
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Aminmansour, Sina, Maire, Frederic, & Wullems, Christian
(2014)
Near-miss event detection at railway level crossings. In
Wang, Lei, Ogunbona, Philip, & Li, Wanqing (Eds.)
Proceedings of International Conference on Digital Image Computing :
Techniques and Applications (DICTA 2014), IEEE, Wollongong, NSW, pp.
1-8.

This file was downloaded from: http://eprints.qut.edu.au/77500/

c© Copyright 2014 IEEE

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1109/DICTA.2014.7008119

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33495389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Aminmansour,_Sina.html
http://eprints.qut.edu.au/view/person/Maire,_Frederic.html
http://eprints.qut.edu.au/view/person/Wullems,_Christian.html
http://eprints.qut.edu.au/77500/
http://dx.doi.org/10.1109/DICTA.2014.7008119

Near-Miss Event Detection at
Railway Level Crossings

Sina Aminmansour
School of Electrical Engineering and

Computer Science
Queensland University of Technology

Queensland, Australia
Email: s.aminmansour@qut.edu.au

Frederic Maire
School of Electrical Engineering and

Computer Science
Queensland University of Technology

Queensland, Australia
Email: f.maire@qut.edu.au

Christian Wullems
Centre of Accident Research and

Road Safety - Queensland
Queensland University of Technology

Queensland, Australia
Email: c.wullems@qut.edu.au

Abstract—Recent modelling of socio-economic costs by the
Australian railway industry in 2010 has estimated the cost of
level crossing accidents to exceed AU$116 million annually. To
better understand the causal factors of these accidents, a video
analytics application is being developed to automatically detect
near-miss incidents using forward facing videos from trains.

As near-miss events occur more frequently than collisions,
by detecting these occurrences there will be more safety data
available for analysis. The application that is being developed
will improve the objectivity of near-miss reporting by providing
quantitative data about the position of vehicles at level crossings
through the automatic analysis of video footage.

In this paper we present a novel method for detecting near-
miss occurrences at railway level crossings from video data of
trains. Our system detects and localizes vehicles at railway level
crossings. It also detects the position of railways to calculate the
distance of the detected vehicles to the railway centerline. The
system logs the information about the position of the vehicles
and railway centerline into a database for further analysis by the
safety data recording and analysis system, to determine whether
or not the event is a near-miss.

We present preliminary results of our system on a dataset
of videos taken from a train that passed through 14 railway
level crossings. We demonstrate the robustness of our system by
showing the results of our system on day and night videos.

I. INTRODUCTION

Improving safety at railway level crossings continues to
be a priority for Australian railway operators. Approximately
a third of all rail-related fatalities during the ten-year period
between 2000 and 2009 occurred as a result of collisions
between road vehicles and trains at level crossings [1]. The cost
to railways and society as a result of these collisions has been
estimated to exceed AU$116 million annually, based on socio-
economic cost modelling commissioned by the Australian
Railway Industry Safety and Standards Board [2].

Australia has railways covering large expanses of land with
as many as 23,000 level crossings [3]. Between 2000 and 2009,
an average of 62 collisions per year occurred between road
vehicles and trains at level crossings in Australia. From a data
analysis perspective, the number of collisions is relatively low
and is insignificant for meaningful quantitative data analysis
due to statistical uncertainty. Precursor events such as near-
miss occurrences at level crossings occur at rates that are orders

of magnitude more frequent than collisions. Such occurrences
are reportable under the national rail safety legislation and are
defined in the classification guideline (OC-G1) as occurrences
where “the driver of a moving train takes emergency action, or
would have if there was sufficient time, to avoid impact with a
person, vehicle or other obstruction and no collision occurred.
Emergency action includes continuous audible warning and/or
brake application” [4].

Near-miss occurrences are reported by train drivers, typi-
cally via radio to a network control officer who completes a
form on behalf of the train driver, or via completion of a form
at the end of the shift. Unlike collisions, near-misses are not
usually investigated due to the large number of occurrences
and resource limitations. Near-miss reporting suffers from a
number of critical shortcomings that limit its usefulness for
data analysis [5]. These include subjectivity around definitions
of what can be considered a near-miss and inconsistencies in
reporting.

The Cooperative Research Centre for Rail Innovation, an
Australian government funded research initiative, is supporting
a project with several Australian railways to improve the
quality and objectivity of near-miss reporting. The safety data
recording and analysis system being developed by the research
team analyses various sources of data to determine whether
critical thresholds defining a safe envelope of operations have
been exceeded [6]. Data analysed includes parameters obtained
from vision algorithms operating on high-definition forward
facing video footage1 and parameters from train-borne systems
such as global positioning system receivers, automatic train
protection systems and event recorders.

The vision algorithms and methods described in this paper
are used to detect road vehicles and their distances from the
nearest railway, allowing exceedances of two critical thresholds
around near-miss occurrences to be detected. These thresholds
are the fouling of the stop line, give-way line or the danger
zone by a road vehicle at a level crossing while the train
is on approach. The stop line is a continuous line marked
across traffic lanes at all level crossings, located 3.5 meters
from the nearest railway for level crossings with stop signs, or
3.0 meters from the signal or boom barriers at level crossings
with active controls [7]. The give-way line is a broken line

1Video taken by a camera located in the driver cabin. This camera has a
similar view as the human driver.

located 3.5 meters from the nearest railway at level crossings
with give-way signs. The danger zone is the area bounded
by 3 meters of the nearest railway each side of the track
environment. The videos processed by our system are captured
with a forward-facing camera installed inside the driver cabin
of the train. This forward facing camera provides a view that
we call the cabin view of the railway. In the rest of this paper
we refer to the forward facing camera installed in a train as
the cabin camera.

A railway is a permanent track composed of a line of
parallel metal rails fixed to sleepers. The railway corresponds
to the green region in Figure 5(c). The topological skeleton
of the green region will be called the railway centerline (the
green line in Figure 6c).

The detection of rails is more robust when the evidence
for the left and right rails can be combined in a simple
operation. This combination becomes trivial when the curves
corresponding to the left and right rails are parallel. This is
why we compute from the cabin view a virtual view that is
similar to the image which a camera high in the air looking
down to the railway would produce. For obvious reasons, we
call this virtual view the bird’s eye view. The bird’s eye view
is derived from the cabin view by applying an appropriate
homography ϕ as illustrated in Figure 2.

In Section II, we discuss related work. Section III outlines
our approach for detecting near-miss events. In Section IV we
provide details of our railway detection algorithm. Sections V
and VI describe the process of detecting and localizing vehicles
at railway level crossings. Preliminary results are presented in
Section VII.

II. RELATED WORK

Many rail safety applications rely on Computer Vision and
Video Analytics to extract safety critical information from
videos. These applications include detecting obstacles in front
of trains [8][9], assisting train drivers [10], detecting turnouts
[11] [12], or detecting events at level crossings [13] [14].

Our aim is to localize vehicles with respect to the railway
from cabin views. To achieve this objective, we first localize
the rails in the images. This is a fundamental task in vision
based rail safety applications. The localization of railways
was considered in previous works, but the problem is not
considered solved satisfactorily yet. Most of proposed methods
are sensitive to the environmental conditions. Factors like light-
ing conditions ranging from sunshine to night-time, changing
appearance of metallic rails in varying weather conditions and
shadows make railway detection a challenging problem.

All the published algorithms for localizing railways are
based on either processing a cabin view, or processing a bird’s
eye view. Section IV-A sketches how a bird’s eye view is
computed. In the following sub-sections we review some of
previous works on railway detection.

A. Cabin View Based Methods

In [10], the extraction of the rails is done by applying
template matching with pre-defined rail patterns on the near-
range region in front of the train. For the far-range region, rail
patterns are computed at runtime according to the position of

the detected rail segments in the near-range region. Unfortu-
nately the system has many parameters that need to be tuned.
The authors have tested the system with more than 200,000
parameter configurations for selecting a good configuration for
the system.

In [15], a rail extraction method based on a sliding window
approach was proposed . The system starts four search win-
dows from the bottom of a cabin view, and in each window
it computes the gradient image and looks for maxima of the
gradient magnitude as the edges of the rails. Two of the four
search windows are positioned on the left rail and the other two
are positioned on the right rail. As rails converge to a vanishing
point in a cabin view, the width of the sliding windows
decreases when the search continues from the bottom to top
of the image. This system is sensitive to lighting changes.

B. Bird’s Eye View Based Methods

In [8], an obstacle detection algorithm is proposed for
maintenance trains. To localize the railway, the authors apply
a perspective transformation to the cabin view to get a bird’s
eye view. They then search this image for parallel straight line
segments that define the railway. Their algorithm scans the
image with a search window from the bottom to the top of
the image. Although the authors use an adaptive method to
select a global threshold value for the Canny edge detector,
their system is sensitive to changes in lighting conditions.

A railway detection algorithm for autonomous trains is
introduced in [9] to detect obstacles in front of a train and
also provide information about a region of interest in front
of the train for other sensors. This system is based on lane
detection techniques developed for driver assistant systems.
The authors apply an edge detector in the bird’s eye view.
The edge image is then divided vertically into 10 regions,
and for each region vertical edges are selected. Railways are
extracted by combining the information from different regions
and information about the inter-rail distance. The RANSAC
algorithm is then used for finding the railway centerline. This
approach is also sensitive to the choice of threshold parameter
value for the computation of the edge image. Moreover, the
approach does not exploit information about the location of
the rails in previous frames.

A rail and turnout detection algorithm is proposed in
[11]. Rail detection is done by determining local maxima and
minima in the gradient image of the gray level cabin view.
The left and right rails are then detected by fitting a line
with the RANSAC algorithm on the bird’s eye view. Again,
this approach suffers from the problem of having to select a
threshold for the edge image that works for a wide range of
lighting conditions.

A near-miss event detection algorithm is introduced in
[13]. This approach also relies on computing a bird’s eye
view. In this paper, the authors avoid the problem of having
to select a threshold for an edge detector by using the Line
Segment Detector (LSD) algorithm [16]. LSD is a linear-time
line segment detector that gives accurate results, a controlled
number of false detections, and requires no parameter tuning.
LSD works well with natural images. The rails are detected
by creating a histogram of the vertical projection of the points
belonging to the LSD segments. Although the use of LSD

Fig. 1. The sequence of steps involved in the detection of near-miss events from the video data captured in train cabins.

avoids the threshold selection problem, LSD has its own
limitations. It does not detect segments in blurred regions of
images. Another drawback of the approach presented in [13]
is that a histogram of vertical projections loses its power of
discrimination when the rails are tilted at an angle, because
the projections of the rail points become spread over several
bins.

C. Proposed Method

Although a few systems have been described for the
localization of railways from cabin views, to the best of our
knowledge, there is no publicly available software. And most
of the published algorithms are too sensitive to their threshold
parameters. These algorithms tackle the problem of localizing
railways without taking into account information from previous
frames. Another issue is that most of the algorithms cannot
work in low light conditions. To address these shortcomings,
we introduce in this paper a new approach for localizing
railways by combining the Radon Transform [17], Watershed
[18], and Distance Transform [19] algorithms. Moreover, we
exploit fully our knowledge of the geometry of the railways,
including the inter-rail distance and the maximum curvature
of the rails. To make the detection algorithm more robust, we
combine the evidence of the left and right rails in a standard
Bayesian framework with belief update to track the railway
from frame to frame.

In Section VII, we show experimentally that our system is
capable of localizing railways from cabin views. Morevover,
we show that without parameter changes, our system can
localize rails both during daytime and nighttime.

III. NEAR-MISS DETECTION

In order to automatically detect near-miss events from
cabin views, we detect vehicles at railway level crossings
and localize the vehicles with respect to the railway. We can
determine whether or not the road vehicle fouls the stop line,
give-way line or danger zone while the train is approaching.
If an event is flagged as a near-miss, analysts will review the
relevant video sequence.

At railway level crossings, vehicles are normally seen
sidewise. To detect the vehicles, we use the classifier described
in [20]. This classifier is based on Histograms of Oriented
Gradients (HOG). The software code is publicly available.
After detecting the position of the vehicles in the cabin view,
the position of the vehicles are transferred to the bird’s eye
view for estimating the ground distance of the detected vehicles
with respect to the railway. Sections V and VI give some
details about the detection of the vehicles and estimation of

the ground distance. The architecture of our system is sketched
in Figure 1. Section IV-A explains how the cabin view is
transformed to a bird’s eye view.

IV. RAILWAY DETECTION

As illustrated in Figure 1, the process of detecting railways
starts with passing a cabin view to a pipeline of modules
represented in the first row of this figure. The process starts
with transforming a cabin view to a bird’s eye view by applying
the homography to the cabin view (Figure. 2). The result of
the transformation is passed to a function that uses the Radon
transform [17] for computing a set of candidate positions for
the railway centerline in a search window (Figure. 3). The
height of this search window is small enough that the rails will
look straight in this window. The evidence for the candidate
positions is then combined with the position of the railway
centerline in the previous frame to find the most likely position
of the railway centerline in the current frame and its tilt angle.

The Watershed algorithm [18] is used in our system for
extracting the (possibly curved) railway region. Our system
uses the tilt angle of the bottom railway centerline, and also
knowledge about the geometric structure of the railways for
positioning the Watershed seeds as illustrated in Figures 4
and 5.

After extracting the railway region, the Distance Transform
algorithm [19] is applied to extract the railway skeleton in the
bird’s eye view (see Figure 6). The width of the detected rail-
way region is monitored to flag any inconsistency. Algorithm
1 summarizes the different steps taken to localize the railway.

A. Homography between Cabin View and Bird’s Eye View

From projective geometry [21], we know that given two
images (taken by two different cameras) of a quadrilateral lying
on a plane in 3D, there exists a unique perspective transfor-
mation (homography) ϕ, mapping the image coordinates of
the quadrilateral vertices in the first image (cabin view) to the
image coordinates of the quadrilateral vertices in the second
image (bird’s eye view). Figure 7 demonstrates the use of bird’s
eye views for localizing and calculating the distance of vehicles
to a railway centerline.

B. Railway Centerline Candidates

To find the railway centerline in our system, we initialize
a search window at the bottom of a bird’s eye view, and
apply the Radon Transform [17] to detect the strong lines
in this search window. The variation of the Radon transform
that we use projects binary edge image along a number of

Algorithm 1 Railway Centerline Localization
1: Inputs: Icv // A cabin view
2: ϕ // Homography between cabin view and bird’s

eye view
3: h // Horizon line
4: Rp // Position of the railway centerline in the previous

frame
5: r // Minimum radius of the railway curve in pixels
6: w // Railway width in pixels
7: Output: Lc // Railway centerline position (list of points)
8: Ih ← Region of Icv under the horizon line h
9: Ibev ← Bird’s eye view transformation of Ih with ϕ

10: Iroi ← Search region at the bottom of Ibev
11: Lc ← Radon Transform (Iroi) // Candidate rail lines
12: Rc ← Tracking (Lc , Rp) // Railway centerline position in Iroi
13: a ← Angle (Rc) // Tilt angle of the railway centerline
14: Wm ← Watershed Markers (Rc, a, r, w)
15: Rr ← Watershed (Wm, Ibev) // Detection of railway region
16: Dr ← Distance Transform (Rr)
17: Lc ← Skeleton (Dr) // Railway centerline position

Fig. 2. Subplot (a) shows a cabin view. Subplot (b) shows the region of the
cabin view under the horizon line. This region is used for transforming the
cabin view to a bird’s eye view. Subplot (c) shows a bird’s eye view, resulting
by applying the homography to the cabin view.

radial directions. The Radon transform is better suited than
the probabilistic Hough transform for our application as we
are not concerned with gaps between line segments. At the
cost of a slight computation cost increase, the Radon transform
generates fewer artifacts than the Hough transform. In the same
way as for the Hough transform, the strong lines in the original
image correspond to peaks in the accumulator matrix (See
Figure 3b). We restrict the computation of the accumulator
matrix to the angle intervals corresponding to lines oriented
±45 degrees from the vertical.

For detecting the railway centerline in the search window,
we compute a new score matrix from the Radon score matrix
by combining the evidence of the left and right rails. The new
score matrix is calculated as follows:

Score(i, θ) = Radon(i− g, θ) + Radon(i+ g, θ) (1)

In Equation (1), i is a bin index, and g is half of the railway
width in pixels. We keep the best lines according to the
new score matrix as the candidate positions of the railway
centerline. Figure 3 illustrates how the railway centerline is
found using the Radon Transform.

C. Tracking the Railway From Frame to Frame

Because of the train’s lateral motion and the varying rail
curvature, the rails do not stay in the same position in the
image.

Fig. 3. Subplot (a) shows the edge points detected by a Canny edge detector
applied locally. Subplot (b) shows the Radon Transform accumulator matrix.
Subplot (c) shows the best 5 railway centerlines given the evidence of the
current frame. Subplot (d) shows the most likely position of the railway
centerline, taking into account the location of the railway centerline on the
previous frame.

The position vector x of the railway centerline is predicted
using the following equation:

P (Rt = x) =
∑
y

P (Rt = x|Rt−1 = y) P (Rt−1 = y) (2)

where y is the position vector of the railway centerline in the
previous frame.

We approximate P (Rt = x|Rt−1 = y) with

exp(−λ(|Tx − Ty|+ |Bx −By|) (3)

where Tx and Bx are the horizontal coordinates of the top
and bottom intersection points of the line (characterized by the
vector x) with the bounding rectangle of the search window.
Similarly, the variables Ty and By correspond to the line
characterized by the vector y. We have experimentally found
that if λ takes a value around 0.25, the tracking becomes robust
to all lateral motions we have observed.

D. Railway Segmentation

The Watershed algorithm is used in our system for extract-
ing possibly curved railway regions in the bird’s eye view. We
used the non-parametric marker-based implementation of the
Watershed algorithm described in [18]. To define the markers
for the region that corresponds to the railway in a bird’s
eye view, we exploit the geometric information that we have
about the construction design of the railways in Australia. We
know that the distance between two rails is 1067mm, and the
minimum curvature radius for railways is 125 meters. The
distance between two rails in a bird’s eye view in our system
is 50 pixels. By having this information the minimum railway
curve radius in pixel can be calculated in a bird’s eye view. In
our system the minimum curvature radius is 5857 pixels.

Thanks to the information about the minimum radius of
a railway curve in pixels and also thanks to the tilt angle of
the railway centerline, we can position the Watershed markers
on a birds eye view for detecting railway regions. Figure 4
demonstrates how Watershed markers are calculated according
to the geometric information that we have about the railways.

Fig. 4. Watershed markers on the bird’s eye views are positioned after calculating the position of four circles that characterize the outside and inside regions
of the railway. The two red disks are guaranteed to be outside the railway. The intersection of the two green disks is guaranteed to be inside the railway. The
radius of these disks matches the minimum curvature of the railway. The angle α is the yaw angle of the railway.

Fig. 5. Subplot (a) shows the result of the detection of the railway centerline
with the Radon transform algorithm on the bottom region of the bird’s eye
view. Subplot (b) shows the Watershed markers. Subplot (c) shows the result
of the segmentation after applying the Watershed algorithm.

The red disks in Figure 4 correspond to the exterior
markers. The intersection of the green disks is used for the
interior markers. Figure 5 demonstrates the application of
the Watershed algorithm with the calculated position of the
markers on a bird’s eye view.

E. Railway Centerline Computation

The extracted region of the railway with the Watershed
algorithm can be represented as a binary image. By applying
the Distance Transform [19] to this binary image, the (possibly
curved) railway centerline can be extracted. Given a binary
image where the foreground pixels are set to one and the back-
ground pixels are set to zero, the Distance Transform estimates
the distance of each foreground pixel to the background.

Figure 6b shows the application of the Distance Transform
algorithm on a detected railway region. The railway centerline
pixels have the largest values. We scan each row to find the
local maxima of the Distance Transform to derive the railway
centerline. This process is illustrated in Figure 6c.

V. VEHICLE DETECTION

There are many applications that rely on vehicle detection
algorithms including driver assistant systems and autonomous
vehicles. A survey of vehicle detection algorithms can be found

Fig. 6. Subplot (a) shows the result of the segmentation with the Watershed
algorithm. Subplot (b) shows the result of the Distance Transform applied to
the detected railway region. Subplot (c) shows the skeleton of the railway
region.

in [22]. We integrated the overall winner of the PASCAL
VOC challenge [23] in our system to detect vehicles in the
cabin views. We use the publicly available object detection
implementation of Pedro Felzenszwalb [20] in our application
with the models of vehicles trained on the VOC 2010 dataset.
This vehicle detector accepts as input a cabin view, and returns
a set of bounding boxes wrapping the detected vehicles in the
image. Figure 8 illustrates how the detector works on a cabin
view at a railway level crossing.

In order to estimate the ground distance between vehicles
and the railway centerline from a cabin view, we compute
the distance of the bottom of the bounding boxes that are
returned from the vehicle detector algorithm to the railway
centerline in the birds eye view representation of the scene.
The bounding boxes are projected to the bird’s eye view by
applying the perspective transformation ϕ that maps the bottom
segment of each bounding box (hopefully on the ground) to
its corresponding position on the bird’s eye view. Figure 7
demonstrates this process.

As our system relies on the vehicle detector algorithm for
detecting near-misses, a failure in detection of a vehicle in a
cabin view can cause the system to fail to detect a potential
near-miss event.

Fig. 7. The homography ϕ maps the points A, B, C and D to A′, B′, C′ and D′ respectively. The homography ϕ is used to transform each point on the
cabin view to its corresponding position on the bird’s eye view. We transform the bottom edge of each detected vehicle (β) in a cabin view to its corresponding
position (β′) in the bird’s eye view for calculating the distance of the vehicle to the railway centerline.

Fig. 8. Results of applying the vehicle detector algorithm to a cabin view at a railway level crossing. Subplot(a) shows a cabin view. Subplot(b) shows the
position of the 3 cars that were detected by the vehicle detector.

VI. DISTANCE CALCULATION

The output of the railway detection algorithm is the list
of pixels in the bird’s eye view corresponding to the railway
centerline. The output of the object detector (applied to a cabin
view) is a list of bounding boxes of vehicles. As Figure 7
illustrates, we estimate the distance on the ground between the
vehicle and the railway centerline by computing the distance
of the bottom edge of the vehicle bounding box to the railway
centerline. The elevated parts of the vehicle are distorted non-
linearly by the homography ϕ, and therefore cannot be used
in a straightforward fashion for distance estimation.

Given that the distance between the railway sleepers is
685mm, and the distance between the rails is 1067mm, it is
easy to convert a distance in the bird’s eye view (in pixels) to
a ground distance (in meters). After calibrating the camera, we
found that 1 meter on the ground corresponds to 46.8 pixels
in the bird’s eye view.

After calculating the distance of the vehicles to the railway
centerline in meters for each frame, the distance of each vehicle
is then saved into a database for further analysis of the captured
event to decide whether a near-miss event occurred or not.
Figure 9 illustrates the calculation of the distance of a vehicle
to the railway centerline.

VII. EXPERIMENTAL RESULTS

We have developed our system in a Linux environment and
written our code in C++ and Matlab. Our dataset was supplied
to us by the Cooperative Research Centre for Rail Innovation.
The dataset contains 14 videos of 14 railway level crossings
captured by a cabin camera. Ten videos were taken during
daytime and four videos during nighttime. Figure 10 shows
some sample video frames of our dataset. For evaluating our
railway detector we randomly selected 200 frames from each
daytime video and 250 frames from each nighttime video. In
total we have used 3000 frames for our experiments.

To validate our railway detector we have developed an
automated test that checks the consistency of the segmentation
of the railway in each frame. As the width of the railway is
constant in a bird’s eye view, the distance of each point on the
railway centerline to the rails should be about half the size of
the railway width. We retrieve the distance to the rails of each
point on the railway centerline using the Distance Transform
result. For each point on the railway centerline if its distance
value is significantly different from its expected value (half
the inter-rail distance) we mark this point as inconsistent. For
each frame we calculate the number of points on the railway
centerline marked as consistent, and report this value as the
consistency rate for that frame. Our automated test calculated
the average consistency rate of all the day and night time video
frames used for our experiments. Table I shows the results
for all the day and night time frames. Table II shows the

Fig. 9. Subplot (a) shows a cabin view where a vehicle was detected and marked with a red bounding box. Subplot (b) shows the warped bounding box of
the detected vehicle in the bird’s eye view. The detected railway centerline is coloured in green. The distance between the detected vehicle and the railway
centerline is shown in blue. This distance is 319 pixels, which corresponds to 6.8 meters on the ground.

TABLE I. AVERAGE CONSISTENCY RATE OF THE RAILWAY DETECTOR

Video Total Number of Frames Average Consistency Rate

Daytime videos 2000 95.72%
Nighttime videos 1000 92.33%

TABLE II. AVERAGE CONSISTENCY RATE OF SAMPLE VIDEOS TAKEN
IN QUEENSLAND, AUSTRALIA.

Suburb Day/Night Time Average Consistency Rate For 200 Frames

Antigua Night 93.23%
Bundaberg Day 98.66%
Bundaberg Night 90.14%
Grahams Creek Day 99.02%
Mooloolah Day 98.02%

consistency rate for a representative sample of our videos.

The environmental conditions of the sample of frames that
we used include low light condition, drizzle, rain with droplets
on the windscreen, windscreen wiper in operation, glare, dirty
windscreen and shadows (see Figure 10). For our experiments,
each frame was checked manually by a person to ascertain
whether the railways were segmented correctly. The automated
consistency test was also run.

To evaluate our distance calculation algorithm, we have
tested our algorithm with a video of level crossings that have
cars present at the level crossing. The system detected cars
40 times in the video. For each detected car in each frame
it calculated the distance of the car to the railway centerline
and reported this value in pixels. To evaluate the system we
asked a person to also compute the distance of each detected
vehicle to the railway centerline in a bird’s eye view. The
person computed the distance of the 40 detected vehicles to
the railway centerline and reported the value for each detected
vehicle. We have compared the distance of each detected
vehicle computed by our system and the distance computed by
a person. We calculated the difference of the reported values.
For the 40 detected vehicles in the video the difference was
2.3 pixels that is around 4.9cm on the ground. Table III shows
some samples of the calculation of the distance of each vehicle
to the railway centerline reported by the system and a person.

TABLE III. SAMPLE CALCULATION OF THE DISTANCE OF VEHICLES
TO THE RAILWAY CENTERLINE BY OUR SYSTEM AND A HUMAN.

Vehicle
Number

Distance
(Our System)

Distance
(Human)

Pixel
Difference

Ground
Difference

1 468 469 1 2.1cm
2 327 331 4 8.5cm
3 334 334 0 0cm
4 247 248 1 2.1cm
5 480 481 1 2.1cm
6 334 337 3 6.4cm
7 259 259 0 0cm
8 501 497 4 8.5cm
9 337 333 4 8.5cm

10 244 241 3 6.4cm

ACKNOWLEDGMENT

This research is funded by the Cooperative Research Centre
for Rail Innovation (established and supported under the Aus-
tralian Governments Cooperative Research Centres program).
Project No. R2.119.

VIII. CONCLUSION

In this paper, we have introduced a vision based system for
detecting near-miss occurrences at railway level crossing. Our
system is built around a railway detector and a vehicle detector.
Our experiments show that the system is capable of detecting
and localizing vehicles at level crossings with respect to the
railway centerline. We have shown that our system is able to
work in wide variety of conditions from daytime to nighttime,
without having to change any parameter settings. Our system is
capable of self diagnosis by computing a consistency measure
of the detected railway region. The system can fail in rainy
conditions because our segmentation algorithm get confused
by the motion of the windscreen wipers. This is an issue that
we plan to address in future work.

REFERENCES

[1] Independent Transport Safety Regulator, “Level crossing accidents in
australia,” Transport Safety Bulletin, 2011.

[2] R. Tooth and M. Balmford, “Railway level crossing incident costing
model,” Railway Industry Safety and Standards Board (RISSB), Tech.
Rep., 2010.

Fig. 10. The computer vision system can handle a wide range of weather
conditions without any parameter adjustment. The images in the left column
are cabin views, and the images in the right column are the corresponding
birds eye views with the railway segmented in green. In Image (a), shadows
cross the railway. In Image (c), the railway is curved, and sun glare is visible
on the windscreen. In Image (e), the windscreen wiper is in operation because
of the rain. In Image (g), droplets run off the windscreen. In Image (i), the
light is very low.

[3] Railway Industry Safety and Standards Board, “Level crossing stock-
take,” 2009.

[4] Rail Safety Regulator’s Panel, “Guideline for the top event classification
of notifiable occurrences: Occurrence classification - guideline one (oc-
g1),” Rail Safety Regulator’s Panel, Tech. Rep., 2008.

[5] C. Wullems, G. Dell, and Y. Toft, “Improving the railway’s understand-
ing of accident causation through an integrated approach to human
factors analysis and technical safety data recording,” in Proceedings
of the 5th International Conference on Applied Human Factors and
Ergonomics, 2014.

[6] C. Wullems, Y. Toft, and G. Dell, “Improving level crossing safety
through enhanced data recording and reporting: the crc for rail inno-
vations baseline rail level crossing video project,” Proceedings of the
Institution of Mechanical Engineers, Part F: Journal of rail and rapid
transit, vol. 227, no. 5, pp. 554–559, 2013.

[7] Standards Australia, “As 1742.7-2007 manual of uniform traffic control
devices part 7: Railway crossings,” Tech. Rep., 2007.

[8] F. Maire and A. Bigdeli, “Obstacle-free range determination for rail
track maintenance vehicles,” in 2010 11th International Conference on
Control Automation Robotics & Vision (ICARCV). IEEE, 2010, pp.
2172–2178.

[9] M. Gschwandtner, W. Pree, and A. Uhl, “Track detection for au-
tonomous trains,” in Advances in Visual Computing. Springer, 2010,
pp. 19–28.

[10] B. T. Nassu and M. Ukai, “Rail extraction for driver support in
railways,” in Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE,
2011, pp. 83–88.

[11] J. Corsino Espino, B. Stanciulescu, and P. Forin, “Rail and turnout de-
tection using gradient information and template matching,” in Intelligent
Rail Transportation (ICIRT), 2013 IEEE International Conference on.
IEEE, 2013, pp. 233–238.

[12] J. Wohlfeil, “Vision based rail track and switch recognition for self-
localization of trains in a rail network,” in Intelligent Vehicles Sympo-
sium (IV). IEEE, 2011, pp. 1025–1030.

[13] S. Aminmansour, F. Maire, and C. Wullems, “Video analytics for the
detection of near-miss incidents on approach to railway level crossings,”
in Proceedings of 2014 Joint Rail Conference. American Society of
Mechanical Engineering, 2014.

[14] P. Ranganathan and E. Olson, “Automated safety inspection of grade
crossings,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 2149–2154.

[15] J. C. Espino and B. Stanciulescu, “Rail extraction technique using
gradient information and a priori shape model,” in 15th International
IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE,
2012, pp. 1132–1136.

[16] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “Lsd:
A fast line segment detector with a false detection control,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32,
no. 4, pp. 722–732, 2010.

[17] S. Deans, The Radon Transform and Some of Its Applications, ser. Dover
Books on Mathematics Series. Dover Publications, 2007.

[18] F. Meyer, “Color image segmentation,” in Image Processing and its
Applications, 1992., International Conference on. IET, 1992, pp. 303–
306.

[19] P. Felzenszwalb and D. Huttenlocher, “Distance transforms of sampled
functions,” Cornell University, Tech. Rep., 2004.

[20] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 9, pp. 1627–1645, 2010.

[21] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge Univ Press, 2000.

[22] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 5, pp. 694–711, 2006.

[23] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010.

