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Abstract

In this paper an algorithm for multicamera pedestrian detection is proposed. The first

stage of this work is based on the probabilistic occupancy map framework, in which

the ground plane is discretized into a grid and the likelihood of pedestrian presence at

each location is estimated by comparing a rectangle, of the average size of the pedestri-

ans standing there, with the foreground silhouettes in all camera views. In the second

stage, where we borrowed the idea from the Quine-McCluskey method for logic func-

tion minimization, essential candidates are initially identified, each of which covers at

least a significant part of the foreground that is not covered by the other candidates.

Then non-essential candidates are selected to cover the remaining foregrounds by fol-

lowing an iterative process, which alternates between merging redundant candidates

and finding emerging essential candidates. Experiments on benchmark video dataset-

s have demonstrated the improved performance of this algorithm in comparison with

some benchmark non-deep or deep multicamera/monocular algorithms for pedestrian

detection.

Keywords: pedestrian detection, multicamera, homography, logic minimization,

video surveillance

∗Corresponding Author: Ming Xu
Email address: ming.xu@xjtlu.edu.cn (Ming Xu)

Preprint submitted to Journal of LATEX Templates August 26, 2020

*Manuscript
Click here to view linked References

http://ees.elsevier.com/pr/viewRCResults.aspx?pdf=1&docID=56289&rev=1&fileID=1528567&msid={689C2323-B6BA-41AA-B9EE-FB75010F8B61}


1. Introduction

Pedestrian detection is an active research area in computer vision and pattern recog-

nition. It has a variety of applications in video surveillance, autonomous driving, sport

video analysis, etc. It is also the foundation of many video processing tasks such

as pedestrian tracking, re-identification and behaviour recognition. Since pedestrians5

may be occluded by each other in a camera view, multiple cameras can be deployed to

provide complementary information about the moving targets, which makes detection

more robust and accurate.

When working with multiple camera views, homography has been widely used for

the association and fusion of multi-camera observations. In early works the measure-10

ments, features or tracks were extracted in individual camera views and then integrated

to obtain the global estimates, which makes this approach vulnerable to dynamic oc-

clusion and grouping [1] [2]. For example, Hu et al. [2] projected the principal axis

of each pedestrian from one camera view to another and selected the intersection of

every two correlated principal axes as the pedestrian location. However, it is not triv-15

ial to reliably extract such axes, when pedestrians occlude each other or are in groups

in a single view. A good solution to this problem is that the individual cameras no

longer extract features but transmit foreground bitmaps to the fusion centre. There

are two benchmark works in this trend. Khan and Shah [3] projected the foreground

likelihoods, from individual camera views, to a reference view by using ground-plane20

homographies and identified the heavily overlapped regions as the potential locations

of pedestrians, which is referred to as a bottom-up approach. Fleuret et al. [4] dis-

cretized the ground plane into a grid and modelled each pedestrian as a rectangle of

the average size of pedestrians standing at a location. Then a Probabilistic Occupancy

Map (POM) is calculated by seeking evidence from the foreground silhouettes in all25

camera views, which is referred to as a top-down approach.

Although both methods add robustness to pedestrian detection, many false posi-

tives may be generated. In Khan and Shah’s method [3], the foreground projections of

different pedestrians, each from a different camera view, may falsely intersect in the

reference view, which gives rise to phantoms. In the POM method [4], the locations30
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which are close to pedestrians may have high occupancy probabilities, even if they do

not contain a pedestrian. Therefore, developing techniques to eliminate phantoms has

become a challenging task.

In this paper an algorithm is proposed for multiview pedestrian detection, which is

based on the POM framework [4]. In this algorithm, the ground plane is discretized into35

a grid and the joint occupancy likelihood at each location is calculated by taking into

account a template matching response and the head/foot observability. The pedestrian

candidates with low likelihoods are filtered out. At the second stage, each foreground

region is decomposed into sub-regions according to the overlapping relationship of

the surviving candidate boxes associated with that foreground region. Then a prime40

candidate chart is developed to select the essential candidates, each of which covers

at least a foreground sub-region that is not covered by the other candidates. These

essential candidates are identified as pedestrians. Afterwards non-essential candidates

are selected to cover the remaining foreground sub-regions by following a repeated

process, which alternates between merging redundant candidates and finding emerging45

“essential” candidates.

The contributions of this paper are threefold: (1) this paper reports the first work

of using logic minimization method in multi-camera pedestrian detection. It greatly

reduces the search space for an optimized solution and avoids the iterative POM com-

putation, at each frame, as in [4], which is an advantage for real-time video surveillance50

applications; (2) In the calculation of the POM, not only the contribution of foreground

pixels but also that of background pixels are considered, which improves the localiza-

tion of pedestrian candidates in a crowd; (3) The head and foot likelihoods are involved

in the POM, which can discriminate occluded pedestrians from phantoms more robust-

ly.55

The rest of this paper is organized as follows: In Section 2, the related work is

reviewed. In Section 3, the estimation of the homographies for parallel planes is in-

troduced. In Section 4, the occupancy likelihood map over the grid is described. The

joint occupancy likelihood at each location is defined in Section 5. The global opti-

mization of multiview pedestrian detection is described in Section 6. Section 7 details60

our experiment results. Finally conclusions are presented in Section 8.
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2. Related work

Significant research has been undertaken to prune phantoms in multicamera pedes-

trian detection. Existing methods usually resort to temporal coherence, geometric con-

straints and/or colour cues. The temporal approach copes with phantoms in the tracking65

process. Since it is noted that phantoms appear from nowhere and are often unsteadi-

ly detected, the temporal coherence of each foreground intersection region is checked

over some time [5] [6]. If a candidate cannot survive over that time period, then it is

classified as a phantom. Liem and Gavrila [5] proposed that an object can only enter a

scene from the border of the FOV; those initially detected in the middle of the FOV are70

phantoms. Similar tracking processes were carried out in [4] [3].

The geometric approach is based on the different heights and sizes of foreground

intersection regions for phantoms and people. Khan and Shah [3] extended their early

work by projecting the foreground likelihoods to a reference view with the homogra-

phies of a set of parallel planes and calculating across-plane foreground intersections.75

This approach can reduce the number of phantoms. Liu et al. [7] proposed an accelerat-

ed implementation of Khan’s method by discretizing the ground plane and foreground

regions. Eshel and Moses [8] used cameras looking downwards and found that when

the viewing rays of two cameras intersect behind a pedestrian, the phantoms are lower

than the pedestrian in 3D space. By limiting pedestrians’ heights within a range, they80

could remove many, but not all, phantoms.

The colour approach is built on the assumption that the intersecting foreground

regions from multiple views are correlated in their colours if they correspond to the

same object. Eshel and Moses [8] applied the pixelwise intensity correlation between

aligned frames in a reference view to remove phantoms. However, this method is85

vulnerable to the occlusion between pedestrians.

Multiview pedestrian detection is sometimes thought of as an optimization prob-

lem. Fleuret et al. [4] calculated a probabilistic occupancy map (POM) in the ground

plane which is discretized into a grid. Each pedestrian is modelled as a rectangle of

the average size of pedestrians standing at a location. Then an iterative algorithm is90

utilized to find the optimal rectangles which cover more foreground pixels and less
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background pixels in both camera views. Ge et al. [9] proposed a generative sampling-

based approach that models each pedestrian as an upright cylinder. Iterative Gibbs

sampling is used to estimate the number and the locations of pedestrians in a crowd.

Similar to [9], Utasi and Benedek [10] extended the classical Bayesian Marked Point95

Process (MPP) model to a 3DMPP model which utilizes the pixel-level features from

pedestrians’ heads and feet, instead of the whole silhouettes, to reduce the number of

phantoms. Alahi et al. [11] modelled pedestrian detection as a linear inverse problem

which is regularized by using a sparse binary occupancy vector. The occupancy vec-

tor is generated by the presence of pedestrians on each location of the grid . Then an100

iterative process was undertaken to find the optimal occupancy vector which contains

the minimum number of non-zero elements and fits the multiview silhouettes. Peng

et al. [12] proposed Multiview Bayesian Networks (MvBN) to prune phantoms in the

frameowrk of the probabilistic occupancy map. They analyzed the occlusion relation-

ship among rectangle models to identify phantoms using a Bayesian network. Yan et105

al. [13] started with a bottom-up approach to find pedestrian candidates and then used

the Quine-McCluskey method based on occupancy likelihoods to identify pedestrians.

In recent years, with the emerging deep learning techniques, pedestrian detection is

sometimes thought of as a recognition problem. In this approach, very accurate pedes-

trian models are trained over large-scale annotated datasets, and deep convolutional110

neural networks (CNN) have been found to be well suited to monocular pedestrian de-

tection [14] [15] [16] and models of body parts are used in handling occlusions [17].

However, this approach is not so robust in the detection of occluded pedestrians and

cannot provide the correct foot locations of partly occluded pedestrians. On the other

hand, when such an approach is applied in multi-camera scenarios, there has been lim-115

ited success to train a complete multiview processing model. Instead, most of existing

applications depend on monocular CNN pedestrian detectors and then integrate the es-

timates from multiple camera views. For example, Xu et al. [18] used Faster RCNN

to detect pedestrians in each view and inferred the ground-plane locations by cluster-

ing the 2D-location projections; Baque et al. [19] used a CNN to extract a body-part120

feature map from each view and inferred the 3D locations by minimizing the differ-

ence between a generative model and these feature maps; Zhang et al. [20] developed a
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DeepPlayer model to identify players and their jersey IDs in each view, and then used

the POM method to determine the location and ID of each player. This may be caused

by the lack of large-scale multi-camera datasets which are annotated [21]. Therefore,125

the great potential of the deep leaning technique has not been fully revealed in multi-

view pedestrian detection.

This paper is a significantly extended and improved work based on our previous

work [13] in the following five aspects: (1) the bottom-up approach to finding pedes-

trian candidates is replaced by a top-down approach, which brings about robustness in130

coping with crowded scenarios and convenience in using more than two cameras; (2)

the region-based POM calculation is replaced by a pixel-based method, which is more

robust in coping with broken foregrounds; (3) the foreground ratios in the POM are

replaced by template matching responses, which improves the localization of pedes-

trian candidates; (4) the summary of the optimization algorithm is replaced by a full135

algorithm; (5) an extensive performance evaluation and comparisons were carried out.

3. Homography Estimation

Planar homography is the relationship between a pair of captured images of the

same plane, from two camera views. Let p and p′ be the image coordinates of a point

on such a plane in the two views. They are associated by the 3× 3 homography matrix140

H as p̃′ ∼= Hp̃, where ∼= denotes the equivalence defined up to scale and the vectors

with a tilde represent their homogeneous coordinates.

For a calibrated camera, a 3 × 4 projection matrix can be calculated using the

intrinsic and extrinsic parameters: M = [m1,m2,m3,m4]. Then the homography

matrix, between camera view c and the top view, for the ground plane is as follows:145

Ht,c
0 = (Hc,t

0 )−1 = [m1,m2,m4] . (1)

The homography, between camera view c and the top view, for the plane parallel to

the ground plane and at a height of h is as follows:

Ht,c
h = [m1,m2, hm3 +m4] = Ht,c

0 + [0|hm3] , (2)

where [0] is a 3× 2 zero matrix [22].
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4. Occupancy Likelihood Maps

In this research background subtraction is used for the foreground extraction in150

each camera view. After connected component analysis, the foreground pixels are

transformed into a foreground region map F c ∈ {0, 1}W×H for camera view c, where

W ×H is the image resolution, C is the number of cameras and c ∈ [1, C].

The goal of this approach is to detect a priori unknown number of pedestrians,

from the binary foreground silhouettes in multiple camera views, at a single frame.155

The ground plane is discretized into a grid and each discrete location is considered as

the potential location of a pedestrian. Therefore, the objective of this approach is trans-

formed to deducing the locations, occupied by pedestrians, which generate foreground

silhouettes in multiple camera views. The resolution of the grid is selected by a tradeoff

between the accuracy and computational cost.160

Suppose the area of interest on the ground is discretized into a grid of G location-

s. The i-th location (i ∈ [1, G]) in the top view is associated with its corresponding

location (uci , v
c
i ) in camera view c through the ground-plane homography Ht,c

0 . Fig. 1

shows the grid of locations in two camera views and the top view. By using the ho-

mography Ht,c
ha

for the plane at the average height ha of pedestrians, the i-th location165

in the top view is mapped to the top of the head of a pedestrian, standing at (uci , v
c
i )

and of average height, in camera view c. Therefore, the average height Hc
i and width

W c
i = αHc

i of the pedestrian standing at the i-th location of camera view c can be

obtained. Then the foreground silhouette of any pedestrian appearing at the i-th loca-

tion of camera view c can be approximated by a filled rectangle of the average height170

Hc
i and width W c

i at that location [4], as shown in Fig. 1. The rectangle pedestrian

model is similar to the stixels [23] which are rectangular sticks standing vertically on

the ground. However, the stixels are a medium-level representation between pixels and

objects, while our rectangle model is at the object level.

SupposeRc
i ∈ {0, 1}W×H is the synthetic binary image obtained by putting a filled

rectangle rci , of height Hc
i and width W c

i , at the i-th location of an empty background

image for camera view c. That is, Rc
i (u, v) = 1 if u ∈ [uci −W c

i /2, u
c
i +W c

i /2] and

v ∈ [vci , v
c
i +H

c
i − 1]; Rc

i (u, v) = 0 otherwise. The foreground pixels contained in Rc
i
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Figure 1: The discretized ground plane: a group of rectangles, which are of the average size of the pedestrians

standing there, in two camera views and a top view.

are represented by Ac
i ∈ {0, 1}W×H defined as follows:

Ac
i = F c ⊗Rc

i , (3)

where ⊗ denotes pixelwise multiplication, as shown in Fig. 2(a).175

Let Li ∈ {0, 1} be the event that a pedestrian is located at the i-th location. Given

foreground observations A1
i , A

2
i , . . . , A

C
i at the i-th location of multiple camera views,

we are interested in finding the posterior probability of event Li occurring. The only

observations used in this work are the foregrounds extracted from the multiple camera

views. Colour appearance models or motion models for encoding temporal coherence180

are not used.

Using Bayes law,

P (Li|A1
i , A

2
i , . . . , A

C
i ) ∝ P (A1

i , A
2
i , . . . , A

C
i |Li)P (Li) . (4)

By conditional independence, we can rewrite the likelihood of making observations

A1
i , A

2
i , . . . , A

C
i , given event Li occurring as:

P (A1
i , A

2
i , . . . , A

C
i |Li) = P (A1

i |Li)P (A
2
i |Li) . . . P (A

C
i |Li) . (5)

At a single frame, since there is no prior knowledge about the pedestrian presence,185

a uniform distribution is assumed for P (Li) over the G locations. Therefore, we have:

P (Li|A1
i , A

2
i , . . . , A

C
i ) ∝

∏C

c=1
P (Ac

i |Li) . (6)

5. Joint Occupancy Likelihoods

At the i-th location of each camera view (say camera view c), three independent

observations are derived, from the foreground pixels Ac
i within the rectangle rci , to
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measure how the foreground pixel distribution in the rectangle resembles the silhouette190

of a pedestrian. The three observations are the template matching response tci , the foot

position f ci and the head position hci .

By considering the conditional independence between the three measurements on

the foregrounds, we have:

P (Ac
i |Li) = P (tci , d

c
i , h

c
i |Li) = P (tci |Li)P (f

c
i |Li)P (h

c
i |Li) . (7)

5.1. Template Matching Responses195

The most intuitive way to select pedestrian candidates is based on the foreground

ratio within each rectangle rci , which seems consistent with the research objective of

using the minimum number of pedestrian models (rectangles) to interpret all the ob-

served foreground silhouettes [4] [13]. However, such a method may output a high

foreground ratio in the rectangles which are lodged between side-by-side or crowded200

pedestrians, as it ignores the foreground pixel distribution within each rectangle and is

equivalent to using a all-one template for matching.

Since the foreground pixels of a pedestrian are often distributed along the vertical

central axis of the rectangle [12] and they are further surrounded by background pix-

els on the two sides of the rectangle, a ridge-like template is designed for pedestrian205

matching, in which not only the foreground pixels close to the vertical central axis but

also the background pixels far from the central axis are rewarded.

The ridge-like template, for the i-th location of camera view c, is of the same size

of the rectangle rci . It does not vary with vertical coordinates but has a ridge-like profile

in horizontal direction as shown in Fig. 2(b) and as defined as:210

T c
i (u
′) = 1− 3|u′|/W c

i , (8)

where u′ ∈ [−W c
i /2,W

c
i /2]. The positive part of the template is used to reward the

foreground pixels close to the central axis of the template, while the negative part is

used to reward the background pixels at the borders. There are two zero-crossings

at u′ = ±W c
i /3(= ±W c

i /2 × 2/3), which are the expected borders between the

foreground and background pixels of a pedestrian.215
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(a) (b) (c)

Figure 2: Template matching: (a) foreground pixels within a candidate box, (b) 1D template, and (c) vertical

projection histogram of foreground pixels.

Since the 2D template varies with horizontal coordinates only, a fast implementa-

tion of the template matching is used by calculating the vertical projection histogram

of the foreground pixels within rectangle rci and then multiplying the histogram with

the 1D template T c
i (u
′). The vertical projection histogram is defined as:

hist(u′) =
∑Hc

i−1

v=0
Ac

i (u
c
i + u′, v) , (9)

where u′ ∈ [−W c
i /2,W

c
i /2], as shown in Fig. 2(c). Since Ac

i (u, v) ∈ {0, 1}, one220

has hist(u′) ∈ [0, Hc
i ]. To avoid repeated calculation and to further accelerate this

process, the histogram is calculated from a precomputed integral image [24] based on

foreground region map F c.

The template matching response at the i-th location in camera view c is as follows:

tci =
∑W c

i /2

u′=−W c
i /2

[hist(u′)−Hc
i /2]× T c

i (u
′) , (10)

where the subtraction within the square brackets shifts the hist(u′) values from [0, Hc
i ]225

to [−Hc
i /2, H

c
i /2] so that the locations dominated by background pixels have negative

values. The template matching has the maximum response when Ac
i (u, v) = 1 for

|u−uci | ∈ [0,W c
i /3], v− vci ∈ [0, Hc

i − 1] and Ac
i (u, v) = 0 otherwise (see Fig. 2(a)).

That is, the central part of the template is covered by foreground pixels and the border
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part is covered by background pixels. The maximum value is:230

tci,max =
∑W c

i /2

u′=−W c
i /2

(Hc
i /2)× |T c

i (u
′)| . (11)

The template matching has the minimum response when Ac
i (u, v) = 1 for |u − uci | ∈

[W c
i /3,W

c
i /2], v − vci ∈ [0, Hc

i − 1] and Ac
i (u, v) = 0 otherwise (Fig. 2(a)). That is,

the central part of the template is covered by background pixels and the border part is

covered by foreground pixels. The minimum value is:

tci,min = −tci,max . (12)

Therefore, the likelihood for the template matching response is defined as the normal-235

ized response:

P (tci |Li) =
tci − tci,min

tci,max − tci,min

=
tci + tci,max

2tci,max

. (13)

Since tci ∈ [−tci,max, t
c
i,max], we have P (tci |Li) ∈ [0, 1].

Fig. 3 shows a comparison between the foreground ratios and the template matching

responses, which are obtained by shifting a human sized rectangle from left to right,

on the given foreground silhouettes. The local maxima of the foreground ratios are240

located between two pedestrians (Fig. 3(c)(d)), while those of the template matching

responses are aligned with the heads of these pedestrians. If such a rectangle only

contains background pixels, the template matching response is not at its minimum

value. The minimum value occurs at the two sides of each group of pedestrians, where

background pixels are in the centre of the rectangle and foreground pixels are at the245

borders.

5.2. Foot and Head Positions

If a pedestrian is located at the i-th location, his/her foreground silhouette should

be enclosed well in the rectangle rci in camera view c: the feet are expected to be at the

bottom of the rectangle and the top of head is expected to be at the top of the rectangle.250

However, due to the measurement errors in foreground extraction and the variation of

pedestrians’ heights, the observations of the vertical positions of the feet and head,
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(a) (b)

(c) (d)

Figure 3: A comparison of foreground ratios and template matching responses: (a)(b) foreground silhouettes

and (c)(d) the comparison.

within the rectangle rci , are Gaussian distributed:

f ci ∼ N(vci , (βfH
c
i )

2) (14)

hci ∼ N(vci +Hc
i , (βhH

c
i )

2) , (15)

where the standard deviations are defined in proportion to the average height Hc
i of

the pedestrians at the i-th location in camera view c, and βf , βh ∈ (0, 1). The head255

and feet correspond to the highest and lowest foregrounds in rectangle rci , respectively,

as shown in Fig. 4(a)(b). Their vertical positions are extracted by using horizontal

projection histograms in the rectangle and a width filter.

Such extracted feet are actually the ones closest to the bottom of the candidate box,

since the foregrounds at higher locations in the candidate box are the potential foot po-260

sition of the pedestrian who is standing at the i-th location but hidden behind the others

(see Fig. 4(c)). Therefore, suppose the tail probability on the Gaussian distribution is

denoted by QG(x) =
∫∞
x
pG(t)dt, where pG(t) is the probability density function for

12



(a) (b) (c) (d)

Figure 4: (a)(b) Schematic diagrams of the foot measurement fc
i and head measurement hc

i within a candi-

date box, (c) fc
i from someone in front of candidate i, and (d) hc

i from someone behind candidate i.

N(0, 1), the likelihood for such a foot observation can be expressed as:

P (f ci |Li) = QG

(
f ci − vci
βfHc

i

)
. (16)

Similarly, the extracted head position, as above, is actually the one closest to the265

top of the candidate box, since the foregrounds at lower locations in the candidate box

are the potential head position of the pedestrian who is standing at the i-th location

but is in front of the others (see Fig. 4(d)). The likelihood for the head observation is

expressed as:

P (hci |Li) = QG

(
vci +Hc

i − hci
βhHc

i

)
. (17)

In this implementation, the foot and head likelihoods are doubled so as to change their270

ranges from [0, 0.5] to [0, 1]; the value of function QG is interpolated from a look-up

table (LUT).

5.3. Information Fusion across Multiple Views

Suppose V c
i ∈ {0, 1} denotes if the i-th location is within the FOV of camera c.

V c
i = 1 if this is true. If V c

i = 0, then P (Ac
i |Li) is set to 1. The number of the cameras,275

which cover the i-th location, is CV
i =

∑C
c=1 V

c
i . The joint occupancy likelihood over

C camera views is calculated as follows:

P (Li|A1
i , A

2
i , . . . , A

C
i ) ∝

(∏C

c=1
P (Ac

i |Li)

)1/CV
i

. (18)

13



A Repulsive Spatial Sparsity (RSS) constraint [11] is applied to suppress those

locations which are not the global maximum in a local area of radius ε.

6. A Logic Minimization Approach280

6.1. Prime Candidate Charts

The joint occupancy likelihood is derived separately for each pedestrian candidate.

To encode the interactivity such as occlusion and grouping between pedestrians, global

optimization is carried out for the multiview pedestrian detection [13]. We borrowed

the idea from the Quine-McCluskey (QM) method [25] which has been used for the285

minimization of Boolean functions. The tabular form of this method makes it readily

implemented by a computer programme.

To facilitate the use of the Quine-McCluskey (QM) method, each foreground re-

gion is decomposed into sub-regions according to the overlapping relationship of all

the candidate boxes associated with that foreground region [13]. The foreground de-290

composition must make each sub-region as large as possible while ensuring that there

is no transition on the overlapping candidate boxes inside the sub-region. Each sub-

region must be big enough and contain a significant portion of foreground pixels (see

an example in Fig. 5(a)).

Suppose there are N pedestrian candidates surviving in the occupancy likelihood295

filtering. The filled rectangles of these candidates are summed up in an image Bc ∈

[0, 2N − 1]W×H , with weights in powers of 2, in each camera view (say camera c):

Bc =
∑N−1

i=0 (2i ×Rc
(i)), where the subscript (i) in parentheses is used to differentiate

it from the original index of the G locations and represents the index of the N candi-

date boxes. Since each sub-region is the overlap of a specific combination of candidate300

boxes, it has a unique decimal code in Bc. Such a code corresponds to a N -bit binary

code, in which the rightmost bit is bit-0 (the least significant bit). A one in bit-i indi-

cates this sub-region is covered by candidate box i, where i ∈ [0, N − 1]; otherwise,

bit-i is zero (see Fig. 5(b)). By scanning imageBc along with F c, two histograms with

N bins are generated. Each bin reports the pixel number and foreground pixel number305

14



(a)

SUB-REGION A B C D E F G

CANDIDATES 1 1,2 2 0,1,2 0,1 0,2 0

BINARY CODE 010 110 100 111 011 101 001

DECIMAL CODE 2 6 4 7 3 5 1

(b)

CANDIDATE A B C D E F

0 + + + X X X

1 o X X + X X +

2 o + X X X + X

(c)

CANDIDATE A B C D E F

0 + + + + + +

1 o + + + + + +

2 o + + + + + +

(d)

Figure 5: (a) Decomposition of a foreground region into sub-regions, (b) the information of the sub-regions,

(c) the prime candidate chart with two essential candidates identified, and (d) the chart after the essential

candidates are removed. An X indicates that the sub-region is covered by a candidate; otherwise, a plus sign

is placed. The identified pedestrians are labelled with circles.

in a sub-region, respectively. Then the sub-regions, which are too small or have very

low foreground ratios, e.g. sub-region G, are filtered out, .

A prime candidate chart is introduced to select a minimum set of pedestrian can-

didates to cover all the foreground sub-regions of interest, which is similar to a prime

implicant chart in the Quine-McCluskey method for finding the minimum set of prime310

implicants to cover all of the minterms. In the prime candidate chart (see Fig. 5(c)), the

foreground sub-regions in all the camera views are listed across the top of the chart, and

the pedestrian candidates are listed down the left hand side. If a pedestrian candidate

box covers a given sub-region, an X is placed at the intersection of the corresponding

row and column; otherwise, a plus sign is placed at the intersection. It is noted that315

each column exactly matches the binary code of the corresponding sub-region, if that

column is read from bottom to top, X’s are replaced by 1 and plus signs are replaced

by 0.
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6.2. Updating of A Prime Candidate Chart

The prime candidate chart is updated by using the QM Algorithm, where its func-320

tions are defined in Algorithm 1 and its main body is described in Algorithm 2. The

inputs to this algorithm are the original prime candidate chart and a list of joint occu-

pancy likelihoods for all the candidates. The output is a prime candidate chart with

the roles of all the candidates assigned. As shown in Algorithm 1, function FIND-

ESSENTIAL is used to identify essential candidates, each of which covers at least a325

foreground sub-region that is not covered by other candidates. If a given column in the

prime candidate chart contains only one X, the corresponding candidate is identified as

an essential candidate and labelled as a pedestrian. The X’s in the same row and in the

columns which correspond to the sub-regions covered by this candidate are removed.

Function MERGE is used to merge redundant X’s, which aims to use a minimum set of330

candidates to cover all the sub-regions. If there is any candidate with its sub-regions

fully contained in another candidate, then the contained candidate is removed. If t-

wo candidates cover exactly the same sub-regions, which may happen after the X’s

removal, the one with a lower joint occupancy likelihood is removed.

The updating procedure of a prime candidate chart is divided into three steps, as335

shown in Algorithm 2. Although this algorithm seems somewhat lengthy, it usually ter-

minates after step 1. The remaining steps are designed to cope with the more compli-

cated scenarios which rarely occur. Step 1 is used to find essential candidates which are

then labelled with ‘PEDESTRIAN’. The X’s in the corresponding row and columns are

removed afterwards. If there are no X’s left in the chart, then the algorithm terminates.340

Step 2 is used to merge redundant candidates, each of which is contained by another

candidate or covers the same sub-regions as another candidate. Such candidates are not

initially redundant but may become redundant when some of their sub-regions are also

covered by essential candidates and are removed with the essential candidates. With

the redundant candidates removed, it may leave a single X in some columns, then the345

corresponding candidates become essential candidates and are labelled with ‘PEDES-

TRIAN’. After their corresponding rows and columns are removed, some candidates

may become redundant. Then an iterative process is run between functions MERGE

and FINDESSENTIAL until no redundant candidates can be found. If there are still X’s
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Algorithm 1: Function definition of the QM alogorithm

1 Function FINDESSENTIAL(Q,STATUS)

2 % Q: a prime candidate chart; STATUS: assigned role

3 for each column (sub-region) in Q do

4 if it contains only one X then

5 The candidate is labelled as STATUS;

6 The X’s in this row are removed;

7 The X’s in the columns covered by this candidate are removed;

8 return Q

9 Function MERGE(Q,P)

10 % Q: a prime candidate chart;

11 % P: a list of joint occupancy likelihoods

12 Flag=FALSE

13 for each row (candidate) in Q do

14 if its X’s are the same as another row then

15 The X’s for the candidate with a lower P value are removed;

Flag=TRUE;

16 else if its X’s are contained by another row then

17 The X’s in this row are removed; Flag=TRUE;

18 return [Q,Flag]
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in the chart at this stage, these X’s must be in a cyclic form. That is, each remaining350

column has more than one X and no row is contained in another row. In this case, step

3 is used to find alternative solutions on a trial basis.

In step 3, a column with the least number (non-zero) of X’s is selected. Then an

X in this column is selected as a trial row and the other X’s in the same column are

temporarily removed in a cloned chart. Accordingly, the candidate which covers the s-355

elected X becomes an essential candidate. This is followed by a process similar to steps

1 and 2. The essential candidates identified in this process are labelled with ‘TRIAL’.

Then the next X in the same column is selected as a trial row and the same process is

carried out in another cloned chart, which leads to another set of ‘TRIAL’ candidates.

This process is repeated until each of the X’s in the selected column has been tested as360

a trial row. Finally, the set of ‘TRIAL’ candidates with the maximum joint occupancy

likelihoods are accepted. The chart is updated according to the corresponding cloned

chart and the ‘TRIAL’ candidates are labelled with ‘PEDESTRIAN’.

An example of the use of the QM algorithm is shown in Fig. 5(c). There is a single

X in columns A and C. Candidate 1, the candidate for cell 1A (row 1 and column A),365

is labelled with a circle for ‘PEDESTRIAN’ in the STATUS column. Row 1 is then

removed by replacing all the X’s with plus signs. The columns covered by candidate

1, that is columns A, B, D and E, are also removed. Similarly, candidate 2 is labelled

as ‘PEDESTRIAN’ due to cell 2C. Row 2, columns B, C, D and F are then removed.

These lead to the chart as shown in Fig. 5(d), in which no X’s are left and the algorithm370

terminates.

The second example is more challenging and goes through all three steps of the

QM Algorithm, as shown in Fig. 6. The original prime candidate chart is shown in

Fig. 6(a), in which candidate 0 is identified as an essential candidate and labelled with

‘PEDESTRIAN’ due to cell 0A. Fig. 6(b) is the chart after the removal of row 0 and375

columns A and B. There are no redundant candidates at this stage. The remaining X’s

are in cyclic form and each of the remaining columns contains two X’s. The first re-

maining column C is selected for the trial. It contains two X’s at 1C and 4C. Therefore,

two cloned charts are made. In the first cloned chart as shown in Fig. 6(b), candidate 1

is considered as a trial row and labelled with an asterisk for ‘TRIAL’. Then row 1 and380
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Algorithm 2: The update of a prime candidate chart
Input : A prime candidate chart Q, a list of joint occupancy likelihoods P

Output: The prime candidate chart Q with assigned status for each candidate

1 Q=FINDESSENTIAL(Q,‘PEDESTRIAN’); // 1 essentializing

2 if no X’s are left in Q then

3 return Q

4 repeat

5 [Q,Flag]=MERGE(Q,P); // 2 merging

6 Q=FINDESSENTIAL(Q,‘PEDESTRIAN’);

7 until Flag==FALSE

8 while there are X’s in Q do

9 for all the columns that still contain X’s do

10 Find a column with the minimum number of X’s; // 3 grouping

11 for each of the X’s in the selected column do

12 Q’=Q;

13 The other X’s in the same column in Q’ is removed;

14 Q’=FINDESSENTIAL(Q’,‘TRIAL’);

15 repeat

16 [Q’,Flag]=MERGE(Q’,P);

17 Q’=FINDESSENTIAL(Q’,‘TRIAL’);

18 until Flag==FALSE

19 Backup Q’;

20 Multiply the P values for all ‘TRIAL’ candidates;

21 for all the X’s in the selected column do

22 Select the X with the maximum product of P values;

23 Q=Q’; Replace ‘TRIAL’ with ‘PEDESTRIAN’;

24 return Q;
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columns C and F, covered by candidate 1, are removed, which leads to Fig. 6(c). Since

candidates 2 and 4 are contained by candidate 3, the MERGE function gives rise to

Fig. 6(d). As there is a single X’s in columns D and E, candidate 3 becomes an essen-

tial candidate labelled with ‘TRIAL’. In the second cloned chart as shown in Fig. 6(e),

candidate 4 is considered as a trial row and labelled with ‘TRIAL’. Then row 4 and385

columns C and D, covered by candidate 4, are removed, which leads to Fig. 6(f). Since

candidates 1 and 3 are contained by candidate 2, the MERGE function gives rise to

Fig. 6(g). As there is a single X’s in columns E and F, candidate 2 becomes an essential

candidate labelled with ‘TRIAL’. Therefore, there are two alternative solutions from

the trials. One is candidates 1 and 3 labelled with ‘TRIAL’. The other is candidates 2390

and 4. Suppose the joint occupancy likelihood for the first set of ‘TRIAL’ candidates is

higher, then candidates 1 and 3 are accepted and the first cloned chart is used to update

the prime candidate chart, as shown in Fig. 6(h).

7. Experimental Results

7.1. Experiment Setup395

To evaluate the proposed algorithm, a number of experiments were performed on

three benchmark datasets, which are the PETS2009 City Centre (CC) dataset [26], the

S2L1 dataset [26] and the EPFL Terrace dataset [27].

The PETS2009 City Center (CC) dataset was captured in an outdoor environment

and contains 8 camera views. Each camera view has 795 frames. An area-of-interest400

(AOI) of size 12.2 m×14.9 m was used in the experiments. The challenge of this

dataset is the static occlusions in C1 and the inaccurate calibration of C5-C8. The

PETS2009 S2L1 dataset comes from the same cameras as those in the CC dataset

except C2.

The EPFL Terrace dataset is a challenging benchmark dataset which contains 4405

eye-level camera views in a small space on a terrace. The video sequence has 5000

frames. An AOI was defined as a 5.3 m×5.0 m rectangle. The challenge of this dataset

is the heavy occlusion between pedestrians and the poor foreground detection due to

the automatic white balance of the cameras.
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Figure 6: The updating of a prime candidate chart: (a) the original chart with essential candidate 0 being

identified, (b) cloned chart 1 with candidate 1 being selected as a trial row, (c) cloned chart 1 with candidates

2 and 4 being contained by candidate 3, (d) cloned chart 1 with candidate 3 becoming an essential candidate,

(e) cloned chart 2 with candidate 4 being selected as a trial row, (f) cloned chart 2 with candidates 1 and 3

being contained by candidate 2, (g) cloned chart 2 with candidate 2 becoming an essential candidate, and (h)

cloned chart 1 is used to update the prime candidate chart due to its higher joint occupancy likelihood.
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In the experiments on the PETS2009 CC and S2L1 datasets, the Gaussian mixture410

model was used for the foreground extraction in each camera view. The first 395 frames

were used to generate the background model, and the remaining 400 frames were used

to evaluate the performance of the proposed algorithm. The same range of frames

were used for the test in [10] [12] due to the content discontinuity at frame 395. The

parameters were set as follows: ha = 170 cm, hw = 120 cm, α = 0.40, βf = 0.25,415

βh = 0.25 and ε = 40 cm.

In the experiments on the EPFL Terrace dataset, due to the automatic white balance

of the cameras, pedestrians close to a camera can significantly change the lightness

of the camera view. To cope with this problem, SuBSENSE [28] was used to extract

foregrounds, which is a pixelwise segmentation method based on spatiotemporal binary420

features as well as colours. The parameters were set as follows: ha = 200 cm, hw =

120 cm, α = 0.35, βf = 0.10, βh = 0.40 and ε = 24 cm. ha was set at a larger value,

since the pedestrians in this dataset are obviously higher than those in the CC dataset.

7.2. Qualitative Performance Evaluation

Fig. 7 shows the detection results at frame 465 of the PETS2009 CC dataset, where425

Figs. 7(a) and 7(b) are the two camera views and Fig. 7(c) is a synthetic top view. This

frame was selected as a simple example in which occlusion occurs in C2 only. The

borderlines of the overlapping fields of view are shown as black dashed lines. The

candidate boxes with their bottoms outside the overlapping FOVs were excluded in the

detection. The area of interest (AOI) is represented by a red quadrangle. Only the can-430

didates with their bottoms within the AOI were involved in a quantitative performance

evaluation. The camera positions labelled in the top view are approximated ones, since

they may go beyond the top view image. The contour of each foreground region is

shown in green. Each candidate box, along with its ID number, is represented in a dis-

tinguished colour. The colour code is defined at the bottom of the two camera views.435

In the two camera views, an identified pedestrian is enclosed by a solid box, while a

phantom is enclosed by a box of dashed lines. In the top view, an identified pedestrian

is labeled with a disk, while a phantom is labeled with a circle.

Fig. 7(d) shows the joint occupancy likelihoods for the pedestrian candidates at
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(d) (e) (f) (g) (h)

Figure 7: The detection results at frame 465 of the PETS2009 CC dataset: (a)(b) views C1 and C2, in which

a pedestrian is in a solid box and a phantom is in a dashed-line box, (c) a synthetic top view, in which a

pedestrian is labeled with a disk and a phantom is labeled with a circle, (d) the joint occupancy likelihoods,

(e) the original prime candidate chart, (f) the chart after step 1, (g) the chart after step 2, and (h) the final

results.

frame 465. Down the left-hand side are the pedestrian candidates. 1F and 2F are the440

likelihoods P (ti|Li) in C1 and C2, 1T and 2T are the likelihoods P (hi|Li), 1B and

2B are the likelihood P (fi|Li), and ‘JL’ is the joint occupancy likelihood. In Fig. 7(a),

pedestrian candidate 2, which is represented in brown, has a bottom lower than the bot-

tom of its associated foreground region in both camera views and is therefore penalised

by the low 1B (0.776) and 2B (0.681) values; Candidate 5, which is represented in blue,445

has a predicted top much higher than the top of its associated foregrounds in both cam-

era views and is therefore penalised by very low 1T (0.654) and 2T (0.046) values -

if this happens, it must correspond to a very short person; Candidate 1, represented in

yellow, fits well to its associated foregrounds in both camera views and therefore has a

higher joint occupancy likelihood.450

Figs. 7(e)-(h) show the prime candidate charts at frame 465. Down the left-hand

side of the charts is the list of pedestrian candidates (I0-I5). If a candidate is identified

as a pedestrian, then it is labeled with a circle. At the top of each chart are the camera

indices. Each column corresponds to a sub-region. The corresponding area for each

sub-region can be found, in Figs. 7(a) and 7(b), by overlapping the candidate boxes455
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which have an X at the intersection with that sub-region in Fig. 7(e). Fig. 7(e) is the

original chart. Fig. 7(f) is the chart after step 1 when essential candidates are identified

and removed. Fig. 7(g) is the chart after step 2 by merging redundant candidates 2, 3

and 5 into candidate 4, which leaves candidate 4 as an emerging essential candidate. In

Fig. 7(h), candidates 0, 1 and 4 are correctly identified as pedestrians without resorting460

to step 3. Although I4 has a lower occupancy likelihood than I2 (phantom), it is still

identified as a pedestrian; otherwise, the bottom of the foreground region associated

with I4 in C2 cannot be interpreted.

Fig. 8 shows the detection results at frame 739 of the PETS2009 CC dataset. This

frame was selected because the proposed algorithm had to go through all three steps in465

the prime candidate chart. Fig. 8(e) is the original prime candidate chart. Fig. 8(f) is the

chart after step 1 by removing essential candidates 0, 1, 3, 4, 5 and 8. Fig. 8(g) is the

chart after step 2 by removing redundant candidates 9, 10 and 12. The remaining X’s in

the chart are in cyclic form. Therefore, the first remaining column is selected for trial.

Two cloned charts are made. In the first cloned chart, shown in Fig. 8(h), candidate 6470

is selected as a trial row. The relevant row I6 and three columns are removed. The two

contained candidates 7 and 11 are merged into candidate 2. This leaves candidate 2 as

an emerging essential candidate, as shown in Fig. 8(i). In the second cloned chart as

shown in Fig. 8(j), candidate 7 is selected as a trial row. The two contained candidates 2

and 6 are merged into candidate 11. This leaves candidate 11 as an emerging essential475

candidate. as shown in Fig. 8(k). As the product of the joint occupancy likelihoods for

candidates 2 and 6 is higher than that for candidates 7 and 11, the first cloned chart is

accepted to update the prime candidate chart, as shown in Fig. 8(l).

Fig. 9(a) shows the detection results at frame 719 of the PETS2009 CC dataset with

three camera views. This frame was selected because an eye-level camera view (C5)480

was added. In camera view C5, due to the poor calibration, the pedestrian associated

with candidate 1 has a top of head well above the candidate box. However, there is

no additional candidate box to enclose the foregrounds for his head, because such a

candidate, if it exists, corresponds to someone standing behind him but there is no

foreground evidence for such a pedestrian in the other camera views. Fig. 9(b) is the485

detection results at frame 706 on the PETS2009 S2L1 dataset with four camera views.
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Figure 8: The detection results at frame 739 of the PETS2009 CC dataset: (a)(b) views C1 and C2, (c) the

synthetic top view, (d) the joint occupancy likelihoods, (e) the original prime candidate chart, (f) after step

1, (g) after step 2, (h) cloned chart 1 when I6 is a trial row, (i) cloned chart 1 when I2 becomes essential, (j)

cloned chart 2 when I7 is a trial row, (k) cloned chart 2 when I11 becomes essential, and (l) the final result.

Figure 9: (a) (top) The results at frame 719 of the PETS2009 CC dataset: views C1, C2, C5 and a top view.

(b) (bottom) The results at frame 706 on the PETS2009 S2L1 dataset: views C1, C5, C6, C8 and a top view.

25



Figure 10: (a) (top) The results at frame 2350 of the EPFL Terrace dataset: views C0, C1 and a top view. (b)

(bottom) The results at the same frame: views C0, C1, C2 and a top view.

Fig. 10(a) shows the detection results at frame 2350 of the EPFL Terrace dataset

with two camera views. This frame was selected because there is a missed detection

due to insufficient observations. Candidate 6, represented in magenta, is a real pedes-

trian but was recognised as a phantom. This pedestrian is hidden behind others and490

is in the same line of sight with another two pedestrians in both camera views. It is

rather difficult to identity him by human observation. Candidate 6 has a high occupan-

cy likelihood but is not identified as a pedestrian, because it does not uniquely cover

any part of foregrounds. When more cameras were used, the problem of insufficient

observations can be solved. Fig. 10(b) shows the detection results at the same frame495

with three camera views, in which this pedestrian (candidate 8 in light green) is cor-

rectly detected. He is completely observed by camera C2 and uniquely covers a part of

the foreground.

Fig. 11(a) shows the detection results at frame 1475 of the EPFL Terrace dataset

with 4 camera views. With the increased number of cameras, the number of phantoms500

decreases in the overlapping field of view of the four cameras. All the phantoms in

this example are in the areas which are only covered by two cameras. Candidate 9,

which is a pedestrian, is merged with other pedestrians in all the camera views but is

correctly detected. Fig. 11(b) shows the detection results at frame 1925 with 4 camera

views. The foreground detection is very poor in three of the four camera views, due505

to the colour similarity between the foregrounds and backgrounds. However, all the

pedestrians are still detected, given the redundancy of the foreground observations from

multiple views.
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Figure 11: (a) (top) The results at frame 1475 of the EPFL Terrace dataset: views C0, C1, C2, C3 and a top

view. (b) (bottom) The results at frame 1925 of the same dataset: views C0, C1, C2, C3 and a top view.

7.3. Quantitative Performance Evaluation

For a performance evaluation and a comparison with benchmark multicamera de-510

tection algorithms, five metrics were used: MDR (missed detection rate), FDR (false

detection rate), TER (total error rate), PRECISION and RECALL. Suppose GT , TP ,

FP and FN are the numbers of ground-truth pedestrians, true positives, false positives

and false negatives, respectively, whereGT = TP+FN . We haveMDR = FN/GT ,

FDR = FP/GT , TER = MDR + FDR, PRECISION = TP/(TP + FP ),515

and RECALL = TP/GT . A lower value in MDR, FDR and TER, or a larger value

in PRECISION and RECALL, indicates better performance. MDR, PRECISION and

RECALL values are less than or equal to 1, but FDR and TER may exceed 1 in case

of many false positives. The evaluation and comparison were based on the PETS2009

CC dataset, PETS2009 S2L1 dataset and EPFL Terrace dataset. These video datasets,520

as well as the five performance metrics, were selected because they are widely used in

the evaluation of existing algorithms for multiview pedestrian detection [10] [12].

Since the ground truth data of the PETS2009 datasets are not publicly available,

they were created by ourselves and are available at [29]. Those of the EPFL Ter-

race dataset were obtained from [27]. Both record the pedestrians’ locations on the525

ground plane. When the proposed algorithm was compared with other multicamera

algorithms, the ground plane distance r = 0.5m was used as the threshold for each

detection and its matched ground-truth pedestrian. When the proposed algorithm was

compared with deep-learning monocular algorithms, the locations of all the detections
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and ground-truth pedestrians were warped to each camera view by putting rectangles530

at the corresponding locations. The height and width of each rectnangle are based on

the average size of the pedestrians standing at that location. The rectangle overlap

ratio IoU = 0.5 [30] was used as the threshold for each detection and its matched

ground-truth pedestrian.

Our performance evaluation results were compared with those of some benchmark535

non-deep multicamera algorithms POM [4], 3DMPP [10], MvBN [12], Khan’s [3] and

Ge and Collins’s [9]. The tracking components in these algorithms were removed. In

our evaluation of Khan’s method, five parallel planes evenly distributed across the av-

erage height of pedestrians were used and the threshold for multi-layered foreground

intersections was set to four layers. For the other algorithms, since the implementation540

code is not available, we used their own evaluation results based on the same camera

views. These algorithms were compared in the five performance metrics, as shown in

Table 1, where C is the number of the camera views used and ‘Eval.’ indicates who

made the evaluation. For those which were evaluated in PRECISION and RECALL on-

ly, such as MvBN [12] and the deep learning ones later, their MDR and FDR data were545

retrieved from their PRECISION and RECALL values. For the 3DMPP method [10],

when more than one detection were matched to the same ground truth pedestrian, one

detection was thought of as a TP and the others were thought of as FPs. The data in

bold are the best results in the same comparison. A down (up) arrow indicates that a

lower (higher) value corresponds to a better performance. As shown in Table 1, our550

algorithm outperforms the other algorithms in terms of TER, MDR and RECALL on

these datasets; It competes with the MvBN and 3DMPP methods for the best performer

in FDR and PRECISION. It is noted that the TER of our algorithm, on the EPFL Ter-

race dataset, tends to decrease whenever an additional camera view is added. However,

this is not true for the PETS2009 dataset due to the poor calibration of cameras C5-C8.555

The proposed algorithm was also compared with some deep multicamera detection

algorithms such as RCNN-2D/3D [18], POM-CNN [19] and Deep Occlusion [19]. In

addition to the five performance metrics, MODA and MODP [30] were added into the

performance evaluation. To give a fair comparison and expose the efficiency of the QM

algorithm, the background subtraction for foreground detection in the QM algorithm560
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Table 1: Performance comparison with non-deep multicamera detection algorithms (r = 0.5m)

PETS2009 CC dataset

C Method Eval. MDR↓ FDR↓ TER↓ Precision↑ Recall↑

2

Khan Ours 0.091 0.286 0.377 0.761 0.909

POM [10] N/A N/A 0.267 N/A N/A

3DMPP [10] N/A N/A 0.309 N/A N/A

MvBN [12] 0.10 0.03 0.13 0.97 0.90

QM Ours 0.045 0.027 0.072 0.973 0.955

3

POM [10] 0.073 0.179 0.252 0.837 0.927

3DMPP [10] 0.096 0.026 0.122 0.972 0.904

QM Ours 0.030 0.022 0.052 0.978 0.970

PETS2009 S2L1 dataset

4

POM [12] 0.30 0.07 0.37 0.91 0.70

Ge [9] [21] 0.11 0.16 0.27 0.85 0.89

MvBN [12] 0.05 0.06 0.11 0.94 0.95

QM Ours 0.042 0.013 0.055 0.987 0.958

EPFL Terrace dataset

2

POM [10] N/A N/A 0.845 N/A N/A

3DMPP [10] N/A N/A 0.370 N/A N/A

MvBN [12] 0.19 0.05 0.24 0.94 0.81

QM Ours 0.120 0.098 0.218 0.900 0.880

3

POM [10] 0.331 0.355 0.686 0.653 0.669

3DMPP [10] 0.083 0.048 0.131 0.950 0.917

QM Ours 0.037 0.062 0.099 0.935 0.939

4 QM Ours 0.034 0.037 0.071 0.964 0.966

was replaced by deep-learning based DeepLab algorithm [31], which is called QM +

DeepLab. The performance evaluation is based on ground-plane distance threshold

r = 0.5m. The comparison results are shown in Table 2. QM + DeepLab and QM

algorithms are obviously much better than the three deep multicamera algorithms in all

the seven performance metrics. QM + Deeplab algorithm further outperforms the QM565

due to the improved quality of the foreground detection by using DeepLab.

To illustrate the benefits of using multiple cameras, the proposed algorithm was fur-

ther compared with some state-of-the-art, deep-learning based algorithms for monocu-
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Table 2: Performance comparison with deep multicamera detection algorithms (r = 0.5m)

EPFL Terrace dataset with 4 cameras

Method Eval. MDR↓ FDR↓ TER↓ Precision↑ Recall↑ MODA↑ MODP↑

RCNN-2D/3D [19] 0.50 0.61 1.11 0.39 0.50 −0.11 0.28

POM-CNN [19] 0.22 0.20 0.42 0.80 0.78 0.58 0.46

Deep Occlusion [19] 0.18 0.11 0.29 0.88 0.82 0.71 0.48

QM ours 0.034 0.037 0.071 0.96 0.97 0.93 0.79

QM+DeepLab ours 0.020 0.023 0.043 0.98 0.98 0.96 0.79

Table 3: Performance comparision with deep monocular detection algorithms (IoU = 0.5)

EPFL Terrace dataset with 4 cameras

Method Eval. MDR↓ FDR↓ TER↓ Precision↑ Recall↑ MODA↑ MODP↑

Faster RCNN ours 0.30 0.03 0.33 0.95 0.70 0.67 0.74

Mask RCNN ours 0.19 0.04 0.23 0.95 0.81 0.77 0.73

YOLOv3 ours 0.20 0.04 0.24 0.96 0.80 0.77 0.72

QM ours 0.043 0.062 0.105 0.94 0.96 0.90 0.80

QM+DeepLab ours 0.023 0.062 0.085 0.94 0.98 0.92 0.80

lar pedestrian detection, such as Faster RCNN [14], Mask RCNN [15] and YOLOv3 [32].

The performance evaluation is based on the threshold IoU = 0.5 in each camera view570

and then taking the average across all camera views. The pedestrians who are outside

the AOI region or the FOV of a camera view were excluded in the performance eval-

uation in that camera view. The comparison results are shown in Table 3. The QM

+ DeepLab and QM algorithms are much better than the three deep monocular algo-

rithms in terms of MDR, TER, RECALL, MODA and MODP. The missed detections575

in the monocular algorithms are usually caused by partial occlusion. The proposed

algorithms also have similar performance with the deep monocular algorithms in FDR

and PRECISION.

In the proposed algorithm, there are two crucial parameters. One is the average

height of pedestrians ha. The other is the grid resolution g. These two parameters were580

validated by using the PETS2009 CC dataset and Terrace dataset with two camera

views, as shown in Fig. 12. In the PETS2009 CC dataset, when ha = 160 cm to 180
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(a) (b)

Figure 12: Parameter validation on the average height ha and grid resolution g: (a) PETS2009 CC dataset

and (b) EPFL Terrace dataset.

cm and g = 5 cm to 20 cm, the TER is lower than 0.115 and its minimum value 0.072

is detected at ha = 170 cm and g = 5 cm. In the Terrace dataset, when ha = 190 cm

to 200 cm and g = 3 cm to 15 cm, the TER is lower than 0.261 and its minimum value585

0.218 is detected at ha = 200 cm and g = 6 cm.

To investigate the efficiency of the proposed algorithm, the number of steps in the

prime candidate chart at each frame was counted. In the PETS2009 CC dataset with

two views, the algorithm terminated after steps 1, 2 and 3 in 89%, 7% and 4% of the

frames, respectively. In the EPFL Terrace dataset with four views, these are 61%, 39%590

and 0% of the frames. The speed of the proposed algorithm was also tested by using a

PC with an Intel i5 4-core CPU running at 3.20 GHz. The results are shown in Table 4.

The execution time for running the proposed algorithm is made up of three main part-

s: foreground extraction (GMM/SuBSENCE/DeepLab), probabilistic occupancy maps

(POM) and the QM algorithm. Only the POM part is influenced by the grid resolution595

and its computation is very efficient by using the integral images [24]. The time for

the Terrace dataset is much longer than that for the CC dataset, since the foreground

regions in the Terrace dataset are much larger. The time for the QM algorithm is ne-

glectable. In our experiments, all the deep learning methods were implemented on

GPUs. We have tested the speed of DeepLab using a NVIDIA RTX 2080S GPU. The600

foreground extraction time for the Terrace dataset with 2 camera views is 244 ms per

frame, which makes the QM + DeepLab algorithm running at a frame rate of 4 fps.

31



Table 4: Speed evaluation of the proposed algorithms.

PETS2009 CC dataset (two camera views)

Grid Resolution (cm) 5 10 15 20 25 30

(1) GMM (ms) 35 35 36 35 34 35

(2) POM (ms) 37 12 6 5 5 4

(3) QM (ms) 5 6 5 5 6 5

Total Time/Frame (ms) 77 53 47 45 45 44

FPS 13.0 18.9 21.3 22.2 22.2 22.7

EPFL Terrace dataset (two camera views)

Grid Resolution (cm) 3 6 9 12 15 18

(1) SuBSENCE (ms) 95 94 95 93 93 94

(2) POM (ms) 166 43 22 14 10 8

(3) QM (ms) 1 2 1 2 1 1

Total Time/Frame (ms) 262 139 118 109 104 103

FPS 3.8 7.2 8.5 9.2 9.6 9.7

8. Conclusions

We have proposed the use of the QM algorithm for multiview pedestrian detec-

tion. Its improved performance has been demonstrated in comparison with benchmark605

non-deep or deep multicamera/monocular algorithms in this field. This algorithm is

iteratively switched between finding essential candidates and finding redundant candi-

dates, in which the match score (the joint occupancy likelihood) does not play a central

role. This is in contrast to traditional data association schemes too reliant on match

scores and thus greatly reduces the search space for an optimized solution. It is worth610

mentioning that this algorithm only starts with the binary foreground silhouettes at a s-

ingle frame. If temporal and colour information is incorporated, its performance can be

further improved. Future work includes the use of the QM algorithm for multicamera

object tracking and deep multicamera pedestrian detectors.
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