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Abstract
In this paper, we explore orthogonal systems in L2(R) which give rise to a real skew-
symmetric, tridiagonal, irreducible differentiation matrix. Such systems are important
since they are stable by design and, if necessary, preserveEuclidean energy for a variety
of time-dependent partial differential equations. We prove that there is a one-to-one
correspondence between such an orthonormal system {ϕn}n∈Z+ and a sequence of
polynomials {pn}n∈Z+ orthonormal with respect to a symmetric probability measure
dμ(ξ) = w(ξ)dξ . If dμ is supported by the real line, this system is dense in L2(R);
otherwise, it is dense in a Paley–Wiener space of band-limited functions. The path
leading from dμ to {ϕn}n∈Z+ is constructive, and we provide detailed algorithms to
this end. We also prove that the only such orthogonal system consisting of a polyno-
mial sequence multiplied by a weight function is the Hermite functions. The paper is
accompanied by a number of examples illustrating our argument.
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1 The Rationale

1.1 DifferentiationMatrices

The broad theme underlying this paper is the important benefits accrued in the semidis-
cretisation of time-dependent partial differential equations once space derivatives are
approximated in a skew-symmetric (or skew-Hermitian in the complex case) manner.
It is instructive to commence with three examples where, for simplicity, we assume a
single spatial variable: the diffusion equation

∂u

∂t
= ∂

∂x

[
a(x)

∂u

∂x

]
, x ∈ [−1, 1], t ≥ 0, (1.1)

where a(x) > 0, x ∈ [−1, 1], given with an initial condition for t = 0 and either
periodic or zero Dirichlet boundary conditions at x = ±1, the nonlinear advection
equation

∂u

∂t
= ∂u

∂x
+ f (u), x ∈ R, t ≥ 0, (1.2)

where v f (v) ≤ 0 for all v ∈ R, given with an L2(R) initial condition at t = 0, and
the linear Schrödinger equation in the semiclassical regime,

iε
∂u

∂t
= −ε2

∂2u

∂x2
+ V (x)u, x ∈ [−1, 1], t ≥ 0, (1.3)

given with an initial condition at t = 0 and periodic boundary conditions at x = ±1.
Here 0 < ε � 1, while the interaction potential V is real.

It is a trivial exercise to prove that the solutions of both (1.1) and (1.2) are non-
increasing in the usual L2 norm, while the L2 norm of (1.3) is conserved. This
represents a critical structural feature of the three equations which should ideally
be preserved under discretisation. Moreover, once the L2 norm is uniformly bounded
under discretisation, the underlying method is stable.

We commence from (1.1) and assume that it is semidiscretised by, say, finite dif-
ferences, a spectral method or spectral collocation.1 The outcome is a set of linear
ODEs,

u′ = DAD u, t ≥ 0, u(0) = u0,

where A is positive definite. The matrix D is the result of discretising the space
derivative, and we call this the differentiation matrix. Therefore,

1

2

d‖u‖2
dt

= u�u′ = u�DADu = (D�u)A(Du),

1 Semidiscretisation with finite elements requires trivial amendments to our argument, but its main thrust
remains valid.
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where ‖ · ‖ is the �2 norm. Suppose now that the differentiation matrix D is skew-
symmetric. Then D� = −D, and A being positive definite, it follows at once that
d‖u‖2/ dt ≤ 0: the numerical solution is dissipative (and, incidentally, stable!) Like-
wise, semidiscretising (1.2) with finite differences, we have

u′ = Du + f (u), t ≥ 0, u(0) = u0,

where fm(u) = f (um)—we can again prove, identical to the above argument, that
d‖u‖2/ dt ≤ 0 once D is skew-symmetric. Finally, semidiscretising the Schrödinger
Eq. (1.3), we have

u′ = iεD2u − iε−1Vu, t ≥ 0, u(0) = u0,

where the matrix V is real. Assuming again that D is skew-symmetric,

1

2

d‖u‖2
dt

= Re u∗u′ = Re u∗(iεD2u − iε−1Vu) = 0,

because u�Vu and u∗D2u = (D�u)∗(Du) = −‖Du‖2 are both real. Therefore, the
semidiscretisation is conservative, mimicking the behaviour of the original equation.
We should perhaps add that, in this context, |u(x, t)|2 is the probability of finding a
particle at x : preservation of the norm is not an optional extra but a basic requirement
once we wish to get the physics right.

Skew-symmetric differentiationmatrices have been already analysed in some length
in the context of finite differences in Hairer and Iserles [10,11] and Iserles [12,13].
The simplest second-order finite difference discretisation of a derivative,

D = 1

2�x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

− 1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0 1
0 · · · 0 − 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

is skew-symmetric, but this is a false dawn: this is the highest order skew-symmetric
finite difference differentiation matrix on uniform grid [12]. It is possible to con-
struct higher-order skew-symmetric differentiation matrices on special grids, but this
is far from easy and large orders become fairly complicated [10,11]. Arguably this
complexity makes them less suitable for efficient computation.

1.2 Two Spectral Examples

In this paper, we explore a general mechanism to generate orthogonal systems with
skew-symmetric differentiation matrices since such systems can be implemented in
the context of spectral methods. We do now address the issue of time discretisation,
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noting in passing that it might require a great deal of additional care, cf., for example,
[1]. We commence with two examples. Firstly, consider the task of approximating a
smooth periodic function on [−π, π ]. The obvious choice in this setting is the Fourier
basis, which we write in a real setting,

ϕ0(x) ≡ 1

(2π)1/2
, ϕ2n(x) = cos nx

π1/2 , ϕ2n+1(x) = sin nx

π1/2 , n ∈ N (1.4)

note that the basis is orthonormal. The differentiation matrix is

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 2 0 0
0 0 0 −2 0 0 0
0 0 0 0 0 0 3
0 0 0 0 0 −3 0

It is indeed skew-symmetric, as well as tridiagonal and reducible. Once we can use
a Fourier basis, it must be an obvious first choice. The problem is, though, that peri-
odic boundary conditions in a compact interval are something of an exception. Most
partial differential equations of interest are either Cauchy problems defined on the
entire Euclidean space or possess Dirichlet, Neumann or mixed boundary conditions
in a compact domain. The focus of this paper is on Cauchy problems on the real
line, and the motivation, which originates in (1.3) and its multivariate counterparts,
is explained in greater detail in Iserles [13]. Briefly, periodic boundary conditions are
useful for numerical simulation only in very short-time integration, leading to wrong
behaviour once the solution (which originally has, to all intents and purposes, finite
support and moves at finite speed) reaches the boundary. Modern computational chal-
lenges, not least in quantum control, call for a long-time solution of (1.3) and modern
time-stepping methods (for example, those described in Bader et al. [1]) can indeed
achieve the stability required to achieve this if there exists a discretisation yielding a
skew-symmetric differentiation matrix. Hence, the challenge is to design and explore
orthogonal systems on the real line with this property.

One example of such an orthogonal system, Hermite functions, is familiar in math-
ematical physics:

ϕn(x) = (−1)n

(2nn!)1/2π1/4 e
−x2/2Hn(x), n ∈ Z+, x ∈ R, (1.5)

where Hn is the nth Hermite polynomial. It follows at once from standard theory of
orthogonal polynomials that

∫ ∞

−∞
ϕm(x)ϕn(x) dx = δm,n, m, n ∈ Z+;
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hence, {ϕn}n∈Z+ is indeed an orthonormal sequence, dense in L2(R). It is well known
(and can be confirmed easily using standard mixed recurrence relations for Hermite
polynomials) that

ϕ′
n(x) = −

√
n

2
ϕn−1(x) +

√
n + 1

2
ϕn+1(x), n ∈ Z+; (1.6)

therefore, the corresponding differentiation matrix is skew-symmetric—in addition, it
is tridiagonal (making computations easier) and irreducible.

Hermite functions have many interesting features: they obey the Cramér inequality
|ϕn(x)| ≤ 0.816049 . . ., n ∈ Z+, x ∈ R, are eigenfunctions of the Fourier transform,
obey a second-order linear ordinary differential equation and are related to Whittaker
functions and parabolic cylinder functions. Insofar as this paper is concerned, (1.6)
represents their most germane feature and a paradigm for more general systems of
orthogonal functions in L2(R).

1.3 Plan of This Paper

The purpose of this paper is to characterise all orthogonal systems in L2(R) which
possess a real skew-symmetric, tridiagonal, irreducible differentiation matrix.

An obvious approach is to consider different orthogonal systems {ϕn}n∈Z+ in L2(R)

and to check for each whether the differentiation matrix is of the right form—this
hit-and-miss approach is unlikely to take us far. In Sect. 2, we adopt an alternative
organising principle: we start from a countable sequence of functions {ϕn}n∈Z+ in
L2(R) which are hardwired to possess a skew-symmetric, tridiagonal, irreducible
differentiation matrix and seek conditions for their orthogonality.

On the face of it, we have just replaced one hit-and-miss approach by another, yet
there is crucial difference. In Sect. 3, we demonstrate that such a set of functions can be
mapped by means of the Fourier transform, subject to rescaling, into a set {pn}n∈Z+ of
polynomials which are orthogonal with respect to some symmetric measure dμ(x) =
w(x) dx . This argument can be reversed: given a real, symmetric measure dμ, we can
construct an underlying set of orthonormal polynomials. These polynomials obey the
familiar three-term recurrence relation from which we can recover the elements ofD.
Finally, we recover the functions ϕn by inverse Fourier transforming

√
wpn , n ∈ Z+.

It follows from the Parseval theorem that these functions form an orthonormal set. We
prove that this set is dense in L2(R) if dμ is supported by R; otherwise, it is dense in
a Paley–Wiener space.

In Sect. 4, we describe practical algorithms for the evaluation of the ϕns, in Sect. 5
we explore the structure of the functions {ϕn}n∈Z+ , while in Sect. 6wepresent a number
of examples. The paper concludes in Sect. 7 with a brief summary and discussion.

2 TheMain Paradigm

The purpose of this paper is to investigate orthogonal systems � = {ϕn}n∈Z+ of
functionswhich are orthogonal on the real linewith respect to the standard L2(R) inner
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product and such that their differentiation matrix D is skew-symmetric, tridiagonal
and irreducible,

D =

⎡
⎢⎢⎢⎢⎢⎣

0 b0 0 · · ·
− b0 0 b1

. . .

0 − b1
. . .

. . .

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

,

where b0, b1, . . . are real, nonzero constants. In other words, we wish � to satisfy the
skew-symmetric differentiation matrix relation

ϕ′
0(x) = b0ϕ1(x),

ϕ′
n(x) = −bn−1ϕn−1(x) + bnϕn+1(x), n ∈ N. (2.1)

Given a seed function ϕ0 ∈ C∞(R), remaining functions can be defined uniquely by
recursion from (2.1):

n = 0: ϕ1(x) = 1

b0
ϕ′
0(x),

n = 1: ϕ2(x) = 1

b1
[ϕ′

1(x) + b0ϕ0(x)] = 1

b0b1
[b20ϕ0(x) + ϕ′′

0 (x)],

n = 2: ϕ3(x) = 1

b2
[ϕ′

2(x) + b1ϕ1(x)] = 1

b0b1b2
[(b20 + b21)ϕ

′
0(x) + ϕ′′′

0 (x)]

and so on. In general, easy induction confirms that

ϕn(x) = 1

b0b1 · · · bn−1

n/2�∑
�=0

αn,�ϕ
(n−2�)
0 (x), n ∈ N, (2.2)

where

αn+1,0 = 1, αn+1,� = b2n−1αn−1,�−1 + αn,�, � = 1, . . . ,
⌊n

2

⌋
.

The first thing to notice from this formula is that the ϕn must indeed be a smooth (i.e.
infinitely differentiable) function for all n ∈ Z+. Also note that, while cumbersome,
this formula provides a practical method of generating examples.

Note, however, a major problem which provides the focus of this paper: the above
procedure produces a set � which is guaranteed to satisfy (2.1), but a priori there is
absolutely no reason why it should be orthogonal, whether with respect to a standard
or any other inner product. Likewise, even if orthogonal, there is no a priori reason for
� to be complete in the separable Hilbert space L2(R).
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Example 1 (Hermite functions) Given the seed function and differentiation coeffi-
cients,

ϕ0(x) = π− 1
4 e−x2/2, bn =

√
n + 1

2
, n ∈ Z+,

the functions generated form the orthonormal Hermite function basis, which we have
already encountered in Sect. 1.

Example 2 (Spherical Bessel functions) Given the seed function and differentiation
coefficients

ϕ0(x) = 1√
2

J 1
2
(x)

√
x

= π− 1
2 j0(x), bn = n + 1√

(2n + 1)(2n + 3)
, n ∈ Z+,

the functions generated are

ϕn(x) =
√

n + 1
2

x
Jn+ 1

2
(x) =

√
2n + 1

π
jn(x), (2.3)

which are the spherical Bessel functions. Note that while the Bessel functions Jn+ 1
2
(z)

have a branch cut in (−∞, 0], the spherical Bessel function jn(z) is entire.

Example 3 (Quasi-Hermite) Suppose we use the Gaussian seed function and constant
differentiation coefficients,

ϕ0(x) = e−x2 , bn = 1, n ∈ Z+. (2.4)

Then the generated function sequence is

ϕ2n(x) = e−x2
n∑

�=0

(
n + �

2�

)
H2�(x),

ϕ2n+1(x) = e−x2
n∑

�=0

(
n + � + 1

2� + 1

)
H2�+1(x),

where Hk(x) is the kth Hermite polynomial. We do not prove this formula since, as
will transpire in Sect. 5, such functions cannot be orthogonal, and hence are of little
merit.

To recap, whatever the merits of (2.2)—and is certainly useful for generating the
desired function sequence {ϕn}n∈Z+—this construction does not make obvious what
properties the sequence might have, such as orthogonality or its norm. Indeed, the
Hermite functions and the spherical Bessel functions generating the above examples
turn out to be orthonormal in L2(R), but it is not obvious from this construction that
would happen. It can be shown that the function sequence generated in Example 3 is

123



1198 Foundations of Computational Mathematics (2019) 19:1191–1221

not orthogonal with respect to any real-valued measure. Other types of constructions
will be considered in Sects. 3 and 4, for which the orthogonality of the sequence can
be more obviously predicted.

We commenced this section specifying a seed ϕ0 and nonzero real coefficients
{bn}n∈Z+ . As becomes clear in the next section, once we seek orthogonality, the right
procedure is more minimalistic: it is enough to choose a symmetric positive Borel
measure dμ on the real line, which determines both the seed and the coefficients in
a unique manner while ensuring orthogonality and completeness in a certain Hilbert
space.

3 The Fourier Transform and Orthogonal Polynomials

3.1 There and Back Again

We commence our journey from a given sequence of real-valued, square-integrable,
smooth functions � = {ϕn}n∈Z+ , which has a skew-symmetric differentiation matrix
with nonzero real constants {bn}n∈Z+ as in (2.1). For our departure, we require the
unitary Fourier transform,

F[ϕ](ξ) = 1√
2π

∫ ∞

−∞
ϕ(x)e−ixξ dx . (3.1)

As is well known, the Fourier transform and differentiation have the commutation
relation

F[ϕ′](ξ) = −iξF[ϕ](ξ). (3.2)

This motivates our definition of a transformed sequence of functions,  = {ψn}n∈Z+ ,
where

ψn(ξ) = inF[ϕn](ξ).

Each ϕn has a well-defined Fourier transform, being square-integrable on the real line.
From the equation for differentiation of a Fourier transform given above, we have for
all n ∈ Z+,

ξψn(ξ) = inξF[ϕn](ξ) = in+1(−iξ)F[ϕn](ξ) = in+1F[ϕ′
n](ξ).

Next, using the skew-symmetric differentiation property of �, we see that the trans-
formed functions  satisfy

ξψ0(ξ) = b0iF[ϕ1](ξ) = b0ψ1(ξ),

ξψn(ξ) = −bn−1i
n+1F[ϕn−1](ξ) + bn i

n+1F[ϕn+1](ξ) = bn−1ψn−1(ξ) + bnψn+1(ξ).

In other words, they satisfy a three-term recurrence relation! A simple consequence
of this is ψn(ξ) = pn(ξ)ψ0(ξ), where P = {pn}n≥0 is a sequence of polynomials
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satisfying a three-term recurrence,

p0(ξ) = 1, p1(ξ) = b−1
0 ξ

pn+1(ξ) = ξ

bn
pn(ξ) − bn−1

bn
pn−1(ξ), n ∈ N. (3.3)

We can now use the classical Favard theorem [3,6] to deduce that these polynomials
are orthogonal with respect to a real-valued, finite Borel measure.

Theorem 4 (Favard) Let P = {pn}n≥0 be a sequence of real polynomials such that
deg(pn) = n. P is an orthogonal system with respect to the inner product 〈 f , g〉μ =∫

f (ξ)g(ξ) dμ(ξ) for some probability measure2 dμ on the real line if and only if the
polynomials satisfy the three-term recurrence,

pn+1(ξ) = (αn − βnξ)pn(ξ) − γn pn−1(ξ), n ∈ Z+, (3.4)

for some real sequences {αn}n∈Z+ , {βn}n∈Z+ , {γn}n∈Z+ with γ0 = 0 and γnβn−1/βn >

0 for all n ∈ N.

The polynomials from Eq. (3.3) fall under the umbrella of Favard’s theorem, with
αn = 0, βn = −b−1

n and γn = bn−1b−1
n , because

γnβn−1

βn
= (bn−1b−1

n )(−b−1
n−1)

−b−1
n

= 1 > 0. (3.5)

We can now deduce even more about the polynomials, because there exist simple
relationships between the polynomials, the coefficients of the three-term recurrence
and the measure of orthogonality, as follows.

Lemma 5 Let P be as in Favard’s theorem above.

1. The polynomials are orthonormal if and only if γnβn−1/βn = 1 for all n ∈ N and∫
p0(ξ)2 dμ(ξ) = 1.

2. The measure dμ is symmetric [i.e. dμ(−ξ) = dμ(ξ)] if and only if αn = 0 for all
n ∈ Z+. In this case, pn(−ξ) = (−1)n pn(ξ) for all n ∈ Z+.

3. For each n ≥ 0, the sign of βn is negative if and only if the signs of the leading
coefficient of pn and pn+1 are the same. Otherwise βn is positive.

Proof We sketch the proofs because they are elementary but not obvious. Multiplying
the three-term recurrence by pn+1, integrating, dropping the terms which are zero by
orthogonality, and then applying the three-term recurrence to ξ pn(ξ) (and dropping
more terms which are zero by orthogonality) show that

∫
pn(ξ)2 dμ(ξ) = γnβn−1

βn

∫
pn−1(ξ)2 dμ(ξ). (3.6)

2 A probability measure is a scalar-valued Borel measure which is positive and has total mass equal to 1.
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This proves part 1 of this lemma. Part 2 of the lemma is proved in Theorem 4.3 of
Chihara [3]. Part 3 follows from the fact that the leading coefficient of pn+1 is equal
to the leading coefficient of −βnξ pn(ξ), which equals the leading coefficient of pn

times −βn . ��
By Lemma 5 parts 1 and 2, the polynomials in Eq. (3.3) are always orthonormal

with respect to a symmetric probability measure dμ on the real line. Note that this is
regardless of the signs and magnitudes of each bn . In fact, by part 3 of Lemma 5, the
leading coefficients of these orthonormal polynomials will have signs which depend
on the sign of each bn .

Taking stock, we see that our journey has led us from the sequence of functions
� = {ϕn}n∈Z+ with a real, skew-symmetric, irreducible differentiation matrix, to the
transformed functions  = {ψn}n∈Z+ , which are of the form ψn(ξ) = pn(ξ)g(ξ),
where P = {pn}n∈Z+ are orthonormal polynomials with respect to a symmetric prob-
ability measure dμ and g(ξ) = ψ0(ξ) = F[ϕ0](ξ). By Eq. (2.2), ϕ0 is infinitely
differentiable, which implies that g(ξ) → 0 superalgebraically as |ξ | → ∞. Since
we assume that ϕ0 is real-valued, then the functions g = F[ϕ0] must have an even
real part and an odd imaginary part (although in all specific cases considered in this
paper, g is real-valued and even). Furthermore, since ϕ0 is square-integrable, so is g.
In the current context, we refer to such functions as mollifiers.

Let us now embark on a return journey. Commencing with a symmetric probability
measure dμ on the real line, we let P = {pn}n∈Z+ be a family of real orthonormal
polynomials for the measure dμ, with p0 = 1. Then by Favard’s theorem and Lemma
5, there exists a sequence of nonzero real numbers {bn}n∈Z+ such that the three-term
recurrence (3.3) holds. Also by Lemma 5, the sign of each bn depends on the changes
in sign of the leading coefficients of the polynomials, which can be arbitrary.

Define the functions � = {ϕn}n∈Z+ by,

ϕn(x) = (−i)nF−1[g · pn],

where g is a mollifier as discussed above. By Lemma 5 part 2, pn is has the same parity
as a function as n has as an integer. Since g has even real part and odd imaginary part,
this implies that (−i)ng · pn has even real part and odd imaginary part too. This implies
that ϕn is real-valued for all n ∈ Z+. Furthermore, since g is square-integrable and
decays superalgebraically to zero at infinity, this implies that g· pn is square-integrable,
and hence is ϕn for all n ∈ Z+.

It is our intent that � has a skew-symmetric differentiation matrix. Indeed, using
the equation for differentiation of a Fourier transform [Eq. (3.2)] and the three-term
recurrence for P , we have

ϕ′
n = F−1[(−iξ)F[ϕn](ξ)] = F−1[(−i)n+1ξg(ξ)pn(ξ)]

= bn−1(−i)n+1F−1[g · pn−1] + bn(−i)n+1F−1[g · pn+1]
= −bn−1ϕn−1 + bnϕn+1.
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Similarly, ϕ′
0 = b0ϕ1. The return journey goes off without a hitch! The mollifier g is

also uniquely determined by the family �: we have g = F[ϕ0], because p0 = 1. This
proves the following theorem.

Theorem 6 (Fourier characterisation for �) The sequence � = {ϕn}n∈Z+ of real-
valued, square-integrable functions has a real, skew-symmetric, tridiagonal, irre-
ducible differentiation matrix if and only if

ϕn(x) = (−i)n

√
2π

∫ ∞

−∞
eixξ pn(ξ) g(ξ) dξ, (3.7)

where P = {pn}n∈Z+ is an orthonormal polynomial system on the real line with
respect to a symmetric probability measure dμ and g is mollifier (as defined above).
Furthermore, P and g are uniquely determined by � and {bn}n∈Z+ .

Remark 7 Relaxing the conditions on what it means to be a mollifier yield further
examples of sequences � with a real, skew-symmetric, tridiagonal, irreducible dif-
ferentiation matrix, but which are not necessarily square-integrable or real-valued.
Furthermore, relaxing the symmetry condition on the measure dμ leads to skew-
Hermitian differentiation matrices. We do not pursue these extensions in this paper.

3.2 Orthogonal Bases

It turns out that this characterisation using the Fourier transform lends itself well to
the determination of orthogonality. Recall Parseval’s theorem, namely that the unitary
Fourier transform in (3.1) satisfies

∫ ∞

−∞
ϕ(x)ψ(x) dx =

∫ ∞

−∞
F[ϕ](ξ)F[ψ](ξ) dξ,

for all ϕ,ψ ∈ L2(R).

Theorem 8 (Orthogonal bases) Let ϕn = (−i)nF−1[g · pn] for n ∈ Z+ as in Theorem
6. Then � is orthogonal in L2(R) if and only if P is orthogonal with respect to the
measure |g(ξ)|2dξ . Furthermore, whenever � is orthogonal, the functions ϕn/‖g‖2
are orthonormal.

Proof By Parseval’s theorem,

∫ ∞

−∞
ϕn(x)ϕm(x) dx = (−i)m−n

∫ ∞

−∞
pn(ξ)pm(ξ)|g(ξ)|2 dξ.

Clearly � is orthogonal if and only if P is orthogonal with respect to |g(ξ)|2dξ . For
the final part of the theorem, recall the earlier discussion that P is always orthonormal
with respect to the probability measure dμ(ξ)/

∫
p20 dμ(ξ). Therefore, in the present

case, P is orthonormal with respect to |g(ξ)|2dξ/‖g‖22. Therefore, ‖ϕn‖2 = ‖g‖2 for
all n ∈ Z+. This completes the proof. ��
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What Theorems 6 and 8 show is that there is a one-to-one correspondence between
orthogonal systems � with real, skew-symmetric, irreducible differentiation matrices
and sequences P of orthonormal polynomials with respect to a symmetric probability
measure of the form dμ(ξ) = w(ξ)dξ . (Note that we allow the leading coefficients of
the orthonormal polynomials to have arbitrary signs for this correspondence.)

One more question we shall answer now is the following. We have characterised
when � is an orthogonal basis, but what Hilbert space is it an orthogonal basis for?

Let us go right ahead with the answer. Define the Paley–Wiener space,

PW�(R) := {ϕ ∈ L2(R) : F[ϕ](ξ) = 0 for a.e. ξ ∈ R\�},

where � is the support of dμ [20]. Restricting a function’s Fourier transform to lie
within a subset � of the real line is known as band-limiting, and Paley–Wiener spaces
are often referred to as band-limited function spaces and have numerous applications
in signal processing.

Before proceeding to prove that this answer is the right one, we have a small
disclaimer. From here onwards, we assume that the measure dμ in Theorems 6 and 8
is such that polynomials are dense in the space L2(R, dμ), so that P forms a complete
orthonormal basis of thewhole space. This is a technical condition, and only in esoteric
examples does it fail [3, p. 73]. We will not dwell upon it here, just warn the reader.

Theorem 9 (Orthogonal bases for PW space) Let � be a sequence of orthogonal func-
tions in L2(R) with a real, skew-symmetric, tridiagonal, irreducible, differentiation
matrix. Then � forms an orthogonal basis for the Paley–Wiener space PW�(R),
where � is the support of F[ϕ0].
Proof By Theorem 8, we may write ϕn = (−i)nF−1[g · pn]. Recall that F[ϕ0] = g,
so � is the support of g. Define the linear map M from the set of polynomials by

M[p] = F−1[g · p],

for any polynomial p. Because g is a mollifier, we have that g · p ∈ L2(R), and since
the Fourier transform maps L2(R) itself, we have that M[p] ∈ L2(R). Furthermore,
for any ξ /∈ �,

F[M[p]](ξ) = g(ξ) · p(ξ) = 0 · p(ξ) = 0, (3.8)

because g = F[ϕ0] and � is its support. Therefore, M maps into PW�(R).
Now, consider the inner product after applying M to polynomials p and q:

∫ ∞

−∞
M[p](x)M[q](x) dx =

∫
�

g(ξ)p(ξ)g(ξ)q(ξ) dξ =
∫

�

p(ξ)q(ξ) dμ(ξ).

We used Parseval’s theorem for the first equality. First of all, we see from this that M is
a bounded linear operator from polynomials toPW�(R). Since we have assumed that
polynomials are dense in L2(R, dμ), we can extend M continuously to the entirety
of L2(R, dμ). Hence, M is in fact an isometry between L2(R, dμ) and PW�(R).
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One can readily check that M has a left and right inverse given by M−1[ϕ](ξ) =
F[ϕ](ξ)/g(ξ) for ξ ∈ � and M−1[ϕ](ξ) = 0 otherwise.We see that M is an isometric
isomorphism between L2(R, dμ) and PW�(R) which maps the orthogonal basis
{(−i)n pn}n∈Z+ to {ϕn}n∈Z+ . This proves that � is an orthogonal basis for PW�(R).

��

4 Construction of Orthogonal Systems

It follows from the analysis of the last section that the right starting point for our
analysis is choosing a symmetric Borel measure dμ(ξ) = w(ξ) dξ in Fourier space,
supported either onR or in an interval of the form [−a, a], a > 0. This measure deter-
mines the mollifier g, the constants {bn}n∈Z+ and ultimately the orthogonal sequence
� in a unique manner. Alternatively, we may choose a positive sequence {bn}n∈Z+ and
reconstruct the measure dμ from (3.4) using Theorem 4, but this is more problematic
because the Favard theorem does not ensure uniqueness of the measure unless, for
example, the Carleman criterion is satisfied [3, p. 75]. Yet another alternative is to
commence from the seed ϕ0 and Fourier transform it, thereby recovering the mol-
lifier and the measure. In the sequel, we restrict ourselves to the first of these three
approaches.

Wewill nowdemonstrate how to take a symmetricBorelmeasure dμ(ξ) = w(ξ) dξ
(which is not necessarily normalised to be a probability measure), and produce coef-
ficients {bn}n∈Z+ and a seed function ϕ0 which generate an orthogonal sequence �.
Consistent with the last section, we let g(ξ) = √

w(ξ) for all ξ in �, the support of
dμ and g(ξ) = 0 otherwise.
To determine the coefficients {bn}n∈Z+ , take any sequence P = {1, p1, p2, . . .} of

orthonormal polynomials for the normalised measure dμ(ξ)/
∫

dμ(ξ). The leading
coefficients of p1, p2 and so on may be negative. Favard’s theorem states that P must
satisfy a three-term recurrence,

pn+1(ξ) = (αn − βnξ)pn(ξ) − γn pn−1(ξ), n ∈ Z+. (4.1)

By Lemma 5, αn = 0 and γnβn−1/βn = 1, since dμ is a symmetric and positive
measure, and P is orthonormal with respect to a probability measure. Now, if we set
bn = β−1

n , then

pn+1(ξ) = 1

bn
ξ pn(ξ) − bn−1

bn
pn−1(ξ), n ∈ Z+

(where b−1 = 0); here, we have used the fact that γnβn−1/βn = 1. The signs of the
bn’s will be negative if the signs of the leading coefficients of pn and pn+1 are the
same, and positive otherwise, by Lemma 5.

By the discussion in Sect. 3, the seed for these coefficients {bn}n∈Z+ which will
lead to an orthogonal system is any scalar multiple of

ϕ0 = F−1[w1/2](∫
w(ξ) dξ

) 1
2

. (4.2)
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This particular multiple of the seed function will generate an orthonormal sequence
by the last part of Theorem 8.

In some situations, all one has to hand are some orthogonal polynomials P̃ for dμ
which are not necessarily orthonormal, and have a three-term recurrence of the form

p̃n+1(ξ) = −β̃nξ p̃n(ξ) − γ̃n p̃n−1(ξ), n ∈ Z+, (4.3)

which by Favard’s theorem (Theorem 4) satisfies γ̃0 = 0 and γ̃nβ̃n−1/β̃n > 0. From
Eq. (3.6) in the proof of Lemma 5, we have

∫
p̃n(ξ)2 dμ(ξ) = γ̃n · · · γ̃1 β̃0

β̃n

∫
p̃0(ξ)2 dμ(ξ). (4.4)

Therefore, p̃n(ξ) = cn pn(ξ) where

cn = ±
√

γ̃n · · · γ̃1 β̃0

β̃n

∫
p̃0(ξ)2 dμ(ξ). (4.5)

Either sign may be used to obtain all possible orthonormal polynomial sequences
P . Using this relationship and the three-term recurrence for P̃ , we can rewrite the
three-term recurrence for P as

pn+1(ξ) = − cn

cn+1
β̃nξ pn(ξ) − cn−1

cn+1
γ̃n pn−1(ξ). (4.6)

From this, we see that we may take

bn = ±
√

γ̃n+1

β̃n+1β̃n
, n ∈ Z+, (4.7)

and seed function to be any scalar multiple of

ϕ0 = F−1[w1/2 · p0](∫
p0(ξ)2 w(ξ) dξ

) 1
2

. (4.8)

As before, this particular multiple generates an orthonormal sequence �.

4.1 Algorithm I

The simplest approach is to follow (4.7) and (4.8) by consecutive differentiation

ϕn+1 = 1

bn
(ϕ′

n + bn−1ϕn−1), n ∈ Z+, (4.9)
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where b−1 = 0. The simplest, alas, is not the best: it produces a sequence of functions,
but it then depends on ingenuity and a great deal of careful algebra to identify the
underlying construct—if possible—with more familiar functions. A good example is
that of Hermite functions (1.5): now w(x) = e−x2 ; therefore, g(x) = e−x2/2 and it
is possible, using standard formulae for Hermite polynomials, to prove by induction
that

ϕn+1(x) =
√

2

n + 1

[
ϕ′

n(x) +
√

n

2
ϕn−1(x)

]

is consistent with the orthonormal sequence

ϕn(x) = 1

(2nn!π1/2)1/2
e−x2/2Hn(x), n ∈ Z+,

but this is neither the most natural nor the simplest way of doing so.

4.2 Algorithm II

Wecommence by constructing anorthonormal polynomial system {pn}n∈Z+ explicitly.
For numerous measures dμ, such systems are known explicitly; otherwise, we might
use the three-term recurrence relation (3.3), perhaps in tandemwith the Golub–Welsch
algorithm [8]. This is followed by computing (3.7),

ϕn(x) = (−i)nF−1[w1/2 · pn], n ∈ Z+.

Note that by the discussion in Sect. 3, we need to have these polynomials normalised
so that their norms in L2(R, dμ) are all the same, or else we will not obtain a sequence
� with a skew-symmetric differentiation matrix.3

Returning to Example 1, all we need is to recall that Hermite functions are eigen-
functions of theFourier transformand that,wishing toobtain anorthonormal sequence,

∫ ∞

−∞
H2

n(x)e−x2 dx = 2nn!π1/2, n ∈ Z+

from Olver et al. [17, Table 18.3.1].
A more interesting example is that of dμ(ξ) = χ[−1,1](ξ) dξ and Legendre poly-

nomials. Now w(ξ) = χ[−1,1](ξ) and

(n + 1)Pn+1(ξ) = (2n + 1)ξPn(ξ) − nPn−1(ξ)

3 The resulting differentiation matrix will clearly be a diagonal similarity transform of a skew-symmetric
matrix, which will have the desirable property of having all eigenvalues lie along the imaginary axis, but
this is not the aim of our exercise.
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from Rainville [18, p. 160], in tandem with (4.7), imply

bn = n + 1√
(2n + 1)(2n + 3)

, n ∈ Z+; (4.10)

we recover Example 2 from Sect. 1. Fourier transforms of Legendre polynomials are
known, and we deduce from Olver et al. [17, Eq. 18.17.19] that

ϕn(x) =
√

n + 1
2

x
Jn+ 1

2
(x), n ∈ Z+. (4.11)

The factor of
√

n + 1
2 comes from the normalisation of the Legendre polynomials.

Since dμ is supported by [−1, 1], the above orthonormal sequence is dense in the
Paley–Wiener space PW [−1,1](R). Interestingly enough, we did not find a reference
to the formula

∫ ∞

−∞
Jm(x)Jn(x)

dx

x
= 0, m �= n, m, n ∈ Z+,

which follows from our construction, but note that it can be derived directly from
Olver et al. [17, Eq. 10.22.6] with little difficulty.

4.3 Algorithm III

Formula (2.2) is the starting point to an alternative means to derive the sequence �.
Recall that

F[ϕ(m−2�)
0 ] = (iξ)m−2�F[ϕ0].

Fourier transforming (2.2) therefore yields

ψn(ξ) = (−i)nF[ϕ0](ξ) = (−1)nψ0(ξ)

b0b1 · · · bn−1

n/2�∑
�=0

(−1)�αn,�ξ
n−2�, n ∈ Z+.

The polynomial pn , being of the same parity as n, can be written in the form

pn(ξ) =
n/2�∑
�=0

pn,�ξ
n−2�

and, comparing with ψn = ψ0 pn , we deduce that

ϕn(x) =
n/2�∑
�=0

(−1)n−� pn,�ϕ
(n−2�)
0 (x), n ∈ Z+. (4.12)
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This, together with (2.2), implies that

αn,� = (−1)n−�b1 · · · bn−1 pn,�, � = 0, . . . ,
⌊n

2

⌋

and, more importantly, provides an explicit formula for� in the ubiquitous case when
the pn,�s are known.

Inasmuch as (4.12) looks very attractive,we observe that it trades in the computation
of Fourier transforms of the pns (as in Algorithm II) for the computation of derivatives
of ϕ0, which is often fairly complicated. Thus, returning to the example of Legendre
polynomials, we deduce from Rainville [18, p. 161] that

pn,� = (−1)�
( 1
2

)
n−�

2n−2�

�!(n − 2�)! , � = 0, . . .
⌊n

2

⌋
,

while

ϕ0(x) =
J 1
2
(x)

√
x

=
√

2

π
j0(x),

where jn is the (entire) spherical Bessel function. We deduce that

ϕn(x) = (−1)n
n/2�∑
�=0

( 1
2

)
n−�

2n−2�

�!(n − 2�)! j(n−2�)
0 (x), n ∈ Z+. (4.13)

It is far from straightforward to prove that (4.13) is identical to (4.11), e.g. iterating
[17, Eq. 10.51.2].

5 Systems of Quasi-polynomials

The normalised Fourier transforms ψn from Sect. 3 were all of the form gpn , with a
mollifier g = √

w and orthogonal polynomials pn , each of degree n. Similar pattern is
displayed by the functions� in the special case of Hermite functions (Example 1 from
Sect. 2). In general, we say that { fn}n∈Z+ is a sequence of quasi-polynomials if each
fn is a multiple of a function G and a polynomial qn of degree n—thus, disregarding
scaling, for Hermite functionswe have G(x) = e−x2/2 and qn = Hn . Another example
of quasi-polynomial � is the quasi-Hermite functions from Example 3.

Quasi-polynomials are of a very attractive form; hence, it is of interest to explore
which orthogonal sets � lend themselves to this representation. We somewhat extend
the framework from orthogonality in L2(R) to one in L2(�, dν) for an arbitrary
measure residing in a real interval � = [a, b]—in other words,

∫ b

a
ϕm(x)ϕn(x) dν(x) = 0, m �= n, m, n ∈ Z+,
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and assume that ϕn(x) = G(x)qn(x), deg qn = n, n ∈ Z+. We further assume
that G−1 ∈ L2(�) and define dη(x) = G−2(x) dν(x): the orthogonality conditions
become

∫ b

a
qm(x)qn(x) dη(x) = 0, m �= n, m, n ∈ Z+.

In other words, {qn}n≥0 is an orthogonal polynomial system corresponding to the
measure dη. Being orthogonal, the qns obey the three-term recurrence relation

qn+1(x) = (αn x − βn)qn(x) − γnqn−1(x), n ∈ Z+, (5.1)

where γ0 = 0 and γn > 0, n ∈ N.

Theorem 10 The only system of quasi-polynomials that is orthogonal on a real interval
and whose differentiation matrix is real, skew-symmetric, tridiagonal and irreducible
is, up to rescaling, the Hermite system (1.5).

Proof Our first observation is that ϕn = Gqn , where qn is an nth degree polynomial,
implies that {qn}n∈Z+ is on orthogonal polynomial system with respect to the measure
G2(x) dx . Therefore, all zeros of qn are real and distinct.

Since we require a skew-symmetric, tridiagonal, irreducible differentiation matrix,
we are within the framework of this paper and the functions ϕn = Gqn obey (2.1).
Therefore, assuming G is differentiable,

G ′qn + Gq ′
n = −bn−1Gqn−1 + bnGqn+1

and, dividing by G, we deduce that

G ′

G
= q ′

n + bn−1qn−1 − bnqn+1

qn
, n ∈ Z+.

We have on the right a rational function—a ratio of a polynomial of degree n + 1 to a
polynomial of degree n. The poles are distinct, because qn is an orthogonal polynomial,
and we deduce that there exist constants cn,1, c2,ndn,1, dn,2, . . . , dn,n such that

G ′

G
= cn,1 + cn,2x +

n∑
�=1

dn,�

x − ζn,�

, (5.2)

where ζn,1, . . . , ζn,n ∈ (a, b) are the zeros of qn . Note, however, that the left-hand
side of (5.2) is independent of n—this implies that cn,1 = c1, cn,2 = c2 and dn,1 =
· · · = dn,n = 0—in other words,

G ′ = (c1 + c2x)G.
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The solution of this ODE is G(x) = ec1x+c2x2G(0) for some G(0) �= 0; therefore,

(c1 + c2x)qn = q ′
n + bn−1qn−1 − bnqn+1.

This is the moment to use the recurrence relation (5.1) to replace qn+1: we obtain

(c1 + c2x)qn = bn(αn x + βn)qn − q ′
n − (bn−1 + bnγn)qn−1.

We have polynomials of degree n + 1 on both sides, and comparing the coefficient of
xn+1, we deduce that c2 = bnαn—the equality reduces to

c1qn = bnβnqn − q ′
n − (bn−1 + bnγn)qn−1.

We now have on the left and the right polynomials of degree n and compare the
coefficients of xn there—this yields c1 = bnβn and we are left with

q ′
n = −(bn−1 + bnγn)qn−1, n ∈ Z+. (5.3)

We next recall the classical theorem of Hahn [9], namely that the only orthogonal
polynomial systems whose derivatives are also orthogonal are Jacobi, Laguerre and
Hermite polynomials.4 Specifically,

dP(α,β)
n (x)

dx
= α + β + n + 1

2
P(α+1,β+1)

n−1 (x),

dL(α)(x)

dx
= −L(α+1)

n−1 (x),

dHn(x)

dx
= 2nHn−1(x).

We need, however, more: to be consistent with (5.3), we want q ′
n to be a constant

multiple of qn−1, therefore orthogonal with respect to the same measure—and this
is the case only once (up to a multiplicative constant) qn = Hn . Then, the Hermite
measure being determinate [3, p. 58], necessarily for orthogonality G(x) = e−x2/2

and the proof is complete. ��

6 Examples

In this section, we present a number of examples, grouped into two: orthogonality
in the Paley–Wiener space PW [−1,1](R) and orthogonality in L2(R). Not all these
examples are completely worked out, they are often no more than pointers towards
interesting instances of orthogonal systems �, calling for further research.

4 Some versions of this theorem mention also Bessel polynomials [3, p. 151], but they are not orthogonal
with respect to a positive-definite measure, and anyway, their inclusion does not change our argument.
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Aword about terminology: once a system of orthogonal functions� originates in a
named set of orthogonal polynomials, we call them transformed named functions. For
instance, if�originated in the fictitiousBloggs Polynomials,we call them transformed
Bloggs functions.

6.1 Paley–Wiener Spaces

6.1.1 Ultraspherical Polynomials

Weset dμ(x) = χ[−1,1](x)(1−x2)α dx , whereα > −1: the underlying ultraspherical

polynomials P(α,α)
n obey the three-term recurrence relation

P(α,α)
n+1 (x) = (2n + 2α + 1)(n + α + 1)

(n + 1)(n + 2α + 1)
xP(α,α)

n (x) − (n + α)(n + α + 1)

(n + 1)(n + 2α + 1)
P(α,α)

n−1 (x)

from Rainville [18, p. 263]. Special case are Legendre polynomials Pn (α = 0),
which we have already considered in Sect. 4, and (under different scaling) Chebyshev
polynomials of the first kind, Tn , and second kind, Un , for α = − 1

2 and α = 1
2 ,

respectively. Up to another rescaling, ultraspherical polynomials for α > − 1
2 are the

same as Gegenbauer polynomials [18, p. 276].
The mollifier is g(x) = χ[−1,1](x)(1 − x2)α/2, and according to (4.7),

bn = 1

2

√
(n + 1)(n + 2α + 1)

(n + α + 1
2 )(n + α + 3

2 )
, n ∈ Z+.

Note that for α = 0 this is consistent with (4.10).
Very lengthy algebra of little intrinsic interest yields

ϕ0(x) = 1√
2π

∫ 1

−1
(1 − ξ2)α/2eixξ dξ = 2α/2�(1 + α

2 )

x
1
2+ α

2

J 1
2+ α

2
(x),

and this can be extended to other ϕns with Algorithm II.5 Intriguingly, while ϕ1 is

a scalar multiple of J 3
2+ α

2
(x)/x

1
2+ α

2 , consistently with the special case of Legendre
polynomials, this neat representation is no longer true for ϕ2 and beyond.

InFig. 1,wedisplay the functionsϕn ,n = 0, . . . , 5, corresponding to theChebyshev
measure of the secondkind, dμ(ξ) = χ[−1,1](ξ)(1−ξ2)1/2 dξ—inotherwords,α = 1

2
and bn ≡ 1

2 . The functions ϕn are linear combinations (with polynomial coefficients)
of Bessel functions.

5 Section 18.17 of Olver et al. [17] lists explicitly the Fourier transforms of all classical orthogonal poly-

nomials, inclusive of P(α,α)
n . Unfortunately, this is irrelevant for us (except when α = 0) because of the

need to square root the weight function.
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Fig. 1 Transformed Chebyshev functions of the second kind ϕn for n = 0, . . . , 5: darker colour denotes
greater n (Color figure online)

6.1.2 Konoplev Polynomials

Let α, β > −1 and consider dμ(ξ) = χ[−1,1](ξ)|ξ |2β+1(1− ξ2)α dξ . Corresponding

orthogonal polynomial systems {S(α,β)
n }n≥0 have been originally considered by Szegő

[21] in the case α = 0, and the general case is due to Konoplev [14]. They can be
conveniently expressed in terms of Jacobi polynomials,

S(α,β)
2n (ξ) = P(α,β)

n (2ξ2 − 1), S(α,β)
2n+1(ξ) = ξP(α,β+1)

n (2ξ2 − 1), n ∈ Z+,

while the recurrence relation for monic Konoplev polynomials {Š(α,β)
n }n≥0 is

Š(α,β)
n+1 (ξ) = ξ Š(α,β)

n (ξ) − γn Š
(α,β)
n−1 (ξ),

where

γ2n = n(n + α)

(2n + α + β)(2n + α + β + 1)
, γ2n+1 = (n + β + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)

from Chihara [3, p. 221]. Of course, bn = √
γn+1 and note that this reduces to the

ultraspherical case from Sect. 6.1.1 once β = − 1
2 .
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The calculation of ϕ0 is long and complicated: the outcome is

ϕ0(x) = 2�(α + 1)

{
�(α + β + 5

2 )�(β + 1) sin(πβ)1F2

[
β + 1;
1
2 , α + β + 2; − x2

4

]

+�(2 + α + β)�(β + 3
2 ) cos(πβ)x1F2

[
β + 3

2 ;
3
2 , α + β + 5

2 ;
− x2

4

]}
.

(6.1)

In the most interesting special case α = 0, this can be simplified. Given a, b > −1,

1F2

[
a;
a + 1, b + 1; − x2

4

]
=

∞∑
�=0

(−1)�
(a)�

�!(a + 1)�(b + 1)�

x2�

4�

= a
∞∑

�=0

(−1)�

�!(b + 1)�4�

x2�

a + �

= ax−2a
∫ x

0
τ 2a−1

∞∑
�=0

1

�!(b + 1)�

(
−τ 2

4

)�

dτ

= a2b�(b + 1)x−2a
∫ x

0
τ 2a−b−1Jb(τ ) dτ.

Substitution in (6.1) and lengthy algebra result in a far simpler formula,

ϕ0(x) = 2�(β + 2)�(β + 5
2 )x−2β−2

∫ x

0
τ 2β+1 sin(τ + πβ) dτ.

Subsequent ϕns (obtained by the brute-force Algorithm I) do not appear to possess
any recognisable structure.

6.2 Systems Dense in L2(RRR)

While orthogonal systems � which are dense in a Paley–Wiener space have, as far as
we can see, limited applications, this is hardly the case with systems dense in L2(R),
which have an immediate relevance to spectral methods, along the lines of Sect. 1.

6.2.1 Generalised Hermite Polynomials

Hermite functions are a familiar tool and the most important example of an orthogonal
system that shares all the welcome properties sought in this paper: a skew-symmetric,
tridiagonal, irreducible differentiation matrix and density in L2(R). It is interesting,
though, to generalise them in line with the Szegő [22, Problem 25] generalisation of
Hermite polynomials.
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Letting η > − 1
2 , we denote by H

(η)
n the polynomials orthogonal with respect to the

measure

dμ(ξ) = |ξ |2ηe−ξ2 dξ, ξ ∈ R.

They obey the three-term recurrence relation

H(η)
n+1(ξ) = 2ξH(η)

n (ξ) − 2(n + θn)H(η)
n−1(ξ),

where

θn =
{
0, n even,

2η, n odd

fromChihara [3, pp. 156–157]. They can be represented explicitly in terms of Laguerre
polynomials,

H(η)
2n (ξ) = (−1)n22nn!L(η− 1

2 )
n (ξ2), H(η)

2n+1(ξ) = (−1)n22n+1n!L(η+ 1
2 )

n (ξ2).

(6.2)
The coefficients are thus

b2n = √
n + η + 1, b2n+1 = √

n + 1, n ∈ Z+,

while the mollifier is g(ξ) = |ξ |ηe−ξ2/2. Assuming that η is not an odd integer, it
follows from (4.8) that

ϕ0(x) = 1√
2π

∫ ∞

−∞
|ξ |ηe−ξ2/2+ixξ dξ = e−x2/4

2 cos πη
2

[U(−η − 1
2 x) + U(−η − 1

2 ,−x)],

where U are Weber parabolic cylinder functions,

U(a, z) = π1/2e−z2/4

2
a
2+ 1

4 �( a
2 + 3

4 )
1F1

[ 1
2a + 1

4 ;
1
2 ;

z2

2

]
− π1/2ze−z2/4

2
a
2− 1

4 �( a
2 + 1

4 )
1F1

[ 1
2a + 3

4 ;
3
2 ;

z2

2

]

from Olver et al. [17, Eq. 12.7.12]. It follows that

U(−η − 1
2 x) + U(−η − 1

2 ,−x) = π1/22η/2+1e−z2/4

�( 12 − η
2 )

1F1

[− η
2 ;

1
2 ;

x2

2

]

and we simplify,

ϕ0(x) = c0e
−x2/2

1F1

[− 1
2η;

1
2 ;

x2

2

]
, c0 = 1

cos πη
2

π1/22η/2

�( 12 − η
2 )

.
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According to Olver et al. [17, Eq. 13.3.16],

dm

dxm 1F1

[
a;
b; z

]
= (a)m

(b)m
1F1

[
a + m;
b + m; z

]
, m ∈ Z+.

Using this, it is easy (though laborious) to prove by induction that

ϕ
(2m)
0 (x) = c0(−1)m2m ( 1

2 + η
2

)
m e−x2/2

1F1

[− 1
2η − m;

1
2 ;

x2

2

]
,

ϕ
(2m+1)
0 (x) = c0(−1)m2m ( 3

2 + η
2

)
m xe−x2/2

1F1

[− η
2 − m;

3
2 ;

x2

2

]
.

Since [e.g. using (6.2)]

H(η)
2n (x) =

n∑
�=0

(
n

�

)
(−n − η + 1

2 )�x2n−2�,

H(η)
2n+1(x) =

n∑
�=0

(
n

�

)
(−n − η − 1

2 )�x2n+1−2�,

we now have all that is required to implement Algorithm III: the outcome is

ϕ2n(x) = c0
(−1)n

( 1
2 + η

2

)
n

2n
e−x2/2

n∑
�=0

(
n

�

)
(−1)�(−n−η+ 1

2 )�

2�(−n + 1
2 − η

2 )�
1F1

[−n+�− η
2 ;

1
2 ;

x2

2

]
,

ϕ2n+1(x) = c0
(−1)n

( 3
2 + η

2

)
n

2n
xe−x2/2

n∑
�=0

(
n

�

)
(−1)�(−n−η− 1

2 )�

2�(−n− 1
2η− 1

2 )�
1F1

[−n+�− η
2 ;

3
2 ;

x2

2

]
.

Once η is an even integer, the above expansions terminate; however, only for η = 0
we recover quasi-polynomials, in line with Theorem 11. For example, for η = 2

ϕ2m(x) = c2me
−x2/2

m+1∑
k=0

(2m + 2 − k)
(−1)k

k! ( 12 )k

x2k

it is a multiple of G(x) = e−x2/2 by a polynomial of degree 2m + 2 and hence does
not fit the definition of quasi-polynomials.

6.2.2 Carlitz Polynomials

The original Carlitz polynomials [2] have been defined with respect to a measure
supported by a vertical line in the complex plane: letting λ ∈ (−1, 1), we consider
polynomials

�(λ)
n (z) = (−1)n(1 + λ)nn!

2m
( 1
2

)
m

3F2

[−n, n + 1, 1 + z;
1, 1 + λ; 1

]
, n ∈ Z+,
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which obey the orthogonality conditions

∫ −c+i∞

−c−i∞
�

(λ)
m (z)�(λ)

n (z) dz

sin(π z) sin(π(z − λ))
= 2iλ

sin πλ

(−1)mm!2(1 + λ)m(1 − λ)m

(2m + 1)(m − 1)!!2 δm,n,

where c ∈ (0, 1) and m!! = ∏m−1
j=0 (2 j + 1) = (2m + 1)!/(2mm!) is the double

factorial. Original interest in such polynomials sprung from the connection between
their moments and the classical Bernoulli polynomials [3, pp. 192–193].

We can recover orthogonality on the real line by a change of variables,

G(λ)
n (ξ) = (−i)n�(λ)

n

(
λ − 1 + iξ

2

)
, n ∈ Z+,

whereby

dμ(ξ) = dξ

cosπλ + cosh πξ
, ξ ∈ R.

The three-term recurrence relation for monic Carlitz polynomials being

G(λ)
n+1(ξ) = ξG(λ)

n (ξ) − n2(n2 − λ2)

4n2 − 1
G(λ)

n−1(x),

we have

bn = (n + 1)

√
(n + 1)2 − λ2

(2n + 1)(2n + 3)
, n ∈ Z+.

Unfortunately, the closed form of the seed

ϕ0(x) = 1√
2π

∫ ∞

−∞
eixξ dξ

cosπλ + cosh πξ
, x ∈ R,

is in general unknown for λ ∈ (−1, 1). For λ = 0, though, it can be computed. The
measure reduces to

dμ(ξ) = 2 dξ

cosh2(πξ)
, ξ ∈ R,

and its moments μn = ∫ ∞
−∞ ξn dμ(ξ) are

μ2m = (−1)m
(
2

π

)3/2
B2m

( 1
2

)
, μ2m+1 = 0, m ∈ Z+,

where the Bns are Bernoulli polynomials.
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We next compute the seed: since
√
1 + cosh πξ = √

2 cosh πξ
2 , we have

ϕ0(x) = 1

2
√

π

∫ ∞

−∞
eixξ dξ

cosh πξ
2

.

According to Olver et al. [17, Table 1.14(vii)],

F−1
(
cosh aξ

cosh ξ

)
=

√
2

π

cos a
2 cosh

x
2

cos a + cosh x
, |a| < π.

It follows at once by trivial rescaling that

ϕ0(x) = 2

√
2

π

cosh x

1 + cosh 2x
=

√
2

π

1

cosh x
.

Dropping the factor (2/π)1/2, we thus have

ϕ0(x) = 1

cosh x
,

ϕ1(x) = −√
3
sinh x

cosh 2x
,

ϕ2(x) =
√
5

2

(
2

cosh x
− 3

cosh3 x

)
,

ϕ3(x) =
√
7

2
sinh x

(
2

cosh2 x
− 5

cosh4 x

)
,

ϕ4(x) =
√
9

8

(
8

cosh x
− 40

cosh3 x
+ 35

cosh5 x

)

and so on. We can certainly discern some structure, although this issue is not pursued
further in the current paper. Further structure is revealed in Fig. 2: each ϕn appears to
have n real zeros which interlace.

Although we do not pursue further this theme, transformed Carlitz functions might
well be a good subject for further investigation. As things stand, we just record them
as an example of an orthogonal system � of an entirely different flavour than, say,
Hermite and transformed generalised Hermite functions.

6.2.3 Freud Polynomials

Given η > − 1
2 and an even function Q ∈ C∞(R), such that Q(x) ≥ 0 for |x | � 1,

orthogonal polynomials with respect to |x |ηe−Q(x) dx are called Freud polynomials
[15,23]. Hermite polynomials form the simplest example, and other familiar cases are
Q(x) = x4 − t x2 for some t ∈ R and Q(x) = |x | (whereby smoothness fails at the
origin without any ill effects).
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x
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1

0.5

0.5

1

Fig. 2 Transformed Carlitz functions ϕn for n = 0, . . . , 5: darker colour denotes greater n (Color figure
online)

General rules governing the asymptotic behaviour of recurrence coefficients for
Freud polynomials have been a major open problem in the theory of orthogonal poly-
nomials which has been solved in a celebrated paper by Fokas et al. [7]. (See also Deift
et al. [5].) This has led to a burgeoning body of work, combining theory of orthog-
onal polynomials, the Riemann–Hilbert transform, Painlevé equations and random
matrix theory. Yet, even in the simplest non-trivial case, dμ(x) = e−x4 dx , explicit
expressions of recurrence coefficients, the one item of information necessary for the
formation of �, are unknown.

Yet, the sequence {γm}m∈Z+ can in this case be generated recursively from

γ0 = 0, γ1 = �
( 3
4

)
�

( 1
4

) , 4γn(γn−1 + γn + γn+1) = n, n ∈ N (6.3)

from Shohat [19]. The string relation (6.3) had been extended by Magnus [16] to the
measure dμ(x) = e−x4+t x2 dx ,

γn(γn−1 + γn + γn+1) + 2tγn = n, n ∈ N, (6.4)

where

γ0 = 0, γ1 =
|t |[K3

4

(
t2
8

)
− K1

4

(
t2
8

)
]

4K1
4

(
t2
8

)
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x
8 6 4 2 0 2 4 6 8

1

1

2

Fig. 3 Transformed Freud functions ϕn (with t = η = 0) for n = 0, . . . , 5: darker colour denotes greater
n (Color figure online)

and Kν is a modified Bessel function of the second kind (also known as Macdonald
function). Further generalisation to dμ(x) = |x |ηe−x4+t x2 dx has been presented
in Clarkson and Jordaan [4], who have also given explicit relations of recurrence
coefficients in terms of Wronskians related to the Painlevé IV equation.6

At least in principle,wemayuse either (6.3) or (6.4) to calculate asmanycoefficients
γn (therefore also bn = √

γn+1) as required. The other ingredient in constructing �

is ϕ0, the (scaled) inverse Fourier transform of the square root of the weight function.
For t = 0 [corresponding to (6.3)], we have

ϕ0(x) = 2
3
4

4�
( 3
4

)
{
2π0F2

[
—;
1
2 ,

3
4 ;

x4

128

]
− x2�2 ( 3

4

)
0F2

[
—;
5
4 ,

3
2 ;

x4

128

]}
,

while for t �= 0 the explicit form of the seed ϕ0 is unknown.
In Fig. 3, we have plotted the first six functions ϕm for the above transformed

Freud functions. Inasmuch as they look quite complicated—linear combinations with
polynomial coefficients of 0F2 hypergeometric functions—they display fairly regu-
lar behaviour. It is too early to guess what the features are (in particular insofar as
approximation theory is concerned) of this orthogonal system and whether it is of any
importance in the context of spectral methods on the real line.

6 These explicit coefficients, unfortunately, cannot be computed easily and rapidly.
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7 Conclusions and Pointers to Future Research

In this paper, we have completely characterised orthogonal systems� in L2(R)whose
differentiation matrix is real, skew-symmetric, tridiagonal and irreducible. In essence,
to every symmetric probability measure dμ(ξ) = w(ξ) dμ(ξ) there corresponds an
essentially unique �, which is dense in L2(R) if the support of dμ is the real line or
dense in an appropriate Paley–Wiener space depending on the support of dμ. We have
also presented constructive algorithms for practical computation of � and a number
of examples.

Future research in this area is likely to focus on three general themes.

• Firstly, generalising the basic idea underlying this paper, ‘good’ approximation
of a differentiation matrix in the setting of spectral methods. Are there any other
separableHilbert spaces, except for L2(R), that give raise to skew-symmetric, tridi-
agonal, irreducible differentiation matrices? How does one obtain such orthogonal
systems? The question is of great relevance insofar as L2[−1, 1], say, andL2[0,∞)

are concerned, when the Fourier transform-based tools of this paper are no longer
applicable—at least not in a straightforward manner.
Likewise, what about higher-order differentiation matrices, ‘encoding’ higher
derivatives? In particular, approximating the second derivative with a negative
semidefinite matrix is of major importance because of the ubiquity of the Laplace
operator. Of course, the quindiagonal matrix D2 describes the action of second
derivative in �, and as long as D is skew-symmetric, D2 is negative semidefinite.
However, can we find � with a tridiagonal, negative semidefinite, irreducible
second-order differentiation matrix?

• Secondly, what are the features of orthogonal function systems � which act
on L2(R) and possess a skew-symmetric, tridiagonal, irreducible differentiation
matrix D? For example, where are their zeros? Brief examination of Figs. 1, 2,
and 3 seems to indicate that transformed Chebyshev functions of the second kind
and transformed Freud functions have an infinity of real zeros, while each Carlitz
function ϕn has exactly n real zeros. Intriguingly, in all three cases the zeros of ϕn

and of ϕn+1 seem to interlace.
A feature which is of central importance, once we wish to harness � in a spectral
method, is its approximation power. Howwell do the ϕns approximate an arbitrary
L2(R) function?
Many dispersive equations of quantum mechanics have solutions which can be
conveniently expressed (for simplicity, in one space dimension) in terms of wave
packets e−α(x−x0) cosωx , where α > 0 andω � 1. Howwell does� approximate
wave packets? Initial exploration indicates that there are substantial differences in
using different orthogonal systems insofar as the number of terms for fixed error
tolerance is concerned, once ω becomes very large and the wave packet oscillates
rapidly.

• Finally, how do we implement this entire body of ideas in a practical spectral algo-
rithm? Our ambition is an algorithm applicable to an arbitrary (in the first stage
linear) time-dependent partial differential equations which is stable by design
and conserves Euclidean norm whenever this norm is conserved by the original
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equations. Even disregarding the entire issue of time discretisation, practical imple-
mentation of the body of ideas in this paper requires much further research. How
can we rapidly compute expansions of L2(R) functions in the basis �? How do
we generate such a basis in a rapid and stable manner? We expect further papers
to address this issue.
Another issue is how to make the tridiagonal structure ofD act fully to our benefit.
For example, are there effective ways of approximating the product ecDv, where
c ∈ R and v ∈ �2(R), to high precision? More problems of this kind are likely to
emerge once orthogonal systems, as described in this paper, are used as the kernel
of a competitive spectral method.
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