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Abstract

In this work, we present an eXtended Geometry Independent Field approximaTion (X–GIFT) for-

mulation for cracked Kirchhoff-Love plates. The plate geometry is modelled by Non-Uniform Ratio-

nal B-Splines (NURBS) while the solution is approximated by Polynomial Splines over Hierarchical

T-meshes (PHT-splines) and enriched by the Heaviside function and crack tip asymptotic expan-

sions. The adaptive refinement is driven by a recovery-based error estimator. The formulation

is employed for bending and vibration analysis. We compare different strategies for refinement,

enrichment and evaluation of fracture parameters. The obtained results are shown to be in a good

agreement with the reference solutions.

Keywords: NURBS, PHT-Splines, Adaptive Refinement, Kirchhoff-Love Plate Theory, Fracture

mechanics, Extended Isogeometric Analysis, Recovery-based error estimates, GIFT

1. Introduction

Plate elements have found their applications in broad areas of engineering analysis from struc-

tural slabs in houses and buildings to aircraft’s wings. The most commonly used model to predict

the behaviours of plates is derived from the Kirchhoff-Love theory [1] as it requires only three de-

gree of freedoms (DOF) of displacement without including rotation unknowns. The fundamental

assumption of this theory is that the transverse shear deformations are neglected. This means if a

cross-section is normal to the midplane of the plate before deformation, it remains normal to the

midplane after deformation. For this reason, the transverse shear stresses are neglected while the

in-plane ones remain accountable. Therefore, Kirchhoff-Love theory is applicable for thin plates

in which the aspect ratio between the length and thickness is large. It is worth noting that the
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Kirchhoff-Love theory results in a fourth-order problem which requires C1-continuity of the basis

function if a numerical approach is involved to solve for approximate solutions. While this require-

ment causes a challenging issue for traditional finite element method with Lagrange basis function,

such higher-order formulation can be handled efficiently by means of isogeometric analysis (IGA).

1.1. Isogeometric Analysis

The IGA approach was introduced by Hughes and co-workers [2] with the aim to bridge the

gap between the computer-aided design (CAD) system and the analysis, or normally referred as

computer-aided engineering (CAE) in the commercial sector. To achieve this seamless integration,

the same basis functions are used to represent the geometry in CAD and to approximate the

unknown fields. There are many possibilities for such basis function including B-splines, non-

uniform rational B-splines (NURBS), T-splines, and polynomial splines over hierarchical T-meshes

(PHT-splines). While all those functions preserve the exact geometry and are highly smooth, i.e.,

easily handle the high order approximations, B-splines and NURBS suffer from the drawback of

tensor product which makes a purely local refinement fundamentally challenging. Meanwhile, T-

splines were initially proposed by Sedeberg et al. [3] with ability to facilitate adaptivity. Their

integration in the IGA framework is presented in the work of Bazilevs et al. [4], Dörfel et al. [5]

which are followed by the development of analysis suitable T-splines by Scott et al. [6, 7]. However,

as pointed out in the work of Buffa et al. [8], the linear independence of the basis functions is

not guaranteed for generic T-meshes. Nguyen-Thanh et al. [9] initially proposed the use of PHT-

splines, which was introduced by Deng et al. [10], in the IGA framework for two-dimensional elastic

solids. This approach has been proved to possess desirable features including smooth functions,

geometrical flexibility, and local refinement. There has been much progress in the implementation

and development of hierarchical T-splines, Nguyen-Thanh and Zhou [11] worked on the application

of an extended formulation for crack propagation, Anitescu et al. [12] proposed a recovery-based

error estimator for high order splines over T-meshes, while Chen and de Borst [13] proposed an

extension of T-splines to local refinement within the Bézier extraction framework.

1.2. Geometry Independent Field approximaTion (GIFT)

The Geometry Independent Field approximaTion (GIFT) initially introduced by Marussing et

al. [14] in the context of Boundary Element Method (BEM) and then generalized in the work

of Atroshchenko et al. [15], consists in allowing different spaces for the parameterization of the

computational domain and the approximation of the solution field. In particular, it allows to
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preserve the exactness of the CAD geometry, while using a more suitable and flexible set of basis

functions for the solution field. The main features of GIFT are:

1. Preserving exact CAD geometry provided in any form, including B-splines or NURBS, at any

stage of the solution process.

2. Allowing local refinement of the solution by choosing appropriate field approximations, inde-

pendent from the geometrical parameterization of the domain.

3. Allowing computational savings by not refining the geometry during the process of refining

the solution and by choosing simpler approaches for the solution, that is, using polynomial

functions instead of rational functions.

GIFT has been applied to problems of heat transfer (Poisson’s equation) and linear elasticity

[15], yielding optimal convergence rates, even for pairs of geometry and field bases that do not

pass the patch-test. Recently, Anitescu et al. [12] employed the GIFT idea in a high-order PHT-

splines formulation for problems of 2D and 3D elasticity and adaptive refinement. Peng et al. [16]

employed the GIFT formulation to study adaptive refinement for frequency analysis in vibration of

Reissner-Mindlin plates. Note, that the formulation, developed in [16], is not locking-free. Shear-

locking phenomena can be addressed by developing approximation spaces for the displacements and

rotations, that satisfy the Kirchhoff constrain at the limit of thickness tending to zero [17].

Application of GIFT for time harmonic acoustics is given in the work of Videla et al. [18]. In the

present work, we will pair NURBS geometries with a PHT-splines solution basis to model fracture

mechanics problems under the Kirchhoff-Love plate theory. This choice will allow us to improve

the numerical solution by employing local adaptive refinement near the crack tip and crack faces,

while preserving the geometry exactness.

1.3. A posteriori error estimator

A specific criterion needs to be defined to drive adaptivity, usually an error estimator. As an a

posteriori error estimator is used for evaluating the true error and guiding mesh refinement, it needs

to be reliable at both local and global level. The majority of the error estimator can be categorized

into two types, namely, the residual-based error estimators and recovery-based error estimator

(or error estimators using recovery techniques). The residual type of error estimator was initially

proposed by Babuška and Rheinboldt [19]. This error estimator is computed by using the residual of

the finite element solution, as the approximate solution from the numerical method does not satisfy

the governing partial differential equations. Meanwhile, Zienkiewicz and Zhu first introduced the
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recovery type of error estimator with further development by considering superconvergent path

recovery [20, 21]. For this case, a recovered and more accurate solution of a quantity, normally

stresses, is calculated in the post-processing stage based on the finite element solution. The error

is then defined as the difference between the recovered solution and the finite element one. As

the framework is straightforward, this type of error estimator is easy to implement. In addition,

it is computationally inexpensive because of the involvement of the post-process quantity only,

without having to solve the system of equations multiple times. These beneficial features made the

recovered-based error estimator widely applied in engineering [22]. In [18] a comparison between

residual-based and recovery-based error estimators was recently done in the context of the Helmholtz

equation, leading in both cases to similar results. In this work, we propose a recovery-based error

estimator based on the stress definition in the framework of the Kirchhoff-Love theory.

1.4. Fracture analysis for plates

Regarding the fracture analysis, there has been a well-established body of work on the inves-

tigation of structures with cracks using numerical tools including the well-known extended finite

element method (XFEM) [23]. The main idea of this method is that the approximation func-

tions are enriched across the crack faces and near the crack tip to represent the discontinuity and

asymptotic behaviour of the solution. Consequently, the mesh does not need to comply with the

crack geometry, which simplifies the meshing procedure. The same enrichment idea of the XFEM

has been applied to several methods, such as extended isogeometric analysis (X–IGA) [24, 25, 26],

isogeometric boundary element [27], isogeometric-meshfree [28], and recently to X–IGA based on

T-splines [29], X–IGA based on Bézier extraction operator [30], and PHT-Splines [11]. Although all

the previous formulations have been proved to be effective to tackle 2D and 3D fracture mechanic

problems, there is not the same amount of literature regarding their applications in plates.

Application of the XFEM and its variations has already been done to different plate theories.

Dolbow et al. [31] initially proposed an XFEM formulation applied to Reissner-Mindlin plates, Xing

et al. [32] employed a new set of high-order crack tip enrichment functions applied to the MITC

element in the context of RM plates. Concerning thin shell theory, Belytschko and Areias [33]

proposed an XFEM formulation for thin-shell structures, Bayesteh and Mohammadi [34] studied

the effect of crack tip enrichment functions in the analysis of shells, while Nguyen-Thanh et al.

studied [35] a X–IGA shell formulation based on the Kirchhoff-Love theory. To the best of the

authors knowledge, in pure Kirchhoff-Love plate theory the only works available are the ones of

Lasry et al. [36, 37], where an XFEM formulation is proposed.
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1.5. Structure of the paper

In this paper, we develop an extended spline-based formulation for a cracked Kirchhoff-Love

plate, using a GIFT framework, employing NURBS for the geometry parameterization and PHT-

Splines for the field variable, and enrich solution with the Heaviside function and crack tip asymp-

totic expansions. Mainly, we address the efficiency of adaptive refinement over uniform refinement

by using a recovery-based error estimator to drive the local adaptivity.

The remainder of the paper is organized as follows. A brief introduction to the plate theory, with

its strong and weak forms, is given in Section 2, the modal analysis of plates is summarized in Section

3. Section 4 is devoted to the extended formulation of GIFT, while in Section 5 the computation

of the stress intensity factors is outlined. In Section 6, the error estimator and adaptive refinement

algorithm are explained. Section 7 deals with numerical examples and finally the main results are

summarized in Section 8.

The numerical implementation was done in Matlab®, based on the open-source package IGA-

PACK, available at https://github.com/canitesc/IGAPack. In particular, the X–IGA routines

where inspired by the open-source code IGAFEM [38], available at https://sourceforge.net/

projects/cmcodes/. The numerical examples presented in this paper were carried out using the

HPC facilities of the University of Luxembourg – see https://hpc.uni.lu.

2. Kirchhoff-Love Plate Theory

Let Ω ⊂ R2 be an open-bounded region with boundary Γ. We consider a plate occupying

a domain V = Ω ×
[
−h
2 ,

h
2

]
, where h is the thickness. It is assumed that the material plate is

homogeneous and isotropic, with Young’s modulus E and Poisson’s ratio ν.

a

h

b

x2

x3

x1

Figure 1: Plate geometry and reference system
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The displacement u = {u1, u2, u3}T under the Kirchhoff-Love theory can be written as

u1(x1, x2, x3)=−x3∂1u(x1, x2)

u2(x1, x2, x3)=−x3∂2u(x1, x2) (1)

u3(x1, x2, x3)=u(x1, x2)

where the notation ∂α(·) represents the partial derivative with respect to xα. In the Kirchhoff-Love

model, the kinematic actions are such that the normal vectors to the undeformed reference surface

remain orthogonal to the deformed surface and does not change in length. Thus, the transverse

shear strains are zero.

The strains in terms of the displacements are given by:

ε =


ε11

ε22

ε12

 =


−x3∂11u

−x3∂22u

−2x3∂12u

 (2)

while the stresses are given by

σ =


σ11

σ22

σ12

 = E

(1− ν2)


1 ν 0

ν 1 0

0 0 (1− ν)
2



ε11

ε22

ε12

 (3)

which can be written as

σ = E

(1− ν2)Dε (4)

where D is the constitutive matrix:

D = D


1 ν 0

ν 1 0

0 0 (1− ν)/2

 (5)

and D is known as the plate bending stiffness

D = Eh3

12(1− ν2) (6)
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The bending moments are defined as

m =


m11

m22

m12

 = D


1 ν 0

ν 1 0

0 0 (1− ν)
2



−∂11u

−∂22u

−2∂12u

 (7)

Finally, the shear forces are defined as

Q =

Q1

Q2

 =

−D (∂111u+ ∂122u)

−D (∂222u+ ∂112u)

 (8)

2.1. Strong form

The outward unit normal vector to the boundary is n, and s is the unit tangent vector such

that n× s = x3. Greek indices, α and β, take the values 1 and 2 respectively, and repeated indices

imply summation. Normal and tangential components are denoted (·)n = ()αnα and (·)s = ()αsα,

respectively.

If the boundary Γ is not smooth, the corners, where the normal undergoes a discontinuity, are

denoted ∂Γ = xc. Here, xc ∈ Γ, c = 1, 2, ... are the corner locations.

Applying all the constitutive equations presented on the previous section, we obtain the following

boundary-value problem (BVP) for the Kirchhoff-Love plate theory [39]:

−D∂αβmαβ = q in Ω

u = W on ΓW
∂nu = Θ on ΓΘ

mnn = Mn on ΓM
∂αmnα + ∂smns = Q+ ∂sMs on ΓQ

[mns] = [Ms] on ∂Γ ∩ ΓQ

(9)

where q is the distributed loading on the plate, W is the prescribed displacement on ΓW of the

plate, Θ is the prescribed rotation on ΓΘ, Mn the prescribed normal bending moment on ΓM , Ms

and Q the prescribed tangential bending moment and shear force on ΓQ, respectively, and [Ms]

represents a corner force imposed on non smooth domains. ΓW , ΓΘ,ΓM and ΓQ are subsets of the

boundary Γ, where the different types of boundary conditions are applied.
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2.2. Weak form using GIFT

The variational formulation or weak form of the Kirchhoff-Love plate theory corresponds to

finding a function u ∈ H2(Ω) that satisfies u = W on ΓW and ∂nu = Θ on ΓΘ such that for any

v ∈ H2(Ω) with v = 0 on ΓW and ∂nv = 0 on ΓΘ:

a(v, u) = l(v) (10)

a(v, u) = D

∫
Ω

[ν∆uδαβ + (1− ν)∂αβu] ∂αβvdΩ (11)

l(v) =
∫

Ω
qvdΩ +

∫
ΓQ

(Q+ ∂sMs) vdΓ−
∫

ΓM
Mn∂nvdΓ− [Ms]v (12)

The plate domain Ω is parameterized on a parametric domain Ξ by a mapping function F:

x := F(ξ) =
∑
i∈I

CiNi(ξ) (13)

where x are the coordinates in the physical space, Ci are the control points, Ni(ξ) are the NURBS

basis functions and I denotes the set of indices employed for the geometry.

The unknown field uh of the boundary value problem can be approximated with a different finite

dimensional space, whereas for this work we choose the PHT-splines basisMi(ξ). The approximation

can be defined with the help of the inverse of the mapping F as:

uh(x) =
∑
k∈J

Uk(Mk ◦ F−1)(x) (14)

where Uk are the control variables corresponding to basis functions Mk(ξ) and J denotes the set of

indices employed for the PHT-splines basis functions.

Using the approximations for uh, taking v = {Mk}k∈J , and replacing it in eq. (10), the dis-

cretized version of the weak form can be written as the following linear system of equation:

KU = f (15)

where K is known as the stiffness matrix, U as the vertical control displacement solution of the

plate and f as the force vector. The coefficients of the stiffness matrix K and the force vector f are
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given, respectively, by:

Kij = D

∫
Ω

[
ν∆

(
Mi ◦ F−1

)
δαβ + (1− ν)∂αβ

(
Mi ◦ F−1

)]
∂αβ

(
Mj ◦ F−1

)
dΩ (16)

fj =
∫

Ω
q
(
Mj ◦ F−1

)
dΩ +

∫
ΓQ

(Q+ ∂sMs)
(
Mj ◦ F−1

)
dΓ (17)

−
∫

ΓM
Mn∂n

(
Mj ◦ F−1

)
dΓ− [Ms]

(
Mj ◦ F−1

)
Also, the stiffness matrix and the force vector can be denoted by the following matrix products

[40]:

K =
∫

Ω
BDBTdΩ (18)

with

B =


−∂11

(
M1 ◦ F−1) −∂11

(
M2 ◦ F−1) · · · −∂11

(
Mn−1 ◦ F−1) −∂11

(
Mn ◦ F−1)

−∂22
(
M1 ◦ F−1) −∂22

(
M2 ◦ F−1) · · · −∂22

(
Mn−1 ◦ F−1) −∂22

(
Mn ◦ F−1)

−2∂12
(
M1 ◦ F−1) −2∂12

(
M2 ◦ F−1) · · · −2∂12

(
Mn−1 ◦ F−1) −2∂12

(
Mn ◦ F−1)


T

(19)

The force vector is written as

f =
∫

Ω
qNdΩ +

∫
ΓQ

(Q+ ∂sMs) NdΓ−
∫

ΓM
Mn∂nNdΓ− [Ms]N (20)

with

N =
[(
M1 ◦ F−1) (

M2 ◦ F−1) · · · (
Mn−1 ◦ F−1) (

Mn ◦ F−1)]T (21)

dN =

∂1
(
M1 ◦ F−1) ∂1

(
M2 ◦ F−1) · · · ∂1

(
Mn−1 ◦ F−1) ∂1

(
Mn ◦ F−1)

∂2
(
M1 ◦ F−1) ∂2

(
M2 ◦ F−1) · · · ∂2

(
Mn−1 ◦ F−1) ∂2

(
Mn ◦ F−1)


T

(22)

∂nN = dN · n (23)

In the previous equations ∂i
(
Mk ◦ F−1) and ∂ik

(
Mk ◦ F−1) are the first and second derivatives

with respect to the geometry x(ξ) = (x1, x2) computed by the chain rule, while n is the number of

PHT-splines basis functions.
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3. Vibration of plates

The strong form of the dynamic equilibrium equation for homogeneous and isotropic plates can

be expressed by including the mass density ρ and plate thickness h into eq.(9)

−D∂αβmαβ + ρhü = q (24)

Considering that there is no damping or external loads acting on the plate, the equation of

motion can be expressed in the following weak form:

D

∫
Ω

[ν∆uδαβ + (1− ν)∂αβu] ∂αβvdΩ +
∫

Ω
vρhüdΩ = 0 (25)

Analogously to the previous section, the discretized week form can be written as

MÜ + KU = 0 (26)

where K is the aforementioned stiffness matrix and M is known as the mass matrix, given by:

M =
∫

Ω
ρhNNTdΩ (27)

The general solution of eq.(26) that describes the unforced and undamped vibrations of a solid

is [40]:

u = ueiωt (28)

In this equation, i is the imaginary unit, ω is the natural frequency, t is the time and u is

the eigenvector associated with ω. By substituting this solution in the eq.(28) [41], the natural

frequencies of the plate can be found by solving the following eigenvalue problem:

(
K− ω2M

)
U = 0 (29)

where U is a matrix containing the eigenvectors associated to the eigenvalues w. The equation of

eigenvalues has a non-trivial solution when it is fulfilled that:

det
(
K− ω2M

)
= 0 (30)
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This last equation yields a discrete set of eigenvalues ωi, with i = 1, 2, 3, ...; where each ωi has

an associated vector Ui, as shown in the following equation [38]:

(
K− ω2

iM
)

Ui = 0 (31)

4. X–GIFT: Extended formulation for GIFT

In presence of a crack, the field approximation (eq.(14)) is enriched by additional degrees of

freedom, representing the jump of displacement across the crack (Heaviside function) and a set of

functions representing the asymptotic behaviour of the solution near the crack tip, i.e

u(x) =
∑
k∈J

UkMk ◦ F−1(x) +
∑
k∈L

Mk ◦ F−1(x)H(x)dk +
∑
k∈M

Mk ◦ F−1(x)
( 4∑
i=1

Fi(r, θ)cik

)
(32)

where Uk are the regular unknown variables from eq.(14), dk and cik are the additional DOF related

to the crack face and crack tip enrichment, respectively. The set J is the set of indices for the PHT-

Splines basis functions, while the sets L and M are the sets of indices for crack face and crack tip

enriched DOF, respectively.

The Heaviside function is defined as follows:

H(x) =

 1 for nodes on one side of the crack

−1 for nodes on another side of the crack
(33)

The basis functions for the crack tip enrichment are defined as:

{Fk (r, θ)} =
{
r3/2 sin

(3θ
2

)
, r3/2 cos

(3θ
2

)
, r3/2 sin

(
θ

2

)
, r3/2 cos

(
θ

2

)}
(34)

where (r, θ) is the local polar coordinate system at the crack tip (see Figure 2).

The transformation between the local polar coordinate system to the local Cartesian coordinate

system at the crack tip is given as follows:


r =

√
xl1

2 + xl2
2

θ = arctan
(
xl2
xl1

) (35)

The following is the transformation between the local Cartesian coordinate system (xl1, xl2) at

the crack tip and the physical coordinates:

x
l
1

xl2

 =

 cos (φ) sin (φ)

− sin (φ) cos (φ)


x1 − xct1
x2 − xct2 ,

 (36)
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x1

x2

(xct1 , xct2 )

xl1

xl2

φ

θ
r

Figure 2: Local and global coordinates at the crack tip. (x1, x2) are the global coordinates, while (xct1 , x
ct
2 ) are the

coordinates of the crack tip in the global system. φ is the angle between the crack tip and the horizontal line. (xl1, xl2)

are the local coordinates rotated with respect to φ, and (r, θ) are the polar coordinates defined at (xl1, xl2). The blue

line represents the crack.

where (x1, x2) are the physical coordinates defined by eq.(13), (xct1 , xct2 ) are the crack tip coordi-

nates at the physical space and φ is the angle between the crack tip with respect to the horizontal

line.

Two types of crack tip enrichment criteria can be applied, namely the geometrical enrichment

and the topological enrichment [42]. In the former, only the element containing the crack tip is

enriched (i.e. the shape functions with the support in the crack tip element), while in the latter,

the enrichment area remains constant in the refinement process. We implemented and compared

both approaches. Our studies indicate that topological enrichment is significantly more efficient

and accurate when it is coupled with adaptive refinement, and therefore it was used in all numerical

examples in section 7.

The level set method is a numerical method used to track interfaces and shapes. It was originally

introduced by Osher and Sethian [43] for tracking the evolution of moving boundaries and now is

typically used in XFEM method [44] or X–IGA method [26] to identify discontinuities in the domain,

such as cracks, inclusions or voids.

In this work, we employ two level set functions to select which elements in the field discretization

(eq.(14)) should be enriched by the Heaviside or crack tip functions. Figure 3 illustrates an example

of (topologically) enriched vertices of a T-mesh.

Using the generalized formulation for the unknown vector given by eq.(32), the eq.(15) and

the level set method to identify elements enriched with the Heaviside and crack tip functions, the

generalized linear system is given by:

KenrUenr = fenr, (37)

12



Figure 3: Illustration of the enriched vertices on a T-mesh. The orange thick line denotes the crack. The black dots

denote the Heaviside enriched vertices, while the black squares denote the crack tip enriched vertex

where the displacement control variables and additional enrichment DOFs are as follow:

Uenr =
{

U d c1 c2 c3 c4

}T
(38)

where U, d and ci, i = 1, 2, 3, 4, are the vectors of regular DOF, crack face DOF and crack tip DOF,

respectively. The stiffness matrix enriched Kenr is a generalization for the eq.(18) and is given by:

Kenr =
∫

Ω
BenrDBT

enrdΩ (39)

with Benr defined as

Benr =
[
B Bd Bc1 Bc2 Bc3 Bc4

]T
(40)

B =


−∂11N

∗
1 −∂11N

∗
2 · · · −∂11N

∗
n−1 −∂11N

∗
n

−∂22N
∗
1 −∂22N

∗
2 · · · −∂22N

∗
n−1 −∂22N

∗
n

−2∂12N
∗
1 −2∂12N

∗
2 · · · −2∂12N

∗
n−1 −2∂12N

∗
n

 (41)

Bd =


−∂11N

∗
1H −∂11N

∗
2H · · · −∂11N

∗
ncf−1H −∂11N

∗
ncf
H

−∂22N
∗
1H −∂22N

∗
2H · · · −∂22N

∗
ncf−1H −∂22N

∗
ncf
H

−2∂12N
∗
1H −2∂12N

∗
2H · · · −2∂12N

∗
ncf−1H −2∂12N

∗
ncf
H

 (42)
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Bci =


−∂11 (N∗1Fi) −∂11 (N∗2Fi) · · · −∂11

(
N∗nct−1Fi

)
−∂11

(
N∗nctFi

)
−∂22 (N∗1Fi) −∂22 (N∗2Fi) · · · −∂22

(
N∗nct−1Fi

)
−∂22

(
N∗nctFi

)
−2∂12 (N∗1Fi) −2∂12 (N∗2Fi) · · · −2∂12

(
N∗nct−1Fi

)
−2∂12

(
N∗nctFi

)
 , i = 1, 2, 3, 4

(43)

where n is the number of PHT-Splines basis functions, ncf the number of Heaviside enriched basis

functions, and nct the number of crack tip enriched basis functions. Analogously, the enriched force

fenr and mass Menr are the generalizations of eq.(20) and (27), respectively:

fenr =
∫

Ω
qNenrdΩ +

∫
ΓQ

(Q+ ∂sMs) NenrdΓ−
∫

ΓM
Mn∂nNenrdΓ− [Ms]Nenr (44)

Menr =
∫

Ω
ρhNenrNT

enrdΩ (45)

where

Nenr =
[
N Nd Nc1 Nc2 Nc3 Nc4

]T
(46)

N =
[
N∗1 N∗2 · · · N∗n−1 N∗n

]
(47)

Nd =
[
N∗1H N∗2H · · · N∗ncf−1H N∗ncfH

]
(48)

Nci =
[
N∗1Fi N∗2Fi · · · N∗nct−1Fi N∗nctFi

]
, i = 1, 2, 3, 4 (49)

dNenr =
[
dN dNd dNc1 dNc2 dNc3 dNc4

]T
(50)

dN =

∂1N
∗
1 ∂1N

∗
2 · · · ∂1N

∗
n−1 ∂1N

∗
n

∂2N
∗
1 ∂2N

∗
2 · · · ∂2N

∗
n−1 ∂2N

∗
n

 (51)

dNd =

∂1N
∗
1H ∂1N

∗
2H · · · ∂1N

∗
ncf−1H ∂1N

∗
ncf
H

∂2N
∗
1H ∂2N

∗
2H · · · ∂2N

∗
ncf−1H ∂2N

∗
ncf
H

 (52)

dNci =

∂1 (N∗1Fi) ∂1 (N∗2Fi) · · · ∂1
(
N∗nct−1Fi

)
∂1
(
N∗nctFi

)
∂2 (N∗1Fi) ∂2 (N∗2Fi) · · · ∂2

(
N∗nct−1Fi

)
∂2
(
N∗nctFi

)
 , i = 1, 2, 3, 4 (53)
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dNenr
n = dNenr · n (54)

Again, in the previous equations ∂iN∗k and ∂ikN∗k are the first and second derivatives with respect

to the geometry x(ξ) = (x1, x2) computed by the chain rule. And N∗k denotes the composition

between the physical mapping and the field basis Mk ◦ F−1.

5. Computation of stress intensity factors (SIF)

In this section, we briefly explain the theory and procedure employed to compute the stress

intensity factors in the context of the Kirchhoff-Love plate theory.

5.1. Asymptotic displacement near the crack tip and fracture modes

In the Kirchhoff-Love plate theory, there are two fracture modes depending on the loading type:

a symmetric bending, known as mode k1, and anti-symmetric bending mode k2. Both fracture

modes are shown in Figure 4.

(a) k1 (b) k2

Figure 4: Loading modes for Kirchhoff-Love plate theory: (a) Symmetric bending (k1) and (b) Anti-symmetric bending

(k2).

The stress field close to the tip of a through crack in a plate was first obtained by Williams [45] in

the context of Kirchhoff-Love plate model using an eigenfunction approach to solve the bi-harmonic

equation, given by eq. (9). The asymptotic displacement field uasymp is given by [46]:

uasymp = (2r) 3
2 (1 − ν2)

2Eh(3 + ν)

{
k1

[1
3

(7 + ν

1 − ν

)
cos
(3θ

2

)
− cos

(
θ

2

)]
+ k2

[1
3

(5 + 3ν
1 − ν

)
sin
(3θ

2

)
− sin

(
θ

2

)]}
, (55)

where k1 and k2 are defined as:

k1 = lim
r→0

√
2rσθθ (r, 0) , k2 = lim

r→0

(3 + ν

1 + ν

)√
2rσrθ (r, 0) (56)
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The stress field due to bending for the Kirchhoff-Love plate theory, in polar coordinates (r, θ)

with respect to the crack tip, are given as follows [47, 35]:


σrr

σθθ

σrθ

 = k1
x3

2h
√

2r(3 + ν)



(3 + 5ν) cos
(
θ

2

)
− (7 + ν) cos

(3θ
2

)
(5 + 3ν) cos

(
θ

2

)
+ (7 + ν) cos

(3θ
2

)
−(1− ν) sin

(
θ

2

)
+ (7 + ν) sin

(3θ
2

)


+ (57)

k2
x3

2h
√

2r(3 + ν)



−(3 + 5ν) sin
(
θ

2

)
+ (5 + 3ν) sin

(3θ
2

)
−(5 + 3ν)

(
sin
(
θ

2

)
+ sin

(3θ
2

))
(ν − 1) cos

(
θ

2

)
+ (5 + 3ν) cos

(3θ
2

)


The relation between the stress in polar coordinates with the local coordinates with respect to

the crack tip is given by


σrr

σθθ

σrθ

 =


cos2(φ) sin2(φ) 2 sin(φ) cos(φ)

sin2(φ) cos2(φ) −2 sin(φ) cos(φ)

− sin(φ) cos(φ) sin(φ) cos(φ) cos2(φ)− sin2(φ)



σl11

σl22

σl12

 (58)

where φ is the angle defined in Section 4. The previous stress relationship can also be written in

the following matrix form as

σpolar = T(φ)σlocal (59)

The inverse relationship also holds:

σlocal = T−1(φ)σpolar (60)

5.2. J-Integral and Interaction Integral

J-integral is commonly used in fracture mechanics to determine SIF. In this work, we use the

domain integral definition for a through-the-thickness crack with the crack front normal to the

mid-surface [47, 48], i.e.

J = 1
h

∫
V ?

(
σij

∂ui
∂x1
− 1

2σijεijδ1j

)
∂q

∂xj
dV (61)

where V ? is an arbitrary volume that encloses the crack tip. Typically V ? is a hollow cylinder with

the center line passing through the crack tip, perpendicular to the mid-plane (see [47] for more

detail). Function q is the weight function varying from 0 ( the outer contour of V ?) to 1 (the inner
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contour of V ?). The relationship between the J-integral value and the stress intensity factors in the

cases of mixed-mode loadings for the Kirchhoff-Love plate theory is given by [46]:

J = G = π

3E

(1 + ν

3 + ν

)(
k2

1 + k2
2

)
, (62)

where k1 and k2 are the symmetric and anti-symmetric bending SIF [46]. To calculate the SIF

for a particular mode of loading in cases of mixed-mode loading, we follow the scheme which was

derived in [23, 49] for two and three-dimensional problems. We consider two states of a cracked

solid: corresponding to the present state
(
σ

(1)
ij , ε

(1)
ij , u

(1)
i

)
and an auxiliary state

(
σ

(2)
ij , ε

(2)
ij , u

(2)
i

)
which will be chosen as the numerical field and the asymptotic field, respectively. From eq.(61), the

domain form of the J-integral for the superposition of the two state is:

J (1+2) = 1
h

∫
V

[(
σ

(1)
ij + σ

(2)
ij

)(∂u(1)
i

∂x1
+ ∂u

(2)
i

∂x1

)
− 1

2
(
σ

(1)
ij + σ

(2)
ij

) (
ε

(1)
ij + ε

(2)
ij

)
δ1j

]
∂q

∂xj
dV (63)

Expanding and grouping terms of similar states in the eq. (63), we can written this as:

J (1+2) = J (1) + J (2) + I(1,2) (64)

where

J (α) = 1
h

∫
V

(
σ

(α)
ij

∂u
(α)
i

∂x1
− 1

2σ
(α)
ij ε

(α)
ij δ1j

)
∂q

∂xj
dV , α = 1, 2 (65)

And the definition of the interaction integral I(1,2) is given by:

I(1,2) = 1
h

∫
V

(
σ

(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
− σ(1)

ij ε
(2)
ij δ1j

)
∂q

∂xj
dV (66)

Using the eq. (62), we obtain the J-integral for the combination of the states 1 and 2:

J (1+2) = J (1) + J (2) + 2π
3E

(1 + ν

3 + ν

)(
k

(1)
1 k

(2)
1 + k

(1)
2 k

(2)
2

)
(67)

Using the equations (64) and (67), the relationship between the interaction integral I(1,2), given

by eq.(66), and the stress intensity factors is:

I(1,2) = 2π
3E

(1 + ν

3 + ν

)(
k

(1)
1 k

(2)
1 + k

(1)
2 k

(2)
2

)
(68)
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To obtain the stress intensity factor, we choose the auxiliary state as one of the two modes of

the plate: pure symmetric bending loading or pure anti-symmetric bending loading, as shown in

Figure 4; and then, we use the eq.(68) to express k(1)
1 and k

(1)
2 :

k
(1)
1 = 3E

2π

(3 + ν

1 + ν

)
I(1,2) with k

(2)
1 = 1, k

(2)
2 = 0

k
(1)
2 = 3E

2π

(3 + ν

1 + ν

)
I(1,2) with k

(2)
1 = 0, k

(2)
2 = 1

(69)

Accuracy of the J-integral evaluations depends significantly on the size of domain V ? enclosing

the crack tip. In this work we use the domain, shown in Figure 5 and defined by the elements that

cut a circular cylinder with radius rd centered at the crack tip axis. This approach was proposed

in [47, 50] where it was suggested to use rd equal to 2.5 times the mean value of the square root of

the fully cracked elements’ areas. This strategy is further refereed as rd = 2.5a in our results. In

the present work we also compared this approach with other choices of rd.

Finally, the weight function q is defined inside each PHT-spline element of the interaction integral

domain as:

q =
4∑
i=1

Ni(x1, x2)qi (70)

where Ni are linear basis function, and the coefficients qi are set to 1 for the vertices of the elements

that lie on the inner boundary, and equal to zero if the node is on the outer boundary of V ?.

Figure 5: J-integral: selected domain for the integration. Red line represents the circle of radius rd, the black line

represents the crack.
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6. Recovery-based error estimator and adaptive mesh refinement

Anitescu et al. [12] proposed a recovery-based error estimator for PHT-splines based on 2D

and 3D linear elasticity. This definition was extended by Videla et al. [18] in the context of the

Helmholtz equation. In the following section, the procedure to obtain the recovery-based error

estimator is adapted to Kirchhoff-Love plate theory.

The main idea behind recovery-based error estimators is to create a more accurate approximation

of the gradient of the solution utilizing for example, the super-convergent patch recovery procedure.

Then, the recovered gradient solution is considered as a substitute for the exact gradient of the

solution, which can be employed to compute error norms with high precision.

The original procedure, proposed by Zienkiewicz and Zhu [51], consists in computing a more

accurate solution at the carefully chosen points that are capable of generating a better approximation

of the desired quantity. At those points, a higher-order polynomial fit is performed in order to obtain

the recovered solution. Then, the error estimator is computed in the normalized H2 semi-norm as

[52]:

‖erec‖H2

‖G [m(uh)]‖H2
=

(∫
Ω (G [m(uh)]−m(uh))T D−1 (G [m(uh)]−m(uh)) dΩ

)1/2

(∫
Ω (G [m(uh)])T D−1 (G [m(uh)]) dΩ

)1/2 (71)

where m(uh) is the numerical moment, computed using eq.(7), G [m(uh)] is the recovery moment

computed using m(uh). In the same way, the error indicator on each cell k can be computed as:

ek =
(∫

Ω
(G [m(uh)]−m(uh))T D−1 (G [m(uh)]−m(uh)) dΩ

)1/2
(72)

The carefully chosen points are the super-convergent points, which are computed in the same

way as in [12]. Table 1 shows the super-convergent points on an interval [−1, 1] for several values

of spline degree p and continuity orders α.

Next, we briefly outline the procedure of computation of the recovery moment G [m(uh)]. The

reader is referred to [12] for details regarding the implementation of this process with PHT-Splines.

Let be Ω be the domain and Ωk, k = 1, ..., n a set of n non-overlapping patches such that

together they form Ω: ∪nk=1Ωk = Ω. Let x∗i,k (i = 1, ...Nk) be a set of Nk super-convergent points

defined over the patch Ωk. Let also φ∗i,k be the set of basis functions employed for the recovery

solution. In this case we employ B-splines functions of degree p∗ ≥ p and continuity α∗ ≥ α . The
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p α Super-convergent points

3 1 ±1, 0

4 1 ±
√

(3/7)± (2/7)
√

6/5

5 2 ±1, ±
√

1/3, 0

6 2 ±0.790208564, ±0.2800702925

7 3 ±1, ±0.5294113738, 0

Table 1: Super-convergent points for splines of degree p and continuity Cα on interval [−1, 1]

G [m(uh)] is constructed as:

G [m(uh)] (x) =
∑

φ∗i,k(x)C∗i,k (73)

where C∗i,k are the new DOF associated with the recovery gradient solution. We require equation

(73) to fulfill the condition:

G [m(uh)] (x∗i,k) = m(uh)(x∗i,k) (74)

Equation (74) can be rewritten as the following linear system:

AkC∗k = bk (75)

where

Ak
ij = φ∗j,k(x∗i,k) (76)

bk
i = D


1 ν 0

ν 1 0

0 0 (1− ν)
2



−∂11uh(x∗i,k)

−∂22uh(x∗i,k)

−2∂12uh(x∗i,k)

 (77)

Finally, the recovery solution can be computed by solving equation (75).

After the recovery-based error estimator is calculated, the refinement is guided using ”Dörfler

marking” strategy [53]. The approach consists in sorting the elements according to their error

contribution and then refining elements until their total contribution to the error is bigger than a

certain percentage α of the error estimator. In the following numerical experiments, unless other is

specified, α = 75% was used.
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In the case of the dynamic analysis, two different schemes can drive adaptive refinement: the

first one consists in taking each mode independently and perform adaptive refinement based on the

recovery-based error estimator computed using that particular vibration mode. This scheme leads

to high memory costs since for each vibration mode the corresponding refinement needs to be stored

and processed. The second scheme consists in taking a particular static solution (for instance, the

result for the clamped problem with constant loading) and using it to drive the adaptive refinement

and compute the desired vibration modes.

In this work, both methods were tested and lead to similar results, therefore the second approach

was employed due to its better computational efficiency.

Lastly, we say that the recovery-based error estimator is asymptotically exact if the ratio between

the error estimator and the error itself tends to 1 as the mesh size h tends to 0, ie:

θ(∆uh,Ω) := ‖erec‖H2

‖u− uh‖H2
→ 1 as h→ 0 (78)

where θ(∆uh,Ω) is known as the effectivity index of the error estimator.

7. Numerical examples

In this section, we present several numerical examples concerned with different static and dy-

namic behavior of Kirchhoff-Love plates with cracks.

For problems with known analytical solutions, we use the following relative H2 semi-norm of

the error:

‖u− uh‖H2

‖u‖H2
=

√√√√∫Ω (m(u)−m(uh))T D−1 (m(u)−m(uh)) dΩ∫
Ω (m(u))T D−1 (m(u)) dΩ

(79)

In all numerical examples in this section, crack faces are assumed traction and moment free.

7.1. Bending of plates with cracks

7.1.1. Square plate with an edge crack

In this first numerical example, we solve the problem of a plate with an edge crack of length a

under non-homogeneous Dirichlet boundary conditions given by pure mode k2:

uexact = (2r)3/2

2Eh

(
1− ν2)
(3 + ν)

[ 3ν + 5
3(ν − 1) sin

(3θ
2

)
− sin

(
θ

2

)]
(80)
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This problem is also solved in [36]. The non-homogeneous boundary conditions are imposed

using Nitsche’s approach [39, 54], and both crack faces are moment and traction free.

The plate dimensions are: length L = 1, width H = 1, thickness h = 0.09 and crack length

a = 0.5; while the material properties are: Young’s modulus E = 14.98[kPa], Poisson’s ratio ν = 0.3.

Figure 6 shows the numerical vertical displacement obtained using PHT-splines of degree p =

q = 4 with adaptive refinement. As it can be seen, the method is capable of modelling an anti-

symmetric bending loading mode.

Figure 6: Deformation of the infinite plate with a straight crack.

Figure 7 shows the initial mesh and five different states of the adaptive refinement obtained

using the recovery-based error estimator criteria. In these figures, we can see that the refinement

process is centered around the tip of the crack. Similar patterns were observed in all simulations.

To impose the non-homogeneous Dirichlet boundary condition with Nitsche’s method, we em-

ployed the stabilization parameters shown in Table 2 for three different PHT-splines degrees. Figure

8 shows the relative L2 error norm on the boundary for p = 3, 4, 5, and we can conclude that the

Nitsche’s method is capable of imposing the boundary conditions accurately and reliably.

Numerical results are first compared with the data, obtained by extended isogeometric analysis

(X–IGA) with NURBS of degree p = 4 and continuity C1, C2 and C3. For X–GIFT, NURBS of
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(a) Initial mesh (b) Step 10 (c) Step 20

(d) Step 25 (e) Step 30 (f) Step 35

Figure 7: Initial and five refined meshes for the square plate with an edge crack. (p = 3). The black line represents

the crack.

Degree

p = q

Stabilization Parameters

αΘ αW αC

3 107 109 0

4 107 1011 0

5 107 1011 0

Table 2: Value of the stabilization parameters use on the Nitsche’s Method

p = 1 and PHT-splines of p = 4 are employed. In all cases, solution is refined uniformly. Figure 9

shows comparison of results in terms of the relative L2 error norm vs the degrees of freedom (Figure

9a) and vs the computational time (Figure 9b). From Figure 9a it can be observed that for the

same number of DOFs, smaller error is obtained by NURBS of lower continuity. This phenomena

is previously reported by De Luycker et al. [25] in the context of X–IGA applied to linear fracture

mechanics. Next, it can be seen in Figure 9a that X–GIFT and the X–IGA C1 yield quasi-identical

solutions. This is an expected result, since the solutions in these two cases are approximated by

equivalent bases: uniformly refined PHT-splines and NURBS, representing linear geometry, are

both equivalent to B-Splines of C1-continuity. The difference between these two examples is in the
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Figure 8: Square plate with an edge crack: convergence of the boundary condition imposed by Nitsche’s Method

parameterization of the geometry. In X–GIFT, it is a coarse linear parameterization, that is kept

unchanged during the solution refinement process. While in X–IGA, geometry is refined by degree

elevation and knot insertion, according to the iso-parametric concept. This operation leads to a

noticeable difference in total computational time, as shown in figure 10. In this example, X–GIFT

tends to be approximately 1.5 times faster compared to its X–IGA counterpart.

Figure 9b shows that for the same level of error, splines of higher continuity require significantly

more computational time.

In all remaining examples X–GIFT is employed.

Figure 11 shows a comparison between the uniform and adaptive refinement strategies, for

varying value of parameter α (percentage of the elements marked for refinement), in terms of the H2

error semi-norm. It is interesting to note, that all marking strategies give significant improvement

in the convergence rate in comparison with the uniform refinement (α = 100%). All other values of

α lead to similar slopes, however smaller values of α lead to overall smaller error but at the price

of smaller refinement steps.

Figure 12 shows the effectivity index (which is defined as the ratio between the error estimator

and the error itself) computed for the recovery-based adaptive refinement for p = 3 and various

values of α. From Figure 12, we can conclude that smaller values of α yield the effectivity index

closer to 1, which means that the error estimator tends to the H2 error semi-norm. On the other

hand, taking greater values of α leads to the effectivity index in the interval between 0.6 and 0.8.

In view of this analysis, for the following examples we choose α = 75%, since it leads to a good
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Figure 9: Square plate with an edge crack: convergence plots for the relative L2 error norm versus a) DOF and (b)

time [s], for p = 4. Comparison between X-GIFT and X–IGA with NURBS of C1, C2, C3. Different continuity is

achieved by increasing knot multiplicity.
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Figure 10: Square plate with an edge crack: comparison of total computational time for X–IGA C1 (tX–IGA) and

X–GIFT (tX–GIFT) versus degrees of freedom.

balance between the computational cost and reliability of the error estimator.

Figure 13 shows the convergence plot in relative H2 error semi-norm (eq. (79)) and the recovery-

based error estimator given by eq. (71) for PHT-splines of degree p = q = 3, 4, 5 using α = 75%. In

all cases, the convergence rate observed for the adaptive refinement is significantly higher than their

corresponding uniform refinement. For the uniform refinement, different p leads to almost the same
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sub-optimal convergence rate for both the H2 error semi-norm and recovery-based error estimator.

Note, that the optimal convergence rate for the H2 error semi-norm with respect to the DOFs is

(p− 1)/2.

Table 3 shows the stress intensity factor k2 computed using the domain integral method (eq.

(66)) with different inner radius rd for the domain integral. Both uniform and adaptive refinement

results are presented, for p = 3, 4, 5. Uniform and adaptive refinement lead to similar results, with

the adaptive refinement being significantly more efficient in terms of the DOFs. Choice of reducing

the domain size according to rd = 2.5a, as suggested by [47, 50], seems to be slightly more accurate

in comparison with the fixed value.

101 102 103 104 105 10610−5

10−4

10−3

10−2

10−1

100

1 0.22

1
1.08

Degrees of Freedom

R
el

at
iv

e
H

2
er

ro
r

se
m

in
or

m

Unif.
Adapt. α = 25%
Adapt. α = 50%
Adapt. α = 75%
Adapt. α = 90%

Adapt. α = 99.5%

Figure 11: Square plate with an edge crack: Study of different α parameters for the recovery-based error estimator.

Relative error in H2 semi-norm vs. the number of degrees of freedom for p = 3.
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Figure 12: Square plate with an edge crack: Study of different α parameters for the recovery-based error estimator.

Effectivity index vs. the number of degrees of freedom for p = 3.

k2

p = q rd = 2.5a rd = 0.1 rd = 0.2 rd = 0.3 rd = 0.4

3
Uniform (4548 DOFs) 1.012 0.998 0.994 0.978 0.977

Adaptive (1338 DOFs) 0.998 0.996 0.996 1.089 0.996

4
Uniform (9944 DOFs) 1.011 0.997 0.993 0.978 0.977

Adaptive (1874 DOFs) 1.001 0.997 0.996 1.088 0.995

5
Uniform (10233 DOFs) 1.019 0.962 1.001 0.975 0.983

Adaptive (2331 DOFs) 1.000 0.997 0.997 1.088 0.994

Table 3: Square plate with an edge crack: stress intensity factor k2 computed by interaction integral using different

rd radius. Exact value is k2 = 1
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(a) p = q = 3, H2 semi-norm
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(b) p = q = 3, error estimator
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(c) p = q = 4, H2 semi-norm
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(d) p = q = 4, error estimator
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(e) p = q = 5, H2 semi-norm
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(f) p = q = 5, error estimator

Figure 13: Square plate with an edge crack: rates of convergence for (a),(c),(e) H2 semi-norm and (b),(d),(f) recovery-

based error estimator, for different p. Comparison between Uniform (Unif.) and recovery-based adaptive (Adapt.)

refinement.
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7.1.2. Square plate with a central crack

In the second example, as shown in Figure 14, we consider a square plate with a central crack

under constant moment loading M0 applied on the two edges that are parallel to the crack.

2a

M0

M0

2L

2H

Figure 14: Plate with center crack subjected to constant moment M0 applied on the two edges parallel to the crack.

The plate dimensions are taken as: length L = 2, width H = 2, thickness h = 0.09 and crack

length a = 1; while the material parameters are: Young’s modulus E = 14.98[kPa], Poisson’s ratio

ν = 0.3 and the constant moment loading M0 = 1. This problem is also considered in [37, 55]. The

reference stress intensity factor are:

k1 = 6M0
√
a

h2 , k2 = 0 (81)

Figure 15 shows the numerical solution for the vertical displacement obtained using cubic PHT-

Splines. Figure 16 shows six different adaptive refinement steps generated using PHT-splines of

degree p = q = 3. Similarly to the previous example, the algorithm performs gradient refinement

towards the two crack tips.

Figure 17 shows the convergence plots for the recovery-based error estimator using degree p =

q = 3, 4, 5, for the uniform and adaptive refinement strategies. As it can be seen, the convergence

rate for the adaptive refinement is significantly higher than the uniform one for all values of p.

Figure 18 shows the normalized SIF k1 computed for p = 3 for different J-integral domain radius

rd, both: fixed and dependent on the mean area of fully cracked elements (a), i.e. decreasing as
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Figure 15: Numerical solution for the square plate with a center crack subject to constant moment.

(a) Initial mesh (b) Step 5 (c) Step 7

(d) Step 12 (e) Step 15 (f) Step 20

Figure 16: Initial and refined meshes for the plate with central crack. PHT-Splines of degree p = q = 3. The black

line represents the crack.
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the mesh is refined. As it follows from Figure 18, the optimal choices are rd = 0.4a, rd = 0.5a,

rd ≥ 3.0a.

Figure 19 shows the convergence of the normalized stress intensity factor k1 to the reference

solution, for different degrees of polynomial p = q = 3, 4, 5, using rd = 0.4a. It can be seen that the

adaptive refinement procedure yields more accurate results with less DOFs.
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(a) p = q = 3.
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(b) p = q = 4.
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(c) p = q = 5.

Figure 17: Square plate with center crack under constant moments: Convergence of recovery-based error estimator

for degrees 3, 4 and 5. Comparison between Uniform (Unif.) and recovery-based adaptive (Adapt.) refinement.

7.1.3. Square plate with a central crack subjected to constant pressure

The following example includes a square plate with a central crack under uniform pressure p = 1

applied on the top of the plate. The plate is simply supported at all boundaries. This problem is

also considered in [35] in the context of thin shell theory and in [47, 50] in the context of phantom

node method.

The plate dimensions are: length L = 1, width H = 1, thickness h = 0.1 and crack length

a = 0.8; while the material parameters are: Young’s Modulus E = 1000 and Poisson’s ratio ν = 0.3

(see Figure 20).

Figure 21 shows the deformed shape of the plate using the numerical solution with PHT-Splines

p = q = 3. Figure 22 shows the convergence plots for the recovery-based error estimator using

uniform and adaptive refinement with PHT-Splines of degree p = q = 3, 4, 5. Again, as observed in

the previous two examples, the convergence rate of the adaptive refinement is significantly higher

in comparison with the uniform one.
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(b) rd shrinking

Figure 18: Square plate with center crack under constant moments: Comparison between different J-integral domain

radius rd for the computation of the normalized SIF k1; p = 3 and uniform refinement.

Figure 23 shows the convergence plot of the J-integral (eq.(62)) for p = q = 3 using uniform

and adaptive refinement with rd = 0.2a. The results are also compared with the results reported in

[56, 35, 47, 50] for several numerical methods. Both uniform and adaptive refinement results are in

a good agreement with the reference results, however for given values of parameters, the uniform
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(a) p = q = 3.
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(b) p = q = 4.
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(c) p = q = 5.

Figure 19: Square plate with center crack under constant moments: Normalized stress intensity factor k1 for degrees

3, 4 and 5. Comparison between uniform (Unif.) and recovery-based adaptive (Adapt.) refinement. Theoretical value

is presented in the dashed line.

2a

2L

2H

p

Figure 20: Plate with center crack subjected to a constant distributed load p applied on the top surface of the plate.

refinement slightly outperforms the adaptive one.

7.2. Vibration of plates with cracks

7.2.1. Square plate with a central crack

We perform the vibration analysis of the plate of the same geometry as in the previous example.

In this example, the material parameters are: Young’s Modulus E = 2e11, Poisson’s ratio ν = 0.3

and density ρ = 6000. The plate dimensions are taken as: L = H = 5 and the thickness h = 0.1.

The crack length a is kept variable to study the influence of the crack length on the natural modes.

The natural frequencies ω are normalized as:

ω = ωL2

√
ρh

D
(82)
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Figure 21: Numerical solution for the vertical displacement of the square plate with a straight crack subject to constant

distributed loading, a/L = 0.4
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(a) p = q = 3.
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(b) p = q = 4.
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(c) p = q = 5.

Figure 22: Constant pressure loading problem: Convergence plot of recovery-based error estimator for degrees 3, 4

and 5. Comparison between uniform (Unif.) and recovery-based adaptive (Adapt.) refinement.

Figure 24 shows the convergence plot for the first three vibration modes, p = 3, 4, 5 and a/L = 0.4

in terms of natural frequencies. For each mode, the reference values are also included. Tables 4

and 5 show the normalized natural frequencies ω obtained for the first six natural modes, using
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Figure 23: Square plate under constant pressure: Convergence plot for the J-integral; p = 3 and a/L = 0.8.

PHT-splines of degree p = q = 3, 4, 5 and crack ratio of a/L equal to 0.4 and 0.8, respectively. The

results are also compared with the data available in the literature. In both cases (a/L = 0.4 and

0.8) the results obtained for different degrees p agree well with the reference solutions. Figure 25

shows the first six modes for a simply supported square plate with a crack ratio of a/L = 0.4.
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(a) Mode 1
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(b) Mode 2
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(c) Mode 3

Figure 24: Square plate with a central crack problem: Convergence plot of the first three vibration modes. Adaptive

(Adapt.) refinement using p = 3, 4, 5. a/L = 0.4
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Method Degree
Modes

1 2 3 4 5 6

PHT-Splines

X-GIFT

3 18.287 46.633 49.034 78.612 85.493 98.604

4 18.290 46.629 49.043 78.610 85.497 98.600

5 18.283 46.623 49.031 78.609 85.490 98.599

Reference [57] 18.281 46.533 49.028 78.579 85.414 98.678

Reference [58] 18.28 45.84 49.02 78.41 84.96 98.65

Reference [59] 18.28 46.62 49.03 78.60 85.51 98.68

Table 4: Normalized natural frequencies of a simply supported plate with a central crack of crack ratio a/L = 0.4

Method Degree
Modes

1 2 3 4 5 6

PHT-Splines

X-GIFT

3 16.408 27.765 47.203 65.743 76.359 78.382

4 16.407 27.761 47.202 65.738 76.359 78.379

5 16.423 27.760 47.186 65.733 76.360 78.363

Reference [57] 16.401 27.743 47.255 65.587 76.371 78.256

Reference [58] 16.40 26.71 47.23 64.39 76.36 77.96

Reference [59] 16.40 27.77 47.26 65.73 76.37 78.38

Table 5: Normalized natural frequencies of a simply supported plate with a central crack of crack ratio a/L = 0.8
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 25: The first six vibration mode shape for a simply supported square plate with a crack ratio of a/L = 0.4
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7.2.2. Clamped circular plate with a central crack

In this problem, the numerical results of the vibration analysis for a circular plate with a central

crack are presented. The plate has a radius R, thickness h = R/2 and a crack of length 2a. The

plate is fully clamped (see Figure 26). The material parameters are: Young’s Modulus E = 70e9,

Poisson’s ratio ν = 0.3 and density ρ = 2707.

2a

R

clamped

Figure 26: Circular plate with center crack.

The information necessary to generate the circular geometry with NURBS is presented in the

Table A.8. In this example, the normalized natural frequencies are defined as:

ω = ω
R2

h

√
ρ

E
(83)

Figure 27 shows the convergence plot of the first natural frequency, using uniform and adaptive

refinement, with p = 3, 4, 5. Table 6 shows the normalized natural frequencies obtained for the first

six natural modes, using PHT-splines of degree p = q = 3, 4, 5 and crack ratio of a/R equal to 0.25

and 0.5, respectively.

Figure 28 shows the first six modes for a clamped circular plate with a crack size a/R = 0.25.
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(b) p = 4
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(c) p = 5

Figure 27: Circular plate with a crack: Convergence plot of the first vibration mode. Comparison between uniform

(Unif.) and adaptive (Adapt.) refinement using p = 3, 4, 5 and a crack ratio of a/R = 0.25.

a/R Degree DOFs
Mode

1 2 3 4 5 6

0.25

3 9552 3.467 6.911 7.071 10.700 11.588 12.059

4 10796 3.494 6.910 7.071 10.698 11.588 12.061

5 11394 3.486 6.902 7.066 10.679 11.587 12.048

0.5

3 14956 3.296 5.102 6.808 9.860 10.685 10.865

4 12060 3.280 5.098 6.837 9.846 10.683 10.864

5 12150 3.319 5.082 6.873 9.836 10.673 10.852

Table 6: Normalized natural frequencies for a simply supported circular plate with a central crack.
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 28: The first six vibration mode shapes for the circular plate with a center crack with R = 10 and crack length

a = 2.5.
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7.2.3. Clamped annular plate with two symmetric cracks

In this section, the numerical results of the vibration analysis for a annular plate with two

symmetric cracks emanating from the inner edge are presented. The plate has internal radius r,

external radius R and two symmetric cracks of length a = 0.1. The plate is clamped in the exterior

radius, while the internal radius is free, as it can be seen in Figure 29. The material parameters

are: Young’s Modulus E = 70e9, Poisson’s ratio ν = 0.3 and density ρ = 2707.

R

clamped

r
a

(a) Problem domain. (b) NURBS patches.

Figure 29: Annular plate with two symmetric cracks: Problem domain and NURBS patches.

The information necessary to generate the annular geometry are presented in Table A.9. The

geometry is parameterized by four symmetric NURBS of degrees 1 and 2. Note, that in this

example C0-continuity between patches is imposed by matching corresponding degrees of freedom

on the patch boundaries, as discussed in [60].

The normalized natural frequencies are defined as

ω = ω
(R− r)2

h

√
ρ

E
(84)

Table 7 shows the normalized natural frequencies obtained for the first six natural modes, using

PHT-splines of degree p = q = 3 and r/R = 0.6.

Figure 30 shows the first six modes for a clamped annular plate with a radius ratio of r/R = 0.8.

8. Conclusions

In this work, we show the application of PHT-splines in the framework of eXtended Geometry

Independent Field approximaTion (X–GIFT) for problems of bending and vibration of cracked

Kirchhoff-Love plates. In this formulation, the original coarse NURBS parameterization of the plate

geometry is paired with a PHT-splines approximation of the solution, enriched by the Heaviside
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Degree DOFs
Mode

1 2 3 4 5 6

3 8844 1.242 1.259 1.359 1.480 1.506 1.782

4 9002 1.242 1.259 1.359 1.480 1.506 1.783

5 10582 1.236 1.270 1.360 1.474 1.507 1.783

Table 7: Normalized natural frequencies for a clamped annular plate with two symmetric cracks, p = q = 3, 4, 5,

r/R = 0.6

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 30: The first six vibration mode shapes for the clamped annular plate with two symmetric cracks with R = 1,

r = 0.8 and crack length a = 0.1.

function and crack tip asymptotic expansions. The enriched solution is adaptively refined using

a recovery-based error estimator, while the NURBS parameterization of the geometry remains

unchanged. The main results are summarized below:

• This work serves as a proof of concept of GIFT, introduced in [15]. The approach enables

to relax tight coupling between the geometry and solution bases in standard IGA, i.e. the

requirement of iso-parametric approximation. In [15], GIFT was applied to problems of heat

conduction and linear elasticity, in [18] - to time-harmonic acoustics, where it was shown
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that NURBS geometry and PHT-splines as solution basis yield optimal convergence rate and

lead to computational savings in comparison with NURBS-based IGA and PHT-splines based

IGA. Computational savings are associated with avoiding geometry refinement and utilizing

adaptive local refinement of the solution. All features of GIFT reported earlier, are observed

in the present work in the framework of Kirchhoff-Love plate theory. Moreover, it is shown

that the solution approximation can be further enriched to accommodate a crack.

• Numerical results in terms of stress intensity factors, natural frequencies and L2 and H2-errors

are compared with analytical solutions and data, obtained by other methods, and shown to

be highly accurate.

• Numerical results are compared with X–IGA with NURBS of different continuity and it is

shown that the basis of lower continuity yields lower error per degree of freedom. Moreover,

X–GIFT is estimated to be about 1.5 faster than X–IGA with C1-continuity due to avoiding

geometry refinement.

• The proposed recovery-based error estimator is based on the energy norm for the Kirchhoff-

Love plate. This error estimator drives adaptive refinement towards the crack-face and crack

tips, improving the overall convergence rate of the solution and accuracy of the fracture

parameters evaluation.

• Adaptive refinement also allows computing vibration modes with fewer DOFs compared to a

uniform refinement. Various strategies are discussed for enrichment, refinement, and compu-

tation of SIFs and J-integrals.
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Table A.8: Geometry Information for the circular geometry
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Table A.9: Geometry Information for the annular geometry
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