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Abstract. We consider the Subset Sum Ratio Problem (SSR), in which
given a set of integers the goal is to find two subsets such that the ratio
of their sums is as close to 1 as possible, and introduce a family of
variations that capture additional meaningful requirements. Our main
contribution is a generic framework that yields fully polynomial time
approximation schemes (FPTAS) for problems in this family that meet
certain conditions. We use our framework to design explicit FPTASs
for two such problems, namely Two-Set Subset-Sum Ratio and Factor-r
Subset-Sum Ratio, with running time O(n4/ε), which coincides with the
best known running time for the original SSR problem [15].

Keywords: approximation scheme, subset-sums ratio, knapsack prob-
lems, combinatorial optimization

1 Introduction

Subset sum computations are of key importance in computing, as they appear
either as standalone tasks or as subproblems in a vast amount of theoretical and
practical methods coping with important computational challenges. As most
of subset sum problems are NP-hard, an effort was made over the years to
come up with systematic ways of deriving approximation schemes for such prob-
lems. Important contributions in this direction include works by Horowitz and
Sahni [9], [10], Ibarra and Kim [11], Sahni [20], Woeginger [22] and Woeginger
and Pruhs [19]. Inspired by these works we define and study families of varia-
tions of the Subset Sum Ratio Problem which is a combinatorial optimization
problem introduced and shown NP-hard by Woeginger and Yu [23]. The formal
definition of the problem is as follows:
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Subset-Sums Ratio problem (SSR). Given a set A = {a1, . . . , an} of n
positive integers, find two nonempty and disjoint sets S1, S2 ⊆ {1, . . . , n} that

minimize the ratio

max{
∑

i∈S1
ai,
∑

j∈S2
aj}

min{
∑

i∈S1
ai,
∑

j∈S2
aj}

One of our motives to study SSR stems from the fact that it is the optimiza-
tion version of the decision problem Equal Subset Sum (ESS) which is related
to various other concepts and problems as we explain below. ESS is defined as
follows:

Equal Sum Subsets problem (ESS). Given a set A = {a1, . . . , an} of n
positive integers, are there two nonempty and disjoint sets S1, S2 ⊆ {1, . . . , n}
such that

∑

i∈S1
ai =

∑

j∈S2
aj?

Even if this problem has been in the literature for many years, it is still
being studied with a recent work begin [16]. Variations of this problem have
been studied and proven NP-hard by Cieliebak et al. in [6,7], where pseudo -
polynomial time algorithms were also presented for many of these problems. ESS
is a fundamental problem appearing in many scientific areas. For example, it is
related to the Partial Digest problem that comes from molecular biology [4,3],
to allocation mechanisms [14], to tournament construction [13], to a variation of
the Subset Sum problem, namely the Multiple Integrated Sets SSP, which finds
applications in cryptography [21]. A restricted version of ESS, namely when
the sum of the input values is strictly less than 2n − 1 is guaranteed to have
a solution, however it is not known how to find it; this version belongs to the
complexity class PPP [18].

The first FPTAS for SSR was introduced by Bazgan et al. in [1] and more
recently a simpler but slower FPTAS was introduced in [17] and a faster one
in [15]; the latter is the fastest known so far for the problem. Variations of ESS
were studied and shown NP-hard in [5,6,7], where also pseudo - polynomial time
algorithms were presented for some of them and it was left open whether the
corresponding optimization problems admit an FPTAS. Here we address that
question in the affirmative for two of those problems (namely for Equal Sum

Subsets From Two Sets [5]4 and for Factor-r Sum Subsets [7]) and provide
a framework that can be potentially used to give an FPTAS for most of the
remaining ones, if not for all, as well as for many other subset sum ratio problems.

Let us note that, for the exemplary problems that we study here there may
exist more efficient approximation algorithms, e.g. by using techniques such as
those in [12,2] for knapsack, however it is not clear if and how such techniques
can be adapted in a generic way to take into account the additional restrictions
that are captured by our framework. Moreover, our primary goal is to provide

4 It is not hard to show that the optimization version of Equal Sum Subsets From

Two Sets can be reduced to Two-Set Subset-Sum Ratio for which we provide an
FPTAS here.
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an as generic as possible framework to cope with such problems, at the cost of
sacrificing optimality in efficiency.

Our results and organization of the paper are as follows. In section 2 we define
two families of variations of SSR problems that are able to capture additional
restrictions. Our main result, presented in section 3, is a method to obtain an
FPTAS for any problem in these families the definition of which meets certain
conditions. In the last two sections we use our framework to present FPTASs
for two variations of SSR, namely 2-Set SSR and Factor-r Subset Sum Ratio;
to the best of our knowledge, no approximation algorithm was known so far for
these problems.

2 Families of Variations of SSR

In this section we shall define two families of variations of the SSR problem.
In [15], the function R(S1, S2, A) was defined as:

Definition 1 (Ratio of two subsets). Given a set A = {a1, . . . , an} of n pos-

itive integers and two sets S1, S2 ⊆ {1, . . . , n} we define R(S1, S2, A) as follows:

R(S1, S2, A) =















0 if S1 = ∅ and S2 6= ∅∑
i∈S1

ai
∑

i∈S2
ai

if S2 6= ∅,

+∞ otherwise.

Here we will also define and useMR(S1, . . . , Sk, A) which is a generalization
of R(S1, S2, A) to k > 2 sets:

Definition 2 (Max ratio of k subsets). Given a set A = {a1, . . . , an} of n
positive integers and two sets S1, . . . , Sk ⊆ {1, . . . , n} we define:

MR(S1, . . . , Sk, A) = max{R(Si, Sj , A) | i 6= j and i, j ∈ {1, . . . , k}}

In order to keep our expressions as simple as possible we will use the above
functions throughout the whole paper.

Let us now define the first family of variations of SSR. We want this family
to contain as many problems as possible. In a general case we may not have just
a set of numbers as our input but a graph or that has a weights on the edges or
the vertices. For such reasons we will use the following notation.

Family of Subset-Sum Ratio problems (F-SSR). A problem P in F -SSR
is a combinatorial optimization problem (I, k,F) where:

– I is a set of instances each of which is a pair (E,w) where E = {e1, . . . , en}
is a set of ground elements and w : E 7→ R+ is a weight function which maps

every element ei to a positive number ai;
– k defines the number of subsets of {1, . . . , n} we are searching for;
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– F gives the set of feasible solutions as follows: for any input (E,w), F(k,E)
is a collection of k-tuples of nonempty and disjoint subsets of {1, . . . , n}, and
given (k,E, (S1, . . . , Sk)) we can check in polynomial time whether (S1, . . . ,
Sk) ∈ F(k,E).

The goal of P is to find for an instance (E,w) a feasible solution (S∗
1 , . . . , S

∗
k)

such that

MR(S∗
1 , . . . , S

∗
k , A) = min{MR(S1, . . . , Sk, A) | (S1, . . . , Sk) ∈ F(k,E)}

where A = {ai = w(ei) | ei ∈ E}

Remark 1. Note that under this definition of F -SSR the function w of an in-
stance (E,w) does not play any role in deciding whether a k-tuple (S1, . . . , Sk)
is feasible or infeasible solution; in other words, the element weights do not
affect feasibility, only their indices do. Consequently, for a specific problem
P = (I, k,F) ∈ F -SSR and two different instances (E,w) and (E,w′) in I
with the same ground elements E, the feasible solutions of the two instances are
the same.

We will now introduce a family that is similar to F -SSR but there is a
major difference which is an extra condition. In this family we know (we give
it as input), the minimum between the maximum values of the solution. This is
rather technical and it will become obvious in the following paragraphs.

Family of Semi - Restricted Subset-Sum Ratio Problems
(Semi-Restricted F-SSR). For every problem P = (I, k,F) in F -SSR, we

define an associated optimization problem P ′ = (I ′, k′,F ′) as follows:

– the set of instances of P ′ is

I ′ = {(E,w,m) | (E,w) ∈ I and m ∈ {1, . . . |E|}}
– k′ = k
– the collection of feasible solutions of instance (E,w,m) ∈ I ′ is given by:

F ′(k,E,w,m) = {(S1, ..., Sk) ∈ F(k,E) | min
j∈{1,...,k}

{max
i∈Sj

w(ei)} = w(em)}

and the goal of P ′ is to find for an instance (E,w,m) a feasible solution

(S∗
1 , , . . . , S

∗
k) such that

MR(S∗
1 , . . . , S

∗
k , A) = min{MR(S1, . . . , Sk, A) | (S1, . . . , Sk) ∈ F(k,E)}

where A = {ai = w(ei) | ei ∈ E}. We define the family of problems Semi-
Restricted F -SSR as the class of problems {P ′ | P ∈ F -SSR}.

Remark 2. We note that if a problem belongs to Semi-Restricted F -SSR it
cannot belong to F -SSR because there is the extra condition for a solution
(S1, ..., Sk) to be feasible, minj∈{1,...k}{maxi∈Sj

w(ei)} = w(em) which depends
on the weight function w and not only on the set of elements E as is the case
for problems in F -SSR.
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Remark 3. It is obvious that if there exists a deterministic polynomial time
Turing Machine that can decide if a solution is feasible for a problem P in F-SRR
then we can construct another deterministic polynomial time Turing Machine
that takes into account the extra condition to decide, if a solution is feasible for
the semi restricted version P ′ in Semi Restricted F-SRR of the previous.

We must note that F -SSR contains many problems of many from different
areas in computer science and could prove useful to get an FPTAS for them if
we could develop a pseudo - polynomial algorithm with a particular property (it
will be explained in the next section) for the semi restricted versions of them.
This family includes subset sum ratio problems with matroid restrictions, graph
restrictions, cardinality restrictions (including partition problems). Some more
problems could be scheduling problems and knapsack.

To give some examples, we will present some problems that belong in F -
SSR. For the first two, the proof that they actually do belong in F -SSR will be
presented in section 4 and section 5 respectively. We must note that the decision
version of Factor-r SSR that follows was studied in [7]. For these two problems,
we will introduce FPTAS algorithms in the following sections. Moreover we will
present other problems of F -SSR that have more complicated constraints and
could prove interesting to be studied in the future.

Two-Set Subset-Sum Ratio problem (2-Set SSR). Let A = {(a1, b1),
. . . , (an, bn)} be a set of pairs of real numbers. We are searching for two nonempty

and disjoint sets S1, S2 ⊆ {1, ..., n} that minimize

max{
∑

i∈S1
ai,
∑

j∈S2
bj}

min{
∑

i∈S1
ai,
∑

j∈S2
bj}

.

Factor-r Subset-Sum Ratio problem (Factor-r SSR). Given a set A =
{a1, . . . , an} of n positive integers and a real number r ≥ 1, find two nonempty

and disjoint sets S1, S2 ⊆ {1, . . . , n} that minimize the ratio

max{r ·
∑

i∈S1
ai,
∑

j∈S2
aj}

min{r ·
∑

i∈S1
ai,
∑

j∈S2
aj}

.

In [8] there were introduced digraph constraints for the subset sum problem
which can easily be modeled via our framework. Generally we are able demand as
constraints of S1 and S2 to be a specific property considering the vertices of the
graph, for example we may demand that the solution consists of independent
sets or dominant sets etc. Not only can we impose constraints for the sets of
vertices but we can impose constraints on the edges of the graph as well. Finally
we may impose restrictions that concern both edges and vertices at the same
time, for example take into account vertices that form a complete graph.

The same way we define the constraints from a graph we are able to demand
that the solution of a problem consists of independent sets of a given matroid.

Subset-Sum Ratio with Matroid constraints. Given a matroid M(E, I)
and a weight function w : E → R+. We want to find two non empty and non
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equal sets S1, S2 ∈ I such that:

max{
∑

x∈S1
w(x),

∑

y∈S2
w(y)}

min{
∑

x∈S1
w(x),

∑

y∈S2
w(y)}

.

Before we continue to the next section we will present two lemmas which give us
information about the solutions which are feasible for both problems in F -SSR
and Semi-Restricted F -SSR. Moreover we must note that all the proofs for the
theorems and the lemmas can be found in the appendix.

Lemma 1. Let P = (I, k,F) a problem in F -SSR and P ′ = (I ′, k′,F ′) the

semi restricted version of P. If (E,w) ∈ I and (E,w′,m) ∈ I ′ are the instances

of P and P ′ respectively then any feasible solution (S1, . . . , Sk) of the instance

(E,w′,m) of P ′ is also a feasible solution of the instance (E,w) of P.

Lemma 2. Let P = (I, k,F) a problem in F -SSR and P ′ = (I ′, k′,F ′) the

semi restricted version of P. If E is a set of elements and w, w′ two weight

functions such that:

For any i, j ∈ {1, . . . n}, w(ei) < w(ej)⇔ w′(ei) ≤ w′(ej)

then any feasible solution (S1, . . . , Sk) for the instance (E,w) of P is a feasible

solution for the instance (E,w′,m) of P ′ if

w(em) = min
j∈{1,...,k}

{max{w(ei) | i ∈ Sj}}

3 A Framework Yielding FPTAS for Problems in F -SSR

In the following theorem we want to define a scale parameter δ which we will use
later to change the size of our input and the pseudo - polynomial algorithms will
run in polynomial time. In addition by using these parameters, we will define the
properties that the sets of the output should satisfy to be (1+ε) approximation.
These parameters are not unique but any other number should to the trick as
long as all the properties of the theorem bellow are satisfied.

Theorem 1. Let A = {a1, ..., an} be a set of positive real numbers, ε ∈ (0, 1),
two sets S1Opt, S2Opt ⊆ {1, ..., n} and any numbers w,m, δ that satisfy:

– 0 < w ≤ min
(

∑

i∈S1Opt
ai,
∑

i∈S2Opt
ai

)

– n ≥ m ≥ max (|S1Opt|, |S2Opt|),
– δ = (ε · w)/(3 ·m)

If S1, S2 ⊆ {1, ..., n} are two non-empty sets such that:

– w ≤ min
(
∑

i∈S1
ai,
∑

i∈S2
ai
)

– n ≥ m ≥ max (|S1|, |S2|),
– 1 ≤MR(S1, S2, A

′) ≤MR(S1Opt, S2Opt, A
′) where A′ = {⌊a1

δ
⌋, ..., ⌊an

δ
⌋}
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Then the following inequality holds

1 ≤MR(S1, S2, A) ≤ (1 + ε) · MR(S1Opt, S2Opt, A) .

The next theorem presents the conditions that should be met to construct
an FPTAS algorithm for a problem that belongs in F -SSR. Keep in mind that
this framework should be considered similar to linear programming, i.e. if there
is a way to prove that a problem belongs to F -SSR and at the same time there
is a pseudo - polynomial time algorithm for its semi-restricted version then we
can obtain an FPTAS algorithm.

Theorem 2. Let P = (I,F ,M,G) be a problem in F -SSR and P ′ = (I ′,F ′,
M, G) its corresponding problem in Semi Restricted F -SSR. If for problem P ′

there exists an algorithm that solves exactly all instances A = {a1, . . . an,m} ∈ I ′

in which all ai values are integers in time O(poly(n, am)), then P admits an

FPTAS.

Now we will present an algorithm that approximates P using the algorithm
for P ′. We will denote the algorithm that returns the exact solution for P ′ by
SOLex,P′(A).

Algorithm 1 FPTAS for the problem P [SOLapx,P(A) function]

Input: A set A = {a1, . . . , an}, ai ∈ R+.
Output: Sets with max ratio (1 + ε) to the optimal max ratio for the problem P .
1: (S∗

1 , . . . , S
∗
k)← {∅, . . . , ∅}

2: for m← 1 to n do

3: δ ← ε·am

3·n

4: A(m) ← ∅
5: for i← 1 to n do

6: a′
i ← ⌊

ai

δ
⌋

7: A(m) ← A(m) ∪ {a′
i}

8: end for

9: A(m) ← A(m) ∪ {m}
10: (S′

1, . . . , S
′
k)← SOLex,P′(A(m))

11: if MR(S′
1, . . . , S

′
k, A) ≤MR(S∗

1 , . . . , S
∗
k , A) then

12: (S∗
1 , . . . , S

∗
k)← (S′

1, . . . , S
′
k)

13: end if

14: end for

15: return (S∗
1 , . . . , S

∗
k)

In the next sections we will give some examples of how this framework works by
using Theorem 2 to find an FPTAS algorithm for some problems.
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4 2-Set SSR

Here, we will design an FPTAS algorithm for 2-Set SSR. We must note that
faster approximation algorithms could be developed for this particular problem
but this is not the scope of this section.

We will begin by proving that this problem belongs in F -SSR. We will match
the 2-Set SSR with a problem (I,F ,M,G) in F -SSR. If we let the set of in-
stances I contain sets of positive numbers A = {a1, . . . , a2·n} = {a1, . . . , an,
b1, . . . , bn}, and the set of feasible solutions F contain all the pairs of sets (S1, S2)
such that S1 ⊆ {1, ..., n}, S2 ⊆ {n + 1, ..., 2 · n}, ∄ (i, j) such that i ∈ S1, j ∈
S2 with i ≡ j (mod n), the objectiveM =MR(S1, S2, A)) and the goal func-
tion G = min, then the 2-Set SSR problem coincides with (I,F ,M,G) which is
a problem in F -SSR.

Now we shall present a pseudo - polynomial algorithm that finds an optimal
solution for Semi-Restricted 2-Set SSR. Our algorithm employs two separate
algorithms for two different cases.

Algorithm 2 Semi-Restricted 2-Set SSR solution [SOL(A,m) function]

Input: a set A = {a1, . . . , a2·n}, ai ∈ Z+, and an integer m, 1 ≤ m ≤ 2 · n.
Output: the sets of an optimal solution for Semi-Restricted 2-Set SSR.
1: S′

1 ← ∅, S
′
2 ← ∅, Smin ← ∅, Smax ← ∅

2: if m ≤ n then

3: (p, p′)← (0, n)
4: else if n < m ≤ 2 · n then

5: (p, p′)← (n, 0)
6: end if

7: Smin ← {i | i ∈ {1, . . . , n} and ai+p ≤ am} r {m− p}
8: Smax ← {i | i ∈ {1, . . . , n} and ai+p′ ≥ am}r {m− p+ p′}
9: if Smax 6= ∅ then
10: (S1, S2)← SOLCase1(A,m, Smin, Smax)
11: (S′

1, S
′
2)← SOLCase2(A,m, Smin, Smax)

12: if MR(S1, S2, A) <MR(S′
1, S

′
2, A) then

13: (S′
1, S

′
2)← (S1, S2)

14: end if

15: end if

16: return S′
1, S

′
2

We will continue with the presentation of algorithms SOLCase1(A,m, Smin,
Smax) and SOLCase2(A,m, Smin, Smax). Let us first define a function that will
simplify their presentation.

Definition 3 (LTST: Larger Total Sum Tuple selection). Given two tuples

~v1 = (S1, S2, x) and ~v2 = (S′
1, S

′
2, x

′) we define the function LTST(~v1, ~v2) as

8



follows:

LTST(~v1, ~v2) =

{

~v2 if ~v1 = (∅, ∅, 0) or x′ > x,

~v1 otherwise .

We will use this function to compare the sum of the sets S1 ∪S2 and S′
1 ∪S

′
2 i.e.

x =
∑

i∈S1∪S2

ai and x′ =
∑

i∈S′

1
∪S′

2

ai

In the next algorithm we study the case 1. In case 1 we consider that we
need to use an element that its weight is greater than the sum of the elements’
weights that could belong to the other set. In this case the set with the largest
total weight contains only one element and the other set contains all the allowed
elements (elements that have no conflicts).

Algorithm 3 Case 1 solution [SOLCase1(A,m, Smin, Smax) function]

Input: a set A = {a1, . . . , a2·n}, ai ∈ Z+ and an integer m, 1 ≤ m ≤ 2 · n and
Smin, Smax ⊆ {1, ..., n}.

Output: Case 1 optimal solution for Semi-Restricted 2-Set SSR.
1: S′

1 ← ∅, S
′
2 ← ∅

2: if m ≤ n then

3: p← 0, p′ ← n
4: else

5: p← n, p′ ← 0
6: end if

7: Q← am +
∑

i∈Smin
ai+p

8: for all i ∈ Smax and ai+p′ > Q do

9: a← 0
10: if i ∈ Smin then

11: a← ai+p

12: end if

13: if ai+p′/(Q− a) <MR(S′
1, S

′
2, A) then

14: S ← {j + p | j ∈ Smin or j = m− p}r {i+ p}
15: (S′

1, S
′
2)← (S, {i+ p′})

16: end if

17: end for

18: return S′
1, S

′
2

In case 2 we consider that the largest (weighted) element doesn’t necessarily
dominate the sum of the weights of the second set. In this case we create a
three dimensional matrix whose first dimension represents the elements we have
already used, the second represents the difference of the sets’ sums and the third
is rather technical and it used to be sure that we won’t overwrite tuples that
have wanted properties. In the cells we store the two sets of indices and the total

9



sum of their weights. Moreover when the third dimension has the value 1 then
this means that these sets could be a part of a feasible solution.

Algorithm 4 Case 2 solution [SOLCase2(A,m, Smin, Smax) function]

Input: a set A = {a1, . . . , a2·n}, ai ∈ Z+ and an integer m, 1 ≤ m ≤ 2 · n and
Smin, Smax ⊆ {1, ..., n}.

Output: Case 2 optimal solution for Semi-Restricted 2-Set SSR.
1: S′

1 ← ∅, S
′
2 ← ∅

2: if m ≤ n then

3: p← 0, p′ ← n
4: else

5: p← n, p′ ← 0
6: end if

7: Q← am +
∑

i∈Smin
ai+p

8: T [i, d, l]← {∅, ∅, 0}, ∀ (i, d, l) ∈ {0, . . . , n} × {−2 ·Q, . . . , Q} × {0, 1}
9: T [0, am, 0]← ({m}, ∅, am)
10: for i← 1 to n do

11: for all (d, l) ∈ {−2 ·Q, . . . , Q} × {0, 1}
12: (S1, S2, x)← T [i− 1, d, l] do
13: T [i, d, l]← LTST(T [i, d, l], T [i− 1, d, l])
14: d′ ← d+ ai+p

15: if i ∈ Smin then

16: T [i, d′, l]← LTST(T [i, d′, l], (S1 ∪ {i+ p}, S2, x+ ai+p))
17: end if

18: d′ ← d− ai+p′

19: if i ∈ Smax and d′ ≥ −2 ·Q then

20: T [i, d′, 1]← LTST(T [i, d′, 1], (S1, S2 ∪ {i+ p′}, x+ ai+p′))
21: else if i /∈ Smax and d′ ≥ −2 ·Q then

22: T [i, d′, l]← LTST(T [i, d′, l], (S1, S2 ∪ {i+ p′}, x+ ai+p′))
23: end if

24: end for

25: end for

26: for d← −2 ·Q to Q do

27: (S1, S2, x)← T [n, d, 1]
28: if MR(S1, S2, A) <MR(S′

1, S
′
2, A) then

29: S′
1 ← S1, S

′
2 ← S2

30: end if

31: end for

32: return (S′
1, S

′
2)

Theorem 3. Algorithm 2 runs in time O(n2 · am).

Since Algorithm 2 is a pseudo - polynomial time algorithm for the Semi-
Restricted 2-Set SSR which solves the instances with integer values and runs
in time O(poly(n, am)), by using Theorem 2 we get that 2-Set SSR admits an
FPTAS. Furthermore, by using Algorithm 1 we have the following:

10



Theorem 4. For 2-Set SSR and for every ε ∈ (0, 1) we can find an (1 + ε)
approximation solution in time O(n4/ε).

5 Approximation of SSR and Factor-r SSR

In this section we will use the algorithm we design for the 2-Set SSR in order to
approximate the original problem SSR and another one variation of SSR, the
Factor-r SSR.

Before we approximate these problems we will prove that both of them are
in F -SSR. Starting with the SSR, it is easy to identify it with a problem
(I,F ,M,G) in F−SSR: we let the set of instances I contain sets of positive
integers A = {a1, . . . , an}, the set of feasible solutions F contain all the pairs
of sets (S1, S2) such that S1 ∪ S2 ⊆ {1, . . . , n}, S1 ∩ S2 = ∅, the measure be
M =MR(S1, S2, A), and the goal function be G = min.

Regarding Factor-r SSR, we identify it with a problem (I,F ,M,G) in
F−SSR, by letting the set of instances I contain sets of positive numbers
A = {a1, . . . , a2n} = {a1, . . . an, r ·a1, . . . , r ·an} with ai ∈ Z+ for i ∈ {1, . . . , n},
r ∈ R, the set of feasible solutions F contain all pairs of sets (S1, S2) such that
S1 ⊆ {1, ..., n} and S2 ⊆ {n+1, ..., 2n} and ∀ (i, j), i ∈ S1 ∧ j ∈ S2 ⇒ i+n 6= j,
the measure beM =MR(S1, S2, A)), and the goal function be G = min.

For both problems we can modify their input in order to match the input
of 2-Set SSR. Specifically, is not hard to see that an optimal solution for SSR
with input A = {a1, . . . , an} is an optimal solution for 2-Set SSR with input
A = {{a1, a1) . . . , (an, an)} and vice versa. The same applies to an optimal
solution for Factor-r SSR with input ({a1, . . . , an}, r) and an optimal solution
of 2-Set SSR with input A = {(a1, r · a1) . . . , (an, r · an)}. Furthermore the
feasible solutions for 2-Set SSR, with the specific input we discussed above,
are the same with the ones for SSR (respectively for Factor-r SSR). So if we
find an (1 + ε) approximating solution for the 2-Set SSR problem with input
A = {(a1, a1) . . . , (an, an)} (resp. with input A = {(a1, r · a1) . . . , (an, r · an)})
then this is an (1+ε) approximating solution for SSR (resp. for Factor-r SSR).
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6 APPENDIX

Lemma 1. Let P = (I, k,F) a problem in F -SSR and P ′ = (I ′, k′,F ′) the

semi restricted version of P. If (E,w) ∈ I and (E,w′,m) ∈ I ′ are the instances

of P and P ′ respectively then any feasible solution (S1, . . . , Sk) of the instance

(E,w′,m) of P ′ is also a feasible solution of the instance (E,w) of P.

Proof. The feasible solutions (S1, . . . , Sk) of instance (E,w′,m) of P ′ is the
F ′(k,E,w′,m). By the definition of P ′ in Semi-Restricted F -SSR we have
F ′(k,E,w′,m) ⊆ F(k,E) thus the lemma holds.

Lemma 2. Let P = (I, k,F) a problem in F -SSR and P ′ = (I ′, k′,F ′) the

semi restricted version of P. If E is a set of elements and w, w′ two weight

functions such that:

For any i, j ∈ {1, . . . n}, w(ei) < w(ej)⇔ w′(ei) ≤ w′(ej)

then any feasible solution (S1, . . . , Sk) for the instance (E,w) of P is a feasible

solution for the instance (E,w′,m) of P ′ if

w(em) = min
j∈{1,...,k}

{max{w(ei) | i ∈ Sj}}

Proof. Let (S1, . . . , Sk) be a feasible solution for the problem P with instance
(E,w). This mean that (S1, . . . , Sk) ∈ F(k,E). Assuming that:

w(em) = min
j∈{1,...,k}

{max{w(ei) | i ∈ Sj}}

is easy to see that w(em) ≤ max{w(ei) | i ∈ Sj and j ∈ {1, . . . k}} which by
the assumptions in the lemma gives us w′(em) ≤ max{w′(ei) | i ∈ Sj and j ∈
{1, . . . k}}. This means that (S1, . . . , Sk) is a feasible solution for P ′ with instance
(k,E,w′,m) it meets both conditions

(S1, . . . , Sk) ∈ F(k,E)

and
w′(em) = min

j∈{1,...,k}

{

max{w′(ei) | i ∈ Sj}
}

.

The following three lemmas will be used to prove theorem 1. We will start with
the following lemma that relates A with A′.

Lemma 3. Let ai, a
′
i and δ as they are in Theorem 1, then for any S ∈ {S1Opt,

S2Opt, S1, S2} they satisfy the following:

∑

i∈S

ai −m · δ ≤
∑

i∈S

a′i · δ ≤
∑

i∈S

ai (1)

m · δ ≤
ε

3

∑

i∈S

ai (2)
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Proof. To prove Eq. 1, notice that for all i ∈ {1, . . . , n} we define a′i = ⌊ai

δ
⌋.

This gives us
ai
δ
− 1 ≤ a′i ≤

ai
δ
⇒ ai − δ ≤ δ · a′i ≤ ai .

In addition for any S ∈ {S1Opt, S2Opt, S1, S2} we have |S| ≤ m, which means
that

∑

i∈S

ai −m · δ ≤
∑

i∈S

ai − |S| · δ ≤
∑

i∈S

a′i · δ ≤
∑

i∈S

ai .

As for Eq. 2 we have to take into account the theorem’s assumptions. Specifically
we know that

m ≤
∑

i∈S

ai for all S ∈ {S1Opt, S2Opt, S1, S2}

which gives

m · δ =
ε · w

3
≤

ε

3

∑

i∈S

ai

Lemma 4. For sets S1 and S2 it holds

MR(S1, S2, A) ≤MR(S1, S2, A
′) +

ε

3

Proof. Without loss of generality we will assume that

MR(S1, S2, A) = R(S1, S2, A)

R(S1, S2, A) =

∑

i∈S1
ai

∑

j∈S2
aj
≤

∑

i∈S1
a′i · δ + δ ·m

∑

j∈S2
aj

[by Eq. 1]

≤

∑

i∈S1
a′i · δ

∑

j∈S2
a′j

+
δ ·m

∑

j∈S2
aj

[by Eq. 1]

≤MR(S1, S2, A
′) +

ε

3
[by Eq. 2]

Lemma 5. For every ε ∈ (0, 1) we have that

MR(S1Opt, S2Opt, A
′) ≤ (1 + ε/2) · MR(S1Opt, S2Opt, A)

Proof. Without loss of generality we will assume that

MR(S1Opt, S2Opt, A
′) = R(S1Opt, S2Opt, A

′)

14



From Eq. 1 we have that

MR(S1Opt, S2Opt, A
′) =

∑

i∈S1Opt
a′i

∑

i∈S2Opt
a′i
≤

∑

i∈S1Opt
ai

∑

i∈S2Opt
ai −m · δ

=

∑

i∈S1Opt
ai

∑

i∈S2Opt
ai −m · δ

·

∑

i∈S2Opt
ai

∑

i∈S2Opt
ai

=

∑

i∈S2Opt
ai

∑

i∈S2Opt
ai −m · δ

·

∑

i∈S1Opt
ai

∑

i∈S2Opt
ai

=

(

1 +
m · δ

∑

i∈S2Opt
ai −m · δ

)

· R(S1Opt, S2Opt, A)

by Eq. 2 it follows that

MR(S1Opt, S2Opt, A
′) ≤

(

1 +
1

3
ε
− 1

)

· R(S1Opt, S2Opt, A)

=

(

1 +
ε

3− ε

)

· R(S1Opt, S2Opt, A)

≤
(

1 +
ε

2

)

· R(S1Opt, S2Opt, A) [because ε ∈ (0, 1)]

≤
(

1 +
ε

2

)

·MR(S1Opt, S2Opt, A).

This concludes the proof.

Now we are ready to prove Theorem 1.

Proof. (of Theorem 1) The theorem follows from a sequence of inequalities:

MR(S1, S2, A) ≤MR(S1, S2, A
′) +

ε

3
[by Lemma 4]

≤MR(S1Opt, S2Opt, A
′) +

ε

3

≤ (1 +
ε

2
) · MR(S1Opt, S2Opt, A) +

ε

3
[by Lemma 5]

≤ (1 + ε) ·MR(S1Opt, S2Opt, A).

Theorem 2. Let P = (I,F ,M,G) be a problem in F -SSR and P ′ = (I ′,F ′,
M,G) its corresponding problem in Semi-Restricted F -SSR. If for problem P ′

there exists an algorithm that solves exactly all instances A = {a1, . . . an,m} ∈ I ′

in which all ai values are integers in time O(poly(n, am)), then P admits an

FPTAS.
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Proof. Let us first remind that for every problem in F -SSR, two different in-
stances A and A′ with the same number of elements have exactly the same
feasible solutions (see Remark 1). We need to prove that the output of Algo-
rithm 1 is a (1+ ε)-approximation of the optimum solution of P with input A =
{a1, . . . an}. Let ε ∈ (0, 1), S1, ..., Sk be the sets of the optimum solution of P and

S
(m)
1 , ..., S

(m)
k the solution of P ′ with input (A(m),m) = ({a1, . . . an},m) ∈ I ′.

Here we have to remind that a feasible solution of P ′ is a feasible solution of P
if the input sets A’ and A for the problems have the same size. So the optimal

solution S
(m)
1 , . . . , S

(m)
k of the P ′ with input (A(m),m) = ({a1, . . . an},m) ∈ I ′

is a feasible solution of P with input A = {a1, . . . an}. We will also denote with
an0
∈ A the minimum element among the maximum of the sets S1, . . . , Sk of the

optimal solution, i.e.

an0
= min

j∈{1,...,k}

(

max
i∈Sj

ai

)

This means that for the output of the Algorithm 1, S∗
1 , . . . , S

∗
k we have

MR(S∗
1 , ..., S

∗
k , A) ≤MR(S

(n0)
1 , ..., S

(n0)
k , A)

so it is sufficient to prove that

MR(S
(n0)
1 , ..., S

(n0)
k , A) ≤ (1 + ε) · MR(S1, ..., Sk, A)

It is obvious that the optimal solution S1, ..., Sk is a feasible solution for the
problem P ′ with input A(n0) so we have

MR(S
(n0)
1 , ..., S

(n0)
k , A(n0)) ≤MR(S1, ..., Sk, A

(n0)) (3)

Without loss of generality let MR(S
(n0)
1 , S

(n0)
2 , A) = MR(S

(n0)
1 , . . . , S

(n0)
k , A)

andMR(S1, S2, A
(n0)) =MR(S1, . . . , Sk, A

(n0)). Then due to the definition of
theMR function

MR(S
(n0)
1 , S

(n0)
2 , A(n0)) ≤MR(S

(n0)
1 , . . . , S

(n0)
k , A(n0))

≤MR(S1, . . . , Sk, A
(n0)) [by Eq. 3]

=MR(S1, S2, A
(n0))

From the above equation and the definition of A(n0) it is easy to see that the

pairs of sets (S
(n0)
1 , S

(n0)
2 ) and (S1, S2) satisfy the requirements of Theorem 1

which gives us that

MR(S
(n0)
1 , . . . , S

(n0)
k , A) =MR(S

(n0)
1 , S

(n0)
2 , A) [by assumption]

≤ (1 + ε) ·MR(S1, S2, A) [by Theorem 1]

≤ (1 + ε) ·MR(S1, . . . , Sk, A) .
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As for the running time we have that this algorithm begins with a for
loop that runs n times. In each iteration the algorithm computes A(m) in time
O(n), runs the algorithm SOLex,Pm

in poly(n, a′m) and finally it has to eval-
uate MR(S′

1, . . . , S
′
k, A) and MR(S∗

1 , . . . , S
∗
k , A). This evaluation takes time

O(k2) = O(n2) due to k ≤ n (because S1, . . . , Sk are disjoint). So one iteration
takes time poly(n, a′m). Thereby Algorithm 1 runs in poly(n, a′m).

We will prove that the a′m which we use in each iteration is polynomially
bounded by n and 1/ε. We have that a′m = ⌊am/δ⌋ = ⌊3 ·n ·am/ε ·am⌋ ≤ 3 ·n/ε.
Hence the running time is poly(n, 1/ε) proving that Algorithm 1 is an FPTAS
for problem P .

Proof of theorem 4. Algorithm 2 runs in time O(n2 · am).

Proof. Observe that in Algorithm 2 we initialize our variables and we select
Smin and Smax according to m. These selection take time O(n). Then we run
two algorithms (Algorithm 3 and Algorithm 4). Specifically Algorithm 3 runs
in O(n) due to the fact that the cardinality of Smax can not be greater than
n. Furthermore in Algorithm 4 we fill a matrix with size n × 3 · Q × 2 and by
using suitable data structure, we can store the sets in time (and space) O(1) per
cell. This implies that Algorithm 4 runs in O(n · Q). Last, is easy to see that
Q = am +

∑

i∈Smin
ai+p and ai ≤ am for every ai this sum which gives us that

Q ≤ n · am. So the Algorithm 2 runs in time O(n2 · am).

Theorem 5. The Algorithm 2 returns an optimal solution for the semi re-

stricted version of 2-Set SSR.

Proof. Before we start the proof we have to remark two things. The first is that
generally, it’s not necessary that S1 ⊆ {1, . . . , n} and S2 ⊆ {n+1, . . . , 2 ·n} but
they may be reversed, so when we mention a feasible solution, by convention we
will regard that m ∈ S1. Secondly, in the case-algorithms inside of Algorithm 2
we construct two variables p and p′ such that:

• If m ∈ {1, . . . , n} then (p, p′) = (0, n)

• If m ∈ {n+ 1, . . . , 2 · n} then (p, p′) = (n, 0)

With the use of these variables we will prove some properties for the indices of
the feasible solutions.

Lemma 6. Let (S1, S2) be a feasible solution of the problem with input ({a1, . . . ,
a2·n},m), the set S = {1, . . . , n} and (p, p′) the variables we defined above, then:

• S1 ⊆ {i+ p | i ∈ S} (4)

• S2 ⊆ {i+ p′ | i ∈ S} (5)

• for an index j ∈ S1 then j − p+ p′ /∈ S2 (6)

• for an index j ∈ S2 then j − p′ + p /∈ S1 (7)
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Proof. Because the feasible solutions (S1, S2) are in such order so m ∈ S1 and
if we keep in mind that one of these sets is subset of {1, . . . , n} and the other is
subset of {n+ 1, . . . , 2 · n} we have that
• If m ∈ {1, . . . , n} then S1 ⊆ {1, . . . , n}, S2 ⊆ {n + 1, . . . , 2 · n} and (p, p′) =
(0, n)
• If m ∈ {n + 1, . . . , 2 · n} then S2 ⊆ {1, . . . , n}, S1 ⊆ {n + 1, . . . , 2 · n} and
(p, p′) = (n, 0)
Without loss of generality we assume that m ≤ n, this means that p = 0,

S1 ⊆ {1, . . . , n} = {i+ p | i ∈ S}

and because p′ = n

S2 ⊆ {n+ 1, . . . , 2 · n} = {i+ p′ | i ∈ S} .

It remains to prove the relations between the indices of the two sets. By the
definition of the problem for any feasible solution (S1, S2)∄ (i, j) such that i ∈ S1,
j ∈ S2 and i ≡ j (mod n). Because p, p′ ∈ {0, n} we have that j ≡ j − p+ p′ ≡
j − p′ + p (mod n) so both of the last two properties holds.

Lemma 7. Let (S1, S2) be a feasible solution for the problem with input ({a1, . . .
, a2·n},m) and Smin, Smax the sets as they are defined in Algorithm 2, then the

following are true:

∃ i ∈ Smax such that i+ p′ ∈ S2 (8)

S1 ⊆ {i+ p | i ∈ Smin} ∪ {m} (9)

Proof. We will start with the definitions of Smin and Smax.

Smin = {i | i ∈ {1, . . . , n} and ai+p ≤ am}r {m− p}

Smax = {i | i ∈ {1, . . . , n} and ai+p′ > am}r {m− p+ p′} .

For any feasible solutions of the semi restricted version of 2-Set SSR we know
that am = maxi∈S1

ai and am ≤ maxi∈S2
ai. Let j ∈ S2 such that aj ≥ am

then by relation 5, we have that ∃ i ∈ {1, . . . , n} such that i + p′ = j, ai+p′ ≥
am and i 6= m− p+ p′ so i ∈ Smax (by its definition). So relation 8 holds. Now
by considering the relation 4, if j ∈ S1 r {m} then ∃ i ∈ {1, . . . , n} such that
i + p = j, ai+p ≤ am and j 6= m which means that i ∈ Smin so the relation 9
holds. Thus the lemma holds.

Now, let (S∗
1 , S

∗
2) be an optimal solution for the semi restricted version of

2-Set SSR with input A = {a1, . . . a2·n} and m. Without lost of generality let

max
i∈S∗

1

{ai} = am1
= am < am2

= max
j∈S∗

2

{aj}

this means that the sets appear in the same order as if they were constructed
from the algorithm. For this optimal solution we have two cases, either am2

> Q
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or am2
≤ Q (where Q ← am +

∑

i∈Smin
ai+p as it is defined in case-algorithms

of Algorithm 2).
• Case 1 (am2

> Q): In this case we will return a solution with ratio equal
to the optimal using Algorithm 3. By relation 5 we know that there exists m0 ∈
{1, . . . , n} such that the index m0 + p′ = m2. With the additional knowledge
that am2

> Q we have that m0 ∈ Smax. We claim that the pair of sets (S, {m2}),
where S = {i+p | i ∈ Smin or i = m−p}r{m0+p} is an optimal solution for this
case. In order to prove this claim we need to observe that for any feasible solution
(S1, S2) for this case we have S1 ⊆ ({i + p | i ∈ Smin} ∪ {m})r {m2 − p′ + p}
and S2 ⊇ {m2}. So for any feasible solution for this case we have:

MR(S1, S2, A) = R(S2, S1, A) ≥ R({m2}, S1, A)

≥ R({m2}, ({i+ p | i ∈ Smin} ∪ {m})r {m2 − p′ + p}, A)

which proves the claim. Due to this fact, Algorithm 3 returns (S, {m2}) or a pair
of sets with the same max ratio.
• Case 2 (am2

< Q): The first thing we have to prove in this case is the
following lemma,

Lemma 8. If (S′
1, S

′
2) is a feasible solution for this case and (S1, S2) is a pair

of sets such that S1 ⊆ S′
1 and S2 ⊆ S′

2 then:

−2 ·Q ≤
∑

i∈S1

ai −
∑

j∈S2

aj ≤ Q

Proof. By relation 9 it is obvious that
∑

i∈S1
ai ≤ Q so we need prove that

∑

j∈S2

aj ≤ 2 ·Q .

Let’s assume that
∑

j∈S2
aj > 2 · Q then because Q ≥ am2

= maxi∈S′

2
{ai}

and S2 ⊆ S′
2, we have that S2 should contain at least 3 indices and the same

holds for the set S′
2. Let m0 6= m2 be one of them, then because Q ≥ am0

and
∑

j∈S′

2

aj ≥
∑

j∈S2
aj > 2 ·Q we have that

∑

j∈S′

2

aj >
∑

j∈S′

2
r{m0}

aj > Q

and because
∑

i∈S′

1

ai ≤ Q

1 ≤MR(S′
1, S

′
2 r {m0}, A) ≤MR(S

′
1, S

′
2, A)

which is a contradiction.

With the next lemma we will prove that for any feasible solution (S1, S2) the
cell T [n, d, 1] where d =

∑

i∈S1
ai−

∑

i∈S2
ai is non empty. Furthermore the sets

which are stored in this cell have max ratio at mostMR(S1, S2, A).
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Lemma 9. Let (S∗
1 , S

∗
2 ) is a feasible solution for this case and (S1, S2) is a pair

of sets such that S1 ⊆ S∗
1 , S2 ⊆ S∗

2 and m ∈ S1. We define m0 = max{0, i |
i+ p ∈ S1 r {m} or i+ p′ ∈ S2} and d =

∑

i∈S1
ai −

∑

i∈S2
ai.

If S2 ∩ {i+ p′ | i ∈ Smax} = ∅ then the cell T [m0, d, 0] 6= (∅, ∅, 0)

else then the cell T [m0, d, 1] 6= (∅, ∅, 0)

Proof. For any pair (S1, S2) (as these described at the lemma) we define the
following set

SS1,S2
= {0} ∪ {i mod n | i+ p ∈ S1 or i+ p′ ∈ S2)}r {m− p} .

We have to notice that i ∈ {1, . . . , n} if i+ p ∈ S1 (by relation 4) and the same
holds if i + p′ ∈ S2. Because of this we know that SS1,S2

⊆ {0, . . . , n} r {m −
p}. Now, we will prove this lemma by using strong induction to the maximum
element of the set S.
• If max{SS1,S2

} = 0 (base case)
Because we have requested m ∈ S1 and by the fact that max{SS1,S2

} = 0 we
can conclude that S2 ∩ {i + p′ | i ∈ Smax} = ∅ and (S1, S2) = ({m}, ∅), which
is the pair of sets the algorithm stores in the cell T [0, am, 0]. This concludes the
base case.
• Assuming that lemma’s statement holds for all the indices k′ which are smaller
or equal than a specific index k < n, we will now prove it for k + 1.
• Let k+1 = max{SS1,S2

} this means that k+1+p 6= m and either k+1+p ∈ S1

or k + 1 + p′ ∈ S2. So we have to check both cases.
Case A (k + 1 + p ∈ S1). In this case for the pair of sets (S′

1, S2) = (S1 r
{k + 1 + p}, S2) meets the conditions of the induction because max{SS′

1
,S2
} <

max{SS1,S2
r {k + 1}}. So for d =

∑

i∈S′

1

ai −
∑

i∈S2
ai we know that:

either the cell T [max{SS′

1
,S2
}, d, 0] 6= (∅, ∅, 0) if S2 ∩ {i+ p′ | i ∈ Smax} = ∅

or the cell T [max{SS′

1
,S2
}, d, 1] 6= (∅, ∅, 0) if S2 ∩ {i+ p′ | i ∈ Smax} 6= ∅

(respectively)

Algorithm 4 moves up all the cells (line 13). This means that the cell T [k, d, 0]
(resp. T [k, d, 1]) is non equal to (∅, ∅, 0) in the case S2 ∩ Smax = ∅ (resp.
S2 ∩ Smax 6= ∅). Because k + 1 ∈ Smin (by relation 9 and k + 1 + p ∈ S1) then
Algorithm 4 fills the cell T [k+1, d+ ak+1+p, 0] (resp. T [k+1, d+ ak+1+p, 1]) in
line 16. This proves the case A
Case B (k+1+ p′ ∈ S2). Here we have two extra cases, either k+1 ∈ Smax or
not.
Case B.1 (k + 1 /∈ Smax). Like in the previous case, the pair of sets (S1, S

′
2) =

(S1, S2r{k+1+p′}) meets the conditions of the induction because max{SS1,S
′

2
} <

max{SS1,S2
r {k + 1}}. So for d =

∑

i∈S1
ai −

∑

i∈S′

2

ai we know that:

either the cell T [max{SS1,S
′

2
}, d, 0] 6= (∅, ∅, 0) if S′

2 ∩ {i+ p′ | i ∈ Smax} = ∅

or the cell T [max{SS1,S
′

2
}, d, 1] 6= (∅, ∅, 0) if S′

2 ∩ {i+ p′ | i ∈ Smax} 6= ∅

(respectively)
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As we have said before, Algorithm 4 moves up all the cells (line 13). This means
that the cell T [k, d, 0] (resp. T [k, d, 1]) is non equal to (∅, ∅, 0) in the case of
S′
2 ∩ {i+ p′ | i ∈ Smax} = ∅ (resp. S

′
2 ∩ {i+ p′ | i ∈ Smax} 6= ∅) and because we

know that d − ak+1+p′ ≥ −2 ·Q (by lemma 8) in the line 22 the algorithm fills
the wanted cell T [k, d− ak+1+p′ , 0] (resp. T [k, d− ak+1+p′ , 1]).
Case B.2 (k + 1 ∈ Smax). This case is similar to Case B.1 with the exception
that the algorithm ensures that the algorithm fills the cell T [k, d− ak+1+p′ , 1] in
line 20 if either of the T [k − 1, d, 0] or T [k − 1, d, 1] are non-empty.

To complete the proof we have to observe three things.
First, in any cell Algorithm 4 keeps the pair of sets with the greater total sum.
Second, For all the pairs of sets (S1, S2) which are stored we have S1 ⊆ {i+ p |
i ∈ Smin}, S2 ⊆ {i + p′ | i ∈ {1, . . . , n}} and ∄(j, j′) such that j ∈ S1, j

′ ∈ S2

and j ≡ j′ (mod n) (because we use only i+ p in S1 or i+ p′ in S2 every time).
Third, in order to store a pair of sets in any cell T [i, d, 1] we have either add a
i+p′ with i ∈ Smax to the S2 or use an other cell T [i′, d′, 1] (which already have
such an index in S2) so these pairs are feasible solutions for this case.
With all that in mind we know that, if (S∗

1 , S
∗
2 ) be an optimal solution for the

problem then for d =
∑

i∈S∗

1

ai−
∑

i∈S∗

2

ai (d ∈ {−2 ·Q, . . . , Q} by the lemma 8)

a cell T [i, d, 1] 6= (∅, ∅, 0) due to lemma 9 and relation 8 so the same holds for
the T [n, d, 1] (because the algorithm moves up all the cells). Let (S1, S2) pair of
sets stored in that specific cell. As we mentioned earlier the pair (S1, S2) is a
feasible solution such that:

∑

i∈S1

ai −
∑

i∈S2

ai =
∑

i∈S∗

1

ai −
∑

i∈S∗

2

ai

and
∑

i∈S1

ai +
∑

i∈S2

ai ≥
∑

i∈S∗

1

ai +
∑

i∈S∗

2

ai

Now, because the differences of the sums of the pairs are the same, it is easy to
see that the pair with the smaller max ratio is the one with the greater total
sum. So, because we can not have smaller max ratio than the optimal this means
that the stored pair is an optimal one. Thus the Algorithm 2 returns the optimal
solution in both of cases.
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