm is barely noticeable 

when compared to the overall film increase from 533 nm to 561 nm, which is due 

to grain growth and additional oxide layer on the upper layer.  

 

   

Fig 5-17 Cross section image of upper layer after two stages of heat treatment 
and dry heat stability test on Mn3Ag(1-X)Cu(X)N with X= (a) 0 (b) 0.6 and (c) 1 

 

Table 5-6 compares the electrical performance results achieved when each 

process stage was run on separate chip resistor sample sets in an isolated fashion 

to when every process stage was performed sequentially on the same chip resistor 

sample sets. The table presents results for composition 7 (Mn3CuN) samples 

(similar comparison for Mn3AgN and Mn3Ag0.4Cu0.6N are presented in the appendix 

2). The process run parameters experimented so far are the exact repetition of the 

industrial fabrication cycle (up to step 5) described in section 2.5. Therefore, 

sequentially running every process stage on the same thin film sample can be 

considered as a mock up for the real industrial fabrication cycle as well. The 

electrical performance results are highly comparable between both modes of 

process runs and this combined with least variation in morphology, as seen in side 

profile imaging, suggests that the Mn3CuN material system has the potential to 

survive the industrial process run without much deviation from the prototype results 

achieved thus far.  

 

c a b 
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Table 5-6 Table of electrical performance from process run in isolated mode and 
sequential mode on chips from composition 6. 

Mn3CuN Process 

run type 

As-grown After Heat 

treatment 

After stabilization 

treatment 

After 

stability test 

Rs (Ω/□) 
Isolated  21.94 18.90 20.19 20.37 

Sequential 19.18 18.85 21.08 21.20 

TCR 

(ppm/ºC ) 

Isolated  -351 -25 Not measured Not 

measured 
Sequential 

y 

-327 -21 19 14 

Stability 

(ΔR/R%) 

Isolated  N/A 

 

0.85 

Sequential 

y 

0.57 

 

5.4 Summary 

 

This chapter explored the possibility of further improving the performance of the 

Mn3AgN antiperovskite structure by partially substituting it with Cu and proves that 

extremely low TCR values are possible with the ternary composition of Mn3Ag(1-

X)Cu(X)N. It also investigates the optimum heat treatment conditions required to 

attain the best possible electrical properties.  

 

Six compositions of ternary films were developed by gradually increasing the Cu 

dopant factor X in Mn3Ag(1-X)Cu(X)N films. The as-grown electrical sheet resistance 

increases from 7.01 Ω/□ to 21.95Ω/□ with gradual increase of Cu in the film. For 

the same compositions, as-grown TCR values were found to become progressively 

more negative from -233 ppm/ºC, observed for 100% Ag films, to -351.5 ppm/ºC 

for 100% Cu films. As grown films were observed to have some degree of 

crystallinity. This was observed for the set of samples where all three targets were 

running in co-sputtering mode, which raised the temperature inside the chamber. 

Films with 100% Cu were seen to be amorphous in the as grown state.  The sheet 

resistance of all the compositions showed a decrease in value when heat-treated 

up to 325ºC and thereafter started increasing sharply. This trend is observed to fit 

very well with that observed for the thickness of the upper oxide layer, which 

increases at a much faster rate above 325ºC. The upper layer being primarily 
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Manganese oxide is mainly responsible for the increase in the sheet resistance. 

The heat-treated TCR value also starts to move in a positive direction with 

increasing heat treatment temperature. Most of the compositions achieve a near 

zero TCR value after treatment at 325ºC. The lowest average TCR value of -4.66 

ppm/ºC is observed for Mn3Ag(0.4)Cu(0.6)N when heat treated at 350ºC. Introduction 

of a secondary stage of heat treatment is realised to bring a considerable 

improvement in the stability figure for Mn3CuN films. For films, which were not 

stabilization treated, a massive 11.32% change in electrical resistance was seen 

after 1 week of stability test. This figure reduced to just 0.8% after stabilization 

treatment of the films.  No major changes were observed between the results when 

films were subjected to isolated process stages and when subjected sequentially 

to every process stage together. This upholds the suitability of Mn3CuN material 

system for commercial application where the film will have to survive all of the 

fabrication process stages. 
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CHAPTER 6 Process Tuning and 

Commercial fabrication feasibility 
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6.1 Introduction 

In chapter 4, the effect of substrate temperature and N2 flow rate on Mn-AgN and 

Mn-CuN films were studied in order to achieve the lowest TCR value possible, and 

in chapter 5, an attempt was made to further reduce the low TCR value observed 

for Mn3AgN by partially doping with Cu. Although, extremely low TCR values of -

4.6 ppm/ºC were observed for the Mn3Ag0.4Cu0.6N composition, stability of this 

particular composition was not as good as that observed for Mn3CuN. Therefore, 

Mn3CuN films were selected to perform heat treatment optimization to identify 

conditions most suitable to preserve the best electrical properties.  

 

In addition to substrate temperature explored in chapter 4, deposition pressure is 

observed to have a significant effect on electrical properties of thin films 

[153].These two factors form the key variable parameters of the structure zone 

model of thin films presented by J.A. Thornton in 1988, a well-established model 

in thin film grain development [154]. Figure 6-1 presents the schematic 

representation of the structure zone model by Thornton. The entire model is divided 

into four zones: Zone I, Zone T, Zone II and finally Zone III according to argon 

pressure (mtorr) and ratio of substrate temperature T to melting temperature Tm.  

 

 

Fig 6-1 Schematic representation of the structure zone model by Thornton 
depicting four zones based upon temperature [155] 
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When species arrive at the substrate for deposition, they collate around surface 

irregularities like scratches, steps, dust/impurities, also known as nucleation sites. 

Zone I is observed for sputter deposition carried at low substrate temperature, 

when incoming species do not receive sufficient energy from the substrate to 

overcome the nucleation site.  Because of preferential collation around the surface 

irregularities, films deposited in this zone of substrate temperature and pressure 

have a porous structure. Zone T is observed when the energy provided from the 

substrate temperature is sufficient to help incoming species to move away from 

these nucleation sites thereby form into a fibrous structure with well-defined 

boundaries. Zone II is observed for high substrate temperature depositions where 

energy from the substrate enables incoming species to diffuse into a columnar 

structure with dense boundaries.  Finally, in Zone III, high temperature from the 

substrate causes bulk diffusion of the film, leading to grain growth and 

recrystallization [156].  

 

While exploring the effects of substrate temperature, in-situ crystallization has been 

observed for samples deposited at high temperatures. However, other than this, 

no positive effects of substrate temperature were observed on the antiperovskite 

films. In chapter 4, N2 flow rate was varied to study the material system, but at that 

time, the overall working pressure of system was kept constant at 3 µbar by 

changing the Ar flow rate accordingly. Work done by Lee et al. (1988) shows that 

the microstructure of TbFeCo films changes from smooth and featureless to having 

a high density of micro-voids with increasing sputtering pressure [157]. Similarly 

work done by Gunnarssan et al. (2016), observed that the shape of Titanium oxide 

nanocrystals change from spherical to cubical to “cauliflower like” with increase in 

pressure [158].  H Yuan and D.E. Laughlin (2010) based on their observations on 

Ru +TiO2, the microstructure changed from percolated to granular with increasing 

working pressure [159]. 

 

Another important parameter related to heat treatment, not studied thus far, is the 

environment in which heat treatment is carried out. In chapter 4 the heat treatment 

temperature and duration was narrowed down to a range of 300 to 350ºC and 3 

hours and in chapter 5 it was seen that a second stage of heat treatment improves 
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the stability figure of Mn3CuN films significantly. Previously in section 5.2.2, it was 

seen that, while moving samples from the hot zone to the cold zone within the tube 

furnace, the Oxygen from the surrounding environment gets into the tube and 

comes into contact with the deposited films, which are at high temperature, thereby 

oxidising them. This could be the cause of the rapid increase in sheet resistance 

at heat treatment temperatures above 350ºC. Therefore, the question arises if the 

electrical performance parameters could be improved by isolating the samples 

from the external environment for the duration of heat treatment. 

 

6.2 Experimental  

The main objective of experiments performed in the further sections is to explore 

the scope of performance tuning possible for Mn3CuN thin film resistive material, 

by varying the working pressure in the deposition chamber. Optimization of heat 

treatment conditions were performed by studying the electrical and physical 

characteristics of the Mn3CuN samples heat-treated under environment having a 

varying amount of Oxygen content. This chapter then proceeds to investigate the 

effect of laser trimming, which is the next stage of TFR fabrication after stabilization 

heat treatment, on Mn3CuN films. This will help to understand the suitability of this 

material system on an industrial fabrication scale. 

 

6.2.1 Effect of varying working pressure 

The depositions of Mn3CuN films in chapter 4 and 5 were performed at a constant 

working pressure of 3 µbar. This was achieved by keeping total gas flow into the 

chamber at a constant value of 30 sccm.  For the increase in N2 flow rate from 2 to 

6 sccm, the Argon flow rate was decreased from 30 to 24 sccm. And then it was 

observed that at an Argon to N2 ratio of 25:5, the antiperovskite structure of 

Mn3CuN could be realised. This translates to a partial Nitrogen pressure of 16.6% 

 

Now the deposition pressure or working pressure is determined by the total amount 

of gas present in the chamber during deposition. In order to study the effect of 

deposition pressure on the electrical properties of Mn3CuN films, three sets of 
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depositions were carried out as shown in table 6-1. The first sample set, TC 627 is 

deposited at 3 µbar, achieved by a total gas flow of 30 sccm as a reference point 

for the next data points. The maximum gas flow possible on the mass flow 

controller for Ar is 50 sccm. When a higher volume of gas is allowed in the chamber, 

the plasma plume is densely populated with Ar and N2 ions, which present higher 

resistance to target species travelling towards substrate and allow more time for 

Nitrogen species to react. Therefore, lower Nitrogen partial pressure was found 

sufficient to maintain the chemical composition of the thin film. The highest working 

pressure of 5 µbar was realised by adjusting the Ar flow rate to 45 sccm and N2 

flow rate to 7 sccm giving a total gas flow of 52 sccm. It was not possible to strike 

and sustain plasma on the target for total gas flow below 15 sccm. Therefore, the 

lowest working pressure possible was 2 µbar, realised by 24 sccm of gas in the 

chamber (20 sccm of Ar and 4 sccm of N2).  

 

Table 6-1 Table showing Argon and N2 flow rates for Mn3CuN depositions at 
varying pressures.  

Deposition 

No. 

Ar flow 

(sccm) 

N2 flow 

(sccm) 

Total gas 

(sccm) 

Working 

pressure (µbar) 

Partial 

N2%  

Time 

(minutes) 

TC 637 20 4 24 2 16.6 90 

TC 627 25 5 30 3 16.6 90 

TC 635 45 7 52 5 14.0 90 

 

6.2.2 Heat treatment optimisation 

 

To obtain the best heat treatment environment, ternary samples were subjected to 

4 cases of heat treatment combinations. The first stage of heat treatment was 

varied over two levels. The first case is the same as before, in which the seal of 

the tube furnace is broken after 3 hours at 325ºC, in order to move the samples to 

a rapid cooling zone. This introduced Oxygen into the tube while the samples were 

still at high temperature, thereby leading to a higher rate of oxidation. In the second 

case, samples were left to cool overnight in the flowing Nitrogen environment, 
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thereby minimizing the exposure to ambient Oxygen while at higher temperature. 

The tube furnace was set to start cooling down after 3 hours at 325ºC.  

The second stage of heat treatment or stabilization heat treatment was also varied 

over two levels. For the first level, samples were stabilized in an open-air 

environment exposing samples to maximum Oxygen content in air for 16 hours at 

260ºC. For the second level, samples were stabilized in a closed tube furnace with 

flowing Nitrogen to minimise the presence of Oxygen, at 260ºC for 16 hours. In 

total, this led to four sets of heat treatment condition as shown in table 6-2. Four 

separate sets consisting of 5 chip resistors from the Mn3CuN sample set, were 

subjected to each of the four heat treatment conditions.  

 

Table 6-2 Table of heat treatment conditions for ternary films. 

TCR tuning heat treatment 

(325ºC for 3 hours) 

Stabilization heat treatment        

(260ºC for 16 hours) 

Case 

No. 

Seal broken to rapidly cool 

samples in N2 

Stabilization in Open air 1 

Stabilization in sealed N2 environment 2 

Samples cooled overnight in 

flowing N2 

Stabilization in Open air 3 

Stabilization in sealed N2 environment 4 

 

6.2.3 Commercial fabrication cycle feasibility study  

Deposition and heat treatment processes are among the most important fabrication 

stages for thin film resistors. Now from section 5.3.2, it is observed that Mn3CuN 

films can pass through the combined effect of these process stages while 

maintaining a low TCR value of 14 ppm/ºC as well as a good stability value of 

0.57%. However, as explained in section 1.6 and section 2.5, the next most 

important step, which bears foremost effect on electrical properties of thin film 

resistor, is the laser trimming process. In order to consider Mn3CuN as a suitable 

candidate for the thin film resistor industry, its ability to maintain desirable electrical 

properties after laser trimming will have to be determined. 
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To study the effect of the entire process cycle, Mn3CuN films were deposited on a 

standard industrial size 1206 substrate plate using university facilities and then 

processed on TT Electronics resistor fabrication line. 1206 substrate package has 

resistor circuits of 3 mm by 1.5 mm (0.012 inch by 0.006 inch) size, figure 6-2 (a) 

(detailed dimensions provided in the appendix 1). After deposition, the mask 

protecting the conductor pads was rinsed off using Alpha 2110, a cleaning 

concentrate intended for removal of resin mask from PCBs. The substrate plate 

was then heat-treated at 325ºC for 3 hours in a closed N2 environment and later 

stabilized at 260ºC in open air for 16 hours. Resistor circuits on this plate were then 

laser trimmed in a serpentine pattern, using a LASERTEK TF3050 type green laser, 

as seen in figure 6-2(b).  The laser trimming was performed to increase the 

resistance value of each circuit from an initial value of 35Ω to the required value of 

3KΩ, with the laser parameters set to the specification as shown in table 6-3. 

Thereafter a secondary stabilization heat treatment was performed at 240ºC for 16 

hours in air followed by a second stage of trimming. Sheet resistance and TCR 

were measured for 9 resistor circuits across the plate (as shown by red dots in 

figure 6-2 (a)), using the AEMIC AE-1155D and AE-162E, high speed resistance 

checker system from AEMIC corporation.  

 

  

Fig 6-2 (a) Standard 1206 industrial package (b) standard serpentine trimming 
pattern on a single 1206 circuit.  

 

(a) (b) 
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Table 6-3 Table of Laser trimming specification for Mn3CuN films on 1206 plate. 

Trimming Parameters 

Trimming Parameters 

1st stage 2nd stage 

PV (Pre trim value) 35R 
35R 

Final trim Value 3K 
3K 

Laser power 0.45W 
0.45W 

Max No. cuts 25 
2 

Spacing between (mm) 0.06 mm 
0.06mm 

Length of cut 85% 
85% 

First trim offset -2% 
-2% 

Pulse Density (pulse/mm) 600 
600 

Speed (mm/sec) 60 
60 

Q- Rate 
 
 
Rate 

36 
36 

 

6.3 Result and discussion 

 

6.3.1 Effect of varying working pressure 

Chemical composition and thickness 

As in previous chapters, film samples were analysed for composition using EDX at 

five different sites and then composition values were averaged. A section of glass 

substrates was covered with kapton tape during deposition and later five sites from 

this section were measured using the profilometer to determine the thickness of 

the deposited film. The averaged thickness and composition values of Mn:Cu:N for 

films deposited at three deposition pressures are as shown in table 6-4. 

 

The average composition value for Mn:Cu:N for all the deposition pressures 

remained close to the required 60:20:20 at.% ratio. The composition of N2 in the 

film was seen to vary across samples, which could be attributed to the adjustments 

in gas flows made to achieve the required varying working pressures. It was also 

noticed that the composition of Mn varies directly in relation to N2 in the film. 
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Throughout the range, it was observed that the amount of Copper in the samples 

stays constant at 20%. Whereas, thickness appears to change without any 

correlation to working pressure. The lowest thickness of 437 nm is achieved for 

films grown at 3 µbar, followed by films deposited at 2 µbar (460nm) and then films 

deposited at 5 µbar at 498nm.  Effect of working pressure on film thickness is not 

very clear as there are contradictory claims about increasing film thickness with 

increasing working pressure [160]  and vice versa [161]. Nonetheless, both 

composition and thickness are within the comparable limits to the samples studied 

in the previous chapters, to carry forward the experiments planned in section 6.2 

 

Table 6-4 Table of thickness and composition for Mn3CuN films at varying 
pressures. 

Sample 

No 

 

Deposition 

pressure (µbar)  

Composition Atomic % of 

Mn:Cu:N 

Film Thickness 

(nm) 

1  2 Mn3CuN 59:20:21 460 

2  3 Mn3CuN 58:20:22 437 

3  5 Mn3CuN 61:20:19 498 

 

Electrical properties 

Average electrical sheet resistance for 10 samples from each of the three batches 

deposited at varying deposition pressure is shown in figure 6-3. The sheet 

resistance of the Mn3CuN films was observed to increase with increase in the 

deposition pressure. Films deposited at 2 µbar record the lowest as grown sheet 

resistance of 17.70 Ω/□, which increases to 18.48 Ω/□ when deposited at 3 µbar, 

while films deposited at 5 µbar show the highest as grown sheet resistance of 27.33 

Ω/□. This increase in the sheet resistance for the same material system could be 

explained by the increased porosity of the films when deposited at higher 

deposition pressure. K.Eufinger et al (2006) observed a 5 to 25% increase in 

porosity of TiO2 thin films, when the deposition Ar pressure was increased from 0.5 

to 2.5 Pa [162]. This led to considerable change in photocatalytic activity of TiO2 

thin films. With decrease in working pressure, the sputtered particles experience 

less scattering on their travel towards the substrate, which results in increased 

energy of the particles when they reach the growing film at the substrate and leads 
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to densification of the film [163]. This porous nature of the film acts like a void 

hindering the transport of charge carrier and thereby increasing the electrical 

resistance.  

 

The characteristic reduction in sheet resistance observed after the initial heat 

treatment stage because of defect healing and crystallization, is observed for the 

films deposited at lower deposition pressures of 2 and 3 µbar. The average sheet 

resistance values reduce to 16.42 Ω/□ and 17.47 Ω/□ respectively for 2 and 3 µbar. 

On the other hand, for films deposited at higher working pressure of 5 µbar only a 

few circuits show this reduction in sheet resistance, while most of the resistor 

circuits show an increase in their sheet resistance after the first stage of heat 

treatment, indicated by the large error bar, as seen in figure 6-3. The average sheet 

resistance value for this set of films increases to 27.36 Ω/□. This could again be 

associated to the porous nature of the films at higher deposition pressure. 

Annealing is known to cause densification of porous films [162]. Therefore, for the 

films which show a reduction in sheet resistance, it could be expected that 

densification caused by annealing helps the crystallization and defect healing 

effects to reduce sheet resistance. Whereas, it is logical for these effects to be 

ineffective in reducing sheet resistance, if densification from annealing is not strong 

enough to reduce porosity of the film sufficiently. Therefore, these two arguments 

could help us to infer that while films deposited at higher working pressure are 

porous in nature, the porosity is not uniform throughout the deposition area, at least 

not at the deposition pressure of 5 µbar. Progressing to the stabilization heat 

treatment stage, the characteristic increase in the sheet resistance indicative of 

oxidation of the top layer in open air, is clearly present for all the samples deposited. 

The closing value for the three samples stands at 21.83, 22.22, and 34.21 Ω/□ for 

films deposited at 2, 3 and 5 µbar respectively.  Error bar for films deposited at 5 

µbar remain far wider than films deposited at lower deposition pressures.  
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Fig 6-3 Graph showing variation in Rs of Mn3CuN samples deposited under 
varying pressure, with heat treatment stages.  

 

TCR values measured for 10 resistor circuits each from samples deposited at 

varying pressure is shown in figure 6-4 (a). TCR measurements were made as 

grown, after the heat treatment stage and after the stabilization heat treatment 

stage. The result for as grown TCR is observed to become more negative with 

increasing deposition pressure. The films deposited at 2 µbar register a TCR of -

335 ppm/ºC with films deposited at 3 µbar registering a slightly more negative value 

of -340 ppm/ºC which becomes -378 ppm/ºC for films deposited at 5 µbar. Voids in 

the porous films are represented by increased barrier height, which confines 

charge carriers within grains and thereby increases the resistance of the films 

[164]. Therefore, it is reasonable to think that films deposited at higher pressure 

having porous structure will exhibit TCR values which are more negative. After 

each stage of heat treatment, TCR shifts in a positive direction. The films deposited 

at 2 µbar register an average TCR value of -6 ppm/ºC after the stabilization 

treatment stage. The shifts into the positive region become more pronounced with 

increasing deposition pressure. The films deposited at 3 µbar register a closing 

TCR value of 15 ppm/ºC while films deposited at 5 µbar close at 37 ppm/ºC. 

Inokuma at al. (1985) experimented with adding oxides of various transitional 
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metals together with RuO2 to control the TCR value of in printed resistors and 

observed that oxides of most of the transition metals reduce or shift the TCR in the 

negative direction [165]. However, they observed that addition of Copper and 

Cobalt oxides shifted TCR in the positive direction. It could be inferred that the 

porous nature of films deposited at higher deposition pressure, exposed 

comparatively larger amounts of Cu within Mn3CuN to oxidation during the heat 

treatment stages. Thereby increasing the content of Copper oxide within the film, 

which in turn aids the shift of TCR in the positive direction. 

 

Figure 6-4 (b) shows the stability figure achieved for three samples of Mn3CuN at 

different deposition pressure after the dry heat stability test for 1 week at 155ºC. 

The stability figure for the films deposited at higher deposition pressure of 5 µbar 

is observed to be worse compared to the films grown at lower deposition pressures 

of 2 and 3 µbar. The films deposited at 5 µbar had an average stability figure of 

2.38% change in resistance over a course of 168 hours when kept at 155ºC. 

Samples among this set reported stability figures no better than 2.03% and no 

worse than 2.62%. However, for the same test the films deposited at 2 µbar 

registered an average figure of 0.74% with worst and best figures of 0.97 and 0.57% 

respectively. The films deposited at 3 µbar finished slightly higher at 0.76% 

average stability figure with worst and best values at 0.86 and 0.68% respectively. 

This trend is thought to be a result of the porous structure of films at higher 

temperature, making them more susceptible to impurity inclusion and higher 

degree of oxidation at higher temperature. 
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. 

 

Fig 6-4 Graph for Mn3CuN films deposited at varying pressure  showing (a) TCR 
values (b) percentage change in resistance. 
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Structural and morphological analysis  

XRD spectrum for Mn3CuN samples at various stages of heat treatment can help 

to visualize the development of an oxide structure for films deposited at varying 

deposition pressure. Figure 6-5 (a) shows the XRD spectrum for Mn3CuN films 

grown at three varying deposition pressures of 2, 3 and 5 µbar. There exists a 

sharp contrast between the films deposited varying deposition pressures.  Films 

grown at lower deposition pressure of 2 and 3 µbar show a higher degree of 

crystallinity with preferential crystal orientation along the [200] plane with peaks at 

46.66º and 46.64º respectively. There is a drastic reduction in peak intensity when 

deposition pressure increases from 2 to 3 µbar. While for films deposited at 5 µbar 

the peak completely disappears. Increased gap between the film features are 

known to decrease the intensity of the crystalline peaks during XRD analysis [166]. 

Therefore, it could be assumed that films deposited at 5 µbar, because of their 

porous nature, register a drastic decrease in their peak intensities. No additional 

peaks were observed for any of the deposition set.  

 

Figure 6-5 (b) shows the XRD spectrum for the three sets of films after subjection 

to the initial heat treatment stage. For films deposited at higher pressure of 5 µbar, 

after initial heat treatment a small protrusion can be observed around the [200] 

central peak of the antiperovskite structure. This supports the idea that the 

antiperovskite structure was existing for these films in as-grown state as well, but 

because of higher porosity, peak intensity could not be detected. However, heat 

treatment of these samples results in grain growth and in turn densification of the 

film, leading to peak detection.  For films at lower deposition pressure, intensity of 

the central peak increases, indicating growth of grain size, coupled with the 

appearance of peaks around 40.8º, characteristic of Manganese oxides [152]. 

Appearance and intensities of the MnO peak remains comparable for all the films 

irrespective of deposition pressure. From previous chapters, it could be expected 

that upper layers of the as grown film react with Oxygen present and form 

Manganese oxide as an additional layer on top of the film. Crystallization and defect 

healing aids the sheet resistance reduction, while porosity and oxide formation 

increases sheet resistance, therefore, the sheet resistance value seen after the 

first stage of heat treatment is resultant of dominant effects. The crystal structure 
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of samples after the stabilization stage of heat treatment is shown in figure 6-5 (c). 

It can be again observed that the central peak at 46.64º, representing the 

antiperovskite structure, sharpens further. The peak at 40.8º also grows in intensity 

indicating more oxidation of the film when exposed to open air at high stabilizing 

temperature of 260ºC. No other peaks are observed which could indicate 

degradation of the existing structure in any manner. Therefore, it is reasonable to 

say that the antiperovskite structure can maintain a stable crystal structure for 

process temperatures up to 325ºC. 

 

 

Fig 6-5 XRD spectrum for Mn3CuN films deposited at varying pressures (a) as 
grown (b) heat treated at 325ºC (c) stabilization treated at 260ºC. 

 

Table 6-5 presents the FWHM and corresponding grain size calculated for films 

grown at each deposition pressure after two stages of heat treatment. Films grown 

at 5 µbar don’t have strong enough XRD peaks to calculate grain size. Films 

deposited at 3 µbar are calculated to have an average grain size of 12 nm and then 

is a clear increase of 7 nm for films deposited at the lowest deposition pressure of 
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2 µbar to 19nm. After the stabilization stage of heat treatment the final average 

grain size is calculated to be around 27.1 and 25.0 nm for films grown at 2 and 3 

µbar respectively.  

 

Table 6-5  Table of FWHM and crystallite grain size for Mn3CuN samples 
deposited at varying pressure. 

Deposition 

pressure (µbar) 

Process stage FWHM       

(º radians) 

Mean Grain 

Size (nm) 

2 As-Grown 0.031 19.431 

Heat treated at 325ºC 0.023 25.140 

Stabilization treated at 260ºC 0.025 27.527 

3 As-Grown 0.046 12.475 

Heat treated at 325ºC 0.024 24.400 

Stabilization treated at 260ºC 0.025 25.082 

 

These values can be confirmed by analyzing a topology image of the sample 

surface. Topology image taken from the SEM gives very clear visualization of the 

sample surface but the software lacks the capability to perform accurate grain size 

estimation. On the other hand, the AFM data could be easily resolved to find 

average grain size by using Gwyddion software (as seen in figure 6-6 (a)). The  

surface of only as grown samples deposited at 2, 3 and 5 µbar were mapped using 

the AFM tip and processed in Gwyddion 2.50. 

 

  

Fig 6-6 (a) Original AFM images of as grown Mn3CuN films (b) Grain boundary 
mask generated by segmentation algorithm. 

 

(a) (b) 



 

6-17 

 

The grain boundaries were marked using a segmentation algorithm. By default, the 

algorithm maps the valleys in an AFM image and fully segments the pixels into 

motifs, which are grouped to match with underlying grains. The algorithm extends 

the capability to map the mask onto the real image by adjusting a Gaussian 

smoothing filter, gradient and curvature of the mask [167]. Then the inbuilt program 

measures the average area of the total number of grains detected in this way. The 

figures in 6-6 (a) and (b) show the match achieved between a real AFM image and 

a grain detection mask using the segmentation algorithm. Table 6-6 compares the 

average grain size achieved using Scherer’s formula on XRD spectrum peaks and 

by using computational analysis of the segmented mask on the AFM image. It can 

be seen that both the tables are a very close match and therefore it could be 

reasonable to believe that the average grain size achieved by XRD on the heat 

treated samples are also reliable and accurate. With the best mask match possible, 

the 5 µbar sample grain size were measured to be 9.8nm, therefore it could be 

expected that realistic size will be still finer than 9.8nm. Heat treated samples would 

have their Ap grains covered by the upper oxide layer. 

  

Table 6-6  Table comparing calculated crystallite grain size for as grown Mn3CuN 
film using AFM and SEM technique. 

Deposition 

pressure (µbar) 

Process 

stage 

Mean grain size (nm) 

Using XRD Using AFM 

2 As-Grown 19.431 20.3 

3 As-Grown 12.475 13.4 

5 As-Grown -- <9.8 

 

The change in the surface topology of the films can be clearly seen in figure 6-7(a) 

to (i), by comparing the AFM images taken for films deposited at three sets of 

deposition pressure, as-grown and after each stage of heat treatment.  Each AFM 

image is a square of 3 µm by 3 µm taken on the same glass substrate after each 

stage of heat treatment.   
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Fig 6-7 AFM image of Mn3CuN films deposited at 2, 3 and 5 μbar respectively (a-c) as-grown (d-f) heat treated at 325ºC (g-i) stabilization treated at 260ºC.

(d) (e) (f) 

(g) (h) (i) 

(a) (b) (c) 
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The films deposited at 2 µbar are clearly much denser, and with increasing 

deposition pressure the film appears to get porous, showing very high crests and 

troughs for the films deposited at 5 µbar. This lends support to the effect of film 

porosity on electrical properties discussed above. From XRD spectrums and AFM 

grain size calculation, grains of films deposited at 5 µbar are expected to be below 

9.8 nm in size. Therefore, the larger sized structures observed in figure 6-7 (c), are 

expected to be islands of 50-100 nm, formed by clustering together of smaller 

Mn3CuN grains, which are still disjointed from the other similar islands nearby.   

 

Heat treatment leads to formation of a rough layer on the top surface of films, which 

are known to be oxides of Manganese observed as a peak around 40.8º in the 

XRD spectrums in figure 6-5. Since the upper layer is of Manganese oxide, no 

attempts were made to measure the grain size of heat-treated film using AFM 

image to compare with XRD data. After the first stage of heat treatment, the surface 

look identical for all the three films. After the stabilization stage of heat treatment 

the topography becomes similar to the as grown film, with films deposited at 2 µbar 

having a more densely packed surface compared to films deposited at 5 µbar, 

which is again observed to be very porous. The porosity difference on the surface 

can be clearly seen in the AFM images; however, the formation of oxide layer 

hinders the observation of the underlying layer after heat treatment. The cross 

sections of the samples were analyzed using the SEM to observe the effect of 

deposition pressure on the layer formation after the stabilization treatment stage.  

 

Cross sectional images of films deposited at varying deposition pressures are 

compared in figure 6-8 (a) to (c). The very first thing which can be observed is that, 

irrespective of deposition pressure, all the layer thicknesses are very similar for all 

three sets of films. After two stages of heat treatment, the final film thickness lies 

in the range of 503 to 512 nm for all of the films. Along with overall thickness, the 

thickness of the upper layer is also very much comparable, lying between 119 to 

130 nm for all the deposition pressures. Therefore, it can be reasonable to say that 

the deposition pressure has no effect on the final thickness of the film. From 

previous chapters, starting composition and the following heat treatment conditions 

are known to have a major effect on this property of the film. 
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Fig 6-8 Cross section images of Mn3CuN films (a)2 μbar (b)3 μbar and (c)5 μbar. 

 

The existence of porosity can be visualized faintly in figure 6-8 (a) to (c). Films 

deposited at lower deposition pressure of 2 µbar are seen to be very densely 

packed that even the columns are not distinguishable, whereas for the films 

deposited at 3 µbar the column boundaries could be seen.  The side profile image 

of films deposited at 5 µbar shows a deviation from a columnar structure with 

frequent gaps in between the individual islands. The higher porosity observed in 

as-grown film has decreased as the film undergoes densification during each of 

the two stages of heat treatment, but is still more visible compared to films at lower 

deposition pressures.  

 

In order to analyze if varying deposition pressure brings any difference in the 

chemical composition of the final film, EDX analysis was carried out on cross 

sections of films grown at varying deposition pressure. Figures 6-9 shows the sites 

at which EDX analysis was carried out for films deposited at various pressure. An 

additional site, from the glass portion of the cross section was analyzed for each 

film to provide a reference. At this site, Si and O2 were the main constituents, 

roughly in 2:1 atomic ratio, indicating SiO2 along with traces of Na, Ca, and Mg as 

expected in soda lime glass. For each deposition pressure, two sites were 

measured from the antiperovskite layer while one site was measured from the 

upper layer. The EDX data from the analysis is presented in table 6-7.  

(a) (b) (c) 
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Fig 6-9 Cross section image of showing sites of EDX measurement for films 
deposited at (a) 2 µbar (b) 3  µbar (c) 5 µbar  

 

A very clear trend visible in this table is the correlation between the content of 

Copper in the upper layer and the deposition pressure. For the films deposited at 

2 µbar, no Copper is observed in the upper layer, which increases to 1.19 at% of 

Copper when deposited at 3 µbar. This figure increases steeply to a value of 20.74 

at% for films deposited at 5 µbar. This steep rise could be a result of a porous 

structure at higher deposition pressure, which exposes the Copper to the Oxygen 

environment thereby forming Copper oxide. This observation ties in very well with 

the previously made estimation that the presence of Copper oxide might be 

responsible for shifting the TCR value in positive direction for the films deposited 

at higher pressure after heat treatment.  

 

With the increasing porosity at higher deposition pressure, the protection provided 

by the upper layer also appears to be less effective, as more Oxygen content is 

found in the antiperovskite layer for films deposited at higher pressure. This 

definitely supports the fact that depositing antiperovskite at lower pressure is more 

beneficial, as it exposes less of the Copper to the surrounding environment keeping 

the positive migration in check. Moreover; the lesser the porosity of the film, the 

better is the protection offered to the underlying antiperovskite structure. Electrical 

properties could be enhanced for the antiperovskite structure by optimizing the 

deposition pressure.  

 

 

 

(a) (b) (c) 
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Table 6-7 EDX analysis of films deposited at varying deposition pressure 

Deposition 
pressure 

Spectrum 
Label 

N O Si Mn Cu Total 

2 µbar 

Upper layer  -- 54.6 -- 45.4 -- 100 

Antiperovskite 
layer 

19.77 4.11 0.84 56.05 19.23 100 

 

3 µbar 

Upper layer  -- 48.83 0.38 49.6 1.19 100 

Antiperovskite 
layer 

17.09 8.29 -- 53.01 21.62 100 

 

5 µbar 

Upper layer  -- 48.71 1.87 28.68 20.74 100 

Antiperovskite 
layer 

13.57 25.04 -- 47.05 14.34 100 

 

6.3.2 Heat treatment optimisation 

It has been shown in section 5.3.2 that the layer found on top the film after heat 

treatment is primarily an oxide of Manganese and that its thickness is affected by 

the composition of the original film and heat treatment temperature. For the 

Mn3CuN sample set, it was understood to act like a protective layer preventing the 

underlying layer from further attack from the Oxygen environment. So far, heat 

treatments were performed in a closed flowing N2 environment for 3 hours, after 

which the seal of the tube was opened to move the samples to a cooling zone. 

Then stabilization treatment was performed in an open tube furnace for 16 hours. 

In order to optimise the heat treatment condition, four separate sets of 5 samples, 

each from composition no 6 (X= 1), were subjected to four cases of heat treatment 

conditions as shown in table 6-8. Breaking the seal to move the samples into the 

cooling zone lets in Oxygen rich air while the samples are still at high temperature; 

therefore, this heat treatment level is identified as Open HT.  In the second case, 

samples were left to cool overnight in the same flowing N2 condition, switching off 

the heater source after 3 hours, this heat treatment condition is identified as Closed 

HT. Similarly, for stabilization treatment, samples stabilized for 16 hours in open 

air are identified as Open ST and the ones stabilized in closed flowing N2 are 

identified as Closed ST. 
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Table 6-8 Table of heat treatment optimization cases and case ID for each case. 

TCR tuning heat 

treatment (HT) 

Stabilization heat 

treatment (ST) 
Case ID 

Seal broken to 

rapidly cool samples 

(Open HT) 

Stabilization in Open air 

(Open ST) 

Case 1 (Open 

HT/Open ST) 

Stabilization in sealed N2 

environment (Closed ST) 

Case2 (Open 

HT/Closed ST) 

Samples cooled 

overnight in flowing 

N2 (Closed HT) 

Stabilization in Open air 

(Open ST) 

Case3 (Closed 

HT/Open ST) 

Stabilization in sealed N2 

environment (Closed ST) 

Case 4 (Closed 

HT/Closed ST) 

 

Figure 6-10 shows the average sheet resistance of three samples sets after 

subjection to four heat treatment conditions. After the first stage of heat treatment, 

the sheet resistance values for samples which were left in closed N2 conditions 

(Case 3 and Case 4) were observed to be lower (17.20 and 17.11 Ω/□ respectively) 

than those for samples which were heat treated in open HT condition (Case 1 and 

2 at 18.85 and 19.24 Ω/□ respectively). Samples under open HT condition are 

exposed to ambient air, while still at higher temperature, when the seal is opened 

to move the samples to a cooler region; therefore, they are more prone to 

oxidization, which led to increase in their sheet resistance.  

 

Similarly, samples which were stabilization treated in open air environment (Case 

1 and 3) recorded higher increases from their heat treated sheet resistance values 

(21.08 and 20.19 Ω/□ respectively) than those stabilized in closed N2 conditions 

(Case 2 and 4 at 19.53 and 17.43 Ω/□ respectively). These observations support 

that exposure to Oxygen leads to an increase in the sheet resistance value of the 

thin films. This is also observed when comparing the sheet resistance values of 

case 2 and 3, after stabilization treatment. Samples under case 2, after the first 

stage of heat treatment show higher sheet resistance than samples under case 3 

(19.24 compared to 17.20 Ω/□), but when subjected to a prolonged duration under 

reversed conditions, samples under case 3 surpass the sheet resistance value of 

samples under case 2 (19.43 compared to 20.19 Ω/□).  
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Fig 6-10 Bar chart of Rs values for four heat treatment cases. 

 

However, after 1 week of dry heat stability test, the least change in sheet resistance 

value is observed for samples which had more frequent exposure to Oxygen. 

Samples under case 1, which encountered Oxygen during both the stages of heat 

treatment, only showed a minor increment from 21.08 Ω/□ to 21.20 Ω/□ after 1 

week. Then comes the samples under case 3, which were not exposed to Oxygen 

during the first stage of heat treatment but stabilization treatment for this set of 

samples was also performed under open-air condition. The sheet resistance for 

this film increased from 20.19 to 20.56 Ω/□ after 1 week at 155ºC.  The set of 

samples for which stabilization treatment was performed in closed N2 environment 

showed higher increase in sheet resistance value after the stability test. The sheet 

resistance value for samples under case 2 increase from 19.53 to 21.28 Ω/□ 

whereas for the samples under case 4 the sheet resistance value increased from 

17.43 to 19.27 Ω/□. 

 

The effect of heat treatment optimization conditions on the stability of these films 

can be better represented by plotting the percentage change in the sheet 

resistance after 1 week at 155ºC, as seen in figure 6-11. The best stability figure 

of 0.57% is achieved for samples under case 1 followed by samples under case 3, 
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which registered an average 1.93% change in sheet resistance value after 1 week 

of stability test. The stability figure of 0.57% for an unprotected resistive film is 

much closer to standard manufacturing values of the thin film resistor industry. 

Samples under case 2 and case 4 showed 10.23 and 10.44% change in resistance 

value after 1 week, which are not suitable by a great margin for the thin film resistor 

industry.  

 

 

Fig 6-11  Bar chart of electrical stability value for four heat treatment cases. 

 

Figure 6-12 shows the average TCR value measured for each sample case after 

each stage of heat treatment. The film with least exposure to Oxygen in case 4 

reports a negative value of TCR even after stabilization heat treatment. Even 

though the average value of TCR is a negative figure of -13.3 ppm/ºC, samples 

under this case reported a large variation in the TCR value among the group 

creating a very wide error bar even reaching into the positive region of the graph. 

The most favorable value of TCR is seen for samples under case 2, which showed 

an average TCR value of 1.93 ppm/ºC. The majority of films in this group have a 

negative TCR under -5 ppm/ºC but because of one circuit with high TCR (11 

ppm/ºC) the overall average rises up with a wide error bar. This is a very favorable 

result but when compared with figure 6-11, this set of samples are seen to have 

one of the worst stability figures.  As the films in this set are not exposed to Oxygen 
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environment, the TCR value after stabilization treatment does not change much 

from its heat-treated value. However, when these films are exposed to the external 

environment, the electrical resistance value shifts by a great margin. For the next 

two sets of films, Case 1 and Case 3, the average TCR values recorded are +19.85 

ppm/ºC and +13.07 ppm/ºC respectively. Both these sets of samples change from 

their heat-treated value by a good 40 ppm/ºC, which could be attributed to their 

exposure to the external environment. However, these sets of samples retain much 

better stability figures as seen in figure 6-11 

 

 

Fig 6-12 Bar chart of TCR values for four heat treatment cases 

 

In order to analyze the effect of heat treatment optimization on the topology and 

chemical composition of the films, side profile imaging and EDX are performed on 

all the four sets of samples. Only alumina circuits were subjected to the varying 

heat treatment conditions hence results are based upon tests conducted on these 

substrates. Figure 6-13 shows the side profile images of Mn3CuN after subjection 

to the four heat treatment conditions. The curvature observed for figure 6-13 (a) 

and (d) are from the alumina grain and film is just following the curvature of alumina 

grian. The overall thickness of the films remain similar between 523 to 563 nm. 
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However, the striking difference is that for samples under case 1 and 3, the upper 

oxide layer is seen to be thicker around 112- 114 nm whereas samples under case 

2 and 4 are observed to have a thinner oxide layer of 73-75 nm. The stabilization 

stage is the common factor between these groups. Case 1 and 3 are stabilized in 

open-air environment whereas samples under case 2 and 4 were stabilized in 

closed flowing N2 environment. From figures 6-11 and 6-12 similar trends could be 

seen for stability figures and TCR values as well. Therefore, by comparing these 

three data sets, it is possible to relate a thicker oxide layer with a positive TCR and 

better stability for case 1 and 3, which were stabilized for 16 hours in open-air 

environment. On the other hand, poor stability and negative TCR of samples 

treated under case 2 and 4 could be attributed to a thinner oxide flayer formed on 

the surface of these films, which offers less protection from outer environment. 

 

  

   

Fig 6-13 Cross section images of upper oxide layer on Mn3CuN film after heat 
treatment under (a) Case 1 (b) Case 2 (c) Case 3 (c) Case 4. 

(a) (b) 

(c) (d) 
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Table 6-9 presents the chemical composition of the upper oxide layer under the 

four different heat treatment conditions. Samples under case 4 maintain the closest 

chemical composition to the original antiperovskite composition, even after the 

stabilization stage of heat treatment and are observed to have the lowest Oxygen 

content of the lot. Therefore, when subjected to 1 week of dry heat stability test, 

the upper layers of samples under this case are attacked more vigorously by the 

ambient Oxygen leading to a larger change in resistance value. Samples under 

case 2 have comparatively higher concentration of Oxygen but the improvement in 

the stability value for this set of samples is not evident.  Whereas samples under 

case 1 and 4 appear to have reached saturation level for Oxygen in the upper layer, 

thereby, providing better protection for the underlying layer against attack from 

ambient Oxygen, hence the better stability.  Therefore, it could be said that by 

choosing proper heat treatment environment for Mn3CuN thin films, electrical 

properties of this material system could be fine-tuned to make it suitable for the 

thin film resistor industry. Still it needs to be seen if these properties would survive 

the fabrication process stages.    

 

Table 6-9 Table of elemental composition for upper oxide layer for each heat 
treatment conditions.  

Heat treatment condition Atomic % elemental composition 

Mn Cu N O Total 

Case 1- Open HT - Open ST 39.71 1.95 0.7 57.64 100 

Case 2- Open HT -Closed ST 44.19 3.31 1.84 50.67 100 

Case 3- Closed HT -Open ST 40.27 2.07 0 57.66 100 

Case 4- Closed HT -Closed ST 48.22 16.95 11.23 23.6 100 

 

6.3.3 Commercial fabrication cycle feasibility study  

As explained in section 6.2.3, 1206 alumina substrate plates deposited at the 

University facility with Mn3CuN, were processed at TT electronics thin film resistor 

fabrication facility to check the repeatability of these properties in a real world 

fabrication scenario. The average sheet resistance value measured for nine 

resistor circuit across the 1206 plate is as shown in figure 6-14. Sheet resistance 
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value is presented after each process stage. As grown sheet resistance of 

15.02Ω/□ only increases to 16.65 Ω/□ after the second stage of stabilization heat 

treatment, which is as expected because of increased contact with the Oxygen rich 

environment causing oxidation of the film surface. Laser trimming removes the 

resistive material from the substrate in a selective pattern, which presents 

hindrance to the existing current travelling path and forces it to take a longer route. 

This is manifested as an increased resistance value.  For resistors with dimensions 

as in the 1206 plate, this final resistance value of 3 KΩ translates to a required final 

sheet resistance of 1500 Ω/□. After the first round of laser trimming, the sheet 

resistance value rises sharply to 1.39 kΩ/□. The laser trimming process is set to 

achieve a final resistance value of 3 KΩ. After another set of stabilization treatment 

and laser trimming this value increased to 1.47 kΩ/□, further closer to the required 

target. While the average value remains fairly constant after laser trimming, the 

error bars become quite wide indicating a large variation of the resistance values 

of the individually trimmed resistor circuits.  

 

 

Fig 6-14 Graph of sheet resistance variation in 1206 samples at various 
fabrication process stage 

 

The graph in figure 6-15, shows the variation in the average TCR value measured 

from 9 circuits across the 1206 plate after performing each key stage of fabrication. 

The average value of as grown TCR value is seen to be -355 ppm/ºC, which is in 
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line with those seen before for as grown Mn3CuN films. This value rises steeply to 

a near zero TCR of -22 ppm/ºC after initial heat treatment and maintains this value 

after stabilization heat treatments. After the first laser trimming stage, there is a 

small dip in the TCR value to -39 ppm/ºC because of freshly exposed underlying 

layer of resistive layer after laser trimming. However, it is regained to -21 ppm/ºC 

after subsequent stabilization and improves to -19 ppm/ ºC after second laser 

trimming. The flat nature of the TCR curve indicates the stability of TCR value for 

Mn3CuN films when processed using the commercial fabrication process. 

 

Fig 6-15 Graph of TCR variation in 1206 samples at various fabrication stages 

 

The only fabrication process stage after second laser trim, which could affect the 

electrical properties of resistor material, is the encapsulation stage, indicated as 

step 9 in figure 2-7. This stage is known to preserve the stability figure of the films 

by coating them in a molten resin coating to protect them from the external 

environment. It was not possible to get clearance from TT Electronics facility, to 

coat the university developed prototypes with encapsulation, therefore the effect of 

the fabrication process could only be studied up to the stage before i.e. second 

laser trim stage. According to TT Electronics, encapsulation of the resistor film is 

performed at around 200ºC, which is well below the temperature at which 

stabilization heat treatment is performed (260ºC), therefore, will not bring change 

in the electrical properties of films. However, it would be worthy to perform 

-400

-300

-200

-100

0

A
v

e
ra

g
e
 T

C
R

, 
(p

p
m

/ 
˚C

)



 

6-31 

 

encapsulation in future to enhance the stability figure by protecting the resistive 

film from external elements. 

 

6.4 Summary  

Deposition pressure is noticed to have a pronounced effect on the morphological 

features of the Mn3CuN thin films. Films deposited at higher deposition pressure of 

5 µbar are observed to have higher degree of porosity, which leads to an increase 

in the sheet resistance and negative TCR values when compared to the films 

deposited at lower deposition pressure. Films deposited at lower deposition 

pressure of 2 µbar showed better stability figures around 0.75% compared to 

average stability figures of 2.38% for films deposited at higher deposition pressure. 

It is therefore recommended that the fabrication of thin film resistors be carried at 

lower deposition pressure to develop components with better stability figures. 

 

From the heat treatment optimization run, it was observed that the most favorable 

electrical properties are sustained when heat treatment is performed in a controlled 

closed flowing N2 environment, followed by a stabilization treatment in open air. 

The advantage of stabilization treatment in open air is that it helps in development 

of an upper oxide layer of sufficient thickness to offer protection to the underlying 

film from the surrounding environment and thereby improves the stability 

performance.  The best electrical parameters thus far are a sheet resistance of 

21.20 Ω/□ and TCR value of +19.85 ppm/ºC along with a stability figure of 0.57% 

achieved for Mn3CuN films heat-treated in closed N2 environment for 3 hours at 

325ºC followed by a stabilization heat treatment in open air for 16 hours at 260ºC.  

 

By running the Mn3CuN films through commercial TFR fabrication process stages, 

it was seen that this material system is capable of maintaining the low TCR value 

of -19 ppm/ºC throughout all the process stages and therefore the Mn3CuN could 

be readily incorporated into commercial fabrication cycle. Encapsulation stage was 

not performed for lack of clearance from company but as this stage is performed 

at temperature much lower than temperature at which films are stabilized this stage 

will not affect electrical properties.   
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CHAPTER 7 Conclusions and 

Recommendations for Future Work
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7.1 Conclusions 

This work has investigated in detail the suitability of Mn based antiperovskite as a 

potential material system for thin film resistor fabrication. Continuous research has 

been carried out to improve the electrical properties of existing TFR materials but 

very limited works explore the possibility of developing a novel material with 

inherent low TCR nature. A review of existing literature concluded that the family 

of Mn based antiperovskite structures exhibit many interesting properties and 

extremely low TCR is one among them. However, suitability of this material system 

for thin film resistor fabrication, in terms of its electrical stability and potential to 

survive the fabrication process stages had not been studied to date. 

  

Initial trial runs confirmed the capability of university facilities to deposit and 

characterize Mn based antiperovskite material by simultaneously co-sputtering Mn, 

Ag and Cu targets.  While Manganese in bulk is known to have positive TCR values, 

the results obtained from these initial samples confirmed that negative TCR as low 

as -67 ppm/ºC could be readily achieved on thin films of Mn deposited together 

with Cu/Ag in a reactive N2 environment, and tuned closer to zero by subsequent 

heat treatment. 

 

Next, the Mn3AgN and Mn3CuN antiperovskite structures were successfully 

realized by controlling the partial Nitrogen pressure within the chamber at 10 and 

16.66% respectively. Both types of antiperovskite had very negative values for as-

grown TCR, lying between -180 to -355 ppm/ºC. Though after 3 hours of heat 

treatment between 300 and 350ºC in flowing N2, these values were tuned closer to 

the zero line at +47 ppm/ºC and +21 ppm/ºC for Mn3AgN and Mn3CuN respectively. 

The substrate temperature was also found to aid shifting of TCR in the positive 

direction. Nevertheless, it was not as effective as post deposition heat treatment, 

hence it was maintained at room temperature for all further experiments. Grain 

growth, defect healing, crystallization and growth of the upper oxide layer were 

found to be key factors affecting the development of electrical properties. However, 

one major concern with binary films was that they were found to have unacceptably 
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high values of stability when tested at 155ºC for 1 week, faring no better than 11% 

for either of the two compositions.  

 

By partial substitution of Cu in Mn3AgN, ternary antiperovskite structures were 

realized and average TCR values as low as -4.6 ppm/ºC were successfully 

achieved for a composition of Mn3Ag(0.4)Cu(0.6)N when heat treated at 350ºC. 

Though these ternary structures reported extremely low TCR values, stability 

figures could not be improved to a value better than 11%, even with additional 

stabilization in air. On the other hand for Mn3CuN films, introduction of additional 

stabilization treatment in air was observed to significantly improve the stability 

figure from 11.3% to just 0.8%, while maintaining an average TCR value of 

14ppm/ºC. It was noticed that during heat treatment, Manganese in the film has a 

tendency to migrate to the upper layer and create Manganese oxide, which offers 

a protection to underlying layers from further oxidation and stabilizes the electrical 

resistance value of the films. 

 

Exploring the effect of deposition pressure on Mn3CuN films, revealed that lower 

deposition pressure results in densely packed films, which yield better electrical 

properties in terms of lower TCR and better stability. The lowest average TCR 

value of -6 ppm/ºC was achieved for films deposited at 2 µbar, with a stability figure 

of 0.75%. By performing the initial treatment in N2 and stabilization treatment in 

open air, the stability figure for Mn3CuN films could be slightly improved to a value 

of 0.57%, but this offset the TCR value to +19 ppm/ºC. By subjecting the  Mn3CuN 

films deposited on 1206 plates, to an industrial fabrication process cycle it could 

be successfully verified that Mn3CuN antiperovskite can survive the TFR 

fabrication cycle, while maintaining an appreciable TCR value of -19ppm/ºC. 

 

Overall, the objectives set out for this project have been achieved and the study 

has been successful in its novel approach to investigate Mn based Antiperovskite 

structures as a candidate for the fabrication of thin film resistor components.  

Experiments and results from this work justify the findings of the literature review, 

that binary and ternary forms of Mn3Ag(x)Cu(1-X)N have TCR values extremely close 
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to zero. This is first time that the ternary composition of Mn3Ag(0.4)Cu(0.6)N in its thin 

film form has successfully demonstrated average TCR values lower than 5 ppm/ºC. 

While, the best compromise between TCR and stability was achieved for Mn3CuN, 

with TCR values still below ± 20 ppm/ºC and stability values better than 0.6%. The 

thin films were also capable of withstanding the commercial fabrication cycle while 

maintaining these outstanding electrical properties. This work takes the very first 

step in developing thin film resistors using the antiperovskite material system and 

was successful in attracting the attention of a market leading international 

electronic component manufacturer to consider Mn based antiperovskites as an 

alternative for NiCr and TaN thin film resistor products.   

 

7.2 Recommendations for future work 

 

For the realisation of antiperovskite on a commercial TFR fabrication scale, its TCR 

value will need to be pushed closer to zero while improving the stability values even 

lower than 0.57%. This would require participation from the industry as well as 

academia, to pool in dedicated resources and intellect to develop this concept 

further into a commercially viable and environmentally sustainable product. 

 

 From the discussions made in previous chapters, it would be of interest to conduct 

further investigation to study the: 

 

 Effect of replacing the transition metals 

In chapter 2, it was mentioned that there are many families of antiperovskite 

materials which exhibit extremely low TCR properties. Replacing all the three 

sites of the Mn3AX structure, partially or entirely, could be experimented with 

other elements. Published work documents low TCR for compositions where Ni 

and Sn replaced Cu, or where Mn sites were replaced with Cobalt or Carbon 

replaced N2 sites [54].  While many models exist for the low TCR nature of 

antiperovskite, it is of higher importance to develop further research work 

especially into theoretical calculations to explain the low TCR nature of 

antiperovskite nitrides. 
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 Effect of extended deposition parameter ranges 

As discussed in chapter 6, performing deposition at lower deposition pressure 

is expected to improve the electrical characteristics because of the higher 

density of films formed at these pressures. However, because of mass flow 

controller limitations and the design of the deposition plant used in this study, it 

was not possible to explore pressure ranges lower than 2 µbar. Similarly, 

elevated substrate temperature up to 130ºC was found to aid the shift of TCR in 

the positive direction. However, due to limitation of the heater element within the 

deposition chamber, temperature ranges above this value could not be explored 

further to see if as-grown TCR could be shifted close to zero without an 

additional heat treatment stage. Therefore, it will be worthy to explore the effects 

of lower deposition pressure and higher substrate temperature ranges on the 

structural and electrical properties of Mn based antiperovskite materials 

 

 Sputtering from a composite target 

In this work, the magnetrons were loaded with individual targets of Mn, Ag or 

Cu to develop binary or ternary forms of Mn3AgCuN, by controlling the power 

levels on each target and the amount of reactive Nitrogen in the chamber. Due 

to the time and funding constraints, this work could not explore the benefits of 

sputter depositing these thin film structures from a composite target made of 

stoichiometric composition of Mn:Ag/Cu:N. It is an area worthy of further 

investigation to attain better control over the chemical composition of the film, 

thereby keeping it constant within and across individual deposition cycles. 

 

 Developing fully functional test resistors 

Mn3CuN films researched in this work were tested on the industrial fabrication 

process only up to the second stage of laser trimming. However, the 

encapsulation stage, which occurs later in the process stage, coats the resistive 

film in a resin compound, providing protection from the external environment 

during stability tests. Therefore, it will be worthy to develop a fully functional 

batch of test resistors using the industry fabrication cycle and then perform the 

full set of commercial and environmental testing to further assess the suitability 

of Mn based antiperovskite nitrides for the thin film resistor industry.
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Appendix 1- Substrate Dimension Diagrams 

University designed substrate: 

The CAD drawing of the substrate plate designed for use within university is shown 

in the image below.  

 

Substrate parameter Value 

Plate dimension 101.6 mm by 101.35 

mm 
Chip dimension 10.16 mm by 6.35 mm 

Ressitive film dimension 6.84 mm by 5.84 mm 

No of coloumns 9 

No. Of Rows  15 

Total number of chips in one plate 135 

Substrate material  96% alumina (Al2O3) 

Conductor pad material  Ag 

Conductor pad dimension  6.05 mm by 2.01 mm 

 

From table, it can be seen that each resistor circuit has a resistive element 

deposited in a rectangle of 6.84 by 5.84mm. So by equation 1.9,  

Number of squares in university designed alumina substrate 

𝑛 =  
𝐿

𝑊
=  

6.84

5.84
= 1.17   
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1206 substrate plate 

The CAD drawing of the 1206 substrate plate commonly used within Thin film 

resistor fabrication industry is shown in the image below (courtesy of TT Electronics, 

Bedlington).  

 

Substrate parameter Value 

Plate dimension 69.41 mm by 59.95 mm 

Chip dimension 3 mm by 1.5 mm 

Ressitive film dimension 2.2 mm by 1.1 mm 

No of coloumns 21 

No. Of Rows  38 

Total number of chips in one plate 798 

Substrate material  96% alumina (Al2O3) 

Conductor pad material  Ag  

Conductor pad dimension  1.2 mm by 0.45 mm 

 

From table, it can be seen that each resistor circuit has a resistive element 

deposited in a rectangle of 2.2 mm by 1.1 mm. So by equation 1.9,  

Number of squares in 1206 industrial alumina substrate 

𝑛 =  
𝐿

𝑊
=  

2.2

1.1
= 2  
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Appendix 2: Result comparison from isolated 

and sequential process run 

In chapter 5, a comparison was drawn between the electrical performance results 

achieved on chip resistors from Mn3CuN sample set, when subjected to process 

run, with each stage running individually and sequentially. The table below 

compares the results from Mn3AgN and Mn3Ag0.4Cu0.6N, set of film, Chips from 

Mn3AgN and Mn3Ag(0.4)Cu(0.6)N set also show a close match between both sets of 

runs. For Mn3AgN, TCR values are within better tolerance limit when compared to 

Mn3CuN films and stability value shows no improvement better than 13.1% in either 

of runs. On the other hand, for Mn3Ag(0.4)Cu(0.6)N set of films the stability value 

deteriorates from 3.4% to 7.4%, when process stages are run back to back. 

 

Table 1:               

Mn3AgN 

As-grown After Heat 

treatment 

After stabilization 

treatment 

After 1 week 

stability test 

Rs (Ω/□) 
Isolated  7.01 6.60 7.02 8.01 

sequential 9.02 8.86 9.27 10.49 

TCR 

(ppm/ºC 

) 

Isolated  -233 -18 Not measured Not measured 

sequential -240 -19 88 91 

Stability 

(ΔR/R%) 

Isolated  N/A 

 

13.97 

sequential 13.14 

 

Table 2: 

Mn3Ag(0.4)Cu(0.6)N 

As-grown After 

Heat 

treatment 

After stabilization 

treatment 

After 1 week 

stability test 

Rs 

(Ω/□) 

Isolated  17.29 17.05 20.39 21.09 

sequential 17.78 16.20 27.90 30.06 

TCR 

(ppm/ºC 

) 

Isolated  -317 -41 Not measured Not measured 

sequential -312 -51 74 68 

Stability 

(ΔR/R%

) 

Isolated  N/A 

 

3.4 

sequential 7.4 

-------------------------------------------------X--------------------------------------------------------- 


