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ABSTRACT 

This paper presents an analytical model for valuing interest rate swaps, subject to 

bilateral counterparty credit risk. The counterparty defaults are modeled by the 

reduced-form model as the first jump of a time-inhomogeneous Poisson process. All 

quantities modeled are market-observable. The closed-form solution gives us a better 

understanding of the impact of the credit asymmetry on swap value, credit value 

adjustment, swap rate and swap spread. 
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1. Introduction 

Interest rate swap (IRS) is one of the most popular financial derivatives. In the 

market, IRS’s are quoted irrespective of credit ratings of counterparties. In another 

words, they are considered as default-free. The valuation of default-free IRS’s under 

a term structure of interest rates is a classical exercise. However, swap contracts are 

traded over-the-counter (OTC) and are not backed by the guarantee of a clearing 

corporation or an exchange. As a consequence, each party is exposed to the credit risk 

(default risk). Historical experience shows that credit risk often leads to significant 

losses. Therefore, one should incorporate the cost of the counterparty risk into the 

swap price. Also, regulatory issues related to the Basel II framework encourage the 

inclusion of default risk into valuation. 

Pricing defaultable derivatives or pricing the counterparty credit risk is a 

relatively new area of derivatives modeling and trading. Credit value adjustment (CVA) 

allows us to quantify counterparty credit risk as a single, measurable Profit & Loss 

number. By definition, CVA is the difference between the risk-free trade value and the 

true (or risky or defaultable) trade value that takes into account the possibility of 

counterparty’s default. Commonly, the CVA is not paid as a lump-sum upfront 

premium, but rather is structured into a funding spread. The risk-free trade value is 

what brokers quote or what trading systems or models normally report. The 

defaultable trade value, however, is a relatively less explored and less transparent 

area, which is the main challenge and core theme for credit risk adjustment (see Xiao 

[2015], [2017]). 

IRS is a typical bilateral contingent contract that can be either an asset or a 

liability to each party during the life of the contract. Unlike the unilateral defaultable 

claim valuation problems that have been studied extensively by many authors, the 

valuation of bilateral contingent claims is still lacking convincing mechanism. The 



problem is mainly caused by the asymmetric credit qualities and the asymmetric 

default settlement rules. 

Sundaresan (1991), Longstaff and Schwartz (1993), and Tang and Li (2007) 

simplify the problem by considering the IRS as a simple exchange of loans (receivable 

parts and payable parts). It is inappropriate to value a defaultable IRS by pricing the 

default risk of the promised gross payment from each party separately and then adding 

the two together. Because the promised cash flow exchange in an IRS is always netted. 

Another simplification consists of taking into account the presence of one risky 

counterparty only, as in Li (1998) and Arvanities and Gregory (2001). These 

approaches overlook the presence of bilateral default risk. 

The first study on asymmetric defaultable IRS is conducted by Duffie and Huang 

(1996). They use a short rate interest rate model combined with a reduced-form 

default model and lead to numerical approximations by solving a recursive integral. 

Even the authors admit that it is a substantial complexity solution. Hubner (2001) 

extends the work carried out by Duffie and Huang (1996) and gets a closed-form 

solution by introducing a one-dimensional state variable X that can be thought of as a 

ratio of the market value of the firm’s assets. The author, however, does not show 

how to calibrate the state variable and not even provide a simple example. In general, 

these proposed models are not practical enough to use. 

In this paper, we present an analytical model for valuing contingent claims 

subject to default by both parties. While the general principles of the valuation model 

can be applied to other bilateral defaultable contingent claims, we focus on the 

valuation of defaultable IRS’s in which both parties are exposed to credit risk. The 

approach is based on market models for interest rates and a reduced-form model for 

the default time. All quantities modeled are market-observable. With the closed-form 

solution, we can analyze the impact of credit risk on swap value, swap rate, swap 



spread and CVA more closely. We confirm the results in Duffie and Huang (1996) and 

also report some new findings. 

The rest of this paper is organized as follows: Market models are discussed in 

Section 2. In section 3, the valuation of asymmetric defaultable IRS and CVA are 

elaborated. The results are presented in Section 4. The conclusions are given in Section 

5. 

 

2. Market Models 

Consider an increasing maturity structure N
TTT  ...0

10  from which 

expiry-maturity pairs of dates ( 1−k
T , k

T ) for a family of spanning forward rates are 

taken. The simply compounded forward rate reset at t for forward period ( 1−k
T , k

T ) is 

defined by 
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where ),( TtP  denotes the time t price of a zero-coupon bond maturing at time T and 

),(: 1 kkk TT −=   is the accrual factor or day count fraction for period ( 1−k
T , k

T ). 

Consider a zero coupon bond numeraire ),(
i

TP   whose maturity coincides with 

the maturity of the forward rate i
F . The measure 

iQ  associated with ),(
i

TP   is called 

i
T  forward measure. 

The name ‘market model’ refers to the modeling of market observable variables 

such as forward rates and swap rates. The explicit modeling market rates allows for 

natural formulas for interest rate option volatility, that are consistent with the market 

practice of using the formula of Black for caps and swaptions. The typical market 

models are Black model, LIBOR market model (LMM) and swap market model (SMM). 



The Black model is a variant of the Black-Scholes option pricing model and 

consists of a series of forward measures. Each forward rate is modeled by a lognormal 

process under its own forward measure. The forward rate dynamics under the Black 

model is 

 )()()( tdWtFtdF
kkkk

=     (2) 

where k
  is the Black caplet volatility or the spot volatility of the forward rate k

F ; 

)(tWk  is a Brownian motion 

The solution to equation (2) can be expressed as 
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The LMM, in contrast to the Black model, describes the dynamic of a whole 

family of forward rates under a common measure. 

Under the lognormal assumption and the forward measure 
iQ , the forward rate 

)(tFk  of LMM follows the following dynamics: 

Case 1.       i < k, iTt  :  

)()()(

)(1

)()(
)()()(

1

tdWtFtv

dt
tF

tFtv
tFtvtdF

kkk

k

ij jj

jjjkj

kkk

+

+
= 

+= 



 (4) 

Case 2.  i = k, 1− kTt   )()()()( tdWtFttdF
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=    (5) 

Case 3.  i > k, 1− kTt           
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where )(t
k

  is the instantaneous volatility. We further assume that the Brownian 

motions )(tWk  and )(tW j  of different forward rates )(tFk  and )(tF j  are 

instantaneously correlated according to kj , i.e., 

   dttdWtdW kjjk =)()(     (7) 

For a vanilla instrument like swap or cap, the payoff can be decomposed 

additively into a sum of sub-payoffs (each is involved with a single forward rate and 

associated with a contract called swaplet or caplet). We can evaluate each sub-payoff 

separately and sum corresponding results together. For each sub-payoff, the joint 

dynamics of forward rates is not involved. As a consequence, the correlation between 

different rates does not afflict the sub-payoff, since marginal distribution of the single 

forward rate is enough to compute the expectation appearing in the sub-payoff. In 

other words, the correlations between different forward rates are not relevant to these 

kinds of vanilla products. As matter of fact, the valuations for these vanilla products 

under either the LMM or the Black model should be equivalent; otherwise it will violate 

the fundamental single value rule and create an arbitrage opportunity (see Proposition 

6.4.1 of Brigo-Mercurio (2006)). 

 

3. Swap Valuation and CVA 

We consider a filtered probability space ( , F, P) with a filtration F t  satisfying 

the usual conditions, where   denotes a sample space; F denotes a  -algebra; P 

denotes a probability measure. Let valuation date be t. Consider a fixed-for-floating 

swap. Two counterparties are denoted as A and B. Counterparty A pays a fixed rate, 

while counterparty B pays a floating-rate.  



Assume the IRS has the first reset date 0
T  and payment dates 1

T ,…, n
T . There 

are total n future cash flows i
X . From the perspective of counterparty A, The i

X  is 

given by 

( )
iiii

KTFX −=
−

)(
1  

 We are considering that fixed rate payments and floating-rate payments occur 

at the same payment dates and with the same day-count conventions, and ignoring 

the swap funding spread. Though the generalization to different payment dates, day-

count conventions and swap funding spreads is straight-forward, we prefer to present 

a simplified version to ease the notation. 

 

Risk-Free IRS Valuation 

The discounted payoff of the IRS is 

( )
=

−
−=

n

i

iiii

Free KTFTtDtpayoff
1

1
)(),()(     (8) 

where ),(
i

TtD  is the discount factor. In general, bond price is deterministic but 

discount factor is stochastic. If interest rates are deterministic, the bond price ),(
i

TtP  

and the discount factor ),(
i

TtD  are equivalent. However, if interest rates are 

stochastic, they are different. In fact, the bond price can be viewed as the expectation 

of the discount factor.  

The pricing of the IRS can be obtained by considering the risk-neutral 

expectation E of its discounted payoff: 
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Where EE
t
=: {.|F t } is the expectation conditional on the F t ; 

i

t
E  is the expectation 

under forward measure iQ  conditional on the F t . 

 The swap rate is the fixed rate that makes the market value of a given swap at 

initiation zero. The risk free swap rate is given by 
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Asymmetric Defaultable IRS Valuation 

There are two approaches to price defaultable financial instruments: Structural 

Approach and Reduced-Form Approach. The structural approach regards default as an 

endogenous event by focusing on the capital structure of the firm. Rendleman (1992) 

applies the structural model based on knowledge of the asset-liability structure of the 

swap counterparties to the swaps market. The development of a structural model 

seems impractical given the data on generic market swap rates.  

The reduced-form approach proposed by Duffie and Singleton (1999), and 

Jarrow and Turnbell (1994) did not explain the event of default endogenously, but 

characterized it exogenously by a jump process.  

For the case of IRS’s, modeling the default time as an inaccessible stopping 

time, such as a Poisson arrival, seems reasonable because default events, when they 

do occurs, are rarely fully anticipated even a short time before the default. 

The stopping (default) time of party j (j = A, B) is modeled as a Poisson arrival 

with probability density function: 

 ))(exp()()( tththtf
jjj

−=      (11) 



where )(th
j  is the hazard rate or the arrival intensity of a Poisson process whose first 

jump occurs at default. The stopping time for the IRS is defined as BA
 = . It is 

well-known that the survival probability from t to T in this framework is given by 
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We follow the common market practice and use a deterministic intensity model 

for hazard rate. The intensity function can be stripped by market prices of credit 

derivatives actively traded in the market, such as, Credit Default Swap (CDS). 

In some previous studies, such as Duffie and Huang (1996), the bond spreads 

are used to determine credit quality. Both bond spreads and CDS spreads are closely 

related to each other. Conceptually a CDS spread is different from a bond spread and 

that they can differ in magnitude for technical reason. There is some empirical 

evidence that the CDS market typically leads the bond market, in particular during 

crisis situation. Liquidity in the bond market is typically drying up during a financial 

crisis. Demand for insurance against default risk, on the other hand, increases if the 

issuer is experiencing financial stress. Consequently, prices and spreads derived from 

the CDS market tend to be more reliable during crises. Therefore, we use CDS spreads 

to calibrate hazard rates. We will generally refer to both as credit spreads unless 

otherwise noted. 

A critical ingredient of the pricing of a defaultable IRS is the rules for settlement 

in default. There are two rules in the swap market. The “one-way payment (fault)” 

rule was specified by the early International Swap Dealers Association (ISDA) master 

agreement. The non-defaulting party is not obligated to compensate the defaulting 

party if the remaining market value of the IRS is positive for the defaulting party. The 

“two-way payment (no fault)” rule is based on the current ISDA documentation. In the 

event of default, if the contract has positive value to the non-defaulting party, the 



defaulting party pays a fraction of the pre-default market value of the IRS to the non-

defaulting party. If the contract has positive value to the defaulting party, the non-

defaulting party will pay the full pre-default market value of the IRS to the defaulting 

party.  

Consider any swaplet i. According to Duffie and Huang (1996), we can get the 

discounted defaultable payoff as 
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where 
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where Y  is an indicator function that is equal to one if Y is true and zero otherwise; 

j
  represents the fraction of the cash flow i

X  paid by the defaulting counterparty j 

when the cash flow is negative for j. The recovery rate j
  is normally considered as 

deterministic, although it can be time-varying. j
  represents the fraction of the cash 

flow i
X  paid by non-defaulting counterparty j when the cash flow is negative for j. j



=0 represents the one-way settlement rule, while j
 =1 represents two-way 

settlement rule. j
h  is the hazard rate of counterparty j. 

The default-adjusted spreads B
s  and A

s  in (12) have general forms that apply 

in several particular situations. Under the one-way settlement rule, we have  
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Under the two-way settlement rule, we have 
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Equation (12) can be rewritten as 
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where 
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duusTtC )(exp),(  is a deterministic function under a deterministic 

default intensity model and a deterministic recovery assumption. 

An IRS is a linear product. The total discounted defaultable payoff of the IRS is 

just the sum of the discounted defaultable payoffs of the future swaplets, that is, 
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 The price of the defaultable IRS can be obtained by considering the risk-neutral 

expectation E of its discounted defaultable payoff: 
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 The key to value an asymmetric defaultable IRS is to calculate the expectations: 
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t
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XE .  



According to (3), we can calculate 
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where x  is a standard normal variable;   is the standard normal cumulative 

distribution function; 
( )

tT

tTKtF
d
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 2/)(/)(ln 2

2,1 . Equation (16) is a standard 

Black formula on a call option. 

 Similarly, we have 
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This is a standard Black formula on a put option. 

 Therefore, the value of a defaultable swaplet is a risk-adjusted call option minus 

a risk-adjusted put option. In other words, a defaultable swaplet can be replicated by 

buying a risk-adjusted call option and selling a risk-adjusted put option, that is:  
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 The price of the defaultable IRS is  
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If both parties have the same credit quality (symmetric credit risk) and follow 

two-way settlement rule, i.e.,  
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equation (19) can be expressed as 
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where 1)()( =−+ xx .  

This is exactly the formula of Duffie and Singleton (1997). The defaultable swap 

rate (K) under asymmetric credit risk can only be solved numerically, because K is also 

contained in 1i
d  and 2i

d . However, the analytic solution exists for the defaultable swap 

rate under symmetric credit risk. The symmetric defaultable swap rate that makes the 

market value of the IRS at initiation zero is 
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Bilateral CVA 

CVA offers an opportunity for banks to move beyond the traditional control 

mindset of credit risk limits by dynamically pricing counterparty credit risk directly into 

new trades. A trend that has become increasingly relevant and popular has been to 

consider the bilateral nature of counterparty credit risk. Most institutions view bilateral 

considerations as important in order to agree on new transactions. The bilateral CVA 

of an IRS, by definition, is the difference between the risk-free IRS value and the 

bilateral defaultable IRS value, given by 

)()()( tpvtpvtCVA DFree −=      (22) 



 Unlike the unilateral CVA that is always positive, the bilateral CVA can be 

positive or negative. Since the swaps market is a zero-sum game, for every winner 

there is an equal and opposite loser. 

 

4. Impact of Credit Risk 

We use a new 10-year IRS (provided by FinPricing (2019)) as an example. At 

the time the contract is entered into, there is no advantage to either party. Thus, the 

risk free value of the IRS is zero, i.e., 0)( =tpv Free
. The risk free swap rate calculated 

according to (10) is 2.59%. The 10-year treasury yield is 2.58%. The risk-free swap 

spread is 1 basis point. Swap spread is defined as the spread paid by the fixed-rate 

payer of an IRS over the rate of the on-the-run treasury with the same maturity as 

the IRS. The swap spread is the additional amount an investor would earn on an IRS 

as compared to a risk-free fixed rate investment. We report the empirical results in 

several cases. 

 

LIBOR Party Paying Floating-Rate 

LIBOR reflects an average of the borrowing costs for large banks with AA credit 

rating. A hypothetical LIBOR quality entity can issue floating bonds at LIBOR flat, i.e., 

with par coupon being the same as LIBOR. But an entity with lower credit quality than 

LIBOR can only issue bonds at LIBOR plus positive spreads so as to compensate the 

bondholders for the credit risk that they undertake. These credit spreads are the credit 

funding cost for this entity. The swap funding spread (floating-rate spread) is different 

from the credit spread but is of the same origin. We assume that a LIBOR floating 

payer enter a par swap with zero swap funding spread.  

Let the floating-rate payer have the same credit quality as LIBOR and the 

second party have a parallel shifted spread against the LIBOR party. Assume that the 



second party has a constant recovery rate 60%. The hazard rates are bootstrapped 

from CDS spreads. The defaultable IRS values, CVA’s, swap rates and swap spreads, 

from the perspective of counterparty A, are calculated according to the description of 

section 3 and shown in Table 1. 

 

Table 1 

Credit quality impact (the floating-rate payer is a LIBOR party; the swap funding 

spread is 0; swap spread change = defaultable swap spread – default-free swap 

spread) 

Rating Defaultable 

IRS value 
CVA 

Defaultable 

swap rate 

Swap spread 

change party A party B 

AA+100bp AA 147.4069 -147.4069 2.6061% 1.6bp 

AA+200bp AA 286.5230 -286.5230 2.6222% 3.2bp 

AA+300bp AA 420.9761 -420.9761 2.6383% 4.8bp 

 

From table 1, we find that a credit spread of about 100 basis points translates 

into a swap spread of about 1.6 basis points. The credit impact on swap rates is 

approximately linear within the range of normally encountered credit quality. This 

confirms the findings of Duffie and Huang (1996). 

The magnitude of the difference between the credit spread and swap spread 

can by explained by the exposure and the credit risk. In the case of a bond, all coupons 

and the principal are at risk. In the case of an IRS, only net cashflows are at risk (see 

FinPricing [2019]). The impact of net cashflows is much smaller than that of all 

cashflows plus principal. 

 

Both Parties Having Spreads against the LIBOR 

Now we are considering the cases that both parties have credit spreads against 

the LIBRO. If the party who pays the floating-rate has a credit quality different from 



the LIBOR, a swap funding spread is also needed to be introduced. This funding spread 

actually reflects the different funding cost of different issuers and also has an impact 

on swap rate. To simplify the analysis, we fix the swap funding spread and assume the 

floating-rate payer has 100 basis points against the LIBOR. The results are shown in 

Table 2 and table 3. We show that the swap funding spread has a significant impact 

on swap spread as well. If we fix the swap funding spread, the swap spreads increase 

as the credit spreads of the two parties increase. But the impact is not linear any more. 

 

Table 2 

Credit quality impact (both parties are not a LIBOR party; the swap funding spread is 

0.1%; swap spread change = defaultable swap spread – default-free swap spread) 

Rating Defaultable 

IRS value 
CVA 

Defaultable 

swap rate 

Swap spread 

change party A party B 

AA+100bp AA+100bp 220.1629 -220.1629 2.6148% 2.4bp 

AA+200bp AA+100bp 286.5230 -286.5230 2.6309% 4.1bp 

AA+300bp AA+100bp 420.9761 -420.9761 2.6469% 5.7bp 

 

Table 3 

Credit quality impact (both parties are not a LIBOR party; the swap funding spread is 

0.12%; swap spread change = defaultable swap spread – default-free swap spread) 

Rating Defaultable 

IRS value 
CVA 

Defaultable 

swap rate 

Swap spread 

change party A party B 

AA+100bp AA+100bp 394.4319 -394.4319 2.6347% 4.5bp 

AA+200bp AA+100bp 527.6796 -527.6796 2.6510% 6.1bp 

AA+300bp AA+100bp 656.4207 -656.4207 2.6670% 7.8bp 

 

5. Conclusion 



In this paper we present an analytical model for pricing defaultable IRS’s with 

asymmetric credit qualities. The model is based on the market models of interest rate 

dynamics and the reduced-form model of default time. 

The object modeled under the market models is risk-observable. It is also 

consistent with the market standard approach for pricing caps/floors using Black’s 

formula. The market models have now become some of the most popular models for 

pricing such derivatives. They are generally considered to have more desirable 

theoretical calibration properties than short rate or instantaneous forward rate models. 

 Unlike structural models, reduced-form models do not condition default 

explicitly on the value of the firm, and parameters related to the firm’s value need not 

be estimated to implement the model. For pricing and hedging, reduced-form models 

are the preferred methodology. 

 Our closed-form solution shows that the value of a bilateral defaultable IRS is 

the sum of the values of individual bilateral defaultable swaplets. Each bilateral 

defaultable swaplet can be replicated by buying a risk-adjusted call option and selling 

a risk-adjusted put option. The risk-adjusting factors depend on hazard rates, recovery 

rates and settlement rules. 

 In the case where the floating-rate payer is a LIBOR party, we confirm findings 

in Duffie and Huang (1996) that the swap spreads are relatively less sensitive to credit 

quality comparing to the bond spreads or the CDS spreads. The credit impact on swap 

rates is approximately linear. In the case where both parties have spreads against the 

LIBOR that was not studied closely before, we find that the credit impact on swap rates 

is not linear any more. The swap funding spreads have a significantly impact on swap 

spreads as well. 
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