
Northumbria Research Link

Citation: Gibson, Simran, Issac, Biju, Zhang, Li and Jacob, Seibu Mary (2020) Detecting Spam Email
with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms. IEEE Access. ISSN
2169-3536 (In Press)

Published by: IEEE

URL: https://doi.org/10.1109/ACCESS.2020.3030751
<https://doi.org/10.1109/ACCESS.2020.3030751>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/44488/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access
the University’s research output. Copyright © and moral rights for items on NRL are retained by the
individual author(s) and/or other copyright owners. Single copies of full items can be reproduced,
displayed or performed, and given to third parties in any format or medium for personal research or
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors,
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata
page. The content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is available online:
http://nrl.northumbria.ac.uk/pol i cies.html

This document may differ from the final, published version of the research and has been made
available online in accordance with publisher policies. To read and/or cite from the published version
of the research, please visit the publisher’s website (a subscription may be required.)

http://nrl.northumbria.ac.uk/policies.html

Pre-print copy (final manuscript)

Digital Object Identifier 10.1109/ACCESS.2020.3030751

Detecting Spam Email with Machine
Learning Optimized with Bio-Inspired
Meta-Heuristic Algorithms
SIMRAN GIBSON1, BIJU ISSAC1 (SENIOR MEMBER, IEEE), LI ZHANG1 (SENIOR MEMBER,
IEEE), SEIBU MARY JACOB2 (MEMBER, IEEE)
1Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
2School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK

Corresponding author: Biju Issac (e-mail: bissac@ieee.org)

ABSTRACT Electronic mail has eased communication methods for many organisations as well as
individuals. This method is exploited for fraudulent gain by spammers through sending unsolicited emails.
This paper aims to present a method for detection of spam emails with machine learning algorithms that
are optimized with bio-inspired methods. A literature review is carried to explore the efficient methods
applied on different datasets to achieve good results. An extensive research was done to implement machine
learning models using Naïve Bayes, Support Vector Machine, Random Forest, Decision Tree and Multi-
Layer Perceptron on seven different email datasets, along with feature extraction and pre-processing. The
bio-inspired algorithms like Particle Swarm Optimization and Genetic Algorithm were implemented to
optimize the performance of classifiers. Multinomial Naïve Bayes with Genetic Algorithm performed the
best overall. The comparison of our results with other machine learning and bio-inspired models to show
the best suitable model is also discussed.

INDEX TERMS Machine Learning, Bio-inspired Algorithms, Cross-validation, Particle Swarm Optimiza-
tion, Genetic Algorithm.

I. INTRODUCTION

MACHINE learning models have been utilized for mul-
tiple purposes in the field of computer science from

resolving a network traffic issue to detecting a malware.
Emails are used regularly by many people for communica-
tion and for socialising. Security breaches that compromises
customer data allows ‘spammers’ to spoof a compromised
email address to send illegitimate (spam) emails. This is
also exploited to gain unauthorized access to their device by
tricking the user into clicking the spam link within the spam
email, that constitutes a phishing attack [1].

Many tools and techniques are offered by companies in
order to detect spam emails in a network. Organisations
have set up filtering mechanisms to detect unsolicited emails
by setting up rules and configuring the firewall settings.
Google is one of the top companies that offers 99.9% success
in detecting such emails [2]. There are different areas for
deploying the spam filters such as on the gateway (router),
on the cloud hosted applications or on the user’s computer.
In order to overcome the detection problem of spam emails,

methods such as content-based filtering, rule-based filtering
or Bayesian filtering have been applied.

Unlike the ‘knowledge engineering’ where spam detection
rules are set up and are in constant need of manual updat-
ing thus consuming time and resources, Machine learning
makes it easier because it learns to recognise the unsolicited
emails (spam) and legitimate emails (ham) automatically and
then applies those learned instructions to unknown incoming
emails [2].

The proposed spam detection to resolve the issue of the
spam classification problem can be further experimented
by feature selection or automated parameter selection for
the models. This research conducts experiments involving
five different machine learning models with Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA). This will
be compared with the base models to conclude whether
the proposed models have improved the performance with
parameter tuning.

The rest of this paper is organised as follows: Section
II presents the research to identify techniques and methods

VOLUME xx, 2020 1

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

used to resolve the classification problem. This is followed
by section III that introduces the proposed work. Section IV
explains the tools and implementation techniques. Section V
introduces the Machine Learning algorithms that are imple-
mented followed by section VI that explains the structure of
the Python program, datasets and requirements. Section VIII
discusses on the results of base model on datasets. Section
IX explains the tuning of parameters. Section X explains
the PSO and GA integration. The results of the optimized
classifiers on different datasets are described in section XI,
followed by comparison and evaluation in section XII. Sec-
tion XIII and XIV talks about the future implementation and
conclusion.

II. RELATED WORK
A. MACHINE LEARNING
Researchers have taken a lead to implement machine learning
models to detect spam emails. In the paper [3], the authors
have conducted experiments with six different machine learn-
ing algorithms: Naïve Bayes (NB) classification, K-Nearest
Neighbour (K-NN), Artificial Neural Network (ANN), Sup-
port Vector Machine (SVM), Artificial Immune System and
Rough Sets. Their aim of the experiment was to imitate the
detecting and recognising ability of humans. Tokenisation
was explored and the concept provided two stages: Training
and Filtering. Their algorithm consisted of four steps: Email
Pre-Processing, Description of the feature, Spam Classifica-
tion and Performance Evaluation. It concluded that the Naïve
Bayes provided the highest accuracy, precision and recall.

Feng et al. [1] describes a hybrid system between two
machine learning algorithms i.e. SVM-NB. Their proposed
method is to apply the SVM algorithm and generate the
hyperplane between the given dimensions and reduce the
training set by eliminating datapoints. This set will then be
implemented with NB algorithm to predict the probability of
the outcome. This experiment was conducted on Chinese text
corpus. They successfully implemented their proposed algo-
rithm and there was an increase in accuracy when compared
to NB and SVM on their own.

Mohammed et al. [4] aimed to detect the unsolicited
emails by experimenting with different classifiers such as:
NB, SVM, KNN, Tree and Rule based algorithms. They
generated a vocabulary of Spam and Ham emails which
is then used to filter through the training and testing data.
Their experiment was conducted with Python programming
language on Email-1431 dataset. They concluded that NB
was the best working classifier followed by Support Vector
Machine.

Wijaya et al. [5] proposes a hybrid-based algorithm, which
is integrating Decision Tree with Logistic Regression along
with False Negative threshold. They were successful in in-
creasing the performance of DT. The results were compared
with the prior research. The experiment was conducted on the
SpamBase dataset. The proposed method presented a 91.67%
accuracy.

B. BIO-INSPIRED METHODS
Agarwal et al. [6] experimented with NB along with Particle
Swarm Optimisation (PSO) technique. The paper used the
emails from Ling-Spam corpus and aimed to acquire an
improvement in F1-score, Precision, Recall and Accuracy.
The paper used Correlation Feature Selection (CFS) to select
appropriate features from the dataset. The dataset was split
into 60:40 ratio. Particle Swarm Optimisation was integrated
along with Naïve Bayes. They concluded a success when
their proposed integrated method increased the accuracy of
the detection compared to NB alone [6].

Belkebir et al. [7] reviewed the SVM algorithm along with
Bee Swarm Optimization (BSO) and Chi-Squared on Arabic
Text. Since there have been plenty of research conducted for
text mining on English and some European languages, the
authors considered to review the algorithms work on Arabic
language. They experimented with three different approaches
to categorise automatic text – Neural networks, Support Vec-
tor Machine (SVM) and SVM optimizing with Bee Swarm
Algorithm (BSO) along with Chi-Squared. Bee Swarming
Optimization algorithm is inspired by the behaviour of swarm
of bees to achieve global solution. A search area is divided
and each area within the divided section is assigned to other
bees to explore. Every solution is distributed amongst the
bees and the best solution is accepted and the process is
repeated until the solution meets the criteria of the problem.

The main problem advertised is: “The problem of select-
ing the set of attributes is NP-hard”. The research explains
the problem dealing with the feature selection due to the
computation time. A vocabulary is generated and fed into
the Chi2-BSO algorithm to acquire the features and finally
the achieved result is loaded within the SVM algorithm. The
experiment was carried on OSAC dataset which included
22,429 text records. The study randomly selected 100 texts
from each category distributed by 70:30 ratio. The pro-
gram performed removal of digits, Latin alphabets, isolated
letters, punctuation marks and stopwords. The document
representation step was conducted with different modes for
all approaches – SVM, BSO-CHI-SVM and artificial neural
network (ANN). The SVM outperformed the ANN execution
time. The proposed algorithm BSO-CHI-SVM exceeds the
learning time but it is still identified as effective [7]. The
paper concluded that the proposed algorithm provides an
accuracy rate of 95.67%. They have also stated that SVM
approach outperformed ANN. A further development is to
evaluate the approach of this paper on other datasets and use
modes such as n-gram or concept representation.

Many researchers have also researched the human evo-
lutionary processes to optimize the ML algorithm’s perfor-
mance. Taloba et al. [8] explored Genetic Algorithm (GA)
optimization by integrating it with Decision Tree (DT). The
authors recognise the overfitting problem with dimension of
feature space and attempt to overcome this issue by feature
extraction with Principle Component Analysis (PCA). The
paper provides an intensive background of algorithms used
and proceeds with proposed algorithm. Their program per-

2 VOLUME xx, 2020

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

forms pre-processing, feature weighing and feature extrac-
tion. The proposed algorithm is to find the optimal value of
the parameter provided for the Decision tree (DT) algorithm.
The DT algorithm used is J-48 to generate the rules and then
apply GA with fitness function to obtain the accuracy. The
program uses the BLX-α for fitness search and performance.
Their fitness function was conducted on each individual of
GA. The experiment was conducted with the Enron spam
dataset. The paper concluded that the GADT proposed algo-
rithm provided higher accuracy when compared with other
classifiers without PCA. Another experiment compared the
performance measurement with using the PCA which pro-
vided higher accuracy than GADT itself.

Renuka et al. [9] reviews the ML algorithm – SVM along
with the optimization technique – Ant Colony Optimization
(ACO). The proposed algorithm was performed on the Spam-
Base dataset with supervised learning method. The paper
briefly defines the existing work based on pheromone up-
dating and fitness function. The paper provides an overview
of the ML algorithm such as NB, SVM and KNN classi-
fiers. The proposed algorithm was conducted by integrating
the ACO algorithm into the SVM ML algorithm. ACO is
based on the behaviour of the ants observed while creating
a shortest path towards the food source. The paper states that
the proposed ACO based feature selection algorithm deducts
the memory requirement along with the computational time.
The experiment uses the N-fold cross validation technique
to evaluate the datasets with different measures. The feature
selection methods were used with the ACO. The result of the
proposed algorithm ACO-SVM was higher than the rest of
the ML algorithms itself. The paper concluded that the accu-
racy of ACO-SVM was 4% higher than the SVM itself alone.
The paper evaluated that the optimization algorithm resolves
the activities of the problem simultaneously to classify the
emails into ham and spam [9].

Additional research looked at algorithms for optimization
such as Firefly and Cuckoo search. The Firefly algorithm
in the paper [10] was used with SVM. The researchers
experimented with the Arabic text with feature selection.
The paper concluded that the proposed method outperforms
the SVM itself. The paper [11], proposes Enhanced Cuckoo
Search (ECS) for bloom filter optimization. This is where the
weight of the spam word is considered. It was concluded that
their proposed optimization technique of ECS outperforms
the normal Cuckoo search.

The work in the above research has provided an insight
into hybrid systems as well as optimization techniques. The
bio-inspired techniques show more promising results in terms
of accurately detecting a spam email.

III. PROPOSED WORK
This research will experiment Bio-inspired algorithms along
with Machine learning models. This will be conducted on
different spam email corpora that are publicly available. The
paper aims to achieve the following objectives:

1) To explore machine learning algorithms for the spam
detection problem.

2) To investigate the workings of the algorithms with the
acquired datasets.

3) To implement the bio-inspired algorithms.
4) To test and compare the accuracy of base models with

bio-inspired implementation.
5) To implement the framework using Python.

Scikit-Learn library will be explored to perform the ex-
periments with Python, and this will enable to edit the
models, conduct pre-processing and calculate the results.
The program scripts will be implemented further with the
optimization techniques and compared with the base results
i.e with default parameters.

The spam detection engine should be able to take email
datasets as input and with the help of text mining and opti-
mized supervised algorithms, it should be able to classify the
the email as ham or spam. Figure-1 represents the process
that is followed to implement the model.

IV. TOOLS AND TECHNIQUES
Some of the tools and techniques used in this work are
discussed below.

A. WEKA
WEKA is a GUI tool that allows to load a dataset and
apply different functions/rules upon an algorithm [51]. The
application allows to apply the classification, regression,
clustering algorithms and enable to visualise the data and the
performance of the algorithm. An ’.arff’ file format of the
spam datasets were fed into the program.

TABLE 1. WEKA Results

Classifiers Average
IBK 85.79%
OneR 81.91%
Naïve Bayes 90.46%
Naïve Bayes Multinomial 92.65%
SMO 93.98%
AdaBoost 89.48%
Bagging 89.37%
ZeroR 63.07%
Decision Stump 81.33%
Hoeffding Tree 84.33%
J48 89.53%
Random Forest 93.04%
Random Tree 83.13%
Naïve Bayes Multinomial Text 63.07%

Table-1 provides the average accuracy taken from the
datasets for each algorithm within WEKA. The highest ac-
curacy was provided by Multinomial Naïve Bayes (MNB),
SMO, J48 and Random Forest. Three Naïve Bayes algo-
rithms were tested using WEKA and MNB was the better
amongst the three.

In this experiment WEKA acted as a black box and pro-
vided the better performing algorithms which were Support
Vector, Random Forest, Naïve Bayes and Decision Tree.

VOLUME xx, 2020 3

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

FIGURE 1. Spam detection block diagram

Since spam email detection falls into classification cate-
gory, supervised learning method will be used. Supervised
learning is a concept where the dataset is split into two parts:
1) Training data and 2) Testing data. The main aim of this
learning method is to train a classifier with a given data and
parameters and then predict the outcome with the testing
dataset which will not be known to the program or classifier
[12].

The models will be trained with a training dataset of 60%,
70%, 75% and 80%. Once the model is trained, model will be
provided with the testing dataset which is distributed as 40%,
30%, 25% and 20% respectively with training dataset. This
will provide a better knowledge of what percentage split is
best suited and thus be more efficient to work with majority
of the datasets. This will provide results on classifiers work-
ing best with more or less training data.

B. SCIKIT-LEARN
Scikit-Learn (SKLearn) is an environment that is incorpo-
rated with Python programming language. The library offers
a wide range of supervised algorithms that will be suitable
for this project [13]. The library offers high-level imple-
mentation to train with the ’Fit’ methods and ’predict’ from
an estimator (Classifier). It also offers to perform the cross
validation, feature selection, feature extraction and parameter
tuning [14].

C. KERAS
Keras is an API that supports Neural Networks. The API
supports other deep learning algorithms for easy and fast ap-
proach. It offers CPU and GPU running capabilities in order
to simultaneously process the models. Online tutorials are
available for neural network for learning and development.
Their guide demonstrates the performance optimization tech-
niques to utilize GPU and ways to work with RNN algorithm
and other deep learning algorithms [15].

D. TENSORFLOW
Tensorflow is an end-to-end ML platform that is developed
by Google. The architecture lets a user run the program on
multiple CPUs and it also has access to GPUs. The website
also provides a learning platform for both beginners and

experts. TensorFlow can also be incorporated with Keras to
perform deep learning experiments [16].

E. PYTHON PLATFORMS
Research was conducted into the different platforms that
could be used for ML program implementation in Python.

1) Spyder
Spyder is an Integrated Development Environment platform
for Python programming language [17]. Spyder is incorpo-
rated within the Anaconda framework. The software allows
the user to investigate the workings of a program. The pro-
gram is capable to include multiple panels such as ‘console’
where the output can be seen, ‘Variable Explorer’ where the
assignment of the variables can be investigated, ‘Editor’ to
edit the program and other panels such as ‘File Explorer’ and
’History’.

2) Jupyter Notebook
This is an open source tool that provides a Python framework.
This is similar to ‘Spyder’ IDE, except this tool lets a user
run the source code via a web browser [18]. Anaconda
framework also offers ‘Jupyter’ to be utilised by the user
through the local server.

F. ONLINE PLATFORMS
Along with the desktop-based platforms, other online plat-
forms that offers additional support are: Google Collabora-
tory and Kaggle. Both platforms are the top ML and DL
based that also offers TPU (Tensor Processing Unit) [19]
along with CPU and GPU. Multiple core servers can also
be accessed. The platforms are cloud-based, and the user’s
program is run until the ‘Runtime’ is ended.

V. MACHINE LEARNING MODELS
The subsections below explain each of the Machine Learning
models that will be implemented to achieve the aim of
this work. The sections are accompanied with mathematical
equations along with the pseudocode algorithms. The algo-
rithms define the variables "TrX" as a Training subset of "X"
and "TeX" as Testing subset.

4 VOLUME xx, 2020

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

A. NAÏVE BAYES - MULTINOMIAL
Naïve Bayes model is used to resolve classification problems
by using probability techniques. The Naïve Bayes algorithm
for this paper can be denoted as equation-1 [20]:

P(Class|WORD) =
(P(WORD|Class)× P(Class))

(P(WORD))
(1)

where WORD is (word1, word2, . . .wordn) from within an
uploaded email and ‘Class’ is either ‘Spam’ or ‘Ham’. The
algorithm calculates the probability of a class from the bag
of words provided by the program. Where P(Class | WORD)
is a posterior probability, P(WORD | Class) is likelihood and
P(Class) is the prior probability [21].

If ‘Class’ = Spam, the equation could be rewritten to find
the spam email from the given words, and this can be further
simplified as equation-2:

P(Class|WORD) =
Γn
i=1P(word_i|Spam)× P(Spam)

P(word_1,word_2, ...word_n)
(2)

There are three types of Naïve Bayes algorithms: Multi-
nomial, Gaussian and Bernoulli. Multinomial Naïve Bayes
algorithm has been selected to perform the spam email iden-
tification because it is text related and outperforms Gaussian
and Bernoulli [22] [23].

Multinomial Naïve Bayes (MNB) classifier uses Multino-
mial Distribution for each given feature, focusing on term
frequency. The Multinomial Naïve Bayes can be denoted as
equation-3 [23]:

P (p|n) ∝ P (p)
∏

1≤k≤nd

P (tk|p) (3)

where the number of token is represented by nd, n is the
number of emails and P(tk|p) is calculated by:

P(tk|p) =
(count(tk|p) + 1)

(count(tp) + |V|)
(4)

In the equations (3) and (4), P (tk|p) is identified as the
conditional probability for MNB. The tk is the spam term
occurrence within an email and P (p) is classed as the prior
probability. 1 and |V| are identified as the smoothing constant
for the algorithm.

To test this algorithm, MNB module was loaded from
the Scikit-learn library. The parameters for this model are
optional. If none is specified, the default values are: Alpha
value set to ‘1.0’, Fit Prior is set to ‘True’ and Class Prior is
set to ‘None’ [23] [24].

The algorithm-1 shows the pseudocode for Multinomial
Naïve Bayes with spam classification where "Tr" is Training
and "Te" is Testing. The P̂(tk|p) is the estimating/predicting
variable, also known as the conditional probability.

Algorithm 1: Multinomial Naïve Bayes

Initialise Input Variables;
N← No. of Documents;
X← Datapoints;
y← Target Inputs;
for i = 0; i < TrX; i+ + do

if (i,y) = Spam then
Learn i = Spam;

else
Learn i = Ham;

for t in testSize // Test sizes = 20, 25, 30 and 40

do
for K in CV do

X_test and y_test= testing size;
X_train and y_train= training size;
for i = 0; i < TeX; i+ + do

Calculate P̂(tk|p);
Calculate the Accuracy;

return tk;

B. SUPPORT VECTOR MACHINE
This algorithm plots each node from a dataset within a
dimensional plane and through classification technique the
cluster of data is separated by a hyperplane into their re-
spective groups [25]. The hyperplane can be described as
equation-5:

H = V X + c (5)

where c is a constant and V is the vector. The SGD Clas-
sifier was loaded from scikit-learn library, which is the lin-
ear model with ‘Stochastic Gradient Descent (SGD)’, also
known as the optimized version of SVM. This algorithm
provides more accurate results than SVM (SVC algorithm)
itself. Disadvantage of working with SVC algorithm is that
it cannot handle a large dataset, whereas SGD provides
efficiency and other tuning opportunities.

The algorithm-2 shows the pseudocode for Stochastic Gra-
dient Descent.

The model was implemented with ‘Alpha’, ‘Epsilon’ and
‘Tol’ values with default as ‘Hinge’ for loss providing linear
SVM, also known as ’Soft-Margin’ which is easier to com-
pute [25].

The algorithm uses the learning rate to iterate over the
sample data to optimize the Linear algorithm and it is denoted
by the following equation-6 for the default learning rate as
’Optimal’:

1

α(t0 + t)
(6)

where t is the time step which is acquired by multiplying
number of iterations with number of samples (Emails). The
Learning Rate allows implementation of the parameter space

VOLUME xx, 2020 5

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

Algorithm 2: Stochastic Gradient Descent

Initialise Input Variables;
N← No. of Documents;
X← Datapoints;
y← Target Inputs;
Initialise Alpha, Epsilon values;
for i = 0; i < TeX; i+ + do

Calculate Hyperplane // Equation (5)

Measure the Distance (Xi, Xj);
for t in testSize // Test sizes= 20, 25, 30 and 40

do
for K in CV do

X_test and y_test= testing size;
X_train and y_train= training size;
Call the SGD function;
Calculate the Training Error;
Calculate the Rate;
Calculate the Accuracy;

return tk;

during the training time. The α is represents the regulariza-
tion term and t0 is a hueristic approach.

C. DECISION TREE CLASSIFIER
The Decision Tree model is based on the predictive method.
The model creates a category which is further distributed into
sub-categories and so on. The algorithm runs until the user
has terminated or the program has reached its end decision.
The model predicts the value of the data by learning from the
provided training data. The longer and deeper the tree implies
it has more complicated rules to be executed.

The algorithm-3 shows the pseudo-code for Decision Tree,
where it terminates at the end of the node for each split of the
tree depth.

Similar to MNB and SGD, Decision Tree (DT) algorithm
was loaded from the Scikit-learn library and it is executed
on the default parameters which are ‘Gini’ for Criterion and
‘best’ for Splitter. The advantage of Gini is that it calculates
the incorrectly labelled data that was selected randomly [26].
This is given by the below equation-7:

Gini : Gi = 1−
n∑
k=1

p(i,k)2 (7)

The second criterion is ‘entropy’ which is based on in-
formation gain based on the selected attributes and it is
calculated by equation-8 [26]: .

Entropy : Hi =

n∑
k=1
pik 6=0

p(i,k)log2(p(i,k)) (8)

where P is the probability and i is a node from the training
data within both equation (7) and (8).

Algorithm 3: Decision Tree - CART Algorithm

Initialise Input Variables;
N← No. of Documents;
X← Datapoints;
y← Target Inputs;
Ln = Number of Leaves;
D = Tree Depth ;
C = Criterion // (Gi) or (Hi)

for t in testSize // Test sizes= 20, 25, 30 and 40

do
for K in CV do

X_test and y_test= testing size;
X_train and y_train= training size;
for i < X do

Call DT function;
for j < D do

Calculate the best split;
Predict the class (c);
Ln++;
For the node: (c,C) // Use equation

(7) or (8)

return Predicted Class (ĉ)
Calculate the Accuracy;

D. RANDOM FOREST CLASSIFIER
Random Forest (RF) algorithm can be used for both classi-
fication and regression. The algorithm predicts the classes
by using multiple decision tree, where each tree predicts
the classification class. This is evaluated by the RF model
to select the high number of predicted class as an assigned
prediction [27].

The algorithm-4 explains the workings of the Random
Forest classifier with the Spam Email dataset, where Fĉ is
the outcome predicted from the entire forest.

Equation-7 and equation-8 are also utilised to calculate
the Gini and Entropy for Random Forest (RF) algorithm to
calculate the Criterion.

This module was loaded from Scikit-learn library and it
is based on the depth of the tree and number of DT to be
produced. These are usually considered as the termination
criteria. This means the more the depth and the number
of trees the more the computational time required for the
algorithm.

E. MULTI-LAYER PERCEPTRON (MLP)
The MLP is a feed-forward Artificial Neural Network
(ANN). It is a supervised method which includes non-linear
hidden layers between the input and the output layer. The
algorithm works with the linear activation function on a
training dataset set by default known as Hyperbolic Tan
(equation-9) [28]:

f(·) : Rm → Ro (9)

6 VOLUME xx, 2020

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

Algorithm 4: Random Forest

Initialise Input Variables;
N← No. of Documents;
X← Datapoints;
y← Target Inputs;
Ln = Number of Leaves;
D = Tree Depth ;
C = Criterion // (Gi) or (Hi)

Nt = Number of Trees;
for t in testSize // Test sizes= 20, 25, 30 and 40

do
for K in CV do

X_test and y_test= testing size;
X_train and y_train= training size;
for i < Nt do

for i < D do
Randomly select from X;
Split the nodes with C;
Calculate the Predicted ĉ from each

tree;
return Predicted from the tree Tĉ

Provide the array of DT decision for all
trees;

Calculate the prediction from the majority;
return Predicted from the Forest Fĉ

where m is the input (spam words in this case) and o is the
number of outputs from the function. The algorithm can have
one or more layers between input and output layer known as
‘Hidden Layer(s)’. The hidden layer accepts the values from
the previous layer and transforms with linear summation,
whereas the ‘Output’ layer provides the output values after
transformation from the previous hidden layer [28].

The algorithm-5 shows the pseudocode for Multi-Layer
Perceptron.

The algorithm uses back-propagation technique to cal-
culate the gradient descent for each variable weight. The
algorithm has the ability to learn when it becomes part of one
neuron and one hidden layer of MLP function as indicated in
equation-10.

f(x) = W2g(W
T
1 x+ b1) + b2 (10)

where W2 and W1 are the weights from the input layer
and hidden layer. The W 1

i becomes the part of ni layers
in the hidden layer [28]. To compare the results of NN
and ML models, the modules were loaded from the Scikit-
learn similar to the ML models. The default parameter was
changed for hidden layer to lower number of neurons for
faster computation.

Algorithm 5: Multi-Layer Perceptron

Initialise Input Variables;
N← No. of Documents;
X← Datapoints;
y← Target Inputs;
H = No.Hidden Layer;
Nu = No.of Neurons;
Ac = Activation;
S = Solver;
for t in testSize // Test sizes= 20, 25, 30 and 40

do
for K in CV do

X_test and y_test= testing size;
X_train and y_train= training size;
Call the MLP Function← H, Nu, Solver ;
Calculate the Error Rate;
Error × Activation;
Calculate the Accuracy;

VI. PROGRAM STRUCTURE, DATASETS AND
REQUIREMENTS
The Python program will load all the necessary Python
libraries that will assist the ML modules to classify the emails
and detect the spam emails.

A. ADDING CORPUS
This section will load all the email datasets within the
program and distribute into training and testing data. This
process will be accepting the datasets in ’*.txt’ format for
individual email (Ham and Spam). This is to help understand
the real-world issues and how can they be tackled.

B. TOKENIZATION
Tokenization is the method where the sentences within an
email are broken into individual words (tokens). These tokens
are saved into an array and used towards the testing data to
identify the occurrence of every word in an email. This will
help the algorithms in predicting whether the email should be
considered as spam or ham [49].

C. FEATURE EXTRACTION AND STOP WORDS
This was used to remove the unnecessary words and char-
acters within each email, and creates a bag of words for the
algorithms to compare against.

The module ‘Count Vectorizer’ from Scikit-learn assigns
numbers to each word/token while counting and provides
its occurrence within an email. The instance is invoked to
exclude the English stopwords, and these are the words such
as: A, In, The, Are, As, Is etc., as they are not very useful
to classify whether the email is spam or not. This instance is
then fitted for the program to learn the vocabulary [49].

Once tokenized, the program applies ‘TfidfTransformer’
module to compute the Inverse Document Frequency (IDF).

VOLUME xx, 2020 7

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

The most occurring words within the documents will be
assigned values between 0-1, and lower the value of the word
means that they are not unique. This allows the algorithms/-
modules to read the data [49]. The TF-IDF can be calculated
by the Equation-11 where (t, d) is the term frequency (t)
within a document (d):

tf − idf(t,d) = tf(t,d)× idf(t) (11)

where IDF is calculated by the Equation-12, given n is the
number of documents:

idf(t) = log(
n

idf(t)
) + 1 (12)

D. MODEL TRAINING AND TESTING PHASE
As discussed through the research, supervised learning meth-
ods were used and the model was trained with known data
and tested with unknown data to predict the accuracy and
other performance measures. To acquire the reliable results
K-Fold cross validation was applied. This method does have
its disadvantages such as, there is a chance that the testing
data could be all spam emails, or the training set could
include the majority of spam emails. This was resolved by
Stratified K-fold cross validation, which separates the data
while making sure to have a good range of Spam and Ham
into the distributed set [50].

Lastly, parameter tuning was conducted with the Scikit-
Learn and bio-inspired algorithms approach to try and im-
prove the accuracy of ML models. This provides a platform
to compare the Scikit-learn library with the bio-inspired
algorithms

E. DATASETS
The project accessed the publicly available datasets and
included each email as an individual text file. The text files
were string based. A list of the few spam email datasets from
the public repository are explained below:

1) Ling-Spam dataset is divided into 10 parts from the
‘bare’ distribution that includes individual emails as
a text file (.txt). This data is not pre-processed, and
it includes numbers, alphabets and characters [29].
Each part was trained and tested to acquire the average
accuracy.

2) Enron dataset includes 6 separate datasets that contain
3000-4000 individual emails as text files. The dataset
includes numbers, alphabets and characters [30].

3) The PUA dataset is a numerical dataset that includes
sets/combination of numbers characterised as a string.
PU1, PU2 and PU3 are similar to PUA dataset but
include different weights of spam and ham emails and
they are extracted from different users [31]. Folders
include individual emails as a text file. For all PU
datasets, the publisher has replaced the tokens with a
unique combination of numbers to respect their user’s
privacy. The respective words for these unique num-
bers have not been made public, making the process of
removing certain features difficult [32].

From PU1 and PU2 datasets, duplicate emails that
were received were discarded manually. Whereas in
PU3 and PUA, this was conducted with the UNIX
command ’diff’. Each of these emails were collected
during different lengths of time for both Ham and
Spam emails.

4) SpamAssassin dataset is more advanced with header
information such as source or From address, IP ad-
dress, return path, message ID and delivery informa-
tion. Each individual email within the folder will be
converted into text files [33].

Table-2 presents the spam rate of each of the datasets that
are used within this project along with their published date
[2].

TABLE 2. Datasets

Name of the
Dataset

Ref. Spam + Ham = Total
emails

Rate of
Spam

Published
Date

Ling-Spam [29] 481+2412 = 2893 17% 2000
PU1 [31] 481+618 = 1099 44% 2000
SpamAssassin [33] 1897+4150 = 6047 31% 2002
PUA [31] 571+571 = 1142 50% 2003
PU2 [31] 142+579 = 721 20% 2003
PU3 [31] 1826+2313 = 4139 44% 2003
Enron 1 – 6
Spam

[30] 20170+16545 = 36,715 55% 2006

F. SOFTWARE AND HARDWARE
Python 3.4 or above was used and Anaconda platform
seemed like a good option as it provides the advantage of
using both Spyder and Jupyter Notebook for implementing
the programs.

Some online applications such as Google Collaboratory
and Kaggle can be used to speed up the training and testing
process for the multiple datasets. This can be helpful towards
any NN algorithms that can be implemented.

The project was conducted on a standard laptop, with 8 GB
RAM and AMD Ryzen 3 3200U (2.60 GHz) processor.

G. LIBRARIES AND MODULES
Scikit-Learn will be used as it offers the majority of the
machine learning libraries and dataset processing modules.

As per the papers discussed in the related work section,
PSO performed much better among the bio-inspired algo-
rithms. For comparison purposes, the second implementation
of bio-inspired algorithm will be based on human evolution.
Libraries like PySwarms for Particle Swarm Optimisation
and TPOT for Genetic Algorithm will be utilised to optimise
the accuracy of the machine learning algorithms.

VII. PERFORMANCE MEASURES
There are different performance metrics that were used in this
work as follows.

A. CONFUSION MATRIX
The detection of spam emails can be evaluated by different
performance measures. Confusion Matrix is being used to

8 VOLUME xx, 2020

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

visualise the detection of the emails for models. Confusion
matrix can be defined as below:

HAM SPAM
HAM TN FP
SPAM FN TP

where [34]:
1) TN = True Negative – Ham email predicted as ham
2) TP = True Positive – Spam email predicted as spam
3) FP = False Positive – Spam email predicted as ham
4) FN = False Negative – Ham email predicted as spam

B. ACCURACY
The research was aimed at finding the highest accuracy for
detecting the emails correctly as ham and spam. The module
from the Scikit-learn library called ‘Accuracy’ helped anal-
yse the correct number of emails classified as ‘Spam’ and
‘Ham’. This can be measured by equation-13 below [35]:

Accuracy =
(TN + TP)

(TP + FN + FP + TN)
(13)

where the denominator of the equation is the total number of
emails within the testing data.

C. RECALL
The recall measurement provides the calculation of how
many emails were correctly predicted as spam from the total
number of spam emails that were provided. This is defined by
equation-14, where ‘TP + FN’ are the total number of spam
emails within the testing data [35]:

Recall =
TP

TP + FN
(14)

D. PRECISION
The precision measurement is to calculate the correctly iden-
tified values, meaning how many correctly identified spam
emails have been classified from the given set of positive
emails. This means to calculate the total number of emails
which were correctly predicted as positive from amongst the
total number of emails predicted positive [35]. This is defined
by equation-15:

Precision =
TP

TP + FP
(15)

E. F1-SCORE
The F-measure or the value of Fβ is calculated with the help
of precision and recall scores, where β is identified as 1,
Fβ or F1 provides the F1-score. F1-score is the ‘Harmonic
mean’ of the precision and recall values. This can be defined
by equation-16 [35]:

Fβ =
(1 + β2)(precision× recall)

(β2 × (precision + recall))
(16)

when the β is substituted with the value 1, the formula is
simplified to:

Fβ =
2× (precision× recall)

(1× precision + recall)
(17)

VIII. RESULTS OF BASE MODEL ON DATASETS
Stratified K-Fold Cross Validation (SKFCV) was applied to
all the machine learning models. Algorithm-6 represents the
pseudocode for the base models, this was executed with the
default values for parameters explained in section V and VI.

Algorithm 6: Base Model Implementation with SK-
FCV

Initialise Input Variables;
N← No. of Documents;
X← Datapoints;
y← Target Inputs;
Xi = StopwordRemoval
Xj = Vectorizer
Xk = Tf-IDF
Dict← Xk

Dict = Pre-Processed data;
Initialise SKF // Stratified K-Fold Cross

Validation

for t in testSize // Test sizes= 20, 25, 30 and 40

do
for K in SKF do

X_test and y_test= testing size;
X_train and y_train= training size;
Calculate the Accuracy;

The visual representation of five models is shown in
Figure-2: ML algorithms, from left: SGD, MNB, RF, DT
and MLP. The figure displays the 4 split sets used for each
classifier (CLF). The selected algorithms have provided 90%
and above accuracy for email detection except RF. This was
applied on the 7 datasets and the average was taken. Amongst
the five algorithm RF has performed poorly and SGD is the
highest performing algorithm.

FIGURE 2. Stratified K-Fold Cross Validation

VOLUME xx, 2020 9

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

The respective accuracies for each split set in Figure-2 are
defined in Table-3.

TABLE 3. Stratified K-Fold Cross-Validation - Accuracy

Classifier Split Set
60:40 70:30 75:25 80:20

SGD 96.79% 96.80% 96.98% 96.92%
MNB 90.26% 90.69% 90.71% 90.62%

RF 84.82% 85.04% 85.54% 85.92%
DT 91.79% 92.03% 91.93% 92.38%

MLP 95.98% 95.36% 96.18% 96.25%

Computational timing depends on the depth of a dataset
and the classification. For base classifiers, the approximate
times are shown below to train for each iteration of cross-
validation for the respective classifiers.

1) Naïve Bayes: 0.003 sec to 0.0013 sec approx.
2) Support Vector Machine: 0.040 sec approx.
3) Random Forest: 1.080 sec approx.
4) Decision Tree: 4.06 sec approx.
5) Multi-Layer Perceptron: 8.0 sec approx.

The experiment evaluates that the more the training data,
the better accuracy the testing data provides. The NN model
will later be tested for 75:25 and 80:20 split set with bio-
inspired algorithms.

IX. TUNING OF PARAMETERS
For every model, certain parameters were selected and pro-
vided with a range of possibilities. These parameters are
the ones that have high impact towards detecting the emails
and learning rate. This will then be implemented within bio-
inspired algorithms.

A. SGD PARAMETERS
Hyperparameter tuning the algorithm offers 3 parameters
from the SGD algorithm: Alpha values, Epsilon values and
Tol values for the search space. Values for all three keys
ranged from 0.0001 to 1000 as a dictionary.

• Alpha: The variable could help set the optimal learning
rate. It is also classed as the constant for regularization
term.

• Epsilon: This value determines the learning rate for the
algorithm.

• Tol: This is the criteria for termination.

B. MNB PARAMETERS
The dictionary of parameters provided for the optimization
were values of:

• Alpha: This is used as a smoothing parameter for
Laplace or Lidstone to the raw counts. This parameter
will be passed as a float for PSO. This is combined with
the number of features within the module. The value
ranged from 0.0001 to 1000 as a dictionary

• Fit Prior: This is to learn the class probabilities.

C. RF PARAMETERS
The dictionary of parameters provided for the optimization
were values of:
• Number of estimators: This states number of trees in the

forest.
• Max depth: This indicated maximum depth of the tree.
• Minimum leaf sample: Specifies the minimum number

of leaves at the leaf node.
• Criterion: This is in a string format. This is a tree

specific parameter that can be ‘Gini’ for Gini impurity
or ‘Entropy’ for information gain.

D. DT PARAMETERS
The dictionary of parameters provided for the optimization
were values of:
• Splitter: This is a string-based parameter which can be

either ‘Best’ or ‘Random’. This specifies the strategy for
the split at a node.

• Max Depth: This will specify the depth of the tree.
• Criterion: This measures the quality of the split.
• Minimum leaf sample: This is passed as an integer

to specify the minimum number of samples that are
necessary at the leaf node.

E. MLP PARAMETERS
The dictionary of parameters provided for the optimization
were values of:
• Hidden layer sizes: Number of neurons to be considered

by the classifier. This is where each feature is intercon-
nected with each neuron.

• Alpha: This is a regularization parameter. The value was
ranged from 0.001 to 0.01. These values were less than
the default value.

• Solver: According to the Scikit-learn documentation,
the solver when set to ‘LBFGS’, the module’s perfor-
mance and speed can increase on small datasets.

Due to the computational time required for the MLP
classifier, for this project purpose, the optimisation was done
on ’5’ hidden layers and the solver set to ‘LBFGS’ which
is an optimizer that can converge fast and provide better
performance. The greater number of neurons added to the
hidden layer, the more time it will require to train the model
[28].

X. BIO-INSPIRED OPTIMIZATION ALGORITHMS
There are two bio-inspired optimization approaches that are
discussed here which helped to improve the results of the
experiments, i.e. Particle Swarm Optimisation and Genetic
Algorithm.

A. PARTICLE SWARM OPTIMISATION
The PSO is based on the swarming methods observed in
fish or birds. The particles are evaluated based on their best
position and overall global position. Particles within a search
space are scattered to find the global best position.

10 VOLUME xx, 2020

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

The Pyswarms library offers different calculations and
techniques for PSO to be used with an ML model such as
feature subset selection or parameter tuning optimization. As
researched in the previous sections, the feature selection can
reduce feature space but can also discard some features that
can be useful during the classification. Therefore, PSO will
be used to tune and find the hyper-parameter for a given
ML/NN model.

The PSO will use the ‘GlobalBestPSO’ from the
‘pyswarms.single.global_best’ module. This will
then use the ‘optimize’ method with an objective function
and number of iterations to run the PSO before terminating.
This will then provide the ‘Global best cost’ and ‘Global Best
position” [36].

The ‘global_best’ module and equation-18 denotes
the updating of each particle position:

xi(t+ 1) = xi(t) + vi(t+ 1) (18)

where xi is the position of the particle, t is the current
timestamp and t + 1 is the computed velocity which gets
updated. The velocity (vi) can be further defined as below:

vij(t+ 1) =w × vij(t) + c1r1j(t)[yij(t)

− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)]
(19)

where r1 and r2 are the random numbers, c1 is the cognitive
parameter and c2 is the social parameter. These parameters
control the behaviours of the particle. The w is the inertia
parameter that controls the swarm’s movements, which is the
important parameter and hence the value is bigger than the
other parameters. The parameters for cognitive and inertia
parameter remained with default value as the demonstrated
algorithm in ‘Optimizer’ package [36].

The social parameter was increased by 0.5. The parameters
passed onto the Global_best module are:
• Number of particles: 10; this was considered by the

examples set within the Pyswarms library.
• Dimension: This is the number of dimensions within

a given space. The number of parameters for the base
algorithms such as Alpha, Tol, Epsilon etc.

• Options: C1 = 0.5, C2 = 0.7 and W = 0.9. These
parameters have effect on the computation time.

• Bounds: This is a tuple, obtained through the dimension.
Higher and lower value within the base algorithm’s
parameters will be considered.

The option setting of coefficients is important. The smaller
the number, the distance of the particle movement will be
small too. This can take more time in computing the models.

Algorithm-7 shows the pseudocode for Particle Swarm
Optimization. This is implemented on top of the base model
in algorithm-6.

Figure-3 shows the visual representation of PSO algorithm
accuracies for the 5 models/classifiers. The accuracy score
was taken from the average of all seven datasets. The highest
accuracy of 98.47% was provided by Naïve Bayes on 80%

Algorithm 7: PSO Implementation

Initialise Input Variables;
N← No. of Documents;
X← Datapoints;
y← Target Inputs;
Xi = StopwordRemoval;
Xj = Vectorizer;
Xk = Tf-IDF;
Dict← Xkl
Dict = Pre-Processed data;
Initialise ML Parameters; // This will include the

key and the values

Declare ML Algorithm; // MNB, SGD, DT, RF and MLP

Def PSO:
Initialise PSO parameters;
C1=0.5; // Cognitive Parameter

C2=0.7; // Social Parameter

W=0.9; // Weight

Ni=NumberOfIteration;
Np=NumberOfParticles;
Calculating the Dimension;
(Key,Value)← Parameters; // The parameters of

the algorithm i.e MNB, SGD

Call PSO G_Best algorithm; // Global Best

PSO Module← Dimension, C1, C2, w, Ni, Np;
Call Objective Function Of ;
PSO← Of ;
Calculate the Best_Position of the Swarm;
Best_Position← Ni;
Calculate the Measures;
Measures← Best_position, TrData, TeData;
return Accuracy

Def Of :
for i < Np do

Initialise StratifiedKF;
Calculate the Score;
return The array of accuracies Aq

// conducted with the dimensions and

the Key and Value provided

for t in test size do
X_test and y_test= testing size;
X_train and y_train= training size;
Call the function PSO (training and testing

data);

VOLUME xx, 2020 11

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

training data and 20% testing data. Overall, MNB provided
higher accuracy from all the other classifiers.

FIGURE 3. Particle Swarm Optimization – Accuracy

The respective accuracies for each split set in the above
figure-3 are defined in Table-4.

TABLE 4. PSO - Accuracy

Classifier Split Set
60:40 70:30 75:25 80:20

SGD 97.37% 97.54% 97.21% 97.64%
MNB 98.41% 98.38% 98.43% 98.47%

RF 91.94% 91.37% 91.62% 90.81%
DT 91.37% 91.65% 92.29% 92.28%

MLP - - 97.11% 97.18%

The entire program took nearly a day for all 5 classifiers to
run on different platforms. The computational time required
for the runs depending on the dataset are as follows:

1) Multinominal Naïve Bayes: 5 mins approx.
2) Support Vector Machine: 5 mins approx.
3) Random Forest: 2 mins to 15 mins approx.
4) Decision Tree: 2 mins to 25 mins approx.
5) Multi-Layer Perceptron: 25 min to 1hour approx.
In terms of datasets, the highest achieving algorithm is

MNB with 70:30 split set on SpamAssassin dataset. The
parameters chosen were: Alpha: ‘0.0004940843999793119’
and Fit Prior: ’false’.

The highest occurred accuracy from the given datasets
along with the classifier (CLF), Test Size and the parameters
that were selected by the PSO algorithm is shown in table-5.

Tables 6, 7, 8 and 9, represent the F1-score, Precision and
Recall in comparison to Accuracy. It shows the average of
performance measurements for the ML algorithms applied on
7 datasets. The MNB algorithm was the one which provided
the best performance amongst other ML algorithms for all
four different split sets. The percentage calculated are taken
from the average of all 7 datasets.

From these tables, 98% of the emails were correctly de-
tected by MNB on the average. The average precision was
97.50% and average recall was 97.40% and average F1-score
was 97.50%.

TABLE 5. PSO Selected Values

CLF Dataset Test
Size

Acc. Parameters

MNB SpamAssassin 70:30 99.89% Alpha:
0.0004940843999793119,
Fit Prior: false

SGD SpamAssassin 80:20 99.67% Alpha:
0.00011028738827772605,
Epsilon:
0.0008410556148690041,
Tol: 0.0004946026859321408

RF SpamAssassin 60:40 97.75% No. of estimators: 5, Max
Depth: 7.154304302293813,
Min leaf sample: 1, Criterion:
’entropy’

DT SpamAssassin 80:20 99.33% Splitter: ’best’, Criterion:
’entropy’, Max Depth:
6.910921197436718, Min
Leaf Sample: 2

MLP SpamAssassin 80:20 99.67% Hidden Layer Size: (5,), Al-
pha: 0.005177077568305584,
Solver: ’lbfgs’

TABLE 6. PSO 60:40 Split Set

Classifier Accuracy F1-score Precision Recall
SGD 97.37% 95.37% 97.18% 93.83%
MNB 98.41% 97.80% 97.55% 97.55%

RF 91.94% 79.57% 94.23% 74.76%
DT 91.37% 85.16% 88.10% 83.24%

TABLE 7. PSO 70:30 Split Set

Classifier Accuracy F1-score Precision Recall
SGD 97.54% 96.21% 97.24% 95.20%
MNB 98.38% 97.51% 97.82% 97.31%

RF 91.37% 77.67% 96.95% 70.36%
DT 91.65% 86.64% 87.81% 85.96%

TABLE 8. PSO 75:25 Split Set

Classifier Accuracy F1-score Precision Recall
SGD 97.21% 94.79% 97.11% 93.11%
MNB 98.43% 97.60% 97.73% 97.24%

RF 91.62% 77.88% 96.58% 92.51%
DT 92.29% 87.48% 88.27% 88.04%

TABLE 9. PSO 80:20 Split Set

Classifier Accuracy F1-score Precision Recall
SGD 97.64% 95.78% 96.80% 95.59%
MNB 98.47% 97.54% 97.23% 97.86%

RF 90.81% 74.79% 96.11% 66.49%
DT 92.28% 86.71% 88.07% 86.45%

The highest accuracy noted was 98.47% achieved by
MNB, providing precision of 97.23%, recall of 97.86% and
F1-Score of 97.54%. This was achieved with training size
80% and Testing size 20%.

12 VOLUME xx, 2020

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

B. GENETIC ALGORITHM
The GA algorithm is an evolutionary algorithm based on
Darwinian natural selection that selects the fittest individual
from the given population. This involves the principle of
variation, inheritance and selection. The algorithm maintains
a population size and the individuals have a unique number
(Chromosomes) that are binary represented. The algorithm
iterates through a fitness function where best individuals are
selected for reproduction of the offspring. The higher the
fitness, the higher the probability [8].

Implementation of the GA was conducted with the help
of TPOT library. The program selects the best parameters
from a given dictionary of parameters. The TPOT classifier
is then trained with cross validation. The parameters given to
the TPOT are as follows [37]:
• Generation: Number of times the pipeline will conduct

the optimization process. The default value is 100. The
program has set this parameter as ‘10’.

• Population size: Number of individuals participating for
Genetic programming within each generation. Default
is 100. The program has set this parameter as ‘40’

• Offspring size: Offspring to be produced in each genera-
tion. Default is 100. The program has set this parameter
as ‘20’.

The program runs for 10 generations with 40 population
size and 20 offspring production. This means 400 (10 x 40)
hyperparameter combinations will be evaluated before termi-
nating for each generation. Each pipeline will be evaluated
with 10-fold cross validation i.e. 400 x 10. Once the TPOT
classifier is terminated, it provides the best pipeline param-
eters. The entire pipeline will be evaluated [(Generation x
lambda) + Population size] = 240 times, where lambda is
Offspring size. If no Offspring size is provided the pipeline
will evaluate by substituting population as ‘lambda’.

The mutation rate and the crossover rate were set as
default. The mutation rate is 0.9, which is the changes in
the parameter value. The crossover rate is 0.1, which is the
percentage of the individuals required from the population
to create offspring. The TPOT warns that ‘Mutation rate +
crossover rate’ should not exceed 1.0.

Algorithm-8 shows the pseudocode for Genetic Algorithm.
This is implemented on top of the base model in algorithm-6.

The Figure-4 shows the visual representation of GA algo-
rithm accuracies for the 5 classifiers.

The respective accuracies for each split set in the figure-4
are defined in Table-10.

The computational time required for the runs depending
on the dataset is given as:

1) Mutinomial Naïve Bayes: 12 mins approx.
2) Support Vector Machine: 15 mins approx.
3) Random Forest: 3 mins to 20 mins approx.
4) Decision Tree: 15 mins to 40 mins approx.
5) Multi-Layer Perceptron: 1 hour to 2 hours approx.
Table-11 shows the output for every classifier that achieved

highest accuracy, which is similar to that conducted with

Algorithm 8: GA Implementation

Initialise Input Variables;
N← No. of Documents;
X← Datapoints;
y← Target Inputs;
Xi = StopwordRemoval;
Xj = Vectorizer;
Xk = Tf-IDF;
Dict← Xk;
Dict = Pre-Processed data;
Initialise ML Parameters; // This will include the

key and the values

Declare ML Algorithm; // MNB, SGD, DT, RF and MLP

Def GA:
Initialise GA parameters;
G = GenerationSize;
P = PopulationSize;
Os =OffSpringSize;
M = MutationRate;
C = CrossoverRate;
K = StratifiedKF; // Cross Validation

GA(TPOT) Module← G, P, Os, M, C;
Calculate the Survivor of the Swarm;
for G in Generation do

for P in Population do
for i < K do

Survival← Calculate the Fitness;
Select two Individual;
Produce OffSpring← Os;
Mutate← OffSpring, M;
return KScore

Calculate Parameters;
return Parameters

Calculate the Measures;
Measures← Parameters, TrData, TeData;
return Accuracy

for t in test size do
X_test and y_test= testing size;
X_train and y_train= training size;
Call the function GA (training and testing data);

TABLE 10. GA - Accuracy

Classifier Split Set
60:40 70:30 75:25 80:20

SGD 96.92% 97.37% 97.39% 97.77%
MNB 98.27% 98.43% 98.40% 98.47%

RF 93.11% 93.69% 93.72% 94.36%
DT 93.50% 92.76% 93.27% 93.42%

MLP - - 97.02% 96.39%

PSO. The highest achieving accuracy of 100% was by MNB
on 80:20 split set with SpamAssassin dataset. The parameters
chosen were: Alpha: 0.01, Fit Prior: ’false’.

Tables 12, 13, 14 and 15, represent the F1-score, Precision

VOLUME xx, 2020 13

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

FIGURE 4. Genetic Algorithm – Accuracy

TABLE 11. GA Selected Values

CLF Dataset Test
Size

Acc. Parameters

MNB SpamAssassin 80:20 100% Alpha: 0.01, Fit Prior: ’false’

SGD SpamAssassin 80:20 99.83% Alpha: 0.0001, Epsilon: 1.0,
Tol: 0.1

RF SpamAssassin 75:25 98.54% Criterion: ’entropy’, Max
Depth: 30, Min Leaf Sample:
1, No. of estimators: 25

DT SpamAssassin 80:20 99.33% Criterion: ’entropy’, Max
Depth: 15, Min Leaf Sample:
1, Splitter: ’best’.

MLP SpamAssassin 75:25
and
80:20

99.33% Alpha: 0.001, Solver: ’lbfgs’.

and Recall in comparison to Accuracy when the Genetic
Algorithm (GA) is applied on the machine learning (ML)
algorithms. It shows the performance measurements for the
ML algorithms. The MNB algorithm was the one to provides
the best performance amongst other ML algorithms for all
four different split sets like it did with PSO. The percentages
shown are calculated from the average of all 7 datasets.

TABLE 12. GA 60:40 Split Set

Classifier Accuracy F1-score Precision Recall
SGD 96.92% 95.27% 96.59% 94.13%
MNB 98.27% 97.32% 97.38% 84.63%

RF 93.11% 83.13% 96.51% 77.16%
DT 93.50% 88.42% 90.02% 86.96%

TABLE 13. GA 70:30 Split Set

Classifier Accuracy F1-score Precision Recall
SGD 97.37% 95.61% 96.98% 94.52%
MNB 98.43% 97.64% 97.76% 97.61%

RF 93.69% 85.83% 97.00% 80.11%
DT 92.76% 88.25% 89.34% 87.48%

TABLE 14. GA 75:25 Split Set

Classifier Accuracy F1-score Precision Recall
SGD 97.39% 95.68% 97.48% 94.03%
MNB 98.40% 97.57% 98.09% 97.11%

RF 93.72% 85.73% 97.25% 80.43%
DT 93.27% 88.72% 90.68% 87.55%

TABLE 15. GA 80:20 Split Set

Classifier Accuracy F1-score Precision Recall
SGD 97.77% 96.71% 97.61% 95.97%
MNB 98.47% 97.67% 98.01% 97.59%

RF 94.36% 87.42% 97.79% 81.74%
DT 93.42% 89.54% 91.07% 88.51%

From these tables, 98% of the emails were correctly de-
tected by MNB on the average. The average precision was
97.50%, average recall was 93.00% and average F1-score
was 97.00%.

The highest accuracy was 98.47% achieved by MNB,
providing precision of 97.79%, recall of 81.74%, and F1-
Score of 87.42%. This was achieved with training size 80%
and Testing size 20%.

XI. RESULTS OF OPTIMIZED CLASSIFIERS ON
DATASETS
There are two types of spam email dataset being used for this
project, alphabetic-based and numeric-based files. These are
described in table-16.

TABLE 16. Dataset Type

Sr.No Alphabetical Based Numerical Based
1) Ling-Spam PU1
2) Enron Spam PU2
3) SpamAssassin PU3
4) - PUA

FIGURE 5. Stochastic Gradient Descent Alpha/Num comparison

Each of the four machine learning models/classifiers were
tested with the average taken from the alphabetical datasets
and compared with the average taken from the numerical
datasets.

14 VOLUME xx, 2020

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

Figure-5 shows the split between the two types of dataset,
namely numerical and alphabetical. The algorithm SGD
provided the highest accuracy for alphabet-based datasets.
Even though the accuracies for the numerical datasets are
low, the improvement is much better than the base algorithm
compared to the alphabet-based dataset.

FIGURE 6. Multinomial Naïve Bayes Alpha/Num comparison

Figure-6 shows the performance of the MNB algorithm
with both type of datasets. The algorithm performed similarly
to SGD. The accuracy is higher for the alphabet-based dataset
than the numerical dataset.

Both MNB and SGD algorithms worked well for numeri-
cal and alphabet-based datasets with PSO and GA optimiza-
tion. The accuracy is higher on the alphabet-based datasets
for both algorithms. Split set 75:25 and 80:20 have worked
better than the split set 60:40 and 70:30.

FIGURE 7. Random Forest Alpha/Num comparison

Figure-7 shows the performance of RF algorithm between
the numerical and alphabetical datasets. This tree-based algo-
rithm seems to have worked well with the numerical datasets
in terms of accuracy and improvement.

Figure-8 shows the performance of DT algorithm. Similar
to RF, the DT has worked better with numerical in terms
of improvement. Whereas for alphabetical, there is very less
improvement but higher accuracy.

FIGURE 8. Decision Tree Alpha/Num comparison

The tree-based algorithms (Figure-7 and Figure-8) have
performed better with GA optimization than the PSO on both
type of datasets.

For Neural Networks, the implementation with the PSO
algorithm took more than 7 hours for 5/25 iterations to be
completed for one split set with 100 neurons. Since the
MLP classifier was taking more power, the algorithm was
distributed between three platforms 1) Kaggle, 2) Google
Collaboratory and 3) standard PC. The number of neurons
were reduced to ‘50’ to acquire an idea of timing for the run.
This time the algorithm took about a minimum of 6 hours
to complete one split set. Hence, at the end the classifier was
run with 5 Neurons providing some improvement and quicker
completion.

FIGURE 9. Multi-Layer Perceptron Alpha/Num comparison

The MLP classifier was experimented with the optimiza-
tion techniques by integrating with PSO and GA. The classi-
fier was testing with 75:25 and 80:20 split sets, as these were
the highest providing accuracies for ML models/classifiers.
The alphabet-based dataset performed much better than the
Numerical dataset as shown in Figure-9.

XII. EVALUATION AND COMPARISON
The evaluation and performance comparison on the work is
discussed in this section.

VOLUME xx, 2020 15

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

A. SPLIT SETS
Evaluating all the split sets for training and testing data on
all seven datasets, sizes 72:25 and 80:20 were the top two
splits to provide better accuracy and showed improvement.
This could vary on the dataset size and the information
separated during the split. This proves that the higher the
rate of training data than testing data, better the performance
achieved. This is a good sign, since when considered as a
real-world example, the models will have bigger weight for
training data than testing.

B. EXPERIMENTAL RESULTS - ACCURACY
According to the experiments, PSO and GA have improved
the accuracy of all five models. The Multinomial Naïve
Bayes (MNB) is the algorithm that has performed better than
all the other algorithms. Comparing across the different types
of datasets, Enron, SpamAssassin and Ling-Spam dataset
provided more depth by eliminating certain features through
the emails, hence, allowing the optimization techniques more
search space. But the numerical dataset (PU1, PU2, PU3 and
PUA) were very restricted, even though they successfully
provided accuracy improvements on some split sets.

Taking the individual datasets into account, the SpamAs-
sassin dataset performed very well with Naïve Bayes and
Genetic Algorithm. Table-17 shows the accuracy comparison
for SpamAssassin dataset on Machine Learning models for
80:20 split set. The table also compares with the optimization
models that is provided by the Scikit-learn library. Grid
Search CV (GSCV) and Random Search CV (RSCV) were
both implemented within the base model and were loaded
from the Scikit-learn library.

TABLE 17. SpamAssassin Dataset

Classifier Base PSO GA GSCV RSCV
SGD 99.28% 99.67% 99.83% 99.50% 99.66%
MNB 89.28% 99.83% 100.00% 99.66% 99.66%

RF 89.25% 97.33% 98.17% 98.33% 96.17%
DT 98.47% 99.33% 99.33% 98.83% 99.00%

MLP 99.35% 99.67% 99.33% - -

In comparison to alphabetical datasets and numerical
datasets, the tables 18, 19 and 20 show the accuracy achieved
for 80:20 split set.

Taking Enron Spam dataset into account, it was the
second-best corpus to work with followed by Ling-Spam.

TABLE 18. Enron Spam Dataset

Classifier Base PSO GA GSCV RSCV
SGD 99.12% 99.20% 99.21% 99.17% 99.14%
MNB 93.26% 98.58% 98.60% 99.52% 98.52%

RF 80.88% 88.45% 94.05% 94.76% 94.27%
DT 96.05% 93.62% 96.07% 95.50% 94.93%

MLP 98.12% 99.18% 99.05% - -

An average of all four PU datasets were taken into con-
sideration and PU3 dataset provided better results and the
highest accuracy amongst all four and that is shown in table
20.

TABLE 19. Ling-Spam Dataset

Classifier Base PSO GA GSCV RSCV
SGD 97.82% 98.11% 98.28% 98.79% 98.79%
MNB 84.65% 98.63% 98.45% 99.48% 98.79%

RF 87.22% 89.45% 87.26% 92.59% 89.84%
DT 92.56% 90.01% 91.90% 92.25% 93.63%

MLP 95.06% 93.46% 94.32% - -

TABLE 20. PU3

Classifier Base PSO GA GSCV RSCV
SGD 95.60% 96.73% 96.37% 97.94% 96.61%
MNB 97.87% 97.94% 97.94% 99.03% 98.42%

RF 81.76% 85.17% 96.37% 95.64% 95.03%
DT 92.42% 92.13% 92.74% 91.76% 92.00%

MLP 97.42% 97.22% 97.46% - -

Even though computational cost is low for PSO providing
quick results than GA, GA has provided better results for
some ML algorithms. The PSO had very less parameters to
be considered for each algorithm i.e C1, C2 and W, whereas
GA initiated the mutation and crossover of the original
population. The MNB performed better once it was tuned
automatically by bio-inspired algorithms and it predicts very
highly with text-based datasets as it uses the feature vectors.
Hence MNB with GA achieved good results overall for the
spam datasets.

Table-21 shows the comparison of this work with similar
work of other researchers. The table includes 15 additional
papers similar to our paper. Some of the research work have
defined additional measurements with accuracy. Majority of
our work when compared to the others, provided either better
accuracy or similar scores. The table displays the highest
accuracies based on the datasets for our work and this is
presented at the bottom of the table.

XIII. FUTURE IMPLEMENTATION AND
RECOMMENDATION
We plan to further carry out the machine learning algorithms
to optimize and compare with different bio-inspired algo-
rithms such as Firefly, Bee Colony and Ant Colony Opti-
mization as researched in the previous sections. We could
also explore the Deep learning Neural Network with PSO
and GA by exploring different libraries such as TensorFlow’s
DNN Classifier or similar.

We found that the Neural Network algorithm could have
worked better with more dimension like providing broader
range of values for learning rate, activation, solver, and alpha.
If this project is taken further, implementation for MLP could
be done through Keras or TensorFlow with GPU application.
This will allow the user to input other parameters and a range
of possibilities as their key values.

The user can consider implementing the PSO objective
Function with RSCV to compare the difference for accuracy
improvement. The PSO and GA can provide better accuracies
by incorporating NLP techniques.

16 VOLUME xx, 2020

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

TABLE 21. Comparison of our work with other works

Author Name Dataset Used Classifier / Optimization Performance achieved
[3] Awad (2011) SpamAssassin Naïve Bayes Accuracy = 99.46%,

Precision = 99.66%,
Recall = 98.46%

[4] Mohammed, et al. (2013) Email-1431 Naïve Bayes Accuracy = 85.96%

[6] Agarwal & Kumar (2018) Ling-Spam PSO – Naïve Bayes Accuracy = 95.50%,
Precision = 96.42%,
Recall = 94.50%,
F-measure = 95.45%

[8] Taloba & Ismail (2019) Enron GA - DT Accuracy = 95.50%,
Precision = 95.50%,
Recall = 97.20%,
F-measure = 96.30%

[38] Shams & Mercer (2013) Ling-Spam Bagged RF Accuracy = 95.56%

[39] Kumareson (2016) Ling-Spam GA-SVM Accuracy = 94.69%,
Precision = 98.52%,
Recall = 20.12%

[39] Kumareson (2016) Enron GA-SVM Accuracy = 93.65%,
Precision = 96.24%,
Recall = 23.54%

[39] Kumareson (2016) Spam Assassin GA-SVM Accuracy = 94.55%,
Precision = 99.65%,
Recall = 21.98%

[39] Kumareson (2016) PU1 GA-SVM Accuracy = 96.25%,
Precision = 97.02%,
Recall = 18.78%

[40] Faris, et al. (2016) Spam Assassin PSO - RF Accuracy = 97.92%

[41] Temitayo et.al (2012) Spam Assassin GA-SVM Accuracy = 93.50%

[42] Alghoul et al. (2018) - ANN with Feed-Forward
Backpropagation

Accuracy = 85.31%

[43] Rathi & Pareek (2013) SpamBase Random Tree Accuracy = 99.72%

[44] Gomes et al. (2017) Enron Dataset Hidden Markov Model Accuracy = 91.28%

[45] Yasin & Abuhasan (2016) - J48, Bayes Net, SVM,
MLP and Random For-
est.

Accuracy = 99.10%

[46] Yüksel et al. (2017) Custom SVM Accuracy = 97.60%

[47] Sharma et al. (2013) SpamBase Random Committee Accuracy = 94.28%

[48] Akinyelu et al. (2014) SpamAssassin and
Phishing Corpus

Random Forest Accuracy = 99.70%

Our work (Gibson, et al.) Ling-Spam GA-SGD Accuracy = 98.77%,
Precision = 100.00%,
Recall = 94.21%

Our work (Gibson, et al.) Enron GA-SGD Accuracy = 99.21%,
Precision = 98.68%,
Recall = 99.54%

Our work (Gibson, et al.) SpamAssassin GA-MNB Accuracy = 100.00%,
Precision = 100.00%,
Recall = 100.00%

VOLUME xx, 2020 17

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

Our work (Gibson, et al.) PU1 GA-MNB Accuracy = 99.08%,
Precision = 99.31%,
Recall = 98.63%

Our work (Gibson, et al.) PU2 GA-MNB Accuracy = 97.89%,
Precision = 90.62%,
Recall = 100%

Our work (Gibson, et al.) PU3 GA-MNB Accuracy = 97.04%,
Precision = 98.61%,
Recall = 96.74%

Our work (Gibson, et al.) PUA GA-MNB Accuracy = 97.81%,
Precision = 97.76%,
Recall = 96.46%

XIV. CONCLUSION
The project successfully implemented models combined with
bio-inspired algorithms. The spam email corpus used within
the project were both numerical as well as alphabetical.
Approximately 50,000 emails were tested with the proposed
models. The numerical corpuses (PU), had restrictions in
terms of feature extraction as the words were replaced by
numbers. But the alphabetical corpuses performed better in
terms of extraction of the features and predicting the out-
come.

Initially, WEKA [51] acted as a black box that ran the
datasets on 14 different classification algorithms and pro-
vided the top 4 algorithms: Multinomial Naïve Bayes, Sup-
port Vector Machine, Random Forest and Decision Tree.
These algorithms were then tested and experimented with
Scikit-learns library and its modules. This resulted in up-
grading the SVM module with SGD classifier, which acts the
same as SVM but performs better on the large datasets. SGD
was implemented using Python and experimented with fea-
ture extraction and stop words removal along with converting
the tokens for the algorithms to process.

Genetic Algorithm worked better overall for both text-
based datasets and numerical-based datasets than PSO. The
PSO worked well for Multinomial Naïve Bayes and Stochas-
tic Gradient Descent, whereas GA worked well for Random
Forest and Decision Tree. Naïve Bayes algorithm was proved
to have been the best algorithm for spam detection. This was
concluded by evaluating the results for both numerical and al-
phabetical based dataset. The highest accuracy provided was
100% with GA optimization on randomised data distribution
for 80:20 train and test split set on SpamAssassin dataset. In
terms of F1-Score, precision and recall, Genetic Algorithm
had more impact than PSO on MNB, SGD, RF and DT.

REFERENCES
[1] W. Feng, J. Sun, L. Zhang, C. Cao and Q. Yang, "A support vector

machine based naive Bayes algorithm for spam filtering", 2016 IEEE 35th
International Performance Computing and Communications Conference
(IPCCC), 2016, pp.1-8, Available: 10.1109/pccc.2016.7820655 [Accessed
3 January 2020].

[2] E. Dada, J. Bassi, H. Chiroma, S. Abdulhamid, A. Adetunmbi and
O. Ajibuwa, "Machine learning for email spam filtering: review, ap-
proaches and open research problems", Heliyon, vol. 5, no. 6, Art. no
e01802, 2019. Available: https://doi.org/10.1016/j.heliyon.2019.e01802.
[Accessed 5 October 2019].

[3] W. Awad and S. ELseuofi, "Machine Learning Methods for Spam E-Mail
Classification," International Journal of Computer Science and Informa-
tion Technology, [online] vol. 3, no. 1, pp.173-184, 2011, Available doi:
10.5121/ijcsit.2011.3112.

[4] S. Mohammed, O. Mohammed and J. Fiaidhi, "Classifying
Unsolicited Bulk Email (UBE) using Python Machine Learning
Techniques", International Journal of Hybrid Information
Technology, vol. 6, no. 1, pp. 43-55, 2013. [Online]. Available:
https://www.researchgate.net/publication/236970412_Classifying_Unsol
icited_Bulk_Email_UBE_using_Python_Machine_Learning_Techniques

[5] A. Wijaya and A. Bisri, "Hybrid decision tree and logistic regression
classifier for email spam detection", 2016 8th International Conference
on Information Technology and Electrical Engineering (ICITEE), pp. 1–4,
2016. Available: 10.1109/ICITEED.2016.7863267 [Accessed 9 December
2019].

[6] K. Agarwal and T. Kumar, “Email Spam Detection Using Integrated
Approach of Naïve Bayes and Particle Swarm Optimization,” 2018
Second International Conference on Intelligent Computing and Con-
trol Systems (ICICCS), pp. 685–690, 2018, Available doi: 10.1109/IC-
CONS.2018.8662957

[7] R. Belkebir and A. Guessoum, "A hybrid BSO-Chi2-SVM approach to
Arabic text categorization," 2013 ACS International Conference on Com-
puter Systems and Applications (AICCSA), Ifrane, 2013, pp. 1-7, Available
doi: 10.1109/AICCSA.2013.6616437. [Accessed 14 Nov. 2019].

[8] A. I. Taloba and S. S. I. Ismail, "An Intelligent Hybrid Technique of
Decision Tree and Genetic Algorithm for E-Mail Spam Detection," 2019
Ninth International Conference on Intelligent Computing and Informa-
tion Systems (ICICIS), Cairo, Egypt, 2019, pp. 99-104, Available doi:
10.1109/ICICIS46948.2019.9014756. [Accessed 15 April 2020].

[9] R. Karthika and P. Visalakshi, "A Hybrid ACO Based Feature
Selection Method for Email Spam Classification," WSEAS
Trans. Comput [online] vol. 14, pp.171-177, 2015, Available:
https://www.wseas.org/multimedia/journals/computers/2015/a365705-
553.pdf

[10] D. S. Larabi Marie-Sainte and N. Alalyani, "Firefly Algorithm
based Feature Selection for Arabic Text Classification",
Journal of King Saud University - Computer and Information
Sciences, vol. 32, no. 3, pp. 320-328, 2020. Available:
https://www.sciencedirect.com/science/article/pii/S131915781830106X.
[Accessed 15 April 2020].

[11] E. A. Natarajan, S. Subramanian and K. Premalatha, "An Enhanced
Cuckoo Search for Optimization of Bloom Filter in Spam Filtering",
Global Journal of Computer Science and Technology, vol. 12, no.
1, 2012. Available: https://globaljournals.org/GJCST_Volume12/12-An-
Enhanced-Cuckoo-Search-for-Optimization.pdf. [Accessed 18 January
2020].

[12] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow, 2nd Edition. O’Reilly Media, Inc., 2019, Ch. 01.

[13] "1. Supervised learning — scikit-learn 0.22.2 documentation",
Scikit-learn.org, 2019. [Online]. Available: https://scikit-
learn.org/stable/supervised_learning.html. [Accessed: 09- Oct- 2019].

[14] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Feb. 2011. [Online]. Available:
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf.
[Accessed: 09-Oct-2019]

[15] S. Zhu and F. Chollet, "Working with RNNs", Keras.io, 2019. [On-

18 VOLUME xx, 2020

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

line]. Available: https://keras.io/guides/working_with_rnns/. [Accessed:
02- Nov- 2019].

[16] "TensorFlow Core | Machine Learning for Beginners and Experts", Ten-
sorFlow, 2019. [Online]. Available: https://www.tensorflow.org/overview.
[Accessed: 02- Nov- 2019].

[17] "Spyder: The Scientific Python Development Environment — Documen-
tation — Spyder 3 documentation", Docs.spyder-ide.org, 2019. [Online].
Available: https://docs.spyder-ide.org/. [Accessed: 02- Nov- 2019].

[18] "User guide — Anaconda documentation", Docs.anaconda.com, 2019.
[Online]. Available: https://docs.anaconda.com/ae-notebooks/user-guide/.
[Accessed: 09- Nov- 2019].

[19] "Google Colaboratory", Colab.research.google.com, 2020. [Online].
Available: https://colab.research.google.com. [Accessed: 18- Mar- 2020].

[20] S. Sawla, "Introduction to Naive Bayes for Classification", Medium, 2018.
[Online]. Available: https://medium.com/@srishtisawla/introduction-to-
naive-bayes-for-classification-baefefb43a2d. [Accessed: 09- Oct- 2019].

[21] "Naive Bayes Classifiers - GeeksforGeeks", GeeksforGeeks, 2019. [On-
line]. Available: https://www.geeksforgeeks.org/naive-Bayes-classifiers/.
[Accessed: 10- Nov- 2019].

[22] G. Bonaccorso, Machine Learning Algorithms - Second Edition, 2nd ed.
Packt Publishing, 2018.

[23] G. Singh, B. Kumar, L. Gaur and A. Tyagi, "Comparison between
Multinomial and Bernoulli Naïve Bayes for Text Classification," 2019
International Conference on Automation, Computational and Technology
Management (ICACTM), London, United Kingdom, 2019, pp. 593-596,
Available doi: 10.1109/ICACTM.2019.8776800. [Accessed 13 November
2019].

[24] "Implementing 3 Naive Bayes classifiers in scikit-learn | Packt Hub", Packt
Hub, 2018. [Online]. Available: https://hub.packtpub.com/implementing-
3-naive-Bayes-classifiers-in-scikit-learn/. [Accessed: 13- Nov- 2019].

[25] "sklearn.linear_model.SGDClassifier — scikit-learn 0.22.2
documentation", Scikit-learn.org, 2019. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.
html#sklearn.linear_model.SGDClassifier. [Accessed: 29- Nov- 2019].

[26] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow, 2nd Edition. O’Reilly Media, Inc., 2019, Ch. 06.

[27] T. Yiu, "Understanding Random Forest", Medium, 2019. [Online].
Available: https://towardsdatascience.com/understanding-random-forest-
58381e0602d2. [Accessed: 17- Jan- 2020].

[28] "1.17. Neural network models (supervised) — scikit-learn 0.22.2
documentation", Scikit-learn.org, 2020. [Online]. Available: https://scikit-
learn.org/stable/modules/neural_networks_supervised.html#neural-
networks-supervised. [Accessed: 17- Mar- 2020].

[29] I. Androutsopoulos, Aueb.gr, 2000. [Online]. Available:
http://www.aueb.gr/users/ion/data/lingspam_public.tar.gz. [Accessed:
11- Oct- 2019].

[30] I. Androutsopoulos, V. Metsis and G. Paliouras, "The Enron-
Spam datasets", Www2.aueb.gr, 2006. [Online]. Available:
http://www2.aueb.gr/users/ion/data/enron-spam/. [Accessed: 11- Oct-
2019].

[31] I. Androutsopoulos, G. Paliouras and E. Michelakis,
"PU Corpus", Aueb.gr, 2003. [Online]. Available:
http://www.aueb.gr/users/ion/data/PU123ACorpora.tar.gz. [Accessed:
11- Oct- 2019].

[32] I. Androutsopoulos, G. Paliouras and V. Karkaletsis, Learning to Filter
Unsolicited Commercial E-Mail. http://www2.aueb.gr/, 2003.

[33] "Index of /old/publiccorpus", Spamassassin.apache.org, 2002. [Online].
Available: https://spamassassin.apache.org/old/publiccorpus/. [Accessed:
11- Oct- 2019].

[34] N. Rusland, N. Wahid, S. Kasim and H. Hafit, "Analysis of Naïve
Bayes Algorithm for Email Spam Filtering across Multiple Datasets",
IOP Conference Series: Materials Science and Engineering, vol. 226,
Art. no. 012091, 2017. Available doi: 10.1088/1757-899X/226/1/012091.
[Accessed 10 January 2020].

[35] "3.3. Metrics and scoring: quantifying the quality of predictions — scikit-
learn 0.22.2 documentation", Scikit-learn.org, 2019. [Online]. Available:
https://scikit-learn.org/stable/modules/model_evaluation.html. [Accessed:
31- Dec- 2019].

[36] J. Lester, "Welcome to PySwarms’s documentation! — PySwarms 1.1.0
documentation", Pyswarms.readthedocs.io, 2017. [Online]. Available:
https://pyswarms.readthedocs.io/en/latest/index.html. [Accessed: 16- Jan-
2020].

[37] R. Olson, "Home - TPOT", Epistasislab.github.io, 2019. [Online]. Avail-
able: https://epistasislab.github.io/tpot/. [Accessed: 12- Jan- 2020].

[38] R. Shams and R. E. Mercer, "Classifying Spam Emails Using Text
and Readability Features," 2013 IEEE 13th International Conference
on Data Mining, Dallas, TX, 2013, pp. 657-666, Available doi:
10.1109/ICDM.2013.131. [Accessed 4 Nov. 2019].

[39] T. Kumareson, "CERTAIN INVESTIGATIONS ON OPTIMIZATION
TECHNIQUES TO ENHANCE E-MAIL SPAM CLASSIFI-
CATION", Anna University, 2016.ch04, Pp 73-91. Available:
https://shodhganga.inflibnet.ac.in/handle/10603/181292. [Accessed
26 February 2020].

[40] H. Faris, I. Aljarah and B. Al-Shboul, "A Hybrid Approach
based on Particle Swarm Optimization and Random Forests
for E-mail Spam Filtering", International Conference on
Computational Collective Intelligence,pp. 498–508, 2016. Available:
https://www.researchgate.net/publication/304158714_A_Hybrid_Approa
ch _based_on_Particle_Swarm_Optimization_and_Random_Forests_for_
Email_Spam_Filtering. [Accessed 17 December 2019].

[41] F. Temitayo, O. Stephen and A. Abimbola, "Hybrid GA-SVM for Effi-
cient Feature Selection in E-mail Classification", Computer Engineering
and Intelligent Systems, vol. 3, no. 3, pp. 17-28, 2012. [Online]. Avail-
able: https://www.researchgate.net/publication/257479733_Hybrid_GA-
SVM_for_Efficient_Feature_Selection_in_E-mail_Classification

[42] A. Alghoul, S. Ajrami and G. Jarousha, "Email Classification Using Arti-
ficial Neural Network", International Journal of Academic Engineering
Research (IJAER), vol. 2, no. 11, pp. 8-14, 2018. [Online]. Available:
https://www.researchgate.net/publication/329307944_Email_Classificati
on_Using_Artificial_Neural_Network

[43] M. Rathi and V. Pareek, "Spam Mail Detection through Data Mining – A
Comparative Performance Analysis", International Journal of Modern Ed-
ucation and Computer Science, vol. 5, no. 12, pp. 31-39, 2013. Available
doi: 10.5815/ijmecs.2013.12.05

[44] S. R. Gomes et al., "A comparative approach to email classification using
Naive Bayes classifier and hidden Markov model," 2017 4th International
Conference on Advances in Electrical Engineering (ICAEE), Dhaka, 2017,
pp. 482-487, Available doi: 10.1109/ICAEE.2017.8255404. [Accessed 8
August 2020].

[45] A. Yasin and A. Abuhasan, "An Intelligent Classification Model for
Phishing Email Detection", International Journal of Network Secu-
rity & Its Applications, vol. 8, no. 4, pp. 55-72, 2016. Available:
https://arxiv.org/abs/1608.02196

[46] A. Yüksel, Ş. Çankaya and İ. Üncü, "Design of a Machine Learning
Based Predictive Analytics System for Spam Problem", Acta
Physica Polonica A, vol. 132, no. 3, pp. 500-504, 2017. Available:
https://www.researchgate.net/profile/S_Fuat_Cankaya/publication/32032
0971_Design_of_a_Machine_Learning_Based_Predictive_Analytics_Sy
stem_for_Spam_Problem/links/5a1c00e80f7e9be37f9c1ad1/Design-
of-a-Machine-Learning-Based-Predictive-Analytics-System-for-Spam-
Problem.pdf. [Accessed 8 August 2020].

[47] S. Sharma and A. Arora, "Adaptive Approach for Spam Detection", IJCSI
International Journal of Computer Science Issues, vol. 10, no. 4, pp. 23-
26, 2013. Available: https://ijcsi.org/papers/IJCSI-10-4-1-23-26.pdf. [Ac-
cessed 19 August 2020].

[48] A. Akinyelu and A. Adewumi, "Classification of Phishing Email Using
Random Forest Machine Learning Technique", Journal of Applied Math-
ematics, vol. 2014, pp. 1-6, 2014. Available doi: 10.1155/2014/425731
[Accessed 19 August 2020].

[49] "6.2. Feature extraction — scikit-learn 0.23.2 documentation",
Scikit-learn.org, 2020. [Online]. Available: https://scikit-
learn.org/stable/modules/feature_extraction.html#text-feature-extraction.
[Accessed: 08- Aug- 2020].

[50] "3.1. Cross-validation: evaluating estimator performance — scikit-learn
0.22 documentation"., Scikit-learn.org. (2019) [online] Available at:
https://scikitlearn.org/stable/modules/cross_validation.html [Accessed 21
Dec. 2019]

[51] E. Frank, M. A. Hall, and I. H. Witten (2016). The WEKA Workbench.
Online Appendix for "Data Mining: Practical Machine Learning Tools and
Techniques", Morgan Kaufmann, Fourth Edition, 2016.

VOLUME xx, 2020 19

S Gibson et al.: Detecting Spam Email with Machine Learning Optimized with Bio-Inspired Meta-Heuristic Algorithms

SIMRAN GIBSON is currently pursuing an
MComp degree in Computer Networks and Cyber
Security at Northumbria University, UK. From
2018 to 2019, she was a year-long placement
student at Nissan Manufacturing UK. Working
in a cyber security department, her job entailed
managing front line security operations such as
IPS alerts, digital forensic investigation, malware
triaging and endpoint security alerts. Simran’s re-
cent awards include first prize in the Cyber Se-

curity Student Conference (CSSC 2020), Ede & Ravenscroft Prize for
best academic performance and Volunteering Role Recognition for student
representative at Northumbria University.

BIJU ISSAC received BE degree in Electronics
and Communications Engineering, MCA (Master
of Computer Applications) degree, and PhD in
Networking and Mobile Communications. He is
an academic staff at Northumbria University, UK,
since 2018. He is research active and has authored
more than 100 refereed conference papers, journal
papers, and book chapters. He is on the Program
Committee of many peer-reviewed international
conferences and editorial boards of various jour-

nals. His research interests are in networks, cybersecurity, machine learning
(text mining/image processing) and technology in education.

LI ZHANG received a PhD degree from the Uni-
versity of Birmingham. She is currently an Asso-
ciate Professor & Reader in Computer Science in
Northumbria University, UK and also serving as
an Honorary Research Fellow in the University of
Birmingham, UK. She holds expertise in artificial
intelligence, machine learning, evolutionary com-
putation and deep learning. She has served as an
Associate Editor for Decision Support Systems.

SEIBU MARY JACOB is an academic staff
teaching Mathematics at Teesside University, UK.
She took her Bachelor degree in Mathematics
(BSc) and Master degree in Mathematics (MSc),
along with Post Graduate Diploma in Computer
Applications (PGDCA), Bachelor degree in Math-
ematics Education (BEd) and PhD in Mathemat-
ics Education. She has authored more than 20
research publications as book chapters, journal
papers and conference papers. She is a member of

IEEE, IET, IAENG and IACSIT for many years.

20 VOLUME xx, 2020

