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Abstract
This paper develops a supply chain (SC) model by integrating raw material order-
ing and production planning, and production capacity decisions based upon two 
case studies in manufacturing firms. Multiple types of uncertainties are considered; 
including: time-related uncertainty (that exists in lead-time and delay) and quantity-
related uncertainty (that exists in information and material flows). The SC model 
consists of several sub-models, which are first formulated mathematically. Simula-
tion (simulation-based stochastic approximation) and genetic algorithm tools are 
then developed to evaluate several non-parameterised strategies and optimise two 
parameterised strategies. Experiments are conducted to contrast these strategies, 
quantify their relative performance, and illustrate the value of information and the 
impact of uncertainties. These case studies provide useful insights into understand-
ing to what degree the integrated planning model including production capacity 
decisions could benefit economically in different scenarios, which types of data 
should be shared, and how these data could be utilised to achieve a better SC sys-
tem. This study provides insights for small and middle-sized firm management to 
make better decisions regarding production capacity issues with respect to external 
uncertainty and/or disruptions; e.g. trade wars and pandemics.
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1 Introduction

In the Supply Chain (SC) context, a wide range of decisions could influence Sup-
ply Chain Performance (SCP); e.g. management of material inputs and outputs, 
production and transport planning, coordination among SC facilities, demand 
forecasting, and information management. To establish a fully collaborative deci-
sion-making mechanism that benefits the whole SC, as well as each member is a 
complex and challenging process. Managing Raw Materials (RMs) ordering and 
production planning ensures companies having required materials to build or pro-
duce a product with lower cost (cost is accrued at the point of acquisition and is 
listed as a current asset on a company’s balance sheet). Production capacity limits 
the income when the product is in high demand, but increases the potential cost 
during times of low demand. Integrated decisions are especially complicated and 
difficult when the SC faces disruption (e.g. trade war or natural disaster). Thus, it 
is important to use best practice for managing RM inventory and production with 
an integrated consideration of production capacity.

The majority of SCs involve physical products, often at their core, and face a 
variety of uncertainties. Those uncertainties include: (1) Uncertainty related to 
the focal company, i.e., internal organisation uncertainty e.g. product characteris-
tics, manufacturing process and control, and decision complexity (2) Uncertainty 
that is within the realm of control of the focal company or its SC partners, and 
(3) External uncertainties from factors outside the SC, which are outside a com-
pany’s direct span of control (Simangunsong et al. 2012).

It is difficult for companies to manage SC uncertainty; especially small and 
mid-sized companies. These firms lack expertise in the context of trade wars (e.g. 
China versus USA) and natural disasters (e.g. Covid-19 pandemic). Consequently, 
their SCs are more vulnerable. However, these companies contribute to the SCs 
of large companies. Problems for SMEs not only negatively impact the economy, 
but also the large companies that rely on them as partners.

To address uncertainty issues in SC networks, is complicated due to the sub-
stantial number of combinations of uncertainties. However, real case studies pro-
vide deeper insights into those impacts. In fact, the production planning process 
in uncertain situations has been considered in a variety of contexts (e.g. Mula 
et al. 2006; Liu et al. 2011; Huang et al. 2014; Mardan et al. 2015; Jeon and Kim 
2016; Govindan and Cheng 2018; Zhao and You 2019). Production capacity has 
been studied in terms of SC planning, constraints (Chen and Xiao 2015), rela-
tion to SC risks (Jain and Hazra, 2017) and location and capacity (De Rosa et al. 
2014). However, production capacity is a possible issue or risk when SCs face 
disruption (Hariharan et al. 2020).

This paper models the integrated planning and control for dynamic mate-
rial flows. This includes RM ordering and Finished Goods (FG) production in 
the presence of multiple types of uncertainties that exist in the processes of: RM 
procurement and delivery, FG production and remanufacturing, shipment distri-
bution, and customer demand arrivals. The production capacity decision is also 
considered and optimised along with integrated RM ordering and production 
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decisions. The study supports SC decision-making in three ways: (1) Managing 
of material procurement and production is a key component of the SC decision-
making framework; (2) Production capacity decisions relating to SC disruptions 
(e.g. trade war and pandemics) provides insights to managers facing similar 
issues; (3) The model considers actual case studies and quantifies the benefits of 
integrated planning in various uncertain conditions; (4) Uncertainties include the 
dimensions of (a) time (e.g. lead-time and delay) and (b) quantity (e.g. demand, 
order, supply, defects that occur in information and material flows). Thereby pro-
viding a better understanding of to what degree integrated planning offers eco-
nomic benefits in different scenarios. The cases offer insights into which specific 
types of data should be shared and how these data could be utilised to achieve an 
integrated SC system.

The paper is organised as follows: Sect. 2 provides a literature review of produc-
tion and inventory management models in uncertain situations. Section 3 develops 
a SC model based on the two case studies through mapping the SCs and identify-
ing and classifying the existing uncertainties in each SC. Section 4 presents a math-
ematical model for describing and managing the SC. Section 5 discusses the model 
solution and offers practical strategies. A Stochastic approximation algorithm and a 
Genetic Algorithm (GA) are developed to optimise some of the parameterised strat-
egies. In Sect. 6, experiments are performed on one of the companies to quantify 
and compare the strategies including the company’s original strategy in a range of 
scenarios. Finally, Conclusions are offered.

2  Literature review

Uncertainty is an inherent characteristic of most SCs. SC uncertainty includes: late 
delivery, damage and loss, product demand, inaccurate order information, order 
cancellations, exchange rates, transportation times, market pricing, operation yield 
uncertainty, production lead time, quality uncertainty, machine breakdowns, human 
error, absenteeism, and changes to product structure (Davis 1993; Mula et al. 2006; 
Blackhurst et al. 2007; Snyder et al. 2016; Yue and You 2016). Micro-level uncer-
tainty, Meso-level uncertainty and Macro-level uncertainty are discussed by Flynn 
et al. (2016). Uncertainty may be classified into two broad categories: lead time and 
quantity.

The literature on modelling production and inventory management in uncertain 
situations is rich. Mula et  al. (2006) review the literature for production planning 
models under uncertainty. Their focus is on mid-term tactical models for real-world 
applications. They classify models into four categories: conceptual, analytical, artifi-
cial intelligence-based, and simulation. ManMohan and Christopher (2009) provide 
a survey on modelling SC planning under demand uncertainty using stochastic pro-
gramming. Govindan and Cheng (2018) edited a special issue to address SC plan-
ning problems (such as sustainability assessment, risk mitigation, vendor selection, 
and SC coordination) in various uncertain situations focusing on applications of sto-
chastic programming and robust optimisation techniques.
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For optimal dynamic control policies in production and inventory systems under 
uncertainty, many researchers consider multi-stage systems with stochastic demand 
and deterministic lead-time; e.g.: Clark and Scarf (1960), Chen and Zheng (1994), 
Chen (2000), Chao and Zhou (2009), Fattahi et al. (2018) and Zhang et al. (2019). 
Bassok and Akella (1991) consider the optimal production level and order quan-
tity problem under supply quality and demand uncertainty. When two or more types 
of uncertainty (mainly demand and lead-time uncertainties) are modelled, the opti-
mal production control and inventory replenishment policies are often investigated 
within a single-stage (Song and Zipkin 1996), two-stage (Berman and Kim 2001; 
He et al. 2002; Yang 2004), or three-stage system (Song and Dinwoodie 2008; Song 
2009; 2013). Quality and demand uncertainty are considered for joint procurement 
and production decisions in a hybrid remanufacturing system (Mukhopadhyay and 
Ma 2009). Uncertainty on demand, manufacturing and sales-effort cost are consid-
ered by Chen et al. (2017). Haji et al. (2011) focus on the optimisation of a specific 
type of control policies in a two-level inventory system with uncertain demand and 
lead-time. Dillon et al. (2017) study a two-stage stochastic programming model for 
inventory management in the blood SC. The optimal base-stock policy is obtained 
by analysing the steady-state distributions of the system. Jamalnia and Feili (2013) 
apply a hybrid discrete event simulation and system dynamics method to simulate 
aggregate production planning that is able to handle uncertainties in demand, sup-
ply, and production. Hammami et  al. (2014) develop a scenario-based stochastic 
model for supplier selection and purchased quantity decision under uncertain cur-
rency exchange rates and price discounts. Bi-objective optimisation for multiple-
stage SCs with the consideration of international and domestic market has been con-
sidered (Roe et al. 2015). Pasandideh et al. (2015) focus on bi-objective optimisation 
of a multi-product multi-period three-echelon supply-chain-network with stochastic 
demand, production time, and set-up time. Gholamian et al. (2015) consider multi-
product multi-site production planning in a SC with demand uncertainty. Mardan 
et  al. (2015) present an integrated emergency ordering and production planning 
model for multi-item, multi-product production planning with demand and supply 
uncertainty. Modak and Kelle (2019) examine inventory management in the con-
text of a dual-channel (retail and online) SC under price and delivery-time depend-
ent stochastic customer demand. Shafiq and Savino (2019) focus on a manufactur-
er’s capacity procurement decisions with demand and RM procurement lead time 
uncertainty.

Production capacity has been considered recently in relation to: (1) optimal order 
quantity and production capacity in centralised and decentralised settings (Glock 
et  al. 2020), (2) multi-echelon SC model involving different production/storage 
capacities, bio-refineries technologies, and transportation modes (Gilani and Sahebi 
2020), (3) product replenishment orders and production capacity in a two-stage sto-
chastic approach study (Ben Abid et al. 2020), and (4) production capacity as a con-
straint in SC modelling (Arasteh 2020).

Modelling techniques used in the SC risk literature include: stochastic dynamic 
programming (Clark and Scarf 1960; Song and Zipkin 1996; Chen 2000; Berman 
and Kim 2001; He et al. 2002,2019; Yang 2004; Song and Dinwoodie 2008; Chao 
and Zhou 2009; Song 2009, 2013; Quddus, Chowdhury et  al. 2018; Salehi et  al. 
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2019), steady state distribution (Chen and Zheng 1994; Haji et  al. 2011), convex 
programming with Lagrange multiplier (Bassok and Akella 1991), probability anal-
ysis with first-order condition (Mukhopadhyay and Ma 2009) simulation-based opti-
misation (Song 2013; Roe et al. 2015), hybrid simulation (Jamalnia and Feili 2013), 
mixed integer scenario-based stochastic programming (Hammami et al. 2014), sto-
chastic mixed integer linear programming (Pasandideh et al. 2015), multi-objective 
mixed-integer non-linear programming (Gholamian et al. 2015), two-stage decision-
making (Mardan et  al. 2015), Mixed Integer Non-Linear Programming (MINLP) 
(Keyvanshokooh et al. 2016; Yue and You 2016; Mousavi et al. 2019). The use of 
dynamic programming for seeking optimal dynamic control policies is appropriate 
because the underlying systems are less complicated and analytically tractable. For 
more complex systems, with many products and multiple uncertainties, the analyti-
cal approach is intractable and is often replaced with artificial intelligence and sim-
ulation-based methods (Mula et al. 2006; Song 2013) . Snyder et al. (2016) discuss 
common modelling approaches. Govindan et al. (2017) summarise the existing opti-
misation techniques for dealing with uncertainty such as recourse-based stochastic 
programming, risk-averse stochastic programming, robust optimisation, and fuzzy 
mathematical programming—mathematical modelling and solution approaches.

Further concerns about SC disruption (Bode and Wagner 2015; Chopra and 
Sodhi 2004; Christopher and Lee 2004; Craighead et  al. 2007; Dixit et  al. 2020; 
Dolgui et  al. 2018; Fahimnia et  al. 2015; Heckmann et  al. 2015; Hendricks and 
Singhal 2005; Kleindorfer and Saad 2005; Li and Zobel 2020; Manuj and Mentzer 
2008; Snyder et  al. 2016; Tang 2006; Tomlin 2006) have been raised. Production 
capacity is one of the risks. Studies on integrated ordering, production, and produc-
tion capacity decisions are rare; especially on actual cases. There is also a lack of 
consideration of the integrated operational processes between functional SC mem-
bers (e.g. supplier, manufacturer, warehousing, transportation, and customer) in the 
presence of multiple uncertainties. This paper contributes by considering: (1) How 
to model SC operations with multiple uncertainties from a systems perspective (con-
sidering all behaviours, interactions and relationships in the system); and (2) How 
in the face of multiple uncertainties to improve decisions on integrated production 
and RM ordering, and production capacity. This paper extends earlier work (Roe 
et al. 2015) by focusing on the application of SC modelling to: (1) SCs for small 
and medium sized firms; (2) provide simpler and more effective decision making; 
(3) assist companies operating within a domestic marketplace in the face of external 
disruptions (trade wars, natural disasters and pandemics); (4) evaluated and optimise 
integrated RM ordering, production, and production capacity; and (5) the use of two 
separate optimisation methods on decision variables. Table 1 compares this study 
with other relevant literature in terms of research scopes and methods.

3  Model development from case studies

Two medium-sized manufacturers in China are considered. These companies are 
representative as their SCs include multiple functions and entities: multiple sup-
pliers, manufacturing, private warehouses, transportation companies, and many 
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customers. Case company A is an aluminum producer with 900 employees located 
in Shandong province in China. They produce four alloys of aluminum (A199.90, 
A199.85, A199.70A and A199.70) sold domestically in China. Three of the RMs 
are purchased competitively from a group of suppliers. The fourth major input is 
electrical power sole sourced and supplied continuously. Therefore, only three main 
RM suppliers need to be considered. Case company B is chemical producer with 
150 employees located in Jiangxi province in China. This sino-foreign joint-venture 
produces fine chemicals, pharmaceutical intermediates, pesticide intermediates 
and dye intermediates. It had annual sales of 10 million pounds sterling the year 
data was supplied (2010). In summary, the Cases involve 3 main Suppliers with FG 
supplying many other companies. Case B’s SC is more complicated due to special 
requirements on RM storage and transportation.

The SC structure in the two companies are similar in terms functional activities, 
information and material flows and associated uncertainties. However, the scale 
and scope of uncertainties differ. Primary data has been collected through multiple 
methods; including: group and individual interviews and non-participative observa-
tion. Due to confidentiality, the data was exported directly from the case companies’ 
ERP system for the period from end of 2009 and early 2010. The delay in release of 
data was deemed necessary due to the competitive nature of the business. In sum-
mary, both cases involve manufacturers with multiple final products and multiple 
main RMs with multiple suppliers for each RM. A generalised and simplified SC 
model of information and material flows for the two cases is shown in Fig. 1.

The SC model consists of two major processes: (1) RM ordering and transporta-
tion, and (2) FG production, transportation and customer fulfilment. RM ordering 
and transportation includes the following 13 activities:

a. Manufacturer shares the production plan with RM warehouse
b. RM warehouse reports the RM on-hand inventory information to manufacturer
c. RM warehouse places order to suppliers
d. Supplier provides feedback on inventory availability to RM warehouse
e. Supplier contacts RM transport company to arrange transfer
f. Transport company confirms the transfer requirements with suppliers
g. Supplier provides transfer information to RM warehouse
h. RM transport company picks up RM from supplier

Fig. 1  Generalised SC model of information and material flows-based on the two cases. ( Adapted from 
Roe et al. 2015, p. 88)
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i. RM transport company ships RM to RM warehouse
j. RM warehouse confirms receipt to supplier and makes payment for RM received
k. RM warehouse updates inventory and delivers RM to manufacturer
l. Manufacturer produces FG
m. Manufacturer transfers FG to FG warehouse

The second process (FG production, transportation and satisfying customer demand) 
includes the following nine activities:

A. Customer places order to manufacturer
B. Manufacturer receives order and applies internal checking
C. Manufacturer shares customer order information with FG warehouse
D. FG warehouse reports inventory information to manufacturer
E. FG warehouse contacts FG transport company to arrange transfer
F. Transport company confirms transfer requirements with FG warehouse
G. Transport company picks up FG from FG warehouse
H. Transport company transfers FG to customer
I. Customer confirms receipt and makes payment to manufacturer

The above activities can be further categorised into four sub-models: (1) Customer 
Order (A, B, C); (2) Manufacturing/Production (a, k, l, m); (3) RM Ordering and 
Transportation (b, c, d, e, f, g, h, i, j); and (4) FG Customer Fulfilment with Trans-
portation (D, E, F, G, H, I) model.

3.1  Uncertainties in the SC

The SC system is subject to various uncertainties. Sub-Model I (customer order) 
involves quantity uncertainty in customer demand, representing the unpredictable 
nature of external markets. Other inherent uncertainties are: contracted delivery 
date, order lead-time, order quantity errors, lead-time of delayed orders (correction 
of errors in initial orders). Uncertainty ranges vary substantially for the two case 
companies. For example, the upper bound of customer order information lead-time 
is around 14 days for Company A and 7 days for company B.

Sub-Model II (manufacturing) uncertainties are related to material flow. While 
internal information processes may influence performance, internal information 
uncertainty is addressed as part of production lead-time. Both bounds of production 
lead-time are impacted by labour working time. Company management information 
systems (ERP) may be incompatible with the existing production control system and 
or incompatible with the management information systems of SC partners resulting 
in information and production uncertainty. Low labour skills influence product qual-
ity. Defective products require remanufacture. Remanufacturing lead-time is subject 
to production plan, production capacity and relevant RM availability—leading to 
further uncertainty. These uncertainties impact both companies. Finally, FG transfer 
may be delayed due to FG availability or communication errors.
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Sub-Model III (RMs) experiences uncertainty in information flow. Uncertainty 
is a function of the characteristics of the RM and the supplier relationship. In both 
cases, the main RM order is placed by email or telephone with suppliers. While the 
focal firms have ERP systems with supplier management function, suppliers usually 
remain unintegrated. However, Chinese business culture with its industry-oriented 
professional organisations builds informal relationships that improve SC relation-
ships. Uncertainty occurs in material flows due to inventory availability, transporta-
tion capacity, and traffic congestion. Due to special requirements for transporting 
chemicals, the lead-time and delay uncertainties are higher for company B.

Sub-Model IV (FGs) uncertainties relate to transportation (similar to Sub-Model 
III). FG availability depends on FG inventory and the production plan. Customer 
requirements in FG quality, packaging, and delivery may also cause delays.

In summary, the sources of uncertainties are: (1) information flow, (2) material 
flow, and (3) customer demand. The uncertainties, they can be classified into three 
groups: lead-time, quantity, and delay. Table 2 summarises the nature of the uncer-
tainties in the four sub-models.

3.2  SCM challenges for case companies

There are two main operational modes: (1) Normal mode—domestic and export, and 
(2) Domestic focus. While acting as a global supplier is the normal mode of opera-
tion, at certain times demand and accessibility of foreign markets decline. For exam-
ple, during times of partner (US/China trade war) or global (pandemic) tension.

The main decisions are: placing RM orders to suppliers and determining produc-
tion quantity for effective customer fulfilment. These decisions are complex due to 
the many SC uncertainties (Table 2). Furthermore, any plan to increase ordering of 
RMs and produce more FGs to improve service levels and avoid backordering, could 
significantly increase inventory costs. The challenge to management is in determin-
ing the most appropriate trade-off.

More recently global trade tension (e.g. between the US and China), present the 
case companies’ SCs to face decisions on whether to withdraw from foreign markets 
due to mounting cost. Differences in standards and manufacturing processes between 
domestic and export markets impact production capacity considerations. That is, 
capacity for different markets is not directly interchangeable. Both case companies 
are increasingly focusing on their domestic market. The Covid-19 pandemic is a 
contributor to this shift in attention. As both companies are based in China, the lock-
down initiation and relaxation is out of step with foreign customers. This results in a 
significant decline in international orders with an unknown recovery timeline. Con-
sequently, a new focus on only the domestic marketplace. Hence, a sudden urgency 
to re-evaluate the impact of decisions regarding RM procurement, production and 
production capacity on companies at a time of uncertainty and financial stress. With 
the increasing discussion of the need for domestic production independence for an 
increasing range of products, modelling the associated costs is increasingly impor-
tant to an increasing number of firms in an increasing number of counties.
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4  Mathematic modelling

Mathematical models representing the four sub-models and the associated uncer-
tainties are now provided. Roe et al. (2015) provided a comprehensive formula-
tion for both domestic and international SC under various uncertainties. However, 
Roe et al. (2015) focused only on operational decisions of RM ordering and pro-
duction quantity. This study examines the domestic SC only, but considers two 
planning levels of decisions: tactical (production capacity) and operational (mate-
rial ordering and production quantity) decisions. For consistency, the notation in 
Roe et al. (2015) are followed as closely as possible.

Input parameters, state variables and intermediary variables 

T: the number of planning time periods;
xo(t), xi(t): the on-hand inventory of FG or RM i at period t;
ri: the amount of RM i required to produce one unit of FG;
lc(t): the information lead-time of customer placing an order (from customer 
releasing the order to manufacturer receiving the order) at period t;
lc

d(t): the lead-time of handling delayed customer orders at period t;
li

p(t): the (information) lead-time of placing an order of RM i from manufac-
turer to supplier at period t;
li

s(t): the (physical) lead-time of shipping RM i from supplier to RM ware-
house at period t;
li(t): the sum of li

p(t) and li
s(t);

li
d(t): the lead-time of processing delayed procurement of RM i at period t;

lo(t): the production lead-time of manufacturer producing FG at period t;
lo

d(t): the lead-time of handling defective products at period t so that they can 
be reworked afterwards;
lo

p(t): the (information) lead-time of arranging shipping FG from the FG ware-
house to the customer;
lo

s(t): the (physical) lead-time of shipping the FG from the FG warehouse to 
transport company then finally arriving at the customer;
ls(t): the sum of lo

s(t) and lo
p(t), i.e. the total lead-time of shipping FGs from 

the FG warehouse to the customer at period t;
ls

d(t): the lead-time of processing delayed shipments at period t so that they 
can be shipped afterwards;
sl(t): the contracted lead-time of manufacturer satisfying the customer order at 
period t;
ξd(t): the random variable representing the ratios of on-time and delayed cus-
tomer orders received/ processed by manufacturer at period t;
ξi(t): the random variable representing the fraction of RM orders received/ pro-
cessed by suppliers on time at period t;
ξo(t):the random variable representing the fraction of useable FG produced on 
time initiated at period t;
ξs(t): the random variable representing the fraction of FG orders received by 
customer on time at period t;



 W. Xu, D.-P. Song 

1 3

d(t): the expected customer demands for FG at period t;
ηd(t): the random variable representing a rate that perturbs the expected cus-
tomer demand at period t;
D(t): equals d(t)·ηd(t), representing the random demand of FG during period t;
Do

r(t): the on time received customer demand at period t;
Do

d(t): the delayed portion of customer demands at period t;
DMD(t): the actually received customer orders by the manufacturer at period 
t that are ready to fulfil;
ui

r(t): the amount of orders for RM i received on time by suppliers at period t;
ui

d(t): the delayed amount of orders for RM i at period t;
URMi(t): the RM warehouse actually received RM i at period t;
uo

r(t): the FG production requirement at period t;
uo

s(t): the FG production ability at period t, which has considered the con-
straints;
uo

S(t): the amount of useable FG, whose production is initiated at period t;
uo

d(t): the amount of defective FG whose production is initiated at period t;
UFGo(t): the amount of useable FG that the manufacturer actually produces at 
period t, which has considered the production lead time;
so

r(t): the amount of FG that could be used to satisfy customer demand at 
period t;
so

R(t): the FG delivered to customers on time at period t;
so

d(t): the delayed portion of finish goods to customers at period t;
CFGo(t): the amount of FG that customer actually receives at period t;
co

h, ci
h: the inventory holding cost for per unit of FG, or RM i;

co
b: the penalty cost for backordering one unit of FG;

co
p: the fixed cost for producing one unit of FG;

co
s: the setup cost for producing one unit of FG;

co
d: the penalty cost for defective production;

co
t, ci

t: the transportation cost for shipping one unit of finish goods, or RM i;
cor

d: the penalty cost for one unit of delayed customer order (due to quantity 
uncertainty);
cf

d: the penalty cost for one unit of delayed FG shipment (due to quantity 
uncertainty);
ci

d: the penalty cost for one unit of delayed RM (due to quantity uncertainty);
co

m: the bank payment commission fee with delay penalty cost.

 Decision variables

ui(t): the planned order quantity for RM i at period t, which is an operational 
decision;
uo(t): the planned production quantity for FG at period t, which is an opera-
tional decision;
Uo: the maximum production capacity (workforce resource) in one period, 
which is a tactical decision.
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4.1  Customer order model

Customer orders at each period are impacted by uncertainty (Table 2) under Sub-
model I. The demand quantity uncertainty level is represented by a random vari-
able ηd(t). There are two types of dynamic lead time (lead-time of placing order 
lc(t) and lead time of handling delayed order lc

d(t)) in the SC. These lead times 
influence when the customer orders are actually ready to fulfil. The following 
equations are based on Roe et al. (2015).

where I{.} is an indicator function, it takes 1 if the condition in {} is true; 0, other-
wise. Equation  (1) represents the customer order with quantity uncertainty. Equa-
tion (2) represents the part of customer order that is received by the manufacturer 
on time at period t, where ξd(t) is a random variable to represent the ratio of on-
time and delayed customer demand (i.e. the incompleteness of customer order 
received). Equation (3) represents the delayed portion of customer order at period 
t, which requires additional processing to make it ready to be fulfilled. Equation (4) 
represents the amount of customer orders that the manufacturer actually receives 
at period t to be fulfilled, which is the sum of on-time received customer orders, 
Do

r(.), generated at the period in advance of the required customer order information 
lead-time, lc(.), and the sum of previously delayed customer orders, Do

d(.), which 
become ready to fulfil at period t. There is an extra lead-time lcd(.), representing the 
additional time required to handle the delayed portion of the order due to inaccurate 
order information. This extra lead-time is often random, but may be related to the 
time of error identification.

4.2  Production Model

The production process follows the production plan uo(t) subject to capacity 
constraints. Quantity uncertainty is mainly caused by defective products. The 
required production quantity at period t includes two parts: the production plan 
uo(t) and the amount requiring rework (uo

d(.))—scheduled at the current period 
with delay uncertainty accounted for. The following equations are based on Roe 
et al. (2015), in which Eq. (7) has been adjusted to appropriately reflect the pro-
duction capacity.

(1)D(t) = d(t)�d(t)

(2)Dr
o
(t) = D(t) ⋅ �d(t)

(3)Dd
o
(t) = D(t) ⋅ (1 − �d(t))

(4)

DMD(t) =

t∑

j=1

Dr
o
(j) ⋅ I

{
j + lc(j) = t

}
+

t∑

j=1

Dd
o
(j) ⋅ I

{
j + lc(j) + ld

c

(
j + lc(j)

)
= t

}
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Equation (5) represents production requirements at period t, consisting of planned 
production uo(t) and the amount of required rework uo

d (the sum of defective FG to 
be reworked during this period). The lead-time uncertainty of the delayed activity 
(i.e. remanufacturing lead-time) lod(.), implies that defective products may not be 
reworked upon detection. Equation (6) represents the amount of defective FG pro-
duction initiated at period t, in which (1-ξo(t)) represents the quantity uncertainty 
level (i.e. rate of production of defective product). Equation (7) represents produc-
tion at period t, subject to the available production capacity (Uo(t)), the production 
requirement ui

r(t), and RM availability. Where (xi(t) + URMi(t))/ri is the available 
RM i at period t, depending on the on-hand inventory xi(t), newly received RM i 
quantity URMi(t), and the amount of RM i required to produce one unit of FG (ri). 
Equation  (8) represents the useable FG (production initiated at period t). Equa-
tion (9) represents the useable FG completed during period t with a production lead-
time lo(t). Equation (10) updates the FG inventory state. The FG inventory level at 
period t + 1 equals the FG on-hand inventory level at period t, xo(t), plus the newly 
completed useable FG (UFGo(t) at period t), minus the received customer demands 
DMD(t) at period t.

4.3  RM ordering and shipping model

RM ordering and shipping focuses on RM procurement and RM on-hand inventory 
updating. The quantity uncertainty is represented by (1 − ξi(t)). The physical and 
information lead-time uncertainties of shipping RMs are represented by lis(t) and 
lip(t) respectively. The lead-time uncertainty of delayed activity is represented by 
lid(t). The following equations are based on Roe et al. (2015).

(5)ur
o
(t) = uo(t) +

t∑

j=1

ud
o
(j) ⋅ I

{
j + lo(j) + ld

o
(j + lo(j)) = t

}

(6)ud
o
(t) = us

o
(t)
(
1 − �o(t)

)

(7)us
o
(t) = min

{
Uo, u

r
o
(t), (xi(t) + URMi(t))∕ri)

}

(8)uS
o
(t) = us

o
(t) ⋅ �o(t)

(9)UFGo(t) =

t∑

j=1

uS
o
(j) ⋅ I

{
j + lo(j) = t

}

(10)xo(t + 1) = xo(t) + UFGo(t) − DMD(t)

(11)ur
i
(t) = ui(t) ⋅ �i(t)
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Equation (11) represents the amount of on-time procurement for RM i, ui
r(t), which 

is influenced by the procurement plan ui(t) and a random variable ξi(t). Equation (12) 
represents the delayed procurement quantity for RM i, where (1 − ξi(t)) represents 
the quantity uncertainty level (the fraction of RM delayed). Equation (13) represents 
the total procurement (replenishment) lead-time for RM i, li(t) that includes the RM 
order information lead-time and booking transportation lead-time in the information 
flow (lis(t)) and the RM availability and RM transportation lead-time in the material 
flow (lip(t)). Equation (14) represents the total RM i received by the manufacturer at 
period t taking into account the procurement lead-time li(t) and the delayed RM pro-
curement lead time lid(t). Equation (15) updates the on-hand inventory state of RM i. 
The RM i inventory level at period t + 1 is equal to the RM inventory level at period 
t, plus the received RM i from suppliers at period t, minus the used amount of RM 
at period t.

4.4  Customer fulfilment model

Customer fulfilment focuses on FG satisfying customer demands by transferring goods 
from FG warehouse to customers. Satisfying customer orders depends on the: size of 
customer order, FG on-hand inventory level, and useable FG produced by the manufac-
turer in the period. The quantity uncertainty level is represented by (1 − ξs(t)) to reflect 
the fraction of FG that has shipping delayed. The information and physical lead-time 
uncertainties of shipping the FG are represented by lop(t) and los(t), respectively. The 
lead-time uncertainty of handling delayed shipping is represented by lsd(t). The follow-
ing equations are based on Roe et al. (2015).

(12)ud
i
(t) = ui(t) ⋅ (1 − �i(t))

(13)li(t) = l
p

i
(t) + ls

i
(t)

(14)

URMi(t) =

t∑

j=1

[ur
i
(j) ⋅ I

{
j + li(j) = t

}
] +

t∑

j=1

[ud
i
(j) ⋅ I{j + ld

i
(j) + li(j + ld

i
(j)) = t}]

(15)xi(t + 1) = xi(t) + URMi(t) − us
o
(t) ⋅ ri

(16)sr
o
(t) = min{DMD(t), xo(t) + UFGO(t)} if xo(t) ≥ 0

(17)sr
o
(t) = min{DMD(t) − xo(t),UFGO(t)} if xo(t) < 0

(18)sR
o
(t) = sr

o
(t) ⋅ �s(t)

(19)sd
o
(t) = sr

o
(t) ⋅ (1 − �s(t))
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Equations (16) and (17) represent the fulfilled customer demand (also called ship-
ment) at period t corresponding to situations without backlogged demands (i.e. xo(t) 
≥ 0) and with backlogged demands (xo(t) < 0), respectively. Equation (18) represents 
the amount of shipment released on-time at period t to the customer with transporta-
tion uncertainty. Equation (19) represents the delayed amount of shipment at period 
t. (1 − ξs(t)) represents the quantity uncertainty level (fraction of FG delayed). Equa-
tion  (20) represents total shipping lead-time ls(t), including the lead-time in the 
information flow (los(t)) to arrange FG transportation and the transportation lead-
time in the FG flow (lop(t)). Equation (21) represents the amount of FG that the cus-
tomer actually receives in period t, which is the sum of the shipments that were 
released on-time and the delayed shipments that were received in period t.

4.4.1  Operational planning decision optimisation

Under a given production capacity Uo, the operational planning problem is to find 
the optimal RM ordering and FG production planning decisions {uo(t), ui(t)} for the 
planning horizon. Let Jop(Uo) denote the optimal expected total operational cost in 
the SC for the production capacity Uo. The operational planning optimisation prob-
lem is formulated as:

where [.]+ takes the positive value of the expression within the bracket. In Eq. (22), 
the first term represents the customer order delay and inaccurate quantity penalty 
cost; the second term represents the FG transportation cost; the third term indicates 
the FG reverse cost including the current period and the accumulated amount; the 
fourth term indicates the FG shipping delay and inaccurate quantity penalty cost; 
the fifth term denotes the payment delay penalty cost and banking fee; the sixth to 
the eleventh terms represent the production fee, setup cost, defective quality penalty 

(20)ls(t) = lp
o
(t) + ls

o
(t)

(21)

CFGo(t) =

t∑

j=1

sR
o
(j) ⋅ I

{
j + ls(j) = t

}
+

t∑

j=1

sd
o
(j) ⋅ I

{
j + ld

s
(j) + ls(j + ld

s
(j)) = t

}

(22)

Jop(Uo) = minE

T∑

t=1

{[
[Dd

o
(t) + |d(t) − DMD(t)|

]
⋅cd

or
+ sR

o
(t) ⋅ ct

o

+
[(
DMD(t) − sr

o
(t)
)+

+
(
−xo(t)

)+]
⋅ cb

o
+ [sd

o
(t) + |CFGo(t) − sr

o
(t)|]⋅cd

f

+ CFGo(t)⋅c
m
o
+ us

o
(t) ⋅ cp

o
+ us

o
(t) ⋅ cs

o
+ ud

o
(t) ⋅ cd

o

+

I∑

i=1

xi(t) ⋅ c
h
i
+ x+

o
(t) ⋅ ch

o
+

I∑

i=1

ur
i
(t) ⋅ ct

i

+

I∑

i=1

[ud
i
(t) + |ui(t) − URMi(t)|] ⋅ cdi + Uo ⋅ c

cap
o

}
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cost, RM inventory holding cost, FG inventory holding cost, and RM transportation 
cost, respectively; the twelfth term represents the RM transportation delay penalty 
cost; and the final term represents the production capacity (workforce resource) cost.

4.4.2  Tactical planning decision optimisation

The tactical planning problem is to seek the optimal production capacity Uo. Let J 
denote the optimal total SC cost after optimising the production capacity. The tacti-
cal planning optimisation problem can be formulated as:

5  Model solution and optimisation

The mathematical model is difficult to solve analytically due to its complexity. Sim-
ulation and artificial intelligence-based methods are, therefore, appropriate tech-
niques to assess appropriate decisions to optimize SCP. This section presents non-
parameterised and parameterised strategies that have been effective and practically 
applicable (e.g. Chen and Zheng 1994; Chen 2000; Castellano et al. 2018), and then 
develops a GA optimisation tool to optimise the parameterised strategies.

5.1  Non‑parameterised strategies

Strategy I is the company’s original strategy (described in the experiment section).
Strategy II applies lot-for-lot. That is, information sharing and cooperation 

between customer and the manufacturer in terms of actual demand information. 
The production plan is based on the customer orders that the manufacturer actually 
receives. The RM ordering plan depends on the amount of RMs required to produce 
the planned FG. This strategy can be described as:

Strategy III applies Just-In-Time (JIT). This involves information sharing, coop-
eration between customer and the manufacturer, and taking into account the FG 
inventory-on-hand at the FG warehouse and the RM inventory-on-hand at the RM 
warehouse during the decision-making process. The aim is to achieve zero inventory 
at each stage. The production plan is determined as customer orders minus the FG 
on-hand inventory. The RM plan is determined by the production plan, the required 
amount of RMs per unit of FG, and the on-hand inventory of RMs. This strategy is 
described as:

(23)J = minJop(Uo)

uo(t) = max{0,DMD(t)};

ui(t) = uo(t) ⋅ ri;
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Strategy IV applies Vendor Managed Inventory (VMI). This involves customer 
order and on-hand inventory information being considered for production planning 
in the same way as in the JIT strategy. In addition, RM ordering, FG inventory infor-
mation, the production plan and RM on-hand inventory are taken into account. Thus, 
RM ordering decisions are based on the: production plan, FG inventory-on-hand, 
and RM inventory-on-hand. The aim is to achieve zero echelon inventory level. Ech-
elon inventory is the sum of all inventories at the downstream entities from the cur-
rent to final stage. This is referred to as a VMI strategy, because downstream enti-
ties’ demand and inventory information is utilized for RM ordering decisions. This 
strategy is described as:

5.2  Parameterised strategies

The JIT and VMI strategies implicitly aim to achieve zero local inventory and ech-
elon inventory, respectively. These strategies rely on the dynamic customer demand 
information to arrange the production and material ordering to chase demand. 
Because demand may be unstable and information inaccurate, SCP may be undesir-
able. In the presence of uncertainty, maintaining a certain level of inventory is a rea-
sonable solution to these challenges. Consequently, two new strategies combining 
JIT (and VMI) strategy with the (s, S) policy to manage RM ordering and produc-
tion planning are offered. Here, s represents the reorder point and S represents the 
order-up-to point. To distinguish these approaches from the JIT and VMI strategies, 
the parameterized strategies are denoted as P-JIT and P-VMI, respectively. These 
designations reflect the pre-specification of a set of control parameters.

These strategies utilize s0 and S0 to represent the lower and upper parameters to 
control the FG production planning. If the on-hand FG inventory level falls below 
s0 then the manufacturer produces FG to bring the inventory level up to S0. Si and si 
represent the upper and lower control parameters for each type of RMs.

The P-JIT strategy is described as:
ui(t) = max

{
0, Si − xi(t)

}
, if xi(t) ≤ si; and ui(t) = 0, otherwise;

uo(t) = max
{
0, So − xo(t)

}
, if xo(t) ≤ so; and uo(t) = 0, otherwise.

The P-VMI strategy is described as:
u
i
(t) = max

{
0, S

i
− x

i
(t) − r

i
⋅ x

o
(t)
}
, if x

i
(t) + r

i
⋅ x

o
(t) ≤ s

i
; u

i
(t) = 0, otherwise;

u
o
(t) = max

{
0, S

o
− x

o
(t)
}
, if x

o
(t) ≤ s

o
; and u

o
(t) = 0, otherwise.

One of the main advantages of the above parameterised strategies over non-
parameterised strategies is that operational decisions do not directly rely on dynamic 
customer demand information. The SC system builds a certain level of inventory to 
buffer against uncertainties and dynamic fluctuation. However, the challenge for the 

uo(t) = max
{
0,DMD(t) − xo(t)

}
;

ui(t) = max
{
0, uo(t) ⋅ ri − xi(t)

}
;

uo(t) = max
{
0,DMD(t) − xo(t)

}
;

ui(t) = max
{
0, uo(t) ⋅ ri − xi(t) − xo(t) ⋅ ri

}
;
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parameterised strategies is that some control parameters (e.g. si and Si) need to be 
pre-determined in order to control each type of inventory. Ordering and production 
decisions, therefore, depend on the pre-determined control parameters. Under the 
integrated decision-making mechanism, control parameters should be optimised col-
laboratively with procurement and production decisions.

In the case of three main types of RMs and one type of FG (e.g. the second 
case study), there would be eight control parameters representing the low and high 
bounds of RMs and FG to trigger the ordering and production decisions. Therefore, 
the control parameters to be optimised can be presented by a vector of si and Si. 
Analytically optimising these control parameters are intractable in our problem. Two 
methods are presented to optimise the parameters in the SC: stochastic approxima-
tion and GA.

5.3  Stochastic approximation algorithm to optimise parameterised strategies

Stochastic approximation algorithm is a well-developed gradient-based search 
method to optimise a set of real parameters (Rubinstein 1986; Qi and Song 2012). 
In this problem, the control parameters are real numbers and thus suitable for sto-
chastic approximation. Let s: = (s1, s2, …, sn)T be a vector of control parameters to 
be optimised, and J(s) denote the objective function depending on the decision vari-
ables s. In this case, s represents the parameterised strategy and J(s) represents the 
SC operational cost under the given parameterised strategy. The standard form of 
the stochastic approximation is:

where sk is the parameter vector at the beginning of iteration k, ∇Jk is an estima-
tor of the gradient ∇J(sk), which is defined as ∇J(sk): = (∂J(sk)/∂s1, ∂J(sk)/∂s1, …, 
∂J(sk)/∂sn)T, and γk is a positive sequence of step sizes such that (i) it decreases to 
zero, (ii) the sum of all the sequence { γk} is infinite, and (iii) the sum of its squares 
is bounded. Typically, the harmonic sequence 1/k satisfies all above assumptions for 
γk.

When ∇Jk is estimated using a finite difference of the objective functions, the 
stochastic approximation algorithm is called a Kiefer-Wolfowitz (KW) algorithm 
(Rubinstein 1986). In this paper, a modified KW-type algorithm is proposed. Not-
ing the objective function is unlikely differentiable to the control parameters due 
to various min and max operations in the dynamic system, the right-side finite dif-
ference and the left-side finite difference are estimated simultaneously via simula-
tion. If both sides’ finite differences are positive, the corresponding element in ∇Jk 
is zero. The rationale is that changing the corresponding parameters on either side 
will not reduce the objective function. If both sides’ finite differences are negative, 
the corresponding element in ∇Jk is set to encourage the control parameter to move 
the steeper descending side. The rationale for this adjustment is based on the greedy 
strategy. In addition, noting that the stochastic approximation algorithm is sensitive 
to the initial solution, multiple samples with different initial solutions are run.

(24)�k+1 = �k − �k ⋅ ∇Jk,
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5.4  GA to optimise parameterised strategies

GA is one of the best known meta-heuristic algorithms able to tackle difficult com-
binatorial optimisation problems. GA can optimise parameters as either discrete or 
real numbers. For this problem, the GA solution can be presented by a vector of 
si and Si, which are continuous real numbers. The GA developed here follows the 
standard GA including: initialisation, evaluation, selection, recombination/crosso-
ver, mutation, evaluation, and reproduction. An adjustment step in the GA procedure 
ensures all solutions are feasible with respect to the constraints and characteristics of 
the underlying SC system. For example, if a new solution in the GA offspring popu-
lation exceeds the boundaries, the solution will be amended to the nearest bound-
ary value of the parameter. Further details of the GA procedure are provided in Xu 
(2013).

6  Experiments

This section uses case company B’s data to evaluate the model under different strat-
egies. Based on the historical data, the periodic customer demands for FG are given 
by the following time series (Roe et al. 2015):

In Sects. 6.1 and 6.2, different strategies are evaluated under the company’s cur-
rent production capacity. Four non-parameterised strategies including the company’s 
original strategy, lot-for-lot, JIT and VMI strategies are evaluated and compared. 
Under the non-parameterised strategies, there is no control parameter determined 
in advance. Ordering and production decisions are made dynamically based on the 
input data and the information from cooperative SC members (e.g. customer order, 
RM and FG inventory). Next, two parameterised strategies are optimised and evalu-
ated using the simulation-based stochastic approximation approach and GA. Finally 
(Sect. 6.3), the production capacity and the parameterised strategies are optimized in 
an integrated way.

6.1  Non‑parameterised strategy evaluation under fixed production capacity

The company’s original strategy—Strategy I—is extracted from case company B’s 
historical data (daily inventory and replenishment) as an input matrix.

In the simulation, two levels of SC cooperation are considered. To simplify the 
experiment all lead-times of normal activities and delayed activities in Table  2 
are assumed to follow the same distribution. LT denotes the lead-time distribu-
tion, which has an upper bound and a lower bound of zero. All time uncertainty 
parameters follow a uniform distribution and vary within the bounds. There are two 

d(t) =
(
−0.0000000035 ∗ t

4 − 0.0000002988 ∗ t
3

+0.0003570609 ∗ t
2 − 0.0408922814 ∗ t + 2.9582935980

)



1 3

Integrated optimisation for production capacity, raw material…

levels of LT. LT ~ U(0, 3) has a shorter lead-time and lower uncertainty represent-
ing a higher level of SC cooperation. LT ~ U(0, 7) has a longer lead-time and higher 
uncertainty representing a lower level of SC cooperation. This reflects how greater 
SC cooperation often leads to reduced lead-time and uncertainty. For example, 
increasing cooperation between SC members adopting Electronic Data Interchange 
(EDI) speeds up information exchange and reduces information lead-time.

Quantity uncertainty is denoted as DoU (Degree of Uncertainty), representing 
all quantity uncertainty variables (Table  2). All quantity uncertainty variables are 
assumed to follow uniform distributions (based on interviews) within the lower and 
upper bound. Two levels of quantity uncertainty are considered: low level ~ U(0, 
0.1), and high level ~ U(0, 0.3).

The combination of two levels of SC cooperation and quantity uncertainty give 
rise to four different scenarios. Total cost (measured in £000) measures the SCP. 
Table 3 summarizes SC total costs for the strategies and scenarios. Strategies II–IV 
perform significantly better than the original strategy (Strategy I). One reason that 
the company’s original strategy performs poorly is that it is extracted from the his-
torical data, which may represent a specific sample. Strategy III (JIT) achieved the 
lowest costs in both scenarios with high-level lead-time uncertainty, whereas strat-
egy IV (VMI) achieves the lowest cost in both scenarios with low-level lead-time 
uncertainty. For strategy II to IV, more inventory information is utilized in decision-
making. This confirm the benefits of better utilizing available information. However, 
strategy III outperforms strategy IV in two scenarios indicating that the way addi-
tional information is used influences its value. That is, inappropriate utilization of 
information is disadvantageous.

To examine the impact of cooperation on SC performance for the original strat-
egy and three improved non-parameterised strategies, the relative performance is 
provided (Table 3). The bold numbers in Table 3 indicate the best results in the cor-
responding column among different strategies. Table 3 shows: (1) increasing coop-
eration levels to reduce lead-times and their uncertainties significantly improves cost 
performance for each strategy. (2) The cost of strategy III and IV are very close, 
but different strategies provide benefit in different situations. For example, with low 
lead-time uncertainty VMI is preferable to JIT, However, JIT is preferable to VMI 
with higher lead-time uncertainty.

The impact of Lead-Time (LT) and quantity uncertainty (DoU) on SC perfor-
mance as a percentage is provided (Table 4). DoU form high to low level and LT 

Table 3  total costs under non-parameterised strategies with different lead-time (LT) and quantity uncer-
tainty (DoU)

Strategy (Low LT, low 
DoU)

(High LT, low 
DoU)

(Low LT, high 
DoU)

(High LT, 
high DoU)

1. Original strategy 26,116 29,232 31,929 34,684
2. Lot-for-Lot 23,172 26,910 29,066 32,956
3. JIT 17,490 19,057 18,013 19,093
4. VMI 17,447 19,507 17,631 20,523
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from high to low level are examined. Table 4 shows that (1) for all strategies, that 
reductions in lead-time or quantity uncertainty leads to reduced cost; (2) the overall 
impact of lead-time and quantity uncertainty reduction under JIT is smaller than in 
the other three strategies (0.2–8.2%). However, when quantity uncertainty changes 
from high to low, VMI strategy performs better.

6.2  Parameterised strategy optimisation under fixed production capacity

To implement P-JIT and P-VMI strategies the appropriate values for the control 
parameters {si and Si, i = 0, 1, 2, 3} under fixed production capacity Uo need to be 
determined. The simulation-based stochastic approximation and GA procedures 
are used to optimise the control parameters. To facilitate the comparison with non-
parameterised strategies, experiments on the same four scenarios are undertaken. 
In the stochastic approximation (StoApp), the iteration number is 20 and the initial 
solution number is 100. In the GA procedure, a number of parameters are selected 
based on pilot runs. For each experiment: the population size is 50, the maximum 
generation number is 200, and the mutation probability is 0.5. The GA is coded 
using Matlab R2019a and run on a Laptop with 2.40 GHz. Computational times for 
each optimisation experiment are in Tables 4 and 5.

Table 5 and 6 show the StoApp versus the GA generations in four scenarios under 
parameterised (optimised) P-JIT and P-VMI respectively. The fourth column in 

Table 4  The impact of lead-time and quantity uncertainty on non-parameterised strategies’ performance

Strategy Low LT High LT Low DoU High DoU
DoU: 
high- > low 
(%)

DoU: high- > low (%) LT: high- > low (%) LT: high- > low (%)

1. Original 18.20 15.70 10.70 7.90
2. Lot-for-Lot 20.30 18.30 13.90 11.80
3. JIT 2.90 0.20 8.20 5.70
4. VMI 1.00 5.00 10.60 14.10

Table 5  total costs and 
computational time under 
optimised P-JIT using StoApp 
and GA

Scenario Method CPU(s) Cost Orig% P-JIT%

Low LT, low DoU StoApp 53.8 16,628 36.3 4.9
GA 54.6 16,814 35.6 3.9

High LT, low DoU StoApp 56.3 17,571 39.9 7.8
GA 50.9 17,517 40.1 8.1

Low LT, high DoU StoApp 53.8 17,016 46.7 5.5
GA 51.3 17,217 46.1 4.4

High LT, high DoU StoApp 56.8 17,991 48.1 5.8
GA 50.7 18,508 46.6 3.1
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Table 5 and 6 shows the total cost. The fifth column shows the reduction percentage 
from the original strategy in Table 3. The sixth column shows the relative cost dif-
ference between non-parameterised JIT(VMI) strategy (from Table 3) versus param-
eterised P-JIT(P-VMI). Optimised results under StopApp and GA are shown in both 
Table 5 and 6.

Tables 4 and 6 show that: (1) compared to the original strategy (Table 3), opti-
mised P-JIT and P-VMI strategy reduces cost from 35.6 to 48.1%; (2) compared to 
original strategy, StoApp and GA provide very similar improvements. However, 
under the scenario High LT /Low DoU, P-JIT-GA outperforms P-JIT-StoApp; (3) 
compared to non-parameterised JIT and VMI strategy (Table  3), P-JIT performs 
3.1–7.8% better than the non-parameterised JIT; and P-VMI improves 1.6–12.3% 
than the non-parameterised VMI strategy (Table 3). It is economically beneficial to 
appropriately design target local inventory levels;

6.3  Integrated optimisation for production capacity and parameterised 
strategies

In this sub-section, both the production capacity (Uo) and the parameterised strategy 
{si and Si, i = 0, 1, 2, 3} are optimised via simulation-based StoApp and GA. Results 
for P-JIT (Table 6) and P-VMI (Table 8) are given. Cost reduction percentage from 
the P-JIT (Column 4, Table 7), relative cost difference between the StoApp and GA 

Table 6  total costs and 
computational time under 
optimised P-VMI using StoApp 
and GA

Scenario Method CPU(s) Cost Orig% P-VMI%

Low LT, low DoU StoApp 54.0 16,681 36.1 4.4
GA 52.1 16,822 35.6 3.6

High LT, low DoU StoApp 59.8 17,558 39.9 10.0
GA 49.8 18,066 38.2 7.4

Low LT, high DoU StoApp 54.4 17,060 46.6 3.2
GA 51.2 17,341 45.7 1.6

High LT, high DoU StoApp 58.8 17,998 48.1 12.3
GA 50.5 18,246 47.4 11.1

Table 7  total costs under 
optimised production capacity 
and P-JIT using StoApp and GA

Scenario Method Cost P-JIT% StoApp-GA%

Low LT, low DoU StoApp 7016 57.8 8.6
GA 7680 54.3

High LT, low DoU StoApp 9554 45.6 − 0.4
GA 9516 45.7

Low LT, high DoU StoApp 8801 48.3 6.1
GA 9369 45.6

High LT, high DoU StoApp 11,278 39.1 2.5
GA 11,566 35.7
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(Column 5, Table 7) and the relative cost difference between P-VMI and P-JIT under 
the optimal production capacity (Column 6, Table 8) are all provided.

From Tables 7 and 8, it can be observed that (1) optimising production capacity 
could reduce total cost by 35–57% for P-JIT and 51–63% for P-VMI, showing the 
importance of appropriately managing production capacity; (2) It appears that Sto-
chastic Approximation generally performs better than GA in this problem. P-VMI 
performs 13–27% better than P-JIT across four scenarios (Column 6, Table  8), 
which indicates that optimised production capacity with P-VMI outperforms opti-
mised production capacity with P-JIT significantly in all scenarios. This could be 
due to P-VMI utilizing more inventory information than P-JIT, which is beneficial in 
an integrated optimization environment.

7  Conclusions

Based upon two case studies of SMEs in a developing economy, a SC model for 
integrated RM ordering and production planning, and production capacity in 
dynamic stochastic situations is developed. Uncertainties are identified and mod-
elled for: information flow, material flow, information delays, material delays, sup-
ply, customer demand, production, and product quality. The SC model consists of 
four mathematically-formulated sub-models: (1) Customer Order, (2) Manufactur-
ing Model, (3) RMs Ordering with Transportation, and (4) FG Customer Fulfilment. 
Simulation-based stochastic approximation and GAs are applied to evaluate four 
non-parameterised strategies and optimise two parameterised strategies for combi-
nations (2 × 2) of SC cooperation and uncertainty.

For fixed production capacity the JIT and VMI strategies perform significantly 
better than the original and lot-for-lot strategies. The benefits of information shar-
ing and coordinated management is verified by the success of JIT and VMI, that 
utilise dynamic inventory information to make ordering and production decisions. 
The benefits of simulations to assist in better decision making and cost minimiza-
tion for SMEs in developing economies is also illustrated. Scenario analysis finds 
that increasing cooperation (reducing lead-time and uncertainty) reduced cost by 

Table 8  total costs under optimised production capacity and P-VMI using StoApp and GA

Scenario Method Cost P-VMI% StoApp-GA% P-JIT vs. 
P-VMI (%)

Low LT, low DoU StoApp 6041 63.8 8.5 14.0
GA 6604 60.7 13.9

High LT, low DoU StoApp 7469 57.5 8.8 14.0
GA 8187 54.7 21.8

Low LT, high DoU StoApp 6894 59.6 7.4 20.6
GA 7443 57.1 21.7

High LT, high DoU StoApp 8162 54.6 8.1 23.2
GA 8882 51.3 27.6
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0.2–18.2% under all strategies. Reducing quantity uncertainty offers mixed results. 
Therefore, SC managers should consider seeking effective strategies to reduce 
uncertainty and increase cooperation collectively. Optimised parameterised strate-
gies perform better than non-parameterised strategies. P-JIT strategy outperforms 
JIT by 3.1–8.1%, whereas P-VMI outperforms VMI by 3.2–12.3%. JIT (or P-JIT) 
has similar performance to VMI (or P-VMI) in all scenarios under the fixed pro-
duction capacity. VMI utilises more inventory information than JIT, however, this 
does not necessarily improve the performance. How information is utilized should 
be considered carefully. As some of the results are not intuitive, an integrated plan-
ning tool could be helpful for managers to better understand their SC. In addition, 
both simulation-based StoApp and GA improve performance under all scenarios and 
tested-strategies. In most situations, StoApp slightly outperforms GA. Consequently, 
as long as a suitable optimising tool is selected, the results are helpful.

Under the integrated planning of tactical production capacity and operational 
decisions (RM ordering and production planning), production capacity decisions 
significantly impact cost under all scenarios and strategies. Optimisation of produc-
tion capacity and control parameters (RM ordering and FG production), can reduce 
total cost by 35.7–63.8%. Interestingly, P-VMI outperforms P-JIT significantly in 
all scenarios, which indicates utilizing more inventory information (under P-VMI) 
is more beneficial in a more integrated optimization environment. Hence, produc-
tion capacity decisions for RM ordering and production are important. Especially, 
during trade wars and other disruptions. If too much is produced for international 
markets, domestic production capacity is limited. However, when international cus-
tomers lack confidence about procuring from abroad, a foreign producer needs to 
re-consider RM ordering, production, and production capacity. P-JIT and P-VMI 
significantly reduce cost for either optimisation tool. Therefore, companies can 
benefit from either optimisation tool applied to P-JIT or P-VMI. Companies should 
optimise production capacity decisions, RM ordering and production decisions with 
an optimisation applied to either P-JIT or P-VMI strategy with respect to their SC 
environments.

This study supports collaborative decision-making for: (1) managing material 
procurement and production. This model is a first step toward collaborative deci-
sion-making; (2) considering a wide range of uncertainties in the SC, and provid-
ing guidelines to make collaborative decision-making framework more practical. 
For example, how specific data related to information and material flows and delays 
can be incorporated into a model to support collaborative decision-making mecha-
nisms; (3) decision support assisting Small and Medium-sized Enterprises (SMEs) 
assess the benefits and impacts of changing collaboration strategy which is espe-
cially important in the face of external disruption, e.g. trade war or pandemic. When 
the SC is disrupted by policy or nature disasters, regular orders are either cancelled 
or postponed. Decisions made based on integrated RM ordering, production and 
production capacity could significantly help SEMs survive. SMEs are especially 
vulnerable in these cases as they lack the financial flow, skills and market power of 
large companies. Past research in JIT, VMI, lot-for-lot and SC coordination consider 
large organisations as the focal firm, but SMEs are overlooked. This research assists 
SME management teams understand the benefits, impacts and requirements of SC 
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collaboration. This study illustrates the latent profit opportunities existing in cur-
rent manufacturers. Such untapped resources are especially important in less favour-
able periods: increased competition and economic downturns; and (4) simulation, 
StoApp and GA-based, optimisation tools offer a flexible platform to quantify and 
compare planning strategies in uncertain environments, and improve performance 
by optimising design parameters. This research offers insights into the degree of 
benefits that integrated planning offers in different scenarios; and how different 
information can be better utilised. The current model does not address establishing 
higher level of SC cooperation or reducing uncertainty (technologically or other-
wise). These are important related topics requiring further research.
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