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A B S T R A C T

Bioinspired scattering materials: light transport in anisotropic,
disordered systems.

Giovanni Iacucci.

The study of light propagation in disordered media has attracted the
interest of many researchers for its relevance to fundamental and applied
problems, ranging from imaging through turbid media to the fabrication
of white paint. Scattering in a disordered system is determined by
the spatial distribution and the scattering properties of its building
blocks. To date, most efforts on scattering optimisation have focused
on isotropic, high refractive index systems. This thesis investigates the
importance of anisotropy in increasing the scattering efficiency of a
system, with a particular focus on low refractive index media and their
use as sustainable, white materials.

Nature provides a striking example of how to exploit anisotropy to
achieve scattering optimisation: with the intra-scale chitin network of the
beetle genus Cyphochilus. In this thesis, after showing that this network
exhibits the highest scattering efficiency found in nature thus far, a
systematic numerical investigation was performed to understand the
importance of both single-particle and structural anisotropy in scattering
optimisation. In particular, this numerical analysis unveiled that
ensembles of anisotropic particles show higher reflectance compared to
their isotropic counterpart, whilst using less material.

Based on these findings, the optical properties of bioinspired, scattering
systems — obtained both via polymer phase separation and a
combination of sequential vacuum filtration and freeze-drying —
were investigated. Notably, the reported materials achieve scattering
properties comparable to those found in nature, showcasing the
potential of using biopolymers to produce sustainable, biocompatible
white materials. In addition, the presented bioinspired systems are an
interesting platform for fundamental studies, allowing to investigate
light transport in anisotropic media.
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I N T R O D U C T I O N

The optical mechanism determining the visual appearance of non-
absorbing media is light scattering [1–5]. This phenomenon occurs when
light encounters refractive index inhomogeneities — referred to as
scattering centres or scatterers — and it is responsible, for example, of
the white colouration of clouds and foams [6].

In inhomogeneous materials scattering results from the interplay
between (i) the single-particle properties, such as the geometrical
characteristics and the refractive index of the scatterer; (ii) the ensemble
properties, such as the filling fraction (i.e., the fraction of the total
volume occupied by the scatterers), the average orientation of the
scatterers, and the structure factor (i.e., the spatial organisation of the
scatterers) [7–9].

The visual appearance of disordered systems, which is the main focus
of this thesis, is directly determined by their optical thickness (OT). This
parameter is defined as the ratio between the physical thickness of a
medium and the transport mean free path, i.e., the average distance over
which light “loses memory” of its initial direction [2–4]. Light transport
can undergo different regimes when propagating in disordered media
(Figure 1): from ballistic propagation, where most of the intensity is
transmitted in the same direction as the incoming beam, to multiple
scattering, where light is diffusely redistributed. In the ballistic regime,
at low OT, light propagation is almost undisturbed, resulting in a
transparent appearance resembling a homogeneous medium. In contrast,
materials in the multiple scattering regime (OT > 8 [10–12]) are opaque
white.

Maximising the scattering efficiency of a system, i.e., minimising the
mean free path, is therefore of significant interest for the fabrication of
every white product we use. The easiest, and arguably the most effective,
approach to achieve a high scattering efficiency is to use high refractive
index building blocks — as exploited in the industrial production of
white materials. White products are obtained via empirically-optimised

1



2 introduction

Multiple scattering regime

Single-particle properties: size; aspect ratio; refractive index      
Ensemble properties: filling fraction; structure factor; average orientation
Legend:      ballistic beam;    specular reflection;         scattered light  

Ballistic regime

Figure 1 | Illustration of light propagation regimes in disordered media. For
simplicity, the transition between different regimes is depicted by varying the filling
fraction of the system. Ballistic beam, specular reflection and scattered light are
represented by solid black, dotted black and dotted grey lines, respectively. Line
thickness qualitatively represents the difference in intensity between ballistic and
scattered light in every regime.

ensembles of titanium dioxide (n ' 2.6 [13]) spherical particles [14].
However, the intensive use of titanium dioxide has recently raised safety
concerns [15, 16], highlighting the need for a biocompatible replacement.

The main challenge in replacing high refractive index materials is
represented by the low refractive index of biocompatible alternatives
(n ' 1.5 [17, 18]). This limitation forced biological systems to elaborate
scattering designs beyond isotropic — both in terms of single-particle
and ensemble properties — media. A prime example is the anisotropic
arrangement of chitinous filaments in the scales of the Cyphochilus beetle
affording brilliant whiteness [19–22].

Inspired by nature, this thesis investigates the importance of anisotropy
in improving the scattering efficiency of low refractive index systems.
The overall objective of this work is to identify the design principles
enabling the replacement of commercially available white products with
natural resources.

The work presented in this thesis is organised as follows:

• Part I , Theoretical framework and methodologies: in Chapter 1,
the fundamental concepts of light propagation in disordered media
are introduced. The diffusion approximation for the light intensity,
and its breakdowns, are discussed. Chapter 2 presents the
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experimental and numerical techniques necessary to characterise
and understand scattering in anisotropic systems.

• Part II , Understanding nature: describes the biological inspiration
of this work and provides a detailed understanding of the
design principles behind its photonic structure. Chapter 3 reports
a quantitative description of the light transport properties of
the Cyphochilus beetle. In Chapter 4, numerical simulations are
exploited to understand the role of anisotropy in scattering
optimisation.

• Part III , From nature to applications: presents the first examples of
bioinspired, scattering materials. In Chapter 5, a phase separation
technique is exploited to produce polymeric networks showing
the highest scattering efficiency reported for low refractive
index materials thus far. Chapter 6 showcases the possibility of
manufacturing scattering materials made solely of biopolymers.
In particular, a fabrication technique which allows tailoring
the building blocks and the morphology — and therefore the
scattering — of cellulosic materials is presented.

The results delivered by this thesis, and the perspectives they envision,
are discussed in summary and future perspectives.





Part I

T H E O R E T I C A L F R A M E W O R K A N D

M E T H O D O L O G I E S





1
L I G H T P R O PA G AT I O N I N D I S O R D E R E D M E D I A

This chapter introduces the theoretical background of wave transport in
disordered media. By describing the photon propagation as a random
walk, it is possible to develop a statistical model for multiple scattering.
In this approach, which goes under the name of diffusion approximation,
light propagation is determined by the transport mean free path. This
quantity — which depends on the single-particle (form factor) and
ensemble properties (structure factor) of the scatterers — represents
the length that light has to travel in a material before its propagation
direction is randomised. The mean free path is inversely proportional
to the scattering strength, i.e., the amount of light diffusely reflected by
a system. This theoretical description has broad applicability but also
limitations. In particular, the diffusion approximation does not account
for the wave nature of photons and, therefore, interference effects.
Interference can be observed experimentally and provides essential
information about the scattering properties of a material.

The following text is organised into three parts. Section 1.1, introduces
the main concepts of light scattering by a single particle. Then, in
Section 1.2, the diffusion approximation for multiple light scattering
in disordered systems is presented. Finally, Section 1.3 discusses the
limitations of the diffusion approach. In particular, it describes the
coherent backscattering phenomenon: an interference effect where the
diffusion approximation breaks down.

1.1 single light scattering

When light encounters modulations of the optical properties, e.g., the
refractive index, its propagation direction deviates from a straight
trajectory [1–5]. This phenomenon — which goes under the name of
scattering and also includes diffraction, reflection and refraction which

7



8 light propagation in disordered media

are historically, and for simplicity, treated with different formalisms [5]
— can be described as:

ψs(r) = Sψ0(r), (1)

where S is the so-called scattering matrix (or S-matrix) [5, 23–26] and ψ0
and ψs are the incident and scattered wave, respectively. The elements
of the scattering matrix are a function of the incident wave (its direction,
polarisation and wavelength) and the scatterer (its size, shape and
refractive index).

To gain information on how the intensity is scattered, it is convenient to
introduce the so-called Stokes vector [27]:

S =


I

Q

U

V

 . (2)

The different components of the Stokes vector are a set of parameters
which fully describe the state of electromagnetic radiation and are
referred to as the Stokes parameters. In particular, the first Stokes
parameter (I) represents the intensity while Q, U, and V describe the
polarisation state.

The relation between the incident (S0) and scattered (Ss) Stokes vectors
is:

Ss = MS0, (3)

where M is the 4x4 Mueller scattering matrix [28]. The general relation
between the S-matrix and the Mueller scattering matrix can be found in
different textbooks, e.g., Reference [5].

It is particularly interesting to describe the case of a spherical scatterer. In
this geometry, symmetry reduces the number of independent elements
for the S and M matrices:

S =

 S2 0

0 S1

 , (4)
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M =


M11 M12 0 0

M12 M11 0 0

0 0 M33 M34

0 0 −M34 M33

 , (5)

and the relationship between their elements is:

M11 =
1

2k2r21

(
|S2|

2 + |S1|
2
)

, M12 =
1

2k2r21

(
|S2|

2 − |S1|
2
)

,

M33 =
1

2k2r21

(
S∗2S1 + S2S

∗
1

)
, M34 =

i
2k2r21

(
S1S

∗
2 − S2S

∗
1

)
,

(6)

where k and r1 are the wavevector and the distance from the center
of the sphere, respectively. Using now Equation 3 and assuming an
unpolarised (natural) incident light (meaning Q0 = U0 = V0) results in:

Is =M11I0 =
(
|S2|

2 + |S1|
2
)
I0 =

dσs

dΩ
I0. (7)

The explicit form of S2 and S1 for a spherical scatterer can be found, for
example, in Reference [5].

In Equation 7, the diffential scattering cross-section was defined as:

dσs

dΩ
=
Is

I0
= |S2|

2 + |S1|
2 . (8)

The differential scattering cross section describes the angular
distribution of the scattered light. It is convenient to rewrite its definition
as:

σs =

∫
dσs

dΩ
dΩ =

∫
F(θ,φ)dΩ, (9)

where F(θ,φ) is referred to as form factor. The integral of Equation 8

over a solid angle is defined as the scattering cross section:

σs =

∫
dσs

dΩ
dΩ, (10)

The scattering cross section has the units of an area and quantifies the
strength of the interaction, i.e., the amount of light scattered by the
particle.
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Mie scatteringRayleigh scattering Ray optics

r << λ r ≈ λ r >> λ

Figure 2 | Single scattering regimes. Examples of the three different types of scattering
by particles with different dimensions. Mie scattering is the most general case, from
which both Rayleigh and ray optics can be obtained asymptotically.

Equations 8 and 10 introduced the two fundamental parameters to
describe single light scattering. An analytical solution of the scattering
problem is, however, not always possible.

Historically, light scattering is categorised as a function of the size
parameter r/λ, where r and λ are the radius of the scatterer and the
wavelength of light, respectively. In particular, three different scattering
regimes can be defined (Figure 2): Rayleigh scattering (r << λ), ray optics
(r >> λ) and Mie scattering (r ' λ). It is important to note that Mie
scattering is the most general of these regimes from which the Rayleigh
and ray scattering can be derived as asymptotic limits [5]. However,
both Rayleigh and ray scattering can result extremely useful as they
provide a first understanding of many phenomena.

Lord Rayleigh was the first scientist to study light scattering by small
particles (r << λ). He observed, with elegant reasoning of dimensional
analysis, that the scattering cross section of a small particle must be
proportional to the fourth power of the wavelength [29]:

σs(λ)
Rayleigh =

8π3

3

|α0|
2

λ4
(11)

where α0 is the polarisability of the particle [5]. The λ−4 dependency
causes wavelengths in the blue region of the visible spectrum to be
scattered more than the red hues, accounting for the blue sky and the
typical red colour of the sunset.

In the opposite regime, where r >> λ, ray optics can be used to describe
the propagation of light intensity. This approximation describes a light
beam as a large number of rays. When encountering an interface, these
rays are scattering according to Fresnel’s equations and the geometrical
constrictions of Snell’s law [5]. Geometrical optics provides a first
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Figure 3 | Single scattering parameters. a) Scattering efficiency in function of the
size parameter (r/λ0). The Mie resonances get narrower and more intense when
the refractive index (n) increases. b) Differential scattering cross for Rayleigh and
Mie scatterers, left and right panel, respectively. The calculations in a) and b) were
performed using the formulae reported in Reference [5].

understanding of many phenomena, for example, the scattering by
raindrops which causes the rainbow.

This thesis focuses on materials whose building blocks have dimensions
comparable to the wavelength of visible light, and therefore subject to
Mie scattering. In particular, Mie scattering owns its name to Gustav Mie, Peter Debye, and

Ludvig Lorenz
independently
found the same
solution.

who was one of the first scientists to obtain an analytical solution for the
scattering of a plane wave from a sphere [30]. A typical example of Mie
scattering, and whose mechanism is discussed in depth in Section 1.2,
is the white colour of clouds.

While the Rayleigh and the ray (geometrical) regimes have an easy
mathematical description, the Mie problem is analytically solvable only
for simple geometries [31]. A complete and comprehensive derivation of
the Mie solution for both spheres and cylinders can be found in various
textbooks, e.g., References [1, 5]. Conversely to the monotonic behaviour
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as a function of the wavelength of Rayleigh scatterers (Equation 11),
the scattering cross section of Mie particles exhibits many resonances
(Figure 3a) — which are often referred to as Mie resonances. In particular,
Figure 3a shows the so-called scattering efficiency (Qs), which is defined
as follows:

Qs =
σs

σg
, (12)

where σg is the geometrical cross section (σg = πr2 for spherical
particles). Another characteristic of Mie scattering is reported in
Figure 3b, where the differential scattering cross section is depicted. In
contrast to the Rayleigh case, where scattering is almost isotropic, in the
Mie scattering regime, the differential scattering cross section strongly
depends on the angle.

The next section will discuss the importance of both the scattering
cross section and the differential scattering cross section on the multiple
scattering.

1.2 multiple light scattering

Light propagation in assembled materials cannot always be solved
analytically — even assuming the knowledge of the scattering cross
sections and positions of every scatterer. In ordered materials, the high
symmetry in the positions of the scatterers simplifies the problem, which
is well described by Bragg’s law [32]. The absence of long-range order
complicates the study of light propagation in disordered media. In the
following, a statistical model of wave transport in disordered systems is
presented.

1.2.1 Diffusion approximation

A key quantity to derive a statistical model of light propagation in a
disordered medium is the energy density ρ(r, t), i.e., the probability to
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find a given amount of energy at the position x (of coordinates r) at the
time t. In particular, the energy density can be written as:

ρ(r, t+ δt) =
∫
ρ (r1, t)P (r − r1, δt|r1, t)dr1, (13)

where P (r − r1, δt|r1, t) is the conditional probability of a photon to be
scattered from x1 to x in a time interval δt.

The conditional probability accounts for the superpositions of many
scattering events. To calculate P it is necessary to make some
assumptions on the multiple scattering process. The first assumption is
that each light step, i.e., the distance between two scattering events, is More precisely, the

memoryless class
of stochastic
phenomena is
known as
Markovian. The
random walk is an
example of
Markovian
processes.

independent of the sequence of steps that preceded it. This memoryless
theoretical framework is called random walk (Figure 4a) [33]. The second
assumption is that the scattering is homogeneous, meaning that the
scattering probability does not vary throughout the system, i.e., the
distribution of the step lengths has finite moments. This assumption
implies that the step length probability for a photon follows a Poisson
distribution [33]:

P(r) ' exp(− r
`s
), (14)

where `s is the average distance of free propagation between two
scattering events and is often referred to as scattering mean free path
(Figure 4b).

Based on these two assumptions, P (r − r0, δt|r0, t) can be estimated
by means of the Central Limit Theorem (CLT) [34]. The CLT states
that the distribution of the sum of a large number of independent
random variables (in this case the scattering steps) with finite moments
is Gaussian. Applying the CLT to Equation 13 results in [35]:

ρ(r, t+ δt) =
∫
ρ (r1, t)

1√
4πDδt

e
|r−r1|

2

4Dδt dr1, (15)

where D is proportional to the square of the variance of the Gaussian
distribution. The result of the integral in Equation 15 is [35]:

ρ(r, t+ δt) = ρ(r, t) +Dδt∇2ρ(r, t)→ ∂

∂t
ρ(r, t) = D∇2ρ(r, t), (16)
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Figure 4 | Statistical description of light propagation in disordered media. a)
Simulation of a three-dimensional random walk. Each step (104 total) corresponds
to a displacement of r (sampled from Equation 14) from the position of the previous
scattering event. b) Schematic illustration of light propagation in a disordered medium.
For simplicity, the scatterers are represented as spheres and the light path with an
arrow. The scattering mean free path (`s) is defined as the average distance between
two scattering events.

which represents the diffusion equation for the energy probability. The
diffusion equation can then be generalised as:

∂

∂t
ρ(r, t) = D∇2ρ(r, t) + S(r, t) −

νe

`a
, (17)

where S(r, t) is the source term, νe is the energy velocity and `a is the
absorption mean free path.
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ρ (z)

0 L

z

zp

ze ze

Figure 5 | Energy density distribution in a disordered material. The black and red
lines represent the solution of the diffusion equation in a slab geometry using a delta
and an exponential source (placed in zp), respectively. The grey area represents the
region where the sample is present. The energy extrapolates to zero outside the slab,
at a distance ze from its surfaces.

This thesis focuses on stationary properties of disordered media;
therefore, Equation 17 simplifies to:

D∇2ρ(r, t) + S(r, t) −
νe

`a
= 0. (18)

To solve Equation 18 is necessary to define the boundary conditions
and the source term. A convenient geometry to solve the diffusion
equation is the slab geometry, i.e., the dimensions of the system in the
direction perpendicular to the incoming light are considered infinite.
In this configuration, that well describes the systems presented in this
thesis, one could think to use as boundaries conditions that the energy
density is zero at z = 0 and z = L, where L is the thickness of the slab
(Figure 5). However, such conditions would imply that no energy could
enter or exit the system [36, 37].

As shown in References [36, 37], the correct Dirichlet boundary
conditions are:

ρ(z) = 0 at

 z = −ze

z = L+ ze
(19)

where ze is the extrapolation length, i.e., the positions outside the slab
where the light intensity extrapolates to zero (Figure 5).

Regarding the source term, Equation 18 accounts only for diffused light
and therefore, a plane wave is not suitable. Two diffusive sources are: (i)
a point-like source S(z) = S(0) · δ (z− zp); (ii) an exponentially decaying
source S(z) = S(0) · exp (−z/zp). Note that both (i) and (ii) are located
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in zp, which is the so-called penetration length (Figure 5). This parameter
represents the distance light propagates ballistically in the sample before
being scattered for the first time, and its usually to zp = `s.

The solution of Equation 18 using the boundary conditions in
Equation 19 and a point-like source is:

ρ(z) = ρ (zp)

 sinh [α (ze + z)] / sinh [α (zp + ze)] z < zp

sinh [α (L+ ze − z)] / sinh [α (L+ zp + ze)] z > zp

(20)

where

ρ (zp) =
S(0)

αD

sinh [α (zp + ze)] sinh [α (L+ ze − zp)]

sinh [α (L+ 2ze)]
,

ze =
1

2α
ln
[
1+αz0
1−αz0

]
,

z0 =
2

3
`s

(
1+ R

1− R

)
,

α =
1

`a
.

(21)

In Equation 21 the parameter R represents the angle- and polarisation-
averaged reflection coefficient [36]:

R =
3
∫0
−π/2 R(θ)sin(θ)cos

2(θ)dθ+ 2
∫π/2
0 R(θ)sin(θ)cos(θ)dθ

3
∫0
−π/2 R(θ)sin(θ)cos

2(θ)dθ− 2
∫π/2
0 R(θ)sin(θ)cos(θ)dθ+ 2

, (22)

where R(θ) is the polarisation-averaged Fresnel’s coefficient [38].

The reflection coefficient depends on the effective refractive index (ne) of
the disordered medium, which was estimated by the Maxwell-Garnett’s
theory [39]:

ne =
1+ 2ff(n

2−1
n2+2

)

1− ff(n
2−1
n2+2

)
, (23)

where n is the refractive index of the scatterers, which are assumed to
be in air, and ff is the volume fraction.

Figure 5 shows the solutions to Equation 18 using both a point-like
and an exponentially decaying source. To link the solution presented in
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Equation 20 to experimental measurables, the total transmission of light
(T ) can be estimated (cf. Chapter 2). T is defined as the transmission
integrated over the transmission angles, and it can be obtained by
dividing the total flux at z = L by the incident flux S(0) [37]:

T(L, λ) =
1− R

α

sinh [α (zp + ze)] sinh [αze)]

sinh [α (L+ 2ze)]
, (24)

that in the case of negligible absorption (α→ 0) simplifies to:

T(L, λ) =
2ze

L+ 2ze
. (25)

Note that Equation 25 is independent of the source used to solve
Equation 18, as the two coincides in the asymptotic limit L >> `s

[35].

From Equation 20, and following the details presented in References
[40, 41], it is possible to obtain an analytical expression of the angular
distribution of transmitted light PT (µ):

PT (µ) = µ
ze + µ

ze/2+ 1/3
, (26)

where µ = cos(θ), with θ the transmission angle and ze = ze/`s. Pt(µ)
can be measuared experimetally, as shown in Chapter 2.

Therefore, using Equation 25 together with Equation 22 or Equation 26

provides a closed system of equations to estimate the mean free path
experimentally. However, it is important to remind that the results
presented thus far relies on two assumptions:

1. the scattering steps are independent

2. the distributions of the scattering steps has finite moments

In this framework, the characteristic length of the diffusion process is
the scattering mean free path. This quantity was defined in Equation 14,
and it depends on the properties of the scatterers as:

`s =
1

npσs
(27)

where np is the number density of the scatterers and σs their scattering
cross section (assuming that the scatterers are identical).
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The assumption of independent scattering steps breaks down when the
dimension of the scatterers is comparable to the wavelength of light.
Mie scatters exhibit an asymmetric differential scattering cross section
(Figure 3), which results in a correlation between scattering events. This
effect can be accounted for by redefining the characteristic length of the
diffusive propagation as:

`t =
`s

1− g
, (28)

where

g = 〈cos θ〉 =
∫

cos θσsdΩ∫
σsdΩ

. (29)

`t is the so-called transport mean free path, or mean free path, and its
reciprocal is often referred to as scattering efficiency. g is the scattering
asymmetry parameter. In Rayleigh scatterers g = 0while typically for Mie
scatterers g > 1, resulting in `t > `s. However, a scattering asymmetry
smaller than one was demonstrated by exploiting the Kerker conditions
[42].

The scattering cross section in Equation 29 is a single scattering property
(Equation 9). In the diffusive regime, the scattering cross section can be
generalised to account for collective scattering effect [7, 43]:

σs =

∫
F(θ,φ)S(θ,φ)dΩ, (30)

where S(θ,φ) is called structure factor. The structure factor is
proportional to the Fourier transform of the position of the scatterers:

S(k) =
1

N

〈
N∑
i,j=1

e−ik·(ri−rj)

〉
. (31)

The structure factor can, in principle, be calculated from the
Ornstein–Zernike equation [44], which is an integral equation for the
correlation function. The Ornstein–Zernike equation has an analytical
solution for the random packing of hard spheres which goes under the
name of Percus-Yevick closure relation [45]. A semi-analytical solution
can be obtained for hard disks (2D) following the derivation of Baus
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and Colot [46]. Reference [46] also provides an analytical solution for
one-dimensional systems made of hard semi-infinite rods.

Equation 30 shows that is the interplay between the form and
the structure factor that determines the scattering properties of a
disordered medium. In a purely random system, i.e., where there
is no correlation between the position of the scatterers (S(k) = 1),
the scattering is solely determined by the form factor. In this case,
when the scatterers are polydisperse, the system does not show any
resonant response in function of the wavelength. If the scatterers are
monodispersed, a resonant behaviour, resembling the single scattering
Mie resonances, is observed. However, real systems are random only if
very dilute. Otherwise, the contribution of the structure factor needs to
be accounted as it can modify the frequency and intensity of the Mie
resonances [47–49]. It is important to note that, in the diffusive regime,
monodispersed systems look white, even though they exhibit resonant
scattering (cf. Reference [50] and Appendix c). The visual appearance is
dominated by the broadband multiple scattering background of which
the resonances represent only a small modulation.

While the independent scattering assumption can be relaxed by
redefining the characteristic length of the random walk, the diffusion
approximation breaks down if the assumption related to the moments of
the scattering steps distribution is not valid. The next section describes
different situations in which the diffusion model cannot be used to
study light propagation in disordered media.

1.3 limits of the diffusion approximation

The assumption regarding the moments of the distribution of scattering
steps is satisfied if the scattering is homogeneous throughout the system.
It, therefore, breaks down if the ballistic component of the incoming
beam is not completely converted in diffused light by scattering.
Numerical studies demonstrated that the predictions of the diffusion
equation are correct only for OT = `t/L > 8 [10–12]. For OT < 8, the
diffusion model has to be replaced with the more general radiative
transfer equation [51].
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Another scenario where the diffusion approximation breaks down isA distribution is
stable if summing

infinite of its
copies results in

the same
distribution

when the scattering steps belong to a scale-invariant Lévy distribution. A
Lévy distribution is a family of stable distributions of which only the
Gaussian has a characteristic length. The other types of Lévy distribution
are scale-invariant, meaning that they do not change if observed at
different length scales. If the step distribution is a scale-invariant Lévy,
the photon random walk is described by the so-called anomalous diffusion
[35, 52–55]. In this regime, it is not possible to define a mean free path
and the optical properties scale differently with the thickness than
in Equation 25. Even if the microscopics details of the transport are
different from Subsection 1.2.1, a system in the anomalous diffusion
regime also shows a macroscopic white appearance [54–56].

The assumption of homogeneous scattering is not valid when the
system is anisotropic [57] — with an anisotropy that can be in the
form factor, namely in the refractive index or shape of the scatterers, or
in the structure factor. A more general version of Equation 18, where
a diffusion tensor replaces the diffusion coefficient, was proposed to
describe anisotropic diffusion [51, 58–61]. However, the validity of this
approach and the relation of the diffusion tensor with the microscopic
scattering properties is still an argument of debate [57, 62, 63]. Therefore,
to study the optical properties of anisotropic disordered media, it is
necessary to exploit numerical methods (cf. Part II). The diffusion
approximation is still valid for systems where the anisotropy is small,
e.g., in liquid crystals [64, 65], or to investigate the optical properties in
the direction of the incoming light (cf. Part III). Indeed, it can be shown
that the transport properties along its thickness determine the amount
of light diffusely reflected by an anisotropic, slab-geometry system [57,
63, 66]

In addition to the limitations related to the nature of the step length
distribution, the diffusion approximation does not take into account the
wave nature of photons. Therefore, it disregards interference effects.

1.3.1 Coherent backscattering phenomenon

Interference effects can be observed when a coherent source illuminates
a disordered system. In this case, the intensity profile of scattered
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light assumes a complex pattern of dark and bright spots which is
known as speckles. The speckle pattern is the result of the interference
between photons that travelled different paths inside the material, and
it provides important information about the position and the dynamics
of the scattering centres [67, 68].

Due to the disordered organisation of the scatterers, the speckles vanish
if averaged over many sample configurations, e.g., if the system is a
liquid. However, the interference between counter-propagating waves, i.e.,
waves that have travelled the same path but in opposite directions,
survives averaging. The superposition of the interference patterns from
different counter-propagating, or reciprocal, waves gives rise to the
coherent backscattering effect [69–71]. The coherent backscattering pattern
shows up as an intensity distribution whose maximum corresponds
with the backscattering direction and then decreases following a conical
shape.

A qualitative way to understand this phenomenon is to consider a
two-wave interference pattern, which can be expressed as:

I(θ,φ) = I0(1+ ζcos(d ·∆k)), (32)

where I0 and ζ are the total intensity neglecting interferences and the
contrast of the interference, respectively. The incident and scattered
k-vector ki and kf are defined as:

ki = (0, 0,k),

kf = (−ksinθcosφ,−ksinθsinφ,−kcosθ).
(33)

In the study of the coherent backscattering effect, the two interfering
waves considered are counter-propagating (Figure 6). Given a wave,
the existence, and their equality in amplitude, of its reciprocal one,
is guaranteed by the reciprocity theorem [1]. The reciprocity theorem
states that source and detector can always be inverted. The validity
of the theorem is based on the time-reversal symmetry of Maxwell
equations. This hypothesis breaks down, for example, in the presence of
non-linear materials or applied magnetic fields [72]. In particular, from
the reciprocity theorem follows that ζ = 1.

A two-wave interference profile has a sinusoidal dependency as a
function of the angle, with a maximum at the backscattering direction
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d

ki

kf

θ

Figure 6 | Schematic illustration of two counterpropagating waves. For simplicity,
the scatterers are represented as spheres and the two light paths with red and cyan
arrows.

θ = 0. The periodicity of the sinusoidal modulation is inversely
proportional to the distance between the first and the last scatterer
(d in Figure 6):

∆ψ =
1

d ·∆k , (34)

and which can be simplified in the small θ limit into:

∆ψ ' λ

2π|rN − r1|
, (35)

where r1 and rN are the coordinates of the first and last scattering
events, respectively.

The coherent backscattering signal originates from the superposition of
all these fringes. In particular, the cusp top of the intensity distribution
is determined by the photons which travelled a long path inside the
material, i.e., to high scattering orders (Figure 7). If |rN − r1| is replaced
in Equation 35 by the mean separation distance between the first and
last scatterers, which is of the order of the transport mean free path (`t),
the phase difference between the reciprocal paths becomes:

∆ψ ' λ

2π`t
. (36)
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Figure 7 | Origin of the coherent backscattering effect. The coherent backscattering
arises from the superposition of many two-wave interference patterns which are all
in phase at θ = 0 (top panel). The interference at small angles is determined by the
photons which travelled a long path inside the system, i.e., to high scattering orders.
The coherent backscattering profiles were obtained with Monte Carlo simulations for
scalar waves (cf. Chapter 2).

Equation 36 gives a qualitative idea of the link between the interference
pattern and the parameter that characterises the scattering strength of a
medium, i.e., the transport mean free path. In order to better understand
this connection, it is necessary to find the analytical expression of the
backscattering cone.

The backscattered intensity is the result of two types of contribution: the
coherent one, discussed above, and the incoherent diffuse background
[69–71]. An analytical expression for these contributions can be obtained
starting from the radiative transfer equation — details in, for example,
Reference [51].
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A convenient way to express the incoherent (γl) and coherent (γc)
contributions is in their integral form:

γ
(N)
l =

4πnNp

A

∫
e−z1/`t

(
dσ

dΩ

)
1

(
16π2G (k, r12)G∗ (k, r12)

)( dσ
dΩ

)
2

· · ·

· · ·
(
dσ

dΩ

)
N−1

(
16π2G (k, rN−1,N)G

∗ (k, rN−1,N)
)( dσ

dΩ

)
N

e−zN/`tdr1dr1 . . . drN

,

(37)

γ
(N)
C =

4πnNp

A

∫
e−z1/`t

(
dσ

dΩ

)
1

(
16π2G (k, r12)G∗ (k, r12)

)( dσ
dΩ

)
2

. . .

· · ·
(
dσ

dΩ

)
N−1

(
16π2G (k, rN−1,N)G

∗ (k, rN−1,N)
)( dσ

dΩ

)
N

e−zN/`t cos [(kin + kout) · (rN − r1)]dr1dr1 . . . drN

,

(38)

where np, A, N and G are the scatterers density, the illuminated area,
the scattering order and the amplitude Green function, respectively.

Equations 37 and 38 can be interpreted in terms of a random
walk. In particular, the scattering events are represented by the
terms (dσ/dΩ)i while G (k, r12)G∗ (k, r12) describes the propagation
of a photon between two scattering events. The exponential terms
exp(−z1/`t) and exp(−zN/`t) represent the loss of intensity before the
first and last scattering events (where z is the direction of the incoming
light), respectively. The interference pattern originates, as qualitatively
discussed in Equation 34, by the cos [(kin + kout) · (rN − r1)] term in
Equation 38.

The analytical solution of Equations 37 and 38 for isotropic media is
[73]:

γl =
3µ

1−α2

[
1

µ

(
e−vb − 1

)
+
1+α− (1+α) e(−2αu)

4α (1+α)

(
1− e−vb

)
+
1+α− (1−α) e(−2αu)

4α (1−α)
e2αu

(
eb(α−1) − 1

)]
,

(39)
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Figure 8 | Angular dependency of the bistatic coefficients. The difference between
the two curves, obtained using the semi-infinite theory, arises in an angular range
around the backscattering direction. The width of this angular region depends on the
scattering strength of the disordered material. At the exact backscattering direction, the
coherent signal, red curve, reaches an intensity that is two times that of the incoherent
one, blue curve.

γc =
3e−vb

2αv sinh(αB)

[(
1

(v−α)2 + u2
{v− (v−α) cosh (2ατ0)}

+
1

(v+α)2 + u2
{v− (v+α) cosh (2ατ0)}

)
cos(ub)

+

(
u

(v+α)2 + u2
−

u

(v−α)2 + u2

)
sinh (2ατ0) sin(ub)

+
1

(v−α)2 + u2
{(v−α) cosh [(v−α)b− 2ατ0] − (v) cosh[(v−α)b]}

+
1

(v+α)2 + u2
{(v+α) cosh [(v+α)b+ 2cτ0] − (v) cosh[(v+α)b]}

]
,

(40)

where µ = cos(θ), ν = 1
2(1+

1
µ), u = k`t(1− µ), α = k`t sin(θ), B =

b+ 2ze. The parameters k, `t, and b are the wave vector, the isotropic
transport mean free path, and the optical thickness, respectively. For
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semi-infinite media, i.e., b→∞, Equation 40 reduces to [73]:

γc,semi =
3
[
α+ ν

(
1− e−2zα

)]
2αµν [(α+ ν)2 + u2]

. (41)

The coherent backscattering signal, Equations 40 and 41, has a full width
half maximum that is:

w ' ze

k`t
, (42)

in agreement with what qualitative discussed in Equation 36. In the
semi-infinite case, the incoherent component follows Lambert’s cosine
law for ideal diffusers [74]. The angular trend of the bistatic coefficients
is shown in Figure 8.

The normalised backscattered intensity I(θ) can be written as [75]:

I(θ) =
γc(θ) + γl(θ) + γs + γstray

γl(θ) + γs + γstray
, (43)

where γs and γstray are the bistatic coefficients for the single scattering
and the stray light, respectively. The backscattering enhancement (E) is
the value of Equation 43 at θ = 0. Considering a semi-infinite system
where the single scattering is filtered out and the stray light is blocked,
then:

Esemi =
γc,semi(0) + γl,semi(0)

γl,semi(0)
= 2. (44)

As shown in Figure 7, the coherent interference profile at small angles
is mainly determined by high scattering orders, i.e., to photons that
have propagated a long distance in the medium before being reflected.
In systems with a finite size, the average distance travelled in the
thickness direction is

√
N`t, implying that the maximum scattering

order supported by the system is N ' OT2. Therefore, if the OT is not
large, the value of enhancement decreases compared to Equation 44 and
the interference profile shows a rounded top and not a cusp. Similarly,
the presence of absorption changes the cone profile, as the amplitude
of the long paths is more attenuated than that of short ones. Another
effect that results in a rounding of the cone shape is related to recurrent
scattering events. In fact, in media where the scattering efficiency is
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Figure 9 | Theoretical shape of the coherent backscattering cone in three
dimensions. In isotropic systems, the width of the coherent backscattering is
independent of the direction. The three-dimensional shape was obtained by rotating
Equation 41 around an axis of revolution that passes through θ = 0.

high enough, it is possible to have closed-loop photon paths [76–78]. For
these paths, the first and the last scatterers coincide, giving rise to an
angular independent coherent contribution that lowers the enhancement
factor. Note that the rounding of the cone due to the recurrent scattering
is indistinguishable from that caused by the presence of absorption or
to the finite size of the system [79–81].

The three-dimensional shape of the coherent contribution (γc) to the
backscattering interference profile — determined by the revolution
of Equation 41, as γc does not depend on φ — is a cone (Figure 9).
In the case of isotropic material, the cone has the same width
along different directions. To describe the coherent backscattering in
anisotropic systems is necessary to exploit numerical methods. Monte
Carlo simulations showed that the presence of anisotropy in the plane
perpendicular to the incoming light gives rise to an anisotropic cone
width [51]. The ratio of the different width of the cone provides a direct
estimate of anisotropy of the mean free path [51]. Chapter 4, using a
Monte Carlo approach presented in Chapter 2, investigates how the
coherent backscattering is affected when the anisotropy is along the
direction of the incoming light.





2
M E T H O D S

This chapter presents the methods used in this thesis to characterise light
propagation in both biological and artificial disordered systems. The text
is organised as follows: Section 2.1 covers the experimental techniques
adopted to quantify the scattering strength of a system, exploiting both
the diffusion approximation and non-diffusive phenomena; Section 2.2
presents the numerical methods exploited to describe light propagation
in anisotropic systems, both to analyse experimental results and to
understand the role of anisotropy in scattering optimisation.

2.1 experimental methods

2.1.1 Coherent backscattering setup

A coherent backscattering (CBS) setup measures the angular distribution
of the coherently backscattered light. This experimental technique
provides a direct estimate of the strength of a system (cf. Chapter 1). The
characterisation of strongly scattering materials requires the detector
to move over a broad angular range — as the angular width of the
coherent backscattering line shape is inversely proportional to the mean
free path (cf. Equation 42, Subsection 1.3.1).

A schematic of the setup used to measure the CBS effect is shown
in Figure 10. A collimated laser diode (Thorlabs CPS635R, a peak
wavelength of 635nm and an output power of 1.2mW) was used as
the light source. The scattered signal was focused, using a parabolic
mirror, on a 100µm core fibre (Thorlabs FC-UV100-2-SR) mounted on
a motorised stage (Newport ESP301, an accuracy of ± 0.0115◦) and
connected to a cooled spectrometer (Avantes AvaSpec-ULS2048x64TEC-
EVO).

29



30 methods

λ /4

Beam dump

Parabolic   Mirror

    Input 
 polariser 

 Beam
splitter

Sample

 Laser
source Spectrometer

Rotation
arm

Irisθ
Detection polariser

Figure 10 | Schematics of the CBS setup. The red dashed lines define the cone of
backscattered intensity, while the black dashed arch represents the detection range.
The sample was mounted on a rotation mount, whose axis was perpendicular to the
propagation direction of the laser beam, to average over different disorder realisations.

Two factors limited the angular range of the setup:

• The range of the detector arm movement was limited by the
physical space occupied by the source, on one side, and of
the beam dump, on the other one. With such restrictions, the
maximum angular range was ± 50◦.

• The dimensions of the quarter-wave plate (Thorlabs WPQ20ME-
633), which shadows the sample at large illumination angles.
Although the quarter-wave plate is ' 5 cm in diameter, and it was
mounted as close as possible to the sample (' 1mm), its rotating
holder limited the angular range due to its physical dimension.

This second restriction reduced the detection range of the setup to
about ± 40◦. The detection optics limits the angular resolution of the
CBS setup. A 100µm core fibre, with its tip at 30 cm distance from the
sample allowed a resolution of 0.015◦.
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As introduced in Chapter 1, the coherent backscattering signal is
the result of constructive interference between scattered light (cf.
Subsection 1.3.1). To see this effect, the speckle pattern, which occurs
due to the high spatial coherence of the light source, has to be averaged
out [82]. This was achieved by placing the sample on a rotation mount
whose axis coincides with the propagation direction of the incoming
light. This averaging procedure precludes the possibility of investigating
a potential in-plane (xy) anisotropy.

The enhancement factor of the coherent signal is defined as the
ratio between the intensity at the exact backscattering angle and
the incoherent background (cf. Subsection 1.3.1). To maximise the
enhancement, it is, therefore, necessary to screen the setup from stray
light by enclosing it in a black box. A beam dump was then used
to avoid the contribution of the reflection of the incident laser beam
from the enclosing box. The enhancement factor is equal to 2 in the
absence of single scattering events, which do not have a reciprocal
counterpart and therefore contribute only to the incoherent background.
A quarter-wave plate was used to filter out the contribution of single A zero-order

quarter-wave plate
(λ/4) was used in
the CBS setup —
as it assures a
better angular
tolerance than a
multi-order one.

scattering events, by transforming the polarisation of the incident light
from linear to circular. Single scattering changes light polarisation from
right- to left-handed, and vice versa. This change in circular polarisation
was converted back to linear by the quarter-wave plate but rotated by
90◦ from the input polarisation. A second linear polariser, part of the
detection optics, can thus block it, allowing to filter the single-scattered
light. This polarisation selectivity does not stop the rest of the signal
— multiple scattering scrambles the starting polarisation [4], so that
only a small part of it is filtered. This investigation method is often
referred to as helicity conserving channel (HC) [83]. Another way to filter
the single-scattered light is to remove the quarter-wave plate and place
the detection polariser with the optical axis orthogonal to the starting
one — single scattering preserves linear polarisation. This channel of
acquisition is called linear non-conserving (LNC). The LNC channel stops
the single-scattered light as efficiently as the HC one. However, its
theoretical enhancement factor is only 1.3 as opposed to 2. A scalar
theory cannot explain this dramatic difference (e.g., the one described
in Subsection 1.3.1). Instead, it requires a vectorial theory accounting
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for light polarisation [84, 85]. As described in Reference [83], the LNC
signal is then used to normalise the HC signal.

Another factor to take into account in the realisation of a backscattering
setup is the effect of internal reflections [36, 86, 87]. This effect is a
consequence of the refractive index mismatch between the sample and
the external medium. The light reflected at the sample-medium interface
can be discriminated in two contributions:

• the part reflected in an area of the sample illuminated by the
incident beam, which has an active role in the formation of
the backscattering signal. This contribution modifies the path-
length distribution inside the sample, introducing artificially long
path and causing a narrowing of the cone (cf. Subsection 1.3.1).
This artefact can be removed in two different methods: (i) using
Equation 21 to calculate the value of the extrapolation length
(which depends on the refractive index contrast at the boundary
of the medium); (ii) index matching the sample. In Section 3.2, the
former approach was adopted.

• the remaining light, which, due to the absence of a corresponding
reverse path, does not contribute to the coherent signal. This
incoherent contribution affects the backscattering cone by lowering
the enhancement factor. An iris was placed between the beam
splitter and the acquisition fibre (Figure 10), allowing only the
scattered light from the illuminated region of the sample to reach
the detector.

2.1.2 Integrating sphere

The scattering strength of a system can be determined by measuring
the total transmission as a function of the thickness (cf. Equation 25,
Chapter 1). A widely used instrument to measure the total transmission
is the integrating sphere. This instrument consists of a hollow sphereThe Spectralon,

SRM-990, used in
this thesis has a

reflectance > 99%.

whose internal surfaces are coated with a material with high, broadband
Lambertian reflectance.

The experimental setup used in Chapter 5 is illustrated in Figure 11.
A light source (Ocean Optics HPX-2000) was coupled into an optical
fibre (Thorlabs FC-UV100-2-SR). The transmitted light was collected by
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a                                        b  
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Collection port

Sample

Figure 11 | Schematics of the integrating sphere setup. Total transmission and total
reflection setups are represented in a) and b), respectively. The signal, reflected by the
coating of the inner surfaces, is acquired from the collection port located in the upper
hemisphere of the instrument.

the integrating sphere (Labsphere) and then acquired by a 600µm core
fibre (Thorlabs FC-UV600-2-SR) connected to a spectrometer (Avantes
HS2048).

As shown in Figure 11, the integrating sphere also allows measuring
the total reflection (R) of a system. Combining total reflection and
transmission measurements is of particular interest for absorbing
systems; indeed, the absorbance (A) can be retrieved from the simple
relation 1 = R+ T +A.

The acquired signal was normalised to the intensity of the incident
light for both total transmission and reflection. All measurements were
recorded using unpolarised light and with an integration time equal to
2 s. Ten spectra were taken for each sample and averaged to reduce the
signal-to-noise ratio.

2.1.3 Goniometry

Subsection 2.1.2 described how to quantify the scattering efficiency of
a system. To further characterise a disordered material, it is important
to compare how it angularly re-distributes scattered light compared to
an ideal, Lambertian diffuser [74]. The angular distribution of scattered
light by a Lambertian diffuser has a cosine dependence on the scattering
angle, implying that the appearance of the diffuser does not depend
on the observation angle. This property is therefore very desirable for
many applications, e.g., paints and cosmetics. Moreover, as discussed in
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Chapter 1 (cf. Equation 26), the angular distribution of reflected light
can be used to estimate the extrapolation length experimentally, that is
necessary to quantify the mean free path rigorously.

The angular distribution of reflected/transmitted light shown in
Chapter 5 was determined using a goniometer. In particular, the
experimental setup is a simplified configuration of that shown in
Figure 10. More in detail, being interested in an incoherent signal,
the laser source was replaced by a Xenon lamp (Ocean Optics HPX-
2000) coupled into an optical fibre (Thorlabs FC-UV100-2-SR) and
directly shone onto the sample. The polarisation optics in Figure 10 was
simplified to a linear, cross-polarisers configuration. This configuration
allows to filter out the substrate contribution without affecting the
signal from the sample — due to the randomisation in the polarisation
introduced by multiple scattering [4]. Filtering out the substrate
contribution is justified by Lambert’s theory [74], where the distribution
of reflected intensity arises exclusively from the photons scattered
multiple times in the sample.

The illumination angle was fixed at normal incidence, and the angular
distribution of intensity was acquired by rotating the detector arm
around the sample with a resolution of 1◦. To detect the signal, a 600µm
core fibre (Thorlabs FC-UV600-2-SR) connected to a spectrometer
(Avantes HS2048) was used. The spectra were averaged over ten
acquisitions to reduce the signal-to-noise ratio.

2.2 numerical methods

2.2.1 Monte Carlo simulations of anisotropic multiple light scattering

Monte Carlo methods are a class of numerical algorithms using
random numbers to solve a specific problem. In particular, Monte Carlo
techniques find extensive use in numerical integration — because a
definite, multidimensional integral can be solved by evaluating the
integrand over a set of random sampled points [88]. The equations
describing multiple scattering can be formulated in the integral form
(cf. Equations 37 and 38 in Chapter 1), therefore making Monte Carlo
simulations well suited for describing light propagation in disordered
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media. In particular, Monte Carlo simulations have been extensively
used both to investigate theoretical aspects of anisotropic diffusion [63,
89–93], and to accurately describe experimental results regarding light
propagation in anisotropic media [64, 94, 95].

The algorithm used in Chapter 3 to simulate photons propagation in
the Cyphochilus’ scales is constructed as following (cf. Appendix a) :

• The photon penetrates the material ballistically until it reaches
the first scatterer, whose position is determined according to a
negative exponential distribution.

• The position of the next scattering event is determined by a
random step, whose direction is sampled on the surface of a unit
sphere. The cartesian components of the random step were inverse-
sampled from two different negative exponential distributions —
with mean `xy and `z for the in-plane and out-of-plane components,
respectively.

• Step 2 is repeated until the photon reaches one of the two interfaces
of the material (z = 0 and z = thickness). Here, if the photon
is reflected back in the material, the random walk continues
as indicated in step 2 otherwise its contribution to the CBS is
computed.

• The procedure is repeated for a new photon until the maximum
number of photons is reached.

The anisotropy of the system, introduced in step 2, is modelled as
an anisotropic propagator between two scattering events. Each of the
scattering centres is, for simplicity, considered as a Rayleigh scatterer
with an isotropic angular cross section.

The angular component of each of the random steps was sampled from
a distribution of points uniformly distributed on the surface of a unit
sphere applying the following variable transformation [96, 97]:

x =
√
1− u2cosθ,

y =
√
1− u2sinθ,

z = u,

(45)

where u = cos(φ), θ = [0, 2π) and u = [−1, 1). This step is crucial,
because selecting θ and φ from uniform distribution (θ = [0, 2π) and
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Figure 12 | Uniform point sampling on a unit sphere. a) Angular distribution of
points by sampling θ and φ from uniform distributions. The points distribution
results to be not uniform. b) Angular distribution of points by sampling θ and φ as
described in the MC code. c) Comparison of the MC simulations with the isotropic
theory without considering internal reflections. Parameters used: optical thickness
= 4, mean free path = 5µm. d) Comparison of the MC simulations with the isotropic
theory. Parameters used: optical thickness = 4, mean free path = 5µm, R = 0.32 (i.e.,
ze = 1.29).

φ = [0,π)) results in over-sampling over the poles of the unit sphere, as
shown in Figure 12a-b. This is a consequence of the dependency of the
area element on φ (dΩ = sinφdθdφ), and would have affected the CBS
line shape by biasing the random walk.

The collection of the initial and final positions of the walkers that
escaped the material from the same face they entered it — i.e., reflected
photons — was then used to reconstruct the CBS line shape (γc in
Appendix a). Summing up the contribution of each photon, weighted by
exp(−c/γz) ∗ (1− Ravg) (where γz is the z-component of the mean free
path), is equivalent to compute the integral formulation of the coherent
bistatic coefficient introduced in Equations 37 and 38 (cf. Chapter 1). The
effect of residual absorption on the CBS line shape is not considered, due
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to the negligible absorption of chitin for visible wavelengths [17]. The
accuracy of the Monte Carlo simulations was verified in Figure 12c-d
against the isotropic theory (Equation 40).

2.2.2 Generation of 2D, disordered structures

Chapter 4 presents a numerical investigation to understand the
importance of anisotropy in scattering optimisation. Two different
algorithms were developed to disentangle the role of structural (i.e.,
in the position of the scatterers) and form (i.e., in the shape of the
scatterers) anisotropy:

1. An inverse-design approach was exploited to generate disordered
structures with tailored structural correlations. This algorithm
consists of two main parts:

• First, hard (non-overlapping) particles were added using a
random sequential approach until the desired filling fraction
was reached;

• Second, the difference between the targeted S(q) and the one
of the structure was minimised. In detail, the positions of
the particles were gradually changed following a gradient
descending minimisation protocol.

2. In the case of an anisotropic form factor, the open-source Python
package Shapely was used to assure that the particles were not
overlapping [98].

2.2.3 Finite difference time domain (FDTD)

The simulations presented in Chapters 4 and 6 were performed using
LUMERICAL 8.18 (Lumerical Solutions Inc., Vancouver, BC, Canada),
a commercial-grade software using the finite-difference time-domain
(FDTD) numerical method. This technique solves Maxwell’s equation by
calculating derivates via finite differences on a space and time grid [99].

A schematic of the simulation setup employed in this work is presented
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a   b  c   d

X

Y

Figure 13 | Schematics of the simulation
setup. a) PML boundary conditions, b)
reflection monitor, c) plane wave source,
d) periodic boundary conditions.

in Figure 13. Periodic boundariesThese boundary
conditions well

represent slab
geometry systems

and films.

conditions in the Y direction, i.e.,
perpendicular to the light beam,
and perfect matching layer (PML)
boundaries in the X direction
were used in all the calculations.
The excitation source was set as
a plane wave. The simulations
were performed in a purely 2D
geometry and their numerical
stability/convergence was ensured by choosing an adequate simulation
time and boundary conditions — assuring that the electric field in the
structure decayed before the end of the calculation and that all the
excitation light was either reflected or transmitted.

Each of the presented curves was obtained averaging the optical
simulations of seven different realisations of ensembles of particles
with identical parameters. These different realisations can be obtained
by fixing the values of indexMin and indexMan of the code presented in
Appendix b.
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Declaration: The work presented in this chapter was published in: G. Jacucci, O. D.
Onelli, A. De Luca, J. Bertolotti, R. Sapienza, and S. Vignolini. Coherent backscattering of
light by an anisotropic biological network, Journal of the Royal Society Interface Focus 9
(2018) [100].

Chapter 1 illustrated that an object is opaque white when the light
incident on it undergoes multiple scattering events before exiting the
medium, i.e., when the object is optically thick. Commonly, the mean
free path is of the order of tens of micrometres in low refractive index,
white materials. Therefore, opacity is only achieved for thicknesses of
the order of hundreds of micrometres.

Nature, however, provides a striking example of brilliant, white
appearance obtained in sub-ten micrometre thickness: the disordered
network inside the scales covering the exoskeletons of the Cyphochilus
beetles. This anisotropic, fibrillar network is particularly interesting for
the study of disordered systems as it exhibits the lowest mean free path
observed in biological materials thus far.

This chapter reports a technique to determine the mean free path
components, and therefore its anisotropy, without varying the thickness
or the orientation of a system. This is achieved by combining a coherent
backscattering measurement with anisotropic Monte Carlo simulations,
introduced in Subsection 2.1.1 and Subsection 2.2.1, respectively. This
approach provides a more accurate estimate of the scattering properties
of the Cyphochilus beetle than the results reported in the literature
— overcoming the strong thickness dependency of the previously
employed experimental techniques.

The following text is divided in two parts: Section 3.1 describes
the morphological and optical properties of the Cyphochilus beetle;

41



42 cbs by an anisotropic , biological network

a b c

d

Figure 14 | Images of a white beetle at different magnifications. a) photograph of
a specimen of Cyphochilus genus beetle ; b) micrograph of the organisation of the
scales; c-d) SEM images of a Cyphochilus’ scale from a cross section and top view,
respectively. Insets show the fast Fourier transforms of the SEM images, which show
the orientational anisotropy of the network. Scale bar: 1 cm for a, 300µm for b, 1µm
for c, 2µm for d. SEM images courtesy of Dr. Olimpia Onelli.

Section 3.2 presents the combination of experimental and numerical
techniques used to determine its scattering efficiency.

3.1 the cyphochilus beetle — a biological example of

highly-scattering material

The optical properties of the beetle genus Cyphochilus were first studied
in 2007 by Vukusic et al. [19]. The exoskeleton of this white beetle is
covered by a single layer of scales, Figure 14a-b, whose dimensions are
about 7µm in thickness, 250µm in length, and 100µm in width [101].
As shown in Figure 14c-d, each scale contains a disordered network of
fibres with an anisotropic alignment, i.e., mainly oriented parallel to
the surface of the scales. The average radius and length of the fibres are
(115± 80)nm and (1105± 360)nm, respectively [22].

The filling fraction of the network was first estimated, by analysing
cross-sectional SEM images, to be around 60% [21]. However, using
two-dimensional images overestimates the real filling fraction, as it
accounts for the contribution of fibres on different planes than the cross-
sectional cut. Recently, thanks to the three-dimensional reconstruction
performed by Wilts et al. [22], a more accurate value of filling fraction
has been reported to be 45%.
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Figure 15 | Reflectance of different low
refractive index materials compared to
a commercial white diffuser. The value
associated to the Cyphochilus beetle is
significantly higher than that of the filter
paper, which is about ten times thicker.

In the recent years, the scales The reflectance
spectra were
acquired with an
optical microscope
(Zeiss, Axio Scope
A1) and using a
50x objective
(Zeiss, LD EC
Epiplan-Neofluar,
NA = 0.85).

of the Cyphochilus captured
scientists’ great attention due to
their high scattering efficiency.
Figure 15 shows the reflectance
of different materials compared
to a commercial white diffuser.
Surprisingly, the scales of the
white beetle reflect 30% more
than the filter paper (Whatman
No. 1), whilst having a similar
refractive index and being about
ten times thinner. Furthermore,
it is worth noting that refractive
index of the network was
estimated to be n ' 1.55. This
value was obtained on an etched
scale using refractive index matching oils. Although the fibres in
Figure 14 are historically referred to as made of chitin [19, 21, 22],
a detailed chemical analysis of this anisotropic network is still missing.

The striking scattering strength of the Cyphochilus’ scales initiated a
lengthy debate on the experimental characterisation and theoretical
understanding of light transport in this disordered, anisotropic system.
In this thesis, both aspects will be discussed and clarified, in Section 3.2
and Chapter 4, respectively.

3.2 quantifying anisotropic mean free path via monte

carlo analysis of coherent backscattering

As discussed in Chapter 1, the scattering efficiency of a system can be
quantified in terms of its mean free path. In the recent years, a number
of different techniques have been used to characterise anisotropic media;
for example, spatially resolved reflectance [90, 94], imaging diffuse
transmission [21, 61, 62], spatio-temporal visualisation of transmitted
light [102] , and coherent backscattering [64, 95, 103, 104].
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The mean free path inside the beetle scales was first estimated by Burresi
et al. to be between 0.9 and 1.6µm [20]. This value, which was measured
in the direction perpendicular to the scales’ surface, is smaller than the
in-plane component [21]. The anisotropy in the mean free path is a
consequence of the structural anisotropy in the scales of the beetle and
suggests that the network is optimised to increase scattering along the
direction perpendicular to the scale’s surface. Indeed, the reflectance by
an anisotropic system is determined by the transport properties along
the direction of propagation of the incoming light (cf. Chapter 1) [57,
66].

The accuracy in determining the in-plane and out-of-plane components
of the mean free path in the Cyphochilus’ scales has been limited by
the strong thickness dependency of the experimental techniques used,
namely photon lifetime [20] and total transmission [21] measurements.
The thickness varies from scale to scale, preventing to obtain an accurate
value of mean free path. To further understand the exceptional optical
properties of the Cyphochilus beetle, the CBS phenomenon was exploited.
Indeed, the CBS provides a thickness-independent value for the in-plane
mean free path (cf. Chapter 1).

The measured CBS signal is reported in Figure 16. The experimental
data show a maximum lower than the theoretical value for semi-infinite
media of 1 and a rounded top. This deviation is a consequence of the
small thickness of the scales and can be described by the isotropic
theory for finite media (Equations 40 and 41). As discussed in Chapter 1,
the reduction of the theoretical maximum in finite media is caused
by the suppression of long light paths, which are responsible for the
formation of the cusp of the CBS profile for semi-infinite media [2] .
To accurately determine the mean free path, the effect of the internal
reflections at the scale interface on the light path distribution inside
the network was accounted in the extrapolation length. Using a filling
fraction of (45± 6)% [22], and by means of Equations 21 to 23, resulted
in ne = (1.22± 0.03), R = (0.32± 0.04), and ze = (1.29± 0.11). Finally,
using the extrapolation length found from the expression above, `t =
(1.4± 0.1)µm was obtained from the fit shown in Figure 16.

In the literature, the isotropic theory has been used to obtain information
about media where the anisotropy is in the plane perpendicular (xy) to
the incoming beam (z-direction) [64, 65]. This type of anisotropy gives
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Figure 16 | Fit of the coherent backscattering line shape using the isotropic theory.
Theoretical fit of the experimental data (blue dots) using the isotropic theory for
semi-infinite (light blue, dashed line) and finite (red, solid line) media. Both curves
were normalised to the maximum value of the semi-infinite theory. The experimental
points were obtained by normalising the signal measured in the HC configuration to
that acquired in the LNC setup (Subsection 2.1.1).

rise to a CBS cone whose line shape differs when acquired along the x
and y directions (cf. Chapter 1). In the case of the Cyphochilus beetle,
the anisotropy is in the xz- and yz-plane (defining z as perpendicular to
the surface of the scales) [21, 22] and therefore the resulting CBS profile
is isotropic (for light incoming along the z direction). Due to the small
thickness of the scales (' 7µm), the probing direction of the incoming
beam cannot be changed.

As the anisotropy cannot be investigated directly, anisotropic Monte
Carlo simulations for scalar waves were performed to gain insight on
the light transport inside the scales (cf. Subsection 2.2.1). The only
parameters required for the Monte Carlo simulations are the random
steps distribution, the scales thickness and the reflection coefficient at
the scale interface (R).

A schematic of the parameters of the simulation is illustrated in
Figure 17a. Figure 17b-c show how the CBS line shape is affected both
by changing the in-plane (`xy) and out-of-plane (`z) components of the
transport mean free path. In particular, `xy determines the width of the
CBS profile, while the optical thickness, defined as OT = L/`z (where
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L is the thickness of the medium), specifies the enhancement of the
coherent signal.

These results can be qualitatively explained by the fact that the CBS
depends only on the distance between the positions of the first scattering
event (when the photon enters the medium) and the last (when
the photon exits the medium). When a large number of photons is
considered, these two positions have on average the same z coordinate
(which is of the order of `z), and therefore their distance can be
considered to be z-independent. However, as discussed previously for
the isotropic theory, when the optical thickness of the medium is small
(i.e., when long light paths are not allowed by the finite thickness of
the medium) the top of the CBS is rounded. The limited influence of
the optical thickness on the width of the CBS line shape allows the
obtainment of a precise value of `xy without requiring samples with
different thicknesses.

By fitting the experimental data with the Monte Carlo simulations, it
is possible to disentangle the contribution of `xy and `z to the CBS line
shape. In particular, the fit provided a `xy = (1.4±0.1) µm and an optical
thickness OT = (6.7± 0.1). The data were fitted by minimising the χ2.
The errors in `xy andOT were estimated by performing simulations were
the two parameters were gradually changed, up to the point where the
value of χ2 was 25% larger than the minimum. This procedure was then
repeated for taking into account the uncertainty in the determination of
reflection coefficient (R).

The measured optical thickness is in good agreement with the
total transmission (T ) data reported in the literature [20, 21]. Using
T = (0.29± 0.02) [20, 21], in Equation 25 and the extrapolation length
previously calculated resulted in OTlit = (6.3± 1.2), consistent with the
CBS data. From the measured OT and assuming L = (7± 1) µm, where
L and its error represent the mean and 1σ of the distribution reported in
Reference [21], `z = (1.0± 0.2) µm was obtained. The error in `z, which
is mainly determined by the uncertainty in the thickness of the sample,
can be affected by systematic errors given by surface roughness and
curvature [4, 105, 106].
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Figure 17 | Monte Carlo simulation of the CBS line shape by an anisotropic
medium a) Illustration of the simulation parameters. b-c) Varying the in-plane
components and the out-of-plane one of the mean free path. For both simulations, the
thickness of the slab (L) was fixed at 15µm. d) Fit of the experimental data with the
anisotropic simulation. All the simulation were performed using 1 million photons.
The simulated curves were normalised to the maximum value of a simulation with
OT = 1000.
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Comparing `z with `xy, the measured optical anisotropy (OA) is:

OA =
`xy − `z
`xy

= (0.27± 0.13). (46)

This experimental result is in agreement with the 3D reconstruction
of the anisotropic network reported in Reference [22], which predicts
OA ' 0.35.

3.3 conclusions

This chapter reported important results in the understanding of light
propagation in the disordered network inside the Cyphochilus’ scales. It
was demonstrated that the mean free path and the optical anisotropy
in the scales of the beetle can be determined by combining a coherent
backscattering measurement with anisotropic Monte Carlo simulations.
Exploiting the coherent backscattering phenomenon provides an
accurate evaluation of the in-plane transport mean free path without
requiring samples with different thicknesses, in contrast with other static
and easily accessible techniques. Moreover, the presented methodology
estimates the anisotropy of a system without the need to change its
orientation or its thickness — therefore allowing to measure the optical
anisotropy of the Cyphochilus’ scales accurately.
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Declaration: The work presented in this chapter was published in: G. Jacucci, J.
Bertolotti, and S. Vignolini. Role of anisotropy and refractive index in scattering and
whiteness optimization, Advanced Optical Materials 7 (2019) [107].

Does the anisotropy observed in Chapter 3 play a role in scattering
optimisation, or is it a coincidence of the biological process behind the
formation of the Cyphochilus’ scales?

This chapter presents a numerical model to investigate the role of
anisotropy in scattering optimisation. The effect of structural and single-
particle anisotropies on the opacity of materials are discussed and the
criteria to improve scattering over an ample parameter space, including
filling fraction and refractive index, are identified.

The following text is divided into two sections: Section 4.1, where the
importance of different kinds and degrees of anisotropy on the opacity
of a system is investigated; Section 4.2, where ensembles of particles
with optimised anisotropy are compared in terms of their scattering
strength and whiteness.

4.1 structure and form anisotropy

The scattering strength of a system depends on (i) single-particle
properties as size, shape, and refractive index, (ii) ensemble properties
as filling fraction and structural correlations (cf. Chapter 1). An inverse
design algorithm was developed to disentangle the effect of anisotropy
on single-particle (form factor, Equation 9) and ensemble properties
(structure factor, Equation 31). This numerical algorithm generates
systems with tailored form and structure factor (details are reported

49
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Figure 18 | Simulated optical response for systems with different structural
anisotropy. The structure factor relative to each ensemble of particles is shown as an
inset. An anisotropic S(k) does not affect the broadband reflectivity of a system. All
the simulated structures have a thickness of 10µm, ff = 0.3, building blocks with
n = 1.55, r = 250nm and 20% polydispersity. This radius represents the optimal one
for isotropic, c = 1, scatterers (cf. Table 6). The total reflectance was acquired over all
reflection angles.

in Subsection 2.2.2 and Appendix b). In particular, to establish aIn this thesis
random indicates

an ensemble of
particles whose
S(k) results from

the random
sequential

addition of hard
disks. The other

systems are
generated via an

inverse design
approach (cf.

Subsection 2.2.2).

comparison over a large parameter space whilst avoiding computational
burden, two-dimensional, disordered media were investigated.

Figure 18 shows the effect of an anisotropic structure factor on the
scattering strength of a system. More in detail, ensembles of isotropic
particles with the same filling fraction, but different structure factor
were compared. The size of the particles was sampled from a Gaussian
distribution with mean r = 250nm, which is the optimal value
for isotropic particles with a refractive index of n = 1.55 (Table 6,
Appendix c). The size distribution has a polydispersity of 20%, defined
as the ratio between the standard deviation and the mean of the
Gaussian distribution. The presence of polydispersity does not affect
the whiteness of a system and better describes experimental systems (cf.
Appendix c.1, Appendix c).

The simulations provided in Figure 18 deliver two important results:
First, for n = 1.55, increasing the structural correlation of a system
(i.e., from random to isotropic) did not improve the scattering strength.
Second, introducing anisotropy in the structure factor did not alter the
optical response of an ensemble of isotropic scatterers.
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Figure 19 | Numerical procedure to determine the single-particle and orientational
parameters which maximise scattering. a&b) Simulated optical response for systems
with different form anisotropy. Integrated reflectance over the visible range as a
function of the: a) aspect ratio of the particles for systems with ff = 0.1; b) filling
fraction of ensembles of scatters with c = 18. c&d) Simulated optical response for
systems with different kinds and degrees of orientational, form anisotropy. Integrated
reflectance over the visible range as a function of the: c) angle between the director
and the direction perpendicular to the incoming beam (θ); d) order parameter (〈P2〉).
The amount of light reflected is maximised for ensembles of anisotropic particles
oriented perpendicular to the incoming beam (θ = 0) and with maximum orientational
anisotropy (〈P2〉 = 1). All the structures have a thickness of 10µm and building
blocks with n = 1.55, r = 250nm and 20% polydispersity.

In contrast, a change in the form factor of the particles drastically affects
the response of a system (Figure 19 and Table 6, Appendix c). First,
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particles with a different aspect ratio (c) but the same area (parametrised
via r0, i.e., the radius at c = 1) and same orientation (perpendicular to
the incoming beam) were considered to identify the optimal shape of the
scatterers. Figure 19a shows that tuning the aspect ratio of the particles
leads to a marked change in the scattering efficiency of a medium, with
a maximum at c = 18 for r0 = 150nm. Second, after identifying which
aspect ratio maximises the reflectance, the number of particles in the
system was varied to optimise the filling fraction (Figure 19b).

The use of anisotropic particles adds an extra parameter in determining
the optical properties: their degree of alignment. This additional degree
of freedom was accounted for by defining the director n — in analogy
to the literature of liquid crystals [108] — as the average orientation
of the particles, i.e., θ. The degree of alignment can be consequently
determined through the order parameter (〈P2〉) [108]:

〈P2〉 =
〈
3 cos2φ− 1

2

〉
, (47)

where φ is the angle between the long axis of a given particle
and n and 〈...〉 denotes ensemble average. Following this definition,
〈P2〉 = 1 describes and ensembles of particles perfectly aligned along n
(maximum anisotropy) and 〈P2〉 = 0 a completely random orientation
(isotropic).

Figure 19c&d summarise the role of the alignment of the particles on
the scattering properties of a system. Figure 19c compares particles with
〈P2〉 = 1 but different orientation of the director. The reflectance is
maximised when the director is aligned perpendicular to the incoming
light (θ = 0). Moreover, maximising the degree of orientational
anisotropy improves the scattering efficiency of a system (Figure 19d).

In this regard, it is important to note that the simulations presented
in this chapter are two-dimensional. Therefore, the polarisation is in
the plane of incidence (Figure 13). In isotropic, disordered systems
the incident light is quickly depolarised due to multiple scattering [4].
However, in three-dimensional ensembles of anisotropic scatterers with
orientational alignment, the polarisation might be more resilient to
multiple scattering. In this case, it might be necessary to consider an
extra parameter in the scattering optimisation problem.
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Figure 20 | Scattering and whiteness maximisation for low refractive index media.
a) Simulated optical response of structures with the best filling fraction (ff) and aspect
ratio for different size of the particles (r0). r0 corresponds to the radius of the particles
at c = 1. The best reflectance was obtained for anisotropic scatterers (c = 18) and a
low filling fraction (ff = 0.3). All the structures had a thickness of 10µm and a 20%
polydispersity in the size distribution of their building blocks, whose refractive index
is n = 1.55. The total reflectance was acquired over all reflection angles. b) Polar plot
showing the CIELAB colour space coordinates (cf. Appendix c) of the spectra in a).

4.2 light scattering optimisation

4.2.1 Low refractive index systems

The results illustrated in Figure 19 refer to particles having r0 = 150nm
and n = 1.55. The same procedure was applied for scatterers with
different sizes, and their optimised values of aspect ratio and filling
fraction are reported in Figure 20. The details of the optimisation
procedure can be found in Table 6, Appendix c.

Notably, ensembles of low refractive index, anisotropic particles (c = 18)
exhibit a marked broadband increase in scattering efficiency — they
reflect almost 20% more of the incident light compared to optimised,
isotropic systems. In addition, anisotropic systems require 25% less
material to maximise scattering, from ff = 0.4 to ff = 0.3.
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n r0(nm) c ff W

1.55 100 8 0.3 88

1.55 150 18 0.3 90

1.55 250 1 0.4 85

1.55 350 2 0.5 85

2.60 50 500 0.2 91

2.60 100 1 0.3 90

Table 1 | Whiteness value for low and high refractive index media. Parameters
which maximise whiteness (W, Equation 48) for ensembles of particles with different
sizes (r0, i.e., the radius at c = 1), refractive index (n), but same thickness (t = 10µm).
Anisotropic, low refractive index, particles show a whiteness comparable to that of
high refractive index systems.

The optimal value of aspect ratio obtained in Figure 20 is in good
agreement with the one reported for the Cyphochilus beetle, where
c ' 10 [22]. However, it is important to note that Reference [22] does not
claim that the size of the fibrils in the biological network is optimised.
Moreover, recent three-dimensional modelling confirmed that ff = 0.3
represents the optimal filling fraction for anisotropic, low refractive
index networks [9, 109].

To evaluate the efficiency of the anisotropic systems in making visually
white materials, Table 1 reports the whiteness values for the spectra
in Figure 20a. The whiteness is determined not only by the amount of
light reflected by a system but also by its spectral dependency. In detail,
to quantify this parameter, the reflectance spectra were converted in
CIELAB colourspace coordinates (cf. Appendix c). Figure 20b shows the
colour space representation of the spectra in Figure 20a. According
to Table 1, ensembles of low refractive index, anisotropic particles
outperform their isotropic counterparts in terms of whiteness.

4.2.2 High refractive index systems

The role of the refractive index on the scattering properties of anisotropic
systems was investigated by repeating the procedure presented in
Section 4.1 and Subsection 4.2.1 for n = 2.60. This value of refractive
corresponds to the rutile phase of TiO2 [13], currently the favoured
product in the industrial fabrication of white materials.
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Figure 21 | Numerical procedure to determine the structural and single-particle
parameters maximising scattering for high refractive index systems. a) Simulated
optical response for systems with different structural anisotropy. The systems had
ff = 0.25, building blocks with n = 2.60 and radius sampled from a Gaussian
distribution with mean r = 100nm and 20% polydispersity. This radius represents
the optimal one for isotropic, c = 1, scatterers (cf. Table 7). b) Integrated reflectance
over the visible range as a function of the aspect ratio of the particles for systems
with ff = 0.1. Anisotropic systems outperform the scattering efficiency of ensembles
of optimised isotropic particles only for aspect ratios larger than 40. At large aspect
ratios, the systems approach the one-dimensional limit and a further increase in
the integrated reflectance is observed. All the structures had a thickness of 10µm
and scatterers oriented perpendicular to the incoming light (〈P2〉 = 1). The total
reflectance was acquired over all reflection angles.

Figure 21a shows that similar to what is reported in Reference [110],
a small increase in the reflectance is observed in high refractive index
systems with structural correlation. As in the case of low refractive
index media (Figure 18), introducing an anisotropic S(q) did not affect
the optical properties.

Interestingly, for high refractive index, anisotropic systems outperform
ensembles of optimised isotropic particles only for aspect ratios larger
than 40 (Figure 21b). Moreover, Figure 21b shows that after exhibiting
a steady growth as a function of the aspect ratio, between c ' 400 and
c ' 1400 the integrated reflectance shows a less marked dependence on
c, with a maximum value at c ' 500.

At even higher aspect ratios the systems approach the one-dimensional
limit (i.e., particles as long as the lateral dimension of the material)
where a further increase in the integrated reflectance is expected — 1D,
disordered systems are able to act as perfect mirrors [111, 112].
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Figure 22 | Scattering and whiteness maximisation for high refractive index media.
a) Simulated optical response of structures with the best filling fraction (ff) and aspect
ratio (c) for different size of the particles (r0). The best reflectance was obtained for
anisotropic scatterers (c = 500) and a filling fraction ff = 0.2. All the structures had
a thickness of 10µm. The total reflectance was acquired over all reflection angles.
b) Polar plot showing the CIELAB colour space coordinates (cf. Appendix c) of the
spectra in a).

Similarly to what shown in Figure 20 for n = 1.55, Figure 22 compares
the results of the optimisation procedure for different size of high
refractive index scatterers (details in Table 7, Appendix c). The predicted
optimal values of radius (r0 = 100nm) and filling fraction (ff = 0.3) for
isotropic systems with n = 2.60 are in agreement with those reported
in theoretical and experimental studies regarding TiO2 particles [110,
113–116].

Table 1 reports the whiteness values of the spectra in Figure 22. Although
increasing the refractive index leads to an increase in reflectance, the
whiteness is almost unaffected. Indeed, media with n = 2.60 exhibit
a more saturated response, i.e., larger values of a∗ and b∗ (cf. inset of
Figure 22b). Therefore, low refractive index systems achieve a whiteness
comparable to that of high refractive media whilst having a smaller
brightness (i.e., smaller L∗).
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4.3 conclusions

In this chapter, numerical simulations have been exploited to study
light propagation in anisotropic media. The use of an inverse design
algorithm allowed to disentangle the role of different types and degrees
of anisotropy in the optical properties of a system. This chapter showed
that anisotropic particles, aligned perpendicular to the exciting light
(θ = 0, 〈P2〉 = 1 ), increase the scattering efficiency of disordered
systems, disregarding of their structural correlations and refractive
index. In particular, ensembles of anisotropic, low refractive index,
particles outperform those of their isotropic counterparts both in terms
of reflectance (with 20% increase over the visible range) and whiteness
(90 against 84). This value of whiteness is comparable to the one for
high refractive index systems (n = 2.60). Besides, for low refractive
index media, introducing anisotropic scattering elements decreases the
amount of material required to maximise scattering of 25%; ff = 0.3
compared to ff = 0.4 in the isotropic case.

In conclusion, these results suggest an explanation for why nature
exploits anisotropic systems to achieve lightweight, highly-scattering
structures. Moreover, they demonstrate the importance of anisotropy
in maximising the optical response of low refractive index media. The
understanding provided by the theoretical investigation of this chapter
unveils novel concepts to fabricate materials with whiteness as high
as the industrially available high refractive index nanoparticles while
being sustainable and biocompatible.
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Declaration: The work presented in this chapter was published in: J. Syurik ∗, G.
Jacucci ∗, O. D. Onelli, Hendrik Hölscher, and S. Vignolini. Bio-inspired highly scattering
networks via polymer phase separation, Advanced Functional Materials 28 (2018) [117].

Part II identified the key parameters to obtain a high scattering
efficiency in low refractive index systems. Based on these results,
this chapter reports an experimental approach to produce bioinspired,
white materials. In particular, a phase separation technique is exploited
to fabricate porous, polymeric films. Through changing the starting
conditions of this self-assembly process, it is possible to tune the
morphology of the final system and therefore control its scattering
properties.

This chapter is divided into two sections: Section 5.1 where details of
the fabrication procedure are reported; Section 5.2 where the scattering
properties of the bioinspired networks are characterised.

5.1 polymer phase separation

Porous, white films were obtained from polymethyl methacrylate The sample
fabrication
presented in this
subsection was
performed by Dr
Julia Syurik
(Karlsruhe
Institute of
Technology)

(PMMA) by phase separation in solution. This process has two possible
pathways: nucleation and growth and spinodal decomposition [118].
The nucleation and growth process drives to the formation of identically
sized pores, whereas spinodal decomposition usually leads to a channel-
like structure. Phase separation is a scalable process which is widely
used in the production of aerogel materials and membranes [119, 120].
This process is claimed to be behind the formation of the chitin network
in the Cyphochilus’ scales [109]. However, its application to maximise
scattering has been overlooked.
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Figure 23 | Fabrication of bioinspired,
white films via phase separation. A
three-component solution of PMMA and
water in acetone is cast under controlled
environmental conditions and allowed to
evaporate. The solution precipitates into
two phases after the quick evaporation
of the acetone: (i) a polymer-rich phase,
forming the random network; (ii) a liquid
water phase. Next, water evaporates,
leading to the final porous polymer
structure. The round insets show a
magnification of the self-assembly steps
and an SEM image of the polymer network,
respectively.

In short, a three-component
solution of PMMA (0.6wt%)
and water (0.2wt%) in
acetone was first prepared
(Figure 23). Then, upon solvent
(aceton)/nonsolvent (water)
evaporation, the solution was
demixed into two phases: (i)
a polymer-rich phase forming
a random network; (ii) a
liquid phase, which evaporates
at a slower rate leading to
the formation of nanoscale
pores. This simple assembly
process strongly relies on the
evaporation kinetics and hence
on the composition of the
starting solution. Only a small
per cent variation in the water
content or the molecular weight
of the polymer chains greatly
affects the assembly. Therefore, to tune the self-assembly, PMMA
with a different mass average molar mass (Mw) were prepared via
sonication treatment, starting from commercial PMMA with an initial
Mw = 1.86MDa. The values of Mw were estimated at different stages
of sonication using size exclusion chromatography (SEC). As expected
[121], Mw gradually decrease with the sonication time — from 1.86 to
0.099MDa after 7 hours of sonication [117]. The sonicated solutionsSEC and FTIR

measurements
were performed

by Dr Julia Syurik
(Karlsruhe
Institute of

Technology).
Details can be

found in
Reference [117].

were used to cast free-standing films, between 10 and 85µm thick.
Acetone is moderately hygroscopic [122], and therefore can potentially
attract water in the solution in linear dependence with the duration of
the sonication. However, no significant difference in the water content
for the non-sonicated and sonicated solutions was revealed via Fourier
transform infrared (FTIR) spectroscopy, allowing to estimate the water
content in all the solutions to be below 0.2wt% prior to casting [117].

The scanning electron microscopy (SEM) images reported in Figure 24

reveal the effect of the sonication time on the morphology of the
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Figure 24 | Effect of the polymer molecular weight on the phase separation. Typical
SEM images of the cross-section of porous films obtained by varying the sonication
time between 0 and 7 hours. Increasing the sonication time decreases the molecular
weight and drastically affects the morphology of the final system. Scale bar: 2µm for
all SEMs.

films. The films obtained from non-sonicated PMMA solution showed The
morphological
data reported in
this paragraph
were qualitatively
estimated from
the SEM images.

a fibrillar network with very low porosity (filling fraction ' 75%) and
with fibrils below 100nm in length and 20nm in width. Increasing
the sonication time led to a higher porosity as well as to larger struts,
both in length and width. After 1 hour of sonication, the length of the
fibrils constituting the network ranged from 500 to 1200nm in length
and between 120 and 300nm in width. When extending the sonication
time to 4 hours, the struts became more elongated with a length of
' 4µm and a thickness of about 300nm. Lengthening the sonication
time even further revealed an opposite trend: the fibrils become smaller
and thicker. Finally, the film produced from PMMA sonicated for 7
hours showed a similar morphology to the non-sonicated films, with a
PMMA fraction of ' 65%.

The change of morphology can be intuitively explained considering that
PMMA forms a kinetically stable aqueous bi-phasic system which does
not collapse upon complete evaporation of the solvents (i.e., leading to
the desired porosity) only for specific values of viscosity, and therefore
for a specific interval of molecular weights.
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Figure 25 | Scattering strength of bioinspired films. a) Total transmittance as a
function of the film thickness after 3 hours of sonication. The inset shows the theoretical
fit (dotted line, Equation 25) from which the mean free path (`t) was extrapolated.
b) `t for films obtained after different sonication times (bottom axis), i.e. different
molecular weights of the polymer (top axis). The error bars represent the confidence
interval of the fit and account for the uncertainty in the extrapolation length. `t is
estimated at 600nm (wavelength of the impinging light). The mean free path for the
Cyphochilus is the one reported in Chapter 3.

5.2 optical characterisation

Figure 25 compares the different morphologies presented in Figure 24 inThe thickness of
the bioinspired

films was
measured using
an incremental

probe (MT60 M,
Heidenhain) and

validated via SEM.

terms of their scattering efficiency. The transport mean free path (`t, cf.
Chapter 1) for different sonication stages was estimated by measuring
the total transmission in a series of films with the same morphology
but different thickness (Subsection 2.1.2). In detail, `t was obtained from
fitting the transmission behaviour as a function of the thickness using
Equation 25, as shown in Figure 25a.

The extrapolation length was determined by fitting the angular
distribution of the transmitted light (Figure 26a) with Equation 26

[41]. The fit shown in Figure 26b led to ze = (1.5± 0.2) `t. This value of
extrapolation length corresponds to a filling fraction comprised between
0.4 and 0.65— calculated using Equations 21 to 23 — in good agreement
with what estimated from Figure 24.

The data reported in Figure 25b are obtained for wavelengths around
600nm. However, these are representative of the scattering behaviour
over the whole visible range as the spectral response of the transmission
as a function of the thickness has only a weak, non-resonant, dispersion.
The smallest `t are observed in networks obtained after sonication times
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Figure 26 | Angular resolved response and switchable appearance of bioinspired
films. a) Angular distribution of the transmitted intensity (λ = 400nm) through
a PMMA film before and after wetting, blue and red circles, respectively. The
sample switched from a scattering behaviour to a ballistic regime. Both datasets
were normalised against their maxima. b) Fit of the angular distribution of transmitted
light normalised against the incoming light (PT (µ)) as a function of the cosine of the
transmitted angle (µ). The solid black line represents the theoretical prediction of
Equation 26. c) Angular distribution of the reflected intensity (λ = 400nm) by PMMA
films at different sonication times and t = 30µm. The angular range close to the
specular angle is left blank due to the mechanical limitations of the experimental setup
(cf. Subsection 2.1.3). d) Similarly to the Cyphochilus beetle, microstructured PMMA
films exhibit a bright white appearance achieved by efficient multiple scattering. When
wet, water penetrates the polymer film, which turns transparent. In contrast, the beetle
retains its whiteness as a continuous surface layer encasing the scales prevents water
to index match the scattering network [19]. The film shown is 4µm thick, and it was
cast on a transparent PMMA substrate.

between 1 and 3 hours. Notably, bioinspired networks achieve `t as small
as ' 1µm — one order of magnitude smaller than that of commercial
white paper [20, 123], and comparable to the Cyphochilus (cf. Chapter 3)
[20, 21].

Although a quantitative comparison between the different morphologies
would require further investigation of the three-dimensional structure of
the bioinspired networks, the observed trend in the scattering strength
can be qualitatively understood in terms of the effect of the molecular
weight on the filling fraction of the films (Figure 24).

The scattering properties of the bioinspired materials were further
characterised by measuring the angular distribution of the reflected light
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(Subsection 2.1.3). Figure 26c shows that the light scattered from the
films follows a Lambertian profile, implying that their white appearance
does not depend on the observation angle.

Finally, due to their low refractive index and porosity, the produced
free-standing films can be easily index-matched with water and
other conventional solvents — providing a switchable response which
transitions from white to transparent upon wetting (Figure 26a&d). This
property adds extra functionality compared to traditional white coatings
made of high refractive index components.

5.3 conclusions

This chapter presented a scalable route to fabricate highly scattering
materials by tuning the morphology of a low refractive index
medium. In detail, porous polymeric networks were obtained via phase
separation. The scattering strength of these networks was maximised by
varying the molecular weight of the polymer. Even though further
control over the self-assembly could be obtained by adjusting the
amount of water in the initial suspension, already transport mean free
paths comparable to that of the Cyphochilus were achieved. Moreover,
using conventional liquids, it is possible to index-match the bioinspired
films providing a fully reversible change of appearance: from white to
transparent and vice versa. The combination of a scalable manufacturing
technique with the optical functionality of the materials is extremely
appealing for the application of these films as functional coatings. In
conclusion, this chapter showcases the first example of artificial, low
refractive index materials with a scattering strength comparable to that
of the biological inspiration presented in Chapter 3.
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The polymeric films introduced in Chapter 5 represented the first
example of artificial, highly-scattering systems solely made of low
refractive index materials. However, despite showing outstanding
optical properties, they do not meet the current demand for the
production of sustainable and biodegradable white materials. Moreover,
the intrinsic complexity and instability of the self-assembly process do
not allow to engineer the morphology of the final system.

This chapter, based on the predictions made in Chapter 4, presents
an experimental approach where the sizes of the scatterers and the
morphology of their assembly can be independently tuned.

The following text is divided into two sections: Section 6.1 describes
the experimental procedure to produce cellulose nanoparticles with
different dimensions and how to control their assembly; Section 6.2
characterises the scattering properties of the cellulose-based materials.

6.1 cellulose building blocks for light scattering

Cellulose nanoparticles (CNPs) with various dimensions were obtained The sample
fabrication
presented in this
subsection was
performed by Dr
Han Yang
(University of
Cambridge)

by adjusting the hydrolysis conditions and the starting cellulose material.
Three types of CNPs were fabricated, namely CNPs-L (large width),
CNPs-M (medium width) and CNPs-S (small width).

In detail, CNPs-L and CNPs-M were prepared from microcrystalline
cellulose (MCC, produced by SERVA Electrophoresis) hydrolysed with
sulfuric acid (50wt%) for 5 hours at 50◦C and sulfuric acid (55wt%) for
5 hours at 60◦C, respectively. CNPs-S were prepared from the hydrolysis
of cellulose filter paper (Whatman No. 1) with sulfuric acid (55wt%)
at 50◦C for half an hour. All the three types of CNPs were rod-like
particles, and their width and length distribution are summarised in
Table 2.

67
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CNPs-M (ff = 0.25)CNPs-S (ff = 0.25) CNPs-L (ff = 0.25)

CNPs-L (ff = 0.40) CNPs-L (ff = 0.55)

5 µm 5 µm

10 µm10 µm10 µm

Figure 27 | Morphology of different cellulose-based materials. Typical SEM images
of the cross-section of porous films obtained by the assembly of CNPs. Top row: films
made using CNPs of various sizes as building blocks. Bottom row: films made of
CNPs-L with same thickness but a different filling fraction.

Length(µm) Width(µm)

CNPs-S 0.23± 0.32 0.04± 0.01
CNPs-M 1.94± 0.68 0.21± 0.06
CNPs-L 2.70± 0.77 0.52± 0.02
CNCs [124] ' 0.1 ' 0.005
CNFs [56] ' 10 ' 0.02

Table 2 | Dimensions of different
cellulose particles. CNPs have a diameter
much larger than the other two major
types of cellulose nanoparticles. The
dimensions of the particles were estimated
by transmission electron microscopy (TEM)
images.

Unlike the other two major types
of cellulose nanoparticles [18],
cellulose nanocrystals (CNCs)
[124] and cellulose nanofibers
(CNFs) [56], CNPs have a
much larger width (' 100nm,
Table 2). Therefore, CNPs can
be used to investigate scattering
optimisation in a section of the
parameter space not accessible by
other types of cellulose particles.

After obtaining building blocks
with the desired dimensions,
scattering films were prepared from the CNPs suspension by vacuum
filtration followed by freeze-drying. As shown in Figure 27, CNPs
form a three-dimensional, disordered network where the particles are
connected by hydrogen bonding.

Notably, the fabrication process illustrated in this section is more
straightforward and less toxic compared with solvent exchange methods
used for the fabrication of CNFs membranes [56, 125]. Furthermore,
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Figure 28 | Optical properties of cellulose-based scattering materials a) Dependence
of the total reflectance on the size of the building blocks: CNPs-L films show a
scattering efficiency significantly higher than materials made from smaller particles.
All films have a comparable thickness and filling fraction, ' 25µm and ff ' 0.25. b)
Dependence of the total reflectance on the filling fraction: increasing the filling fraction
from ' 0.4 to ' 0.55 leads to an increase in the scattering strength of CNPs-L systems.
Both films have a thickness of ' 9µm.

tuning the filling fraction and thickness of a film was obtained by
changing the initial amount of CNPs and the duration of the vacuum
process.

6.2 optical characterisation

The experimental approach presented in Section 6.1 was used to
independently change the important scattering parameters of cellulose-
based systems, and therefore maximise their scattering efficiency.

Films made of the different CNPs introduced in Table 2 were prepared
to investigate the effect of the dimensions of the particles on scattering
optimisation. Figure 28a shows the optical response of systems with
comparable values of thickness and filling fraction (' 25µm and '
25%, respectively) but made of building blocks with different sizes.
The reflectance is maximised for ensembles of CNPs-L, which show a
reflectance significantly higher than that of CNPs-M and CNPs-S.

Once having identified the building block maximising scattering, the
effect of the filling fraction was investigated on CNPs-L materials.
Figure 28b shows the optical response of films with a comparable
thickness (9µm) but different filling fractions, ff ' 0.4 and ff ' 0.55,
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ff `t(µm) t(µm) W

CNPs-S ' 0.25 ' 20 ' 25 66

CNPs-M ' 0.25 ' 7 ' 25 83

CNPs-L ' 0.25 ' 2.5 ' 25 89

CNPs-L ' 0.40 1.6± 0.1 ' 9 84

CNPs-L ' 0.55 ' 1 ' 9 88

CNFs [56] \ \ ' 9 86

Table 3 | Whiteness and transport mean free path for cellulose-based materials.
CNPs-L systems have the highest scattering efficiency, showing the shortest `t, and
whiteness that outperforms CNFs materials.

respectively. For CNPs-L increasing the filling fraction leads to an
increase in reflectance.

The produced CNPs-based films are further compared in Table 3

in terms of their mean free path (cf. Chapter 1) and whiteness (cf.
Appendix c). CNPs-L films with ff ' 0.55 exhibit a transport mean free
path of `t ' 0.9 — comparable to that of the PMMA films presented
in Chapter 5 and to the Cyphochilus beetle (cf. Chapter 3). The mean
free path reported in Table 3 for CNPs-L with ff ' 0.40 was obtained
from measuring the total transmission on a series of samples with
different thicknesses (cf. Subsection 2.1.2 and Chapter 5). For the other
systems, the reported transport mean free paths represent a qualitative
estimate obtained from a single film and using Equation 25. In both
cases, the extrapolation length (ze in Equation 25) was quantified using
Equations 21 to 23 and the experimental filling fractions.

Moreover, Table 3 shows that CNPs-L films have a whiteness value
— calculated following the procedure discussed in Chapter 4 and
Appendix c — as high as 92. This result outperforms the state of the
art of cellulose-based scattering materials, i.e., CNFs systems [56]. Note
that Table 3 does not report a value of mean free path for the CNFs-
based white membranes. Indeed, the fibrillar systems in Reference [56]
are characterised by a light transport regime which is not diffusive (cf.
anomalous diffusion, Section 1.3) and where a mean free path cannot
be defined.

Numerical simulations were employed to provide a qualitative
understanding of the scattering properties of different CNPs systems.
First, the single-scattering properties of the different cellulose building
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Figure 29 | Numerical, three-dimensional, simulations of the single-particle
properties of CNPs. a) Schematics of the simulation setup used to calculate the
scattering from CNPs, which were approximated as rods with values of diameter and
length from Table 2. The incoming light and its polarisation are represented with black
and red arrows, respectively. The scattered intensity was acquired in all directions.
b&c) Scattering cross section (σs) and angular distribution of the scattered light
(differential scattering cross section) for the three different types of CNPs, respectively.
The scattering cross section was calculated as the ratio between the power of the
incident source and that of the scattered radiation. The results presented in b&c) were
obtained averaging over two orthogonal polarisations.

blocks are presented in Figure 29. Figure 29b shows that CNPs-L
particles exhibit the largest scattering cross section (cf. Equation 10),
i.e., the ratio between the power of the incident source and that of the
scattered radiation.

However, this result does not allow to infer on the response of CNPs
assemblies. Indeed, as discussed in Chapter 1, the multiple scattering
response is also determined by the differential scattering cross section
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Figure 30 | Numerical, two-dimensional, simulations of the optical properties of
CNPs-based systems. a) Simulated optical response for the ensemble of CNPs-L, M,
S with different filling fractions. b) Simulated optical response for the ensemble of
CNPs-M (d = 210nm) and CNPs-L (d = 520nm) with different clustering order. All
simulated systems have a thickness of 10µm.

(cf. Equation 8). This parameter is shown in Figure 29c for the different
building blocks. CNPs-L show an angular distribution of the scattered
light which is asymmetric — in contrast with CNPs-S and CNPs-
M, where the scattering is symmetric (resembling Rayleigh scatterers,
Figure 3).

As the validity of Equation 28 — which links the single-scattering
properties with the transport mean free path — in anisotropic systems
is debatable [57, 62, 63], the multiple scattering response of the films
shown in Figure 28 was investigated using the algorithm presented in
Subsection 2.2.2.

Figure 30a compares the simulated total reflectance averaged over the
visible range for ensembles of different CNPs particles as a function
of the filling fraction. The numerical results confirm what is reported
in Figure 28b: for materials made of CNPs-L particles, increasing the
filling fraction leads to an increase of reflectance.

Figure 30a predicts the highest scattering efficiency for CNPs-M systems,
in contradiction to the experimental results in Figure 28a. This difference
can be understood by taking a closer look at the morphology of the
CNPs films (Figure 27). In both CNPs-S and CNPs-M films, it is possible
to observe flakes made of packing of few nanoparticles. This effect is
evident for CNPs-S, where the resulting films show layered structures
on top of the network instead of individual connections. The origin of
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these different morphologies arises during the freezing step: ice crystals
formed in the wet films pushed CNPs-S (or CNPs-M) into the inter-
crystalline domain boundaries, which leads to the formation of clusters
[126]. In CNPs-L films, the absence of flakes and layers can be explained
by the relatively large size of the nanoparticles, leading to the creation
of pores which are large enough to accommodate the ice crystals —
thus the ice crystals would not push CNPs-L together.

Clusters of CNPs along their short axis were used as building blocks to
simulate the presence of flakes (Figure 30b). The cluster order quantifies
the number of starting building blocks comprised in every flake. Note
that the layered structure observed in CNPs-S films cannot be described
by a finite clustering order. For CNPs-M, increasing the clustering order
leads to a reduction of reflectance, justifying the experimental results
presented in Figure 28a.

Moreover, this result shows that by fine-tuning the size of the CNPs and
avoiding the formation of clusters in the film could further increase the
optical properties reported in Figure 28.

6.3 conclusions

This chapter presented an experimental method to manufacture a novel
type of cellulose building blocks for the fabrication of bioinspired,
highly-scattering films. In detail, rod-shaped, cellulose nanoparticles
(CNPs) of different dimensions were obtained by adjusting both the
starting cellulose material and the acid hydrolysis conditions. These
nanoparticles were assembled into films whose filling fraction and
thickness were controlled via filtration and freeze-drying. A mean free
path of' 1µmwas achieved by tuning the dimensions and the assembly
of the CNPs. In conclusions, CNPs-based systems, due to their high
scattering strength and biocompatible nature, represent a promising
route for the fabrication of sustainable, white materials.





S U M M A RY A N D F U T U R E P E R S P E C T I V E S

This thesis demonstrated that anisotropy allows for improvements in
the scattering efficiency of low refractive index media. These results
introduce novel concepts in the study of disordered systems and
the production of white materials. In particular, they showcase how
to exploit natural resources to replace commercially available white
enhancers made from inorganic high refractive materials, which have
recently raised safety concerns.

summary

After introducing in Part I the concepts and tools necessary to investigate
disordered media, Part II showed how nature exploits anisotropy to
optimise whiteness in biological systems. In particular, after quantifying
the scattering efficiency of the beetle genus Cyphochilus, a numerical
model was developed to understand the design principles behind its
outstanding optical properties. The presented model demonstrated that
using anisotropic building blocks, with a certain degree of alignment,
significantly increases the whiteness of low refractive index media.

In Part III, this knowledge was exploited for the manufacturing
of bioinspired, white materials. First, a polymer phase separation
technique was used to fabricate anisotropic scattering networks made
solely of polymethyl methacrylate (PMMA). Through tuning the
fabrication parameters, materials with scattering properties comparable
to Cyphochilus were obtained. Second, as a further step towards fully
sustainable and biocompatible products, similar results were obtained
using cellulose as a constituent material. To achieve high scattering
strength in cellulosic systems, a method to fabricate a novel kind of
building blocks, i.e., cellulose nanoparticles (CNPs), was developed. In
particular, this method allows for the tuning of the dimensions of the
CNPs and to assemble them in films with a controlled filling fraction.
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future perspectives

The results reported in this thesis unveil new directions for both
applications and fundamental studies of light propagation in disordered
media.

From an applications perspective, this work can substantially impact the
pigment industry by allowing the removal of inorganic particles (titania)
from everyday goods. A necessary step towards the use of bioinspired
products is the self-assembly of such anisotropic building blocks in
spherical supraparticles. White, structurally-coloured pigments could
be achieved by combining the methodologies presented in Part III with
droplet-based microfluidics [127]. Exploiting a confined geometry will
allow for better control of the self-assembly dynamics compared to
the planar case; therefore enabling the attainment of particles whose
building blocks have different degrees of orientational order. According
to the theoretical predictions in Chapter 4, controlling the orientational
order will increase the scattering performances reported in Part III.
Moreover, the whiteness of structurally-coloured pigments could be
further improved by fine-tuning their filling fraction and the dimensions
of the building blocks. The generalisation of the algorithm presented in
Chapter 4 to three dimensions will allow the quantitative prediction —
and therefore the engineering — of the optical response of bioinspired
materials. Finally, chemical methods could be exploited to functionalise
the biopolymer building blocks in order to form hydrophobic pigments.
This step would enable the use of structurally-coloured particles in
water formulations, as commonly required for cosmetics and paints.

From a fundamental perspective, the study of anisotropic media brings
new challenges and opportunities to the field of disordered photonics.
Anisotropic systems possess an extra degree of freedom compared
to their isotropic counterparts: the degree of alignment. Tuning the
alignment of anisotropic, disordered systems could allow the control
of light propagation and explore the transition between different
scattering regimes. Moreover, the behaviour of polarisation in three-
dimensional, disordered systems in the presence of anisotropy could
deviate from the isotropic case, where light is rapidly depolarised in
the multiple scattering regime [4]. Finally, combining anisotropy and
multiple scattering could be of further interest in the study of light
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transport phenomena beyond diffusion, such as anomalous diffusion
[52–55] or Anderson localisation [76–78].





Part IV

A P P E N D I C E S





a
M O N T E C A R L O C O D E F O R A N I S O T R O P I C M U LT I P L E
L I G H T S C AT T E R I N G

This Mathematica code has been used to generate the numerical results in
Section 3.2. Any changes to the code will be uploaded to the following
repository.

Definition of the simulation parameters:

ClearAll["Global ‘ * "];
nWalkers = 1; (*N\[Degree] of photons used*)

lowerCut = 1;

thickness = 7;(*Sample thickness*)

γ = 1.4; (*XY components of the TMFP*)

a = 0.725; (*Anisotropy parameter*)

γz = γ*a; (*Z component of the TMFP*)

scatteringorder = (thickness/γz)2;(*Parameter that you can tune to understand the influence

of the scattering order on the interference*)

indexWalker = 0;

indexReflected = 0;

indexTransmitted = 0;

indexOut = 0;

indexSingle = 0;

indexBouncedR = 0;

indexBouncedT = 0;

listα = Table[0, {nWalkers}];

listα2 = Table[0, {nWalkers}];

listr = Table[0, {nWalkers}];

listz = Table[0, {nWalkers}];

values = Join[Range[-10, -10, 1], Range[1, 1, 1]];

Calculation of R for internal reflections:

nc = 1.55; (*Chitin refractive index*)

α = (nc2 - 1)/(nc2 + 2);

n[f_] =
√
((1 + 2 f*α)/(1 - f*α)); (*Effective refractive index, from Maxwell-Garnett’s

theory*)

n1 = n[0.45]; (*Chitin filling fraction in the white beetle, from Wilts et al.*)

n2 = 1;
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Rs[θ_] = Abs[(n1*Cos[θ] - n2*
√
(1 - (n1/n2*Sin[θ])

2))/(n1*Cos[θ] +n2*
√
(1 -

(n1/n2*Sin[θ])
2))]2; (*Fresnel’s coefficients*)

Rp[θ_] = Abs[(-n2*Cos[θ] + n1*
√
(1 - (n1/n2*Sin[θ])

2))/(n2*Cos[θ] + n1*
√
(1 -

(n1/n2*Sin[θ])
2))]2;

R[θ_] = (Rs[θ] + Rp[θ])/2;

Ru[θ_] = (Rs[θ] + Rp[θ])/2;

c1 = NIntegrate[Ru[θ]* Sin[θ]*Cos[θ] , {θ, 0, \[Pi]/2}, MaxRecursion -> 100];

c2 = NIntegrate[Ru[θ]* Sin[θ]*(Cos[θ])
2, {θ, 0, \[Pi]/2}, MaxRecursion -> 100];

Ravg = (3 c2 + 2 c1)/(3 c2 - 2 c1 + 2);

Functions used in the main loop to discriminate the photons:

doS1[] := ((*Singly-scattered photons. They do not contribute to the CBS effect*)

indexSingle++;

Break[];

);

doS2[] := ( (*Photons scattered more than the scattering order decided*)

indexWalker++;

indexOut++;

Break[];

);

doRef[] := ( (*Photons that contributes to the CBS: we want to calculate the distance

between the first and the last scattering positions*)

lastPoint = oldPoint;

outPoint = currentPoint;

\\delta = firstPoint - lastPoint;

If[

firstPoint == lastPoint, Break[],

listα[[indexWalker]] = ArcSin[\\delta[[3]]/
√
[\\delta[[1]]2 + \\delta

[[2]]2 + \\delta[[3]]2]];

listr[[indexWalker]] =
√
((firstPoint[[1]] -lastPoint[[1]])2 + (

firstPoint[[2]] - lastPoint[[2]])2 +(firstPoint[[3]] - lastPoint

[[3]])2);

listz[[indexWalker]] = outPoint[[3]];

indexWalker++;

indexReflected ++;

Break[];

]

);

doTra[] := ((*Photons transmitted*)

lastPoint = oldPoint;

indexWalker++;

indexTransmitted ++;

Break[];

);

doSpecR[] := ((*Photons reflected at the entrance surface of the
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material (z=0) back in the material*)

indexBouncedR++;

lastPoint = oldPoint;

outPoint = currentPoint;

\\delta2 = lastPoint - outPoint;

intercept = RegionCentroid[RegionIntersection[InfiniteLine

[{lastPoint, outPoint}], InfinitePlane[{{0, 0, 0}, {0, 1, 0},

{1, 0, 0}}]]];

rt = ReflectionTransform[{\\delta2[[1]], \\delta2[[2]], 0},intercept];

specular = rt[lastPoint];

specular2 = -(γz)*Log[RandomReal[]];

specularPoint = RegionCentroid[RegionIntersection[InfiniteLine[{intercept,

specular}], InfinitePlane[{{0, 0, specular2},{0, 1, specular2}, {1, 0,

specular2}}]]];

currentPoint = specularPoint;

);

doSpecT[] := ((*Photons reflected at the exit surface of the material (z=thickness) back in

the material*)

indexBouncedT++;

lastPoint = oldPoint;

outPoint = currentPoint;

\\delta2 = lastPoint - outPoint;

intercept =

RegionCentroid[ RegionIntersection[InfiniteLine[{lastPoint, outPoint}],

InfinitePlane[{{0, 0, thickness}, {0, 1, thickness}, {1, 0,thickness

}}]]];

rt = ReflectionTransform[{\delta2[[1]], \delta2[[2]], 0}, intercept];

specular = rt[lastPoint];

specular2 = thickness + (γz)*Log[RandomReal[]];

specularPoint = RegionCentroid[RegionIntersection[InfiniteLine[{intercept,

specular}], InfinitePlane[{{0, 0, specular2}, {0, 1, specular2}, {1, 0,

specular2}}]]];

currentPoint = specularPoint;

);

Main loop where the random walk is performed:

Timing[

While[

indexWalker <= nWalkers,

firstPoint = {0, 0, -(γz)*Log[RandomReal[]]};

(*Depth of 1st scatter: probability sampled using an inverse sampling techinique*)

oldPoint = firstPoint;

currentPoint = {0, 0, 0};

currentOrder = 1;

lastPoint = {0, 0, 0};

Ravg = 0;

While[True, (*While loop, the conditions to stop it are in the following Ifs*)

φ = Random[Real, {0, \[Pi]}];

ψ = Random[Real, {0, 2 \[Pi]}];

δxy = -γ*Log[RandomReal[]];

δz = a*δxy;
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randomStep = {δxy*
√
(1 - Cos[φ]2)*Cos[ψ], δxy*

√
(1 - Cos[φ]2)*Sin[ψ],δz*Cos[φ

]};

currentPoint = {oldPoint[[1]] + randomStep[[1]], oldPoint[[2]] + randomStep[[2]] ,

oldPoint[[3]] + randomStep[[3]]};

r = RandomReal[];

Which[

currentPoint[[3]] < 0 && currentOrder <= lowerCut , doS1[],

currentPoint[[3]] < 0 && currentOrder > scatteringOrder, doS2[],

currentPoint[[3]] < 0 && currentOrder > lowerCut && currentOrder <=

scatteringOrder && r > Ravg, doRef[],

currentPoint[[3]] < 0 && currentOrder > lowerCut && currentOrder <=

scatteringOrder && r <= Ravg, doSpecR[],

currentPoint[[3]] > thickness && r <= Ravg, doSpecT[],

currentPoint[[3]] > thickness, doTra[]

];

currentOrder++;

oldPoint = currentPoint;

]

]

]

Calculation of the coherent backscattering (CBS) line shape:

λ = 0.635;

(*Clearing the zeros that correspond to transmitted photons*)

a = DeleteCases[listr, 0];

b = DeleteCases[listα, 0];

c = DeleteCases[-listz, 0];

(*Coherent term*)

γc[θ_] :=
indexReflected∑

i=1
(Exp[(-c[[i]])/γz]*\((1 - Ravg))*Cos[2π/λ]a[[[i]]]*((Sin[b[[[i]]]]

- Sin[b[[[i]]] + θ]))]));

(*To normalise the CBS it is necessary to perform a simulation for semi-infinite media (we

used OT=1000). Simulations with different R requires different normalisatinos *)

CBS[θ_] := γc[θ];

Exporting the data for further analysis:

θmin = 0.0;

θmax = 0.4;

θstep = 0.2/57;

θstepnumber = Ceiling[(θmax - θmin)/θstep];

simulationData = Table[0, {θstepnumber}, {2}];

For[i = 1, i <= θstepnumber, i++,

simulationData[[i, 1]] = N[θmin + (i - 1)*θstep];

simulationData[[i, 2]] = CBS[θmin + (i - 1)*θstep];

]



b
C O D E F O R G E N E R AT I N G 2 D D I S O R D E R E D
S T R U C T U R E S

This Python code has been used to generate the ensembles of anistropic
particles presented in Chapter 4. Any change to the code will be
uploaded to the following repository. The inverse-design code to
generate structures with a tailored structure factor is available upon
request.

Definition of the simulation parameters:

from matplotlib import pyplot as plt

from matplotlib import interactive

from matplotlib.pyplot import figure, show

from shapely.geometry import Polygon

from shapely.geometry.base import BaseGeometry

from shapely.geometry.point import Point

from shapely import affinity

from matplotlib.patches import Polygon

import numpy as np

import pylab as pl

import time

from termcolor import colored, cprint

from scipy.stats import norm

from datetime import datetime

import os

def main():

bbox=(-2.5,2.5) #sample size ($\mu$m)

step=7 #number of, statistical identical, random structures to generate

alphaMean=0 #particles’ orientation

alphaSigma=0 #deviation from the average orientation

if index<(indexMin+step):

c=7 #aspect ratio

r=0.1 #radius of the corresponding (same area) isotropic particle (in $\mu$m)

rsigma=r*30/100 #polydispersity

ff=0.60 #filling fraction

Main loop where the particles are sequentially added:

ellipses=[]
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currentFF=0

particlesToAdd=[]

while currentFF<ff:

rdd=normDist(r,rsigma)

particlesToAdd.append(rdd)

currentFF=currentFF+(rdd*rdd*c*3.1427)/(((bbox[1]-bbox[0])**2))

particlesToAdd=np.array(particlesToAdd)

particlesToAdd=np.flip(np.sort(particlesToAdd),0) #reodered to start adding from the largest

particles

aOccupied=0

k=0

iteration=0

resampled=0 #checks for eventual size-rejection

aOccupied=0

while k<len(particlesToAdd):

while(iteration < 20000):

iteration += 1

rd=particlesToAdd[k]

alpha = normDist(alphaMean, alphaSigma)

center = boxForcing(bbox[0], bbox[1], rd, c, alpha)

x = center[0][0]

y = center[0][1]

ellips = create_ellipse((x, y), rd, (1, c), alpha)

overlap = pl.array([ellips.intersects(ellipses[i][4]) for i in range(len(ellipses))

])

if all(overlap[i] == False for i in range(len(ellipses))):

one_row = []

one_row.extend([x, y, rd, alpha, ellips])

ellipses.append(one_row)

aOccupied +=rd*rd*c*3.1427

cprint(aOccupied/((bbox[1]-bbox[0])**2), ’green ’)
k+=1

iteration=0

break

if iteration == 20000:

cprint( ’ rejected ’, ’yellow ’)
resampled+=1

break

else:

iteration=0

rd = normDistRejected(r,rd, rsigma) #samples a smaller particle

radDist=[]

for i in range(len(ellipses)):

radDist.append(ellipses[i][2]*2*c)

(mu, sigma) = norm.fit(radDist)

if 0: #visualize the size distribution

cprint(" Plotting legth distribution ","cyan")
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(mu, sigma) = norm.fit(radDist)

xmin, xmax = (mu-5*sigma,mu+5*sigma)

x = pl.linspace(xmin, xmax, 1000)

pl.hist(radDist,bins=15,normed=True)

p = norm.pdf(x, mu, sigma)

pl.plot(x, p, ’k ’, linewidth=2)

pl.xlabel( ’Length ($\mu$m) ’)
pl.ylabel( ’ Probability ’)
pl.title(r ’$\mathrm{Radii\ distribution\:}\ \mu=%.3f ,\ \sigma=%.3f$ ’ %(mu, sigma))

pl.savefig("RadiusDist"+str(index)+" . pdf")
pl.close( ’ a l l ’)
pl.xlim([0,0.4])

if 1: #visualise the final structure

vertices=pl.array([ellipses[i][4].exterior.coords.xy for i in range(len(ellipses))])

patches=pl.array([Polygon(vertices[i].T,color = ’black ’, alpha = 1) for i in range(len(

ellipses))])

fig,ax = plt.subplots()

ax.set_xlim([bbox[0],bbox[1]])

ax.set_ylim([bbox[0],bbox[1]])

ax.set_aspect( ’equal ’)

for i in range(len(patches)):

ax.add_patch(patches[i])

pl.title("Distribution : ( "+str(mu)[0:5]+" , "+str(sigma)[0:5]+" ) ; Filling Fraction : "+str(
ff))

pl.savefig("Ensemble"+str(index)+" . pdf")
pl.close( ’ a l l ’)

Auxiliary functions:

def normDist(r,rsigma): #defines an always positive normal distribution (for very broad size

distributions)

x=pl.normal(r,rsigma)

while x<0:

x=pl.normal(r,rsigma)

return x

def normDistRejected(r,rd,rsigma): #looks for smaller particles in case of rejection

x=pl.normal(r,rsigma)

while x>rd:

x=pl.normal(r,rsigma)

return x

def create_ellipse(center,radius,lengths,angle=0): #creates an ellipse using Shapely

"""

create a shapely ellipse. adapted from

https://gis.stackexchange.com/a/243462

"""
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circ = Point(center).buffer(radius)

ell = affinity.scale(circ, int(lengths[0]), int(lengths[1]))

ellr = affinity.rotate(ell, angle)

return ellr

def boxForcing(bMin,bMax,radius,c,angle): #confines the particles inside the sample

x=pl.uniform(bMin,bMax)

y=pl.uniform(bMin,bMax)

if x<(bMin+c*radius):

x=x+(radius)*(1+c*pl.absolute(pl.sin(pl.radians(angle))))

if x>(bMax-c*radius):

x=bMin+c*radius

if x>(bMax-c*radius):

x=x-(radius)*(1+c*pl.absolute(pl.sin (pl.radians(angle))))

if x<(bMin+c*radius) :

x=bMax-c*radius

if y>(bMax-c*radius):

y=y-(radius)*(1+c*pl.absolute(pl.cos(pl.radians(angle))))

if y<(bMin+c*radius) :

y=bMax-c*radius

if y<(bMin+c*radius):

y=y+(radius)*(1+c*pl.absolute(pl.cos(pl.radians(angle))))

if y>(bMax-c*radius):

y=bMin+c*radius

center=[]

center.append([x,y])

return center

indexMin=1

indext=1

indexMax=2

for i in range(indext,indexMax):

index=i

main()



c
C O L O U R S PA C E M A P P I N G A N D W H I T E N E S S

In Chapter 4 a numerical method to optimise scattering in granular
media was presented. The degree of optimisation of each different
system was classified in terms of their whiteness. This parameter allows
to directly relate the spectral response of a medium with how it is
perceived by the human eye - therefore resulting crucial for applications.

The whiteness of each system was quantified by mapping the simulated
spectra in the CIELAB colourspace. CIELAB is a three-dimensional real
number space, where the L coordinate quantifies the brightness of a
material, while a∗ and b∗ are the green-red and blue-yellow coordinates
describing the saturation of a colour. Therefore L depends on the
scattering strength of a system while a∗ and b∗ on its spectral dispersion.
Importantly, the choice of using the CIELAB colourspace was motivated
by its euclidian nature. This property allows an intuitive definition of
whiteness (W) as [100, 128]:

W = 100− |Xw − Xm| (48)

where |...| denotes the three-dimensional euclidian distance, Xw =

{100, 0, 0} and Xm are the CIELAB coordinates of a perfect broadband
diffuser (also known as white point) and of the material of interest,
respectively.

More in detail, the CIELAB coordinates of a given simulation were
calculated in two steps: First, from the simulated spectra, the so-
called tristimulus values (XYZ) were estimated using CIE Coordinate
Calculator, a Matlab plugin [129]. To calculate XYZ the reflectance
curves were multiplied by a CIE standard illuminant and then
convoluted with the average human response to wavelengths of light
(standard observer). The result of this first conversion step is shown in
Figure 31b, where the color coordinates of the spectra in Figure 31a are
represented in the xy chromaticity diagram. The xyY space is a widely
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Figure 31 | Procedure to quantify the whiteness of a system. a) xy chromaticity
diagram of the spectra in panel Figure 21. b) Three-dimensional plot showing the
CIELAB coordinates of the spectra in Figure 21.

n r0(nm) c ff W

2.60 50 500 0.4 91

2.60 100 1 0.3 90

2.60 150 6 0.4 89

2.60 250 4 0.5 89

2.60 350 4 0.5 88

2.60 500 4 0.5 88

1.55 150 18 0.3 90

Table 4 | Whiteness comparison for high
refractive index media. Parameters which
maximise whiteness (W) for ensembles of
particles with different sizes (r0, i.e. the
radius at c = 1), refractive index (n), but
same thickness (t = 10µm).

used derivative of XYZ, whoseNote that all
conversions

reported in this
thesis were
performed

assuming a
standard observer
(CIE 1931 2

◦) and
a standard
illuminant

(Daylight D65).

coordinates can be calculated
by using the xyl2xyz, a built-
in Matlab function. Second,
the XYZ values were converted
in CIELAB coordinates using
xyz2lab, also a built-in Matlab
function. The whiteness values
for the spectra in Figure 31a are
reported in Appendix c.

The importance of classifying
scattering materials in terms of
their whiteness is emphasised
by the results in Chapter 4. In
particular, it was shown that
anisotropic, low refractive index media can obtain a whiteness
comparable to their isotropic, high refractive index counterpart thanks
to their lower spectral saturation. Notably, a comparison of these two
classes of systems only in terms of their scattering efficiency would have
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Figure 32 | Simulated optical response for structures with different degrees of
polydispersity: a) spectral dependence, b) integrated reflectance. All the structures
have a thickness of 10µm, ff = 0.3, and isotropic building blocks with n = 1.55 and
r = 250nm.

PDI n r0(nm) c ff W

0 1.55 250 1 0.3 81

0.1 1.55 250 1 0.3 81

0.2 1.55 250 1 0.3 82

0.3 1.55 250 1 0.3 82

Table 5 | Effect of polydispersity on the whiteness. Values of whiteness (W) for
ensembles of particles with different polydispersity index (PDI).

erroneously concluded that high refractive index media outperform
ensembles of anisotropic, low refractive index particles.

The following sections collect the data supporting the optimisation
procedure presented in Chapter 4.

c.1 the effect of polydispersity

The simulations presented in the main text account for a polydispersity
in the size of the particles. Increasing the polydispersity cancels out the
resonant behaviour of the scattering (Figure 32), but it does not affect
the whiteness (Table 5). The polydispersity index (PDI) in Table 5 is
defined as the ratio between the standard deviation and the mean value
of the size distribution of the particles.
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c.2 details of the optimisation procedure

The values of aspect ratio (c) and filling fraction (ff) maximising
scattering were obtained following the procedure discussed in
Section 4.1. Table 6 and Table 7 provides the values of whiteness (W) as
a function of the aspect ratio for particles with n = 1.55 and n = 2.60,
respectively.

n r0(nm) c t(µm) ff W

1.55 100 1 10 0.2 69

1.55 100 2 10 0.2 80

1.55 100 4 10 0.2 86

1.55 100 6 10 0.2 87

1.55 100 8 10 0.2 88

1.55 100 10 10 0.2 87

1.55 150 1 10 0.1 70

1.55 150 2 10 0.1 68

1.55 150 4 10 0.1 70

1.55 150 6 10 0.1 76

1.55 150 8 10 0.1 80

1.55 150 10 10 0.1 83

1.55 150 16 10 0.1 84

1.55 150 18 10 0.1 85

1.55 150 20 10 0.1 84

1.55 150 50 10 0.1 79

1.55 150 100 10 0.1 78

1.55 250 1 20 0.05 68

1.55 250 2 20 0.05 64

1.55 250 4 20 0.05 59

1.55 250 6 20 0.05 58

1.55 250 8 20 0.05 60

1.55 250 10 20 0.05 66

1.55 350 1 20 0.08 72

1.55 350 2 20 0.08 73

1.55 350 4 20 0.08 63

1.55 350 6 20 0.08 66

1.55 350 8 20 0.08 68

1.55 350 10 20 0.08 67

Table 6 | Whiteness optimisation for low refractive index systems. For every r0
systems with same thickness (t) and filling fraction (ff) were compared.
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n r0(nm) c t(µm) ff W

2.6 50 1 10 0.2 85

2.6 50 2 10 0.2 87

2.6 50 4 10 0.2 87

2.6 50 6 10 0.2 88

2.6 50 8 10 0.2 88

2.6 50 10 10 0.2 89

2.6 50 20 10 0.2 89

2.6 50 60 10 0.2 90

2.6 50 200 10 0.2 91

2.6 50 500 10 0.2 91

2.6 100 1 10 0.2 89

2.6 100 2 10 0.2 88

2.6 100 4 10 0.2 87

2.6 100 6 10 0.2 87

2.6 100 8 10 0.2 87

2.6 100 10 10 0.2 88

2.6 150 1 10 0.2 86

2.6 150 2 10 0.2 87

2.6 150 4 10 0.2 87

2.6 150 6 10 0.2 88

2.6 150 8 10 0.2 87

2.6 150 10 10 0.2 86

2.6 250 1 10 0.2 87

2.6 250 2 10 0.2 88

2.6 250 4 10 0.2 89

2.6 250 6 10 0.2 88

2.6 250 8 10 0.2 88

2.6 250 10 10 0.2 87

2.6 350 1 10 0.2 83

2.6 350 2 10 0.2 86

2.6 350 4 10 0.2 88

2.6 350 6 10 0.2 87

2.6 350 8 10 0.2 87

2.6 350 10 10 0.2 86

2.6 500 1 10 0.2 81

2.6 500 2 10 0.2 84

2.6 500 4 10 0.2 86

2.6 500 6 10 0.2 87

2.6 500 8 10 0.2 86

2.6 500 10 10 0.2 86

Table 7 | Whiteness optimisation for high refractive index systems. For every r0 we
compared systems with same thickness (t) and filling fraction (ff).
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