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Abstract

We propose a novel neural network architecture for point

cloud classification. Our key idea is to automatically trans-

form the 3D unordered input data into a set of useful 2D

depth images, and classify them by exploiting well perform-

ing image classification CNNs. We present new differen-

tiable module designs to generate depth images from a point

cloud. These modules can be combined with any network

architecture for processing point clouds. We utilize them

in combination with state-of-the-art classification networks,

and get results competitive with the state of the art in point

cloud classification. Furthermore, our architecture auto-

matically produces informative images representing the in-

put point cloud, which could be used for further applica-

tions such as point cloud visualization.

1. Introduction

Point clouds are an important and common representa-

tion of 3D data. In this paper, we tackle point cloud clas-

sification: being able to automatically classify point clouds

is a challenging task that can have impact in many other

problems in Computer Vision and Graphics, such as scene

understanding and surface reconstruction.

Even though 3D scanners are becoming cheaper and

more available, 2D images still represent the majority of

our graphical information. Thanks to significantly large im-

age datasets [4], and a growing interest in the research com-

munity, Convolutional Neural Networks (CNNs) for image

classification have been well studied and achieved state of

the art results. Inspired by their high quality results, we

build a novel neural network architecture which allows us

to exploit the strengths of 2D image based CNNs for clas-

sifying 3D point clouds. Unlike some very recent deep

learning methods [17, 13, 22], which handle unordered 3D
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data by directly processing and classifying them, our idea is

to design a set of trainable network components that auto-

matically transform the 3D input to informative 2D images,

which are then input to image classification networks. Con-

trary to previous works [23] that classify 3D meshes by ex-

ploiting rendered images, in our method, the images are not

generated in a pre-processing step, but rather learned within

the network.

In particular, our completely differentiable architecture

first intrinsically predicts one or multiple views, which are

informative about the shape and features of the input point

cloud. Secondly, another differentiable module generates

the corresponding depth images of the point cloud rendered

from those views. These depth images are produced by ex-

tending the work presented in [21] to handle point clouds

with multiple layers of depth, occlusions and overlapping

structures. Finally, a third component combines the im-

ages and uses an image classification CNN [9] to classify

them. Thanks to the generated depth images and high per-

formance of CNNs for image classification, we obtain com-

petitive classification results to the recent methods in the

field. Furthermore, the views intrinsically generated by our

network can be extracted as an additional output at testing

time, and used for point cloud visualization.

To summarize, the contributions of this paper are the fol-

lowing:

• We propose a novel neural network architecture for

point cloud classification that achieves results compet-

itive with the state of the art, even for difficult noisy

datasets. The key idea is to automatically transform

the unordered 3D points to informative 2D images and

exploit the well studied image based classification net-

work architectures (and their pre-trained weights on

large image datasets).

• Our architecture produces one or a set of informative

depth images of the point cloud, by predicting mean-

ingful view directions. We illustrate that the learned
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view directions and the corresponding depth images

can be used for other applications, such as point cloud

visualization.

• We propose a fully differentiable module for generat-

ing depth images of point clouds representing full 3D

objects with occluded points, by integrating a point

cloud culling strategy. This module can be used in

further tasks and architectures that work with point

clouds.

2. Related Work

Deep Learning on Point Cloud Data Point clouds are a

common instance of 3D data, and various deep learning ar-

chitectures have been proposed in order to handle them. The

most straightforward approach is to convert the point cloud

to a uniform voxel grid and use CNN based methods for

volumetric representations, such as the methods presented

in [18, 27, 16, 2, 26]. While transforming the point cloud to

a voxel grid allows to feed regularly structured data to the

network, the main disadvantage of these techniques is that

they are computationally expensive, limiting the resolution

of the point cloud. Some attempts have been proposed in or-

der to overcome the voxel grid resolution issue, for example

by using an octree structure [20, 25], employing field prob-

ing filters [14], or exploiting the sparseness of the problem

via voting schemes [24]. However, the low resolution na-

ture of voxel grids still constraints the size of the processed

point cloud.

Instead of converting the point cloud to a voxel grid,

some new works have presented methods to directly pro-

cess unordered point sets, achieving state of the art results

in point cloud classification, comparable to methods which

classify volumetric objects [16, 27, 18] and meshes [12].

The authors of PointNet [17] propose a network architec-

ture to respect properties such as invariance to permutations

and tranformations of the input points. In the recently pub-

lished work [22], CNNs are generalized from grids to gen-

eral graphs using edge-dependant filters. Similarly, in Kd-

Networks [13], a concurrent work to ours, kd-trees are used

as underlying graphs to simulate CNNs. Finally, the concur-

rent work PointNet++ [19] improves the original PointNet

by applying the network recursively on a nested partitioning

of the input point set. Like these last set of approaches, our

method takes an unordered point cloud as input, which can

also be of high resolution. Contrary to them, instead of tack-

ling classification directly on the point cloud, we first ex-

tract a set of 2D depth images, and then exploit well studied

CNN based image classification methods to classify point

clouds.

Exploiting Multiple Views on 3D Data Many deep

learning methods utilize multiple 2D views of 3D data in

order to learn more complex features. For example, in [6]

and [5] the authors show how adding additional views of

the human body produces better results in estimating their

shape. In MVCNN [23], a 3D shape model is rendered with

different virtual cameras from fixed view points, and the re-

sulting images are combined with a view pooling operation

and classified with a CNN based architecture. In the re-

cent [11], views of 3D meshes are rendered from selected

viewpoints in an initial step, and fed to a network architec-

ture which segments the meshes using projective CNNs to

project images onto the shape surface representation. These

approaches require a preprocessing step where the input

meshes are rendered from a set of views, using standard

mesh rendering pipelines. Contrary to these works, we in-

troduce a differentiable module for rendering point cloud

data from different views on-the-fly from the input, which

allows the network to automatically learn the most useful

view directions.

Image recognition using CNNs Our method is related to

image based CNN architectures, as we classify point clouds

by first automatically extracting 2D images. CNNs have

produced state of the art results in image recognition and

related tasks e.g. [3, 7, 8, 9]. In particular, large image

datasets available [4] allow CNNs to learn features that are

general and suitable for different operations. For 3D data,

such large datasets are not available and harder to obtain,

which lies behind our idea of extracting 2D features from

3D data. In this work, we classify our extracted 2D views

with ResNet [9], and utilize ImageNet [4] as a dataset for

pre-training.

Rendering Depth Images In Neural Networks Render-

ing 2D images from 3D geometry within a neural network is

an interesting task that could have impact in many computer

vision applications. Spatial Transformer Networks [10]

presents a differentiable module for applying transforma-

tions to a feature map. By applying a 3D affine matrix and

flattening the result, their method can produce a 2D projec-

tion of the 3D voxel grid input. In [18], the authors also

propose a differentiable module based on anisotropic ker-

nels to generate 2D images using voxel grids as input. In

OpenDR [15], a differentiable renderer for triangle-based

geometry is presented. While the simple 3D to 2D projec-

tion of Spatial transformer Networks [10] does not deal with

rendering, [18] requires a conversion from point clouds to

a low resolution representation and OpenDR [15] works on

triangles, in our work we aim at generating depth images

from unordered point clouds. In addition, our work focuses

on intrinsically learning a projection direction. A key com-

ponent of our method is a differentiable module to generate

depth images from the points, which can be inserted into

any neural network architecture. We took [21] as a basis,
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Figure 1. An overview of our network architecture. Given an input point cloud of a chair, two informative views are predicted, the

corresponding depth images are generated and fed to the image classification module.

where the authors create depth field images by projecting

the points onto an image plane. However, their method is

designed to handle local patches of points, where the geom-

etry is well represented with a height field without occluded

parts. We extend it for generating informative depth images

of full point clouds with multiple layers of depth, by care-

fully interpolating point depth values.

3. Network Architecture

3.1. Overview

Instead of directly classifying a point cloud, we designed

a network architecture which automatically transforms the

3D input into a set of informative 2D depth images, and then

solves the problem of classifying them. The view directions

for generating the depth images are learned in an unsuper-

vised manner, thus predicted with the goal of maximizing

the classification accuracy. The main advantage of this ap-

proach, compared to directly processing the 3D points as

in [17], is that it allows us to exploit the well studied deep

learning architectures for image classification, which have

been proven to achieve state-of-the-art results. Moreover, in

addition to outputting a class label prediction for the input

point cloud, our network intrinsically learns to predict one

or a set of informative view directions and generate the cor-

responding 2D depth images, which could be used for other

applications e.g. for 3D object recognition or point cloud

visualization.

Given an input point cloud P and a desired number of

views K, our pipeline is to first choose K views directions,

generate the correspondent depth images and then utilize

them to classify the point cloud. Our network architecture

is thus composed of three modules: the first one takes the

input point cloud coordinates as input and predicts K direc-

tion vectors (Section 3.2); the second module receives the

input point cloud coordinates and the K directions and gen-

erates the depth images accordingly (Section 3.3); finally,

the third module combines the K depth images and pro-

duces a vector representing the prediction labels for classes

(Section 3.4).

We train the three modules jointly within a single archi-

tecture, using a softmax cross entropy loss on the class la-

bels, provided as ground truth. Notice that we do not in-

clude a loss on the view directions nor on the generated

depth images. Figure 1 shows an overview of the network

architecture, for the case where K = 2.

3.2. View Prediction

The first module of our architecture receives the point

cloud P as input and produces K view directions, where K
is a parameter chosen by the user. In particular, we want

to estimate the K camera-pose matrices which represent

3D rotations to transform the point cloud in order to per-

form an orthogonal projection. Inspired by [21], we start

from the recent method PointNet [17], which proposes a

network architecture that allows for processing unordered

3D point sets, like our input. The prediction of the views

should respect crucial properties such as invariance to per-

mutations of the input data and invariance under transfor-

mations. PointNet achieves input permutations invariance

through a max pooling layer that approximates a symmet-

ric function, and transformation invariance by predicting an

affine matrix applied to the input. Finally, a fully connected

layer creates a global descriptor used for classification.

In our work, we utilize a separate PointNet architecture

for each of our K views, modifying the final fully connected

layer to produce a 6D vector, representing the camera view

vector vk and the up-axis uk of the kth camera-pose matrix.

We build Ck, the camera-pose matrix for the kth view, by

setting wk = vk × uk and Ck =
[

wT
i ;u

T
i ; v

T
i

]

.

We finally multiply the input point cloud sequentially

with every camera-pose matrix, producing K rotated point

clouds. After the transformation, the px and py coordinates

of a point p ∈ P represent its image coordinates, and the pz
coordinate is its depth.

Note that, due to memory limitations, we utilize a sub-

sampled version of the input point cloud (keeping 12.5%
of the original points) to estimate the camera-pose matri-

ces. See Section 4.1 for more details on the implementation.

Figure 2 shows a diagram of the view prediction module.
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Figure 2. Our view prediction module. The camera-pose matrix

parameters are estimated from a downsampled version of the in-

put, and the original points are rotated accordingly.

Figure 3. (Top) The Gaussian interpolation of [21], where all the

points are interpolated together. (Bottom) Our Gaussian interpo-

lation, where the red points are filtered out because their depth is

too different than the maxD values of the pixels. The green points

are interpolated.

3.3. Depth Image Generation

In this network component, the goal is to generate a

depth image for an input point cloud using differentiable op-

erations. In [21], the authors present a differentiable layer

to create a distance field image from a point cloud by inter-

polating the depth values of the points on the image plane

using Gaussian interpolation. Since they project every point

of the point cloud to the image plane and interpolate their

distances, their approach is mostly suitable for generating

depth images of small patches of points lying on a single

sheet without overlapping structures, but does not produce

useful depth images when the point cloud contains struc-

tures on different depth layers. In that case, indeed, points

with a large difference in the depth coordinate may be pro-

jected to closeby pixels on the image, and their depth values

will be averaged together, leading to skewed geometry rep-

resentations as shown in Figure 3 (top).

In this paper, we propose an extension that is suitable

for point clouds representing full objects, with points lying

also on occluded multiple layers. We thus aim at produc-

ing depth images which properly approximate a rendering

of a surface passing through the points, which can be more

reliably classified by our final image classification compo-

nent. In particular, a depth image should present clear edges

where the depth changes abruptly, and continuous values in

smooth parts of the object.

The main idea of our depth image generation method is

to apply a bilateral-filering-like interpolation to obtain point

cloud culling. In practice, instead of considering all the

points in the point cloud, we segment the points belonging

to the farthest surface layers from the image plane, and in-

terpolate only their depths. We get the final image f by first

computing a maximum depth value maxD for every pixel c,
representing the maximum depth of the points p ∈ P which

are close enough to c when projected on the image plane.

We define the subset P ′(c) as all the points p ∈ P close

enough to c on the image plane, given a threshold δ1 :

P ′(c) = {p ∈ P | ‖(cx, cy)− (px, py)‖ < δ1}. (1)

It follows that:

maxD(c) = max{pz| p ∈ P ′(c)}. (2)

If P ′(c) is empty, no points will be projected closeby c,
so we set the final value f(c) for the pixel to zero. This

step implicitly introduces a cutoff distance of δ1 to the final

Gaussian interpolation of our image generation procedure,

allowing us to produce depth images with clear hard edges

at the border of the objects. In case P ′(c) is not empty, in or-

der to compute the final value f(c) for a pixel, we consider

only the points which have a depth value close enough to

maxD(c), and interpolate their depths (Figure 3, bottom).

This ensures that our generated image has hard edges where

the depth changes abruptly and smoother variations else-

where. For a chosen threshold δ2, we define a new subset

of points P ′′(c):

P ′′(c) = {p ∈ P | |maxD(c)− pz| < δ2}. (3)

For a pixel c, we apply Gaussian interpolation on the

depth values of the points in P ′′(c) as follows:

f(c) =
1

W

∑

p∈P ′′(c)

g((cx, cy), (px, py))pz, (4)

with a normalization term W :

W =
∑

p∈P ′′(c)

g((cx, cy), (px, py)), (5)

and a Gaussian function g:

g((x, y), (x′, y′)) = e
−(x−x

′)2−(y−y
′)2

2σ2 , (6)

where σ influences the smoothness of the generated

depth images, as can be seen in Figure 4.
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Figure 4. Depth images of a flower pot generated with different

values for σ.

plant chair

Figure 5. Depth images of a flower pot and a chair from two differ-

ent views each, generated using the simple projection and Gaus-

sian interpolation from [21] (above) and using our depth image

generator (below).

We generate a depth image for each of the K point

clouds passed from the previous module. Notice that since

we define maxD with the maximum depth, the result-

ing views will be rendered for a camera placed at [0, 0, 1]
and pointing at [0, 0, 0], assuming the point cloud lies in

[−1, 1]
3
. This module was implemented as a custom layer

in TensorFlow and CUDA, see Section 4.1 for implementa-

tion details. The gradients of this custom module are shown

in the supplementary material.

Figure 5 shows various depth images produced with our

module and with the simple projection and Gaussian inter-

polation from [21]. Our results better represent the depth of

the object, especially featuring sharper edges at discontinu-

ities in the depth field.

3.4. Image Based Classification

Our final module takes the K depth images generated by

the previous layer and implements a classification network

for images. In particular, we utilize K ResNet50 [9] ar-

chitectures that share variables. Similar to MVCNN [23],

which deals with classifying images from different fixed

views for 3D objects, we include a max pooling opera-

tion before regressing to a denser layer of classification log-

its. This allows the network to share variables between the

ResNet50 architectures and thus learn features which re-

quire multiple images. We place the dense classification

layer after the max pooling operation. For the ResNet50

architectures, we make use of pre-trained weights as initial-

3D
overall

y-Axis

overall
3D

class

y-Axis

class

Ours, 1 View 0.854 0.873 0.815 0.828

Ours, 2 Views 0.869 0.884 0.829 0.851

Ours, 4 Views 0.872 0.885 0.830 0.856

PointNet 0.855 0.892 0.805 0.862

Table 1. Classification results of our architecture with 1, 2 and 4

views, and the PointNet [17] method, on a dataset augmented with

random rotations (3D) and augmented only with random rotations

around the vertical axis (y-Axis). Both the instance-based accu-

racy (overall) and the class average (class) are shown.

ization, trained on ImageNet [4] dataset.

4. Results

4.1. Implementation, Parameters and Timing

In the view prediction component, we subsample orig-

inal point clouds consisting of 2048 points to 256 points.

All the batch normalization layers in PointNet were trained

using a batch normalization decay of 0.9. In the depth im-

age generation component, we set σ = 2.0, δ1 = 1.4σ, and

δ2 = I/12, where I is the image size and is 229. The depth

image generation layer was implemented as two native ops

(gradient and forward pass) in TensorFlow using the CUDA

backend. For the image based classification component, we

used the preset values from the TensorFlow Slim library.

In order to train the network, we used the Adam opti-

mizer with an initial learning rate of 0.0001 lowered every

50000 steps by a percentage of 5% (if the number of views

K = 1), 10% (if K = 2), and 20% (if K = 4). The batch

size varied between the models (128 for one view, 64 for

two views and 32 for four views), due to memory reasons.

In our implementation tested on a GeForce GTX 1080 Ti

graphics card, the forward-pass and backward-pass through

the depth image generation layer take around 2 seconds

(1.323 seconds for the forward-pass, 0.752 seconds for the

backward-pass), using a batch size of 512, and projecting

2048 points to images of 229x229 pixels. In the complete

graph, this corresponds to 10% of the computation time

for the forward pass and 7% for the backward pass. The

resulting training time of our single view architecture on

randomly rotated point clouds is comparable to PointNet

(about 8 hours). The training time increases with a sublin-

ear dependency on the number of views, as the convergence

is faster with multiple views.

4.2. Point Cloud Classification

We evaluate both PointNet and our network variations

on the ModelNet40 [27] benchmark for shape classification,

composed of CAD models labelled in 40 classes and sepa-

rated between training (9843 models) and testing (2468).
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For our method, we generated the point clouds from the

shape dataset by uniformly sampling 2048 points on each

model. For PointNet [17], we used the most recent version

of the original implementation by the authors with the de-

fault settings (1024 points), as using 2048 points did not

improve the results. Both for our method and for PointNet,

we augment the training and testing models in the dataset by

applying two different strategies: rotating the point clouds

randomly in every direction, and rotating the point clouds

randomly only around the vertical axis. Similarly to Point-

Net, in our training data we augment the point clouds by

adding random Gaussian of noise of σ = 0.001. We let our

method train until convergence, and present the average of

the testing results from 5 evaluations.

In Table 1, we show the results of our classification us-

ing 1, 2 and 4 views and compare them to the state of the art

PointNet [17] point cloud classifier, for both the dataset aug-

mented with random rotations in every direction (3D) and

the dataset augmented with random rotations only around

the vertical axis (y-Axis). Both the instance-based accu-

racy (overall) and the class average accuracy (class) are pre-

sented. The best value for each column is highlighted.

The first three rows show how our architecture profits

from estimating multiple depth images, thanks to our image

based classification network that combines features from

multiple views to optimize the outcome. Our best results

are obtained using 4 views, for both datasets.

While our 4 views architecture obtains slightly worse

results than PointNet in the dataset with objects aligned

along the vertical axis, our results vary less between the

two datasets. In particular, in the more difficult dataset with

randomly rotated objects, we outperform PointNet with our

2 and 4 views architectures, and obtain comparable results

with a single view. Our intuition is that our generated depth

images are more informative and result in less source of

confusion while learning. Image classification is a better

studied problem than 3D point cloud classification, thus

utilizing state of the art image classification networks (and

their pre-trained weights on large datasets) on properly esti-

mated depth images allows us to obtain better results, start-

ing from the same raw input.

In our experiments, adding more views than 4 did not

help improving the results. We believe that this limit is due

to the sparsity of the point clouds, which do not contain very

detailed features. Thus, our 4 views can already include the

majority of the structure of the object representations in the

dataset.

Note that all the recently proposed or concurrent tech-

niques for classifying 3D points [17, 19, 18, 22, 13] present

results obtained on the easier dataset, where the objects

are aligned with the y-axis. The concurrent work Point-

Net++ [19] obtains better classification results than the orig-

inal PointNet by about 2%, while the volumetric variant of

Learned PCA

1 View 0.854 0.844

2/3 Views (Learned/PCA) 0.869 0.850

Table 2. Instance-based classification results of our simpler PCA

alternative with 1 and 3 views (PCA), compared to our original

architecture results for 1 and 2 views on the dataset augmented

with random rotations (Learned).

  

Figure 6. Examples of images generated by our network with PCA.

the recent work [18] obtains results comparable to PointNet.

As future work, it would be interesting to test if they gen-

eralize to the dataset with random rotations. Finally, there

exist works which use 3D meshes instead of 3D point clouds

and obtain better classification results. In [23], the best re-

sults are obtained by rendering 80 views of 3D shape mod-

els; their views, though, are fixed and not learned, and their

input 3D meshes are more detailed than our point clouds.

Generating meshes from our sparse and noisy point clouds

with triangulation or surface reconstruction methods would

lead to meshes of significantly lower quality, leading to in-

ferior results for mesh rendering based methods in this case.

4.3. Comparisons to Simpler Alternatives

In order to quantitativaly evaluate the impact of our auto-

matic view estimation, we trained our architecture by sub-

stituting the view prediction module with a selection based

on the PCA axes. We performed this experiment with a

single view (projecting onto the plane spanned by the di-

rections of the two largest PCA components), and 3 views

(projecting on each plane spanned by the PCA directions).

Notice that the obtained PCA views, thus the final accuracy,

are equivalent in both the dataset augmented with random

rotations and the dataset augmented with random rotations

only around the y-Axis. In Table 2 we compare the ob-

tained instance-based accuracy results (PCA) to the ones of

our 1 and 2 views original architectures on the more dif-

ficult dataset with random rotations (Learned). One can

notice how, already in the more difficult dataset, the PCA-

based average accuracies are lower than our original 1 and 2

views results. In Figure 6, we show examples of PCA views

of objects from different classes produced by the network,

demonstrating how they are often ambiguous. Important

features of the objects can indeed be hidden by their large

surfaces, and, in case of isotropic point clouds, the PCA

views are equivalent to random views (see our Supplemen-

tary Material for more examples).

Furthermore, we trained our architecture by substituting
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Table 4. Difference of obtained accuracy between our original method and the random views alternative (± Acc.) and number of training

examples (# Train.), per class. Positive: the proposed method is better.

3D
Learned

y-Axis

Learned Random

1 View 0.854 0.873 0.849

2 Views 0.869 0.884 0.859

4 Views 0.872 0.885 0.868

Table 3. Instance-based classification results of our simpler ran-

dom views alternative (Random), compared to our original archi-

tecture results on the dataset augmented with random rotations

(3D, Learned) and the dataset augmented with random rotations

only around the y-Axis (y-Axis, Learned).

the view prediction module with a random view selection,

for 1, 2 and 4 views. In Table 3, we compare the obtained

instance-based results (Random) with the ones of our origi-

nal architectures in both datasets (3D and y-Axis, Learned).

Notice that the results of the random views alternative are

equivalent in both datasets, as the views are randomly sam-

pled in the 3D space. The results obtained by our original

architectures are better than the ones of random views for

any number of views, especially for the dataset augmented

with rotations around the y-Axis. For the more difficult

dataset augmented with random rotations, the improvement

given by our learned views is smaller. We believe that the

gap could be larger if the ModelNet40 dataset would not

present some commonly known limitations [23, 1] such as

ambiguities between pairs of classes (especially for low res-

olution inputs like ours) and classes with little training ex-

amples. In Table 4, we present the difference of obtained ac-

curacy between our original method and the random views

alternative (± Acc.), averaged between the 1, 2 and 4 views

results, for the classes where the absolute difference was at

least 1%. For each class, we additionally show the num-

ber of training examples (# Train.). The classes where the

random views alternative performed better (i.e., where the

values are smaller than zero) are often the ambiguous ones

such as plant (confused with flower pot and vase), wardrobe

(confused with bookshelf) and radio (confused with regular

objects such as glass box), and have in general small num-

ber of training examples per class (on average 145, while

the classes where our original method works better have on

average 273 examples). We thus expect our method, based

on learned views, to work best with a large number of train-

ing examples per class. We refer to the Supplementary Ma-

terial for the individual accuracy results for 1, 2 and 4 views

  airplane bookshelf bowl car chair stairs

Figure 7. Learned view density functions (top), depth images gen-

erated by our network corresponding to the least likely learned

view (center), and the most likely learned view (bottom), for six

testing point clouds.

used for Table 4.

4.4. View Selection and Visualization

Our network outputs a set of views and corresponding

depth images as additional information. The depth images

generated represent informative 2D views of the 3D input,

and can be utilized for applications such as visualizing a

point cloud. In order to visually evaluate the quality of our

learned views, we feed a set of test point clouds to our sin-

gle view architecture multiple times, always with a differ-

ent random rotation, and plot the distribution of the learned

views for each point cloud. Each point cloud is fed 10000

times to the network, and the resulting learned views, with

respect to the original orientation of the point cloud, are

sampled on a sphere.

In Figure 7 (top) the density of these learned views for

six testing models are presented (red: high, blue: low). The

density functions contain peaks and further regions with

very low values. Hence, our views are optimized for differ-

ent objects, and not random or constant. For most objects,

multiple views can be considered appropriate for classifi-

cation. Thus, we do not expect our density functions to

present only a single sharp peak, but rather smoother re-

gions of high values.

For each test point cloud, we sample the view corre-

sponding to the highest value of the views density (i.e. the

most likely view estimated by our network), and show the

depth image generated by our network for that view in Fig-

ure 7 (bottom). Similarly, Figure 7 (center) presents the
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Figure 8. Learned view density functions and the depth images

corresponding to the view with highest probability for two classes

of objects (lamps and beds).

depth images corresponding to the view with the lowest

probability. Our view estimation procedure outputs depth

images that clearly expose distinguishing features, making

the classes easily recognizable. For example, the legs of the

chair, the tail of the airplane, the internal structure of the

bookshelf, and the borders of the bowl are visible from the

learned views, while hidden for a view with low probabil-

ity of selection. Similarly, the shapes of the stairs and the

car are fully visible for the view with high probability of

selection by our architecture, while only partially for a low

probability view.

In Figure 8, further view density functions and depth im-

ages for the highest probability views are presented, for two

classes of objects (lamps and beds). It is interesting to see

how the learned views are similar for objects of the same

class, but different for objects of different classes. This

shows that the network specializes the views according to

the classes.

Figure 9 shows examples of depth images generated by

our network with two views, for different classes of objects.

To generate these results, the test point clouds were fed to

the network 10 times with random rotations, and the run

which produced the highest single softmax prediction was

considered. In most cases, our network predicts two views

which complement each other, providing an even clearer

overview of the point cloud compared to the views given

by our single view architecture. This is a consequence of

the view pooling operation in our network, which combines

features from different views. For example, the two depth

images of the bed, piano, and bookshelf are a side view and

a top/down view, the images of the chair show its front and

back, and those of the cone contain the bottom hole and the

pick at the top.

table piano plant dresser monitor cone bookshelf chair bed

Figure 9. Examples of generated depth images from the two views

architecture. The two images (top and bottom) complement each

other, providing a more informative overview of the object, as

compared to a single view.

5. Conclusion

We propose a novel neural network architecture for point

cloud classification, which obtains results competitive with

the state of the art for raw point clouds as the input. Our

key idea is to automatically transform the input point cloud

to one or more depth images, which can be combined and

classified by a CNN classification module. The high perfor-

mance of image based CNNs, and the large availability of

data to train them, makes classification on our images better

than considering only the 3D data.

In the future, we would like to explore further appli-

cations of this view learning and depth images generation

approach. First of all, more experiments on point cloud

visualization could be performed. Properly visualizing a

point cloud is not a trivial task due to occlusions, lack of

detailed features and sparse data, and we believe that our

depth image generation method can be a useful represen-

tation. Another possible interesting extension would be to

use our depth image generation layer as an autoencoder or

for unsupervised learning. Finally, it can be adapted to gen-

erative adversarial networks (GANs) e.g. for point cloud

segmentation.
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