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Development of nascent focal adhesions in spreading cells

Abstract

The eukaryotic cell develops organelles in order to sense and respond to the mechanical properties of its sur-
roundings. These mechanosensing organelles aggregate into symmetry-breaking patterns to mediate cell motion
and differentiation on substrate. The spreading of a cell plated onto a substrate is one of the simplest paradigms
in which angular symmetry-breaking assemblies of mechanical sensors are seen to develop. We review evidence for
the importance of the edge of the cell-extracelullar matrix adhesion area in the aggregation of mechanosensors, and
develop a theoretical model of mechanosensors clustering into nascent focal adhesions on this contact ring. To study
the spatial patterns arising on this topological feature, we use a 1D lattice model with the nearest-neighbor inter-
action between individual integrin-mediated mechanosensors. We find the effective Ginzburg-Landau free energy
for this model, and determine the spectrum of spatial modes as the cell spreads and increases its contact area with
the substrate. To test our model, we compare its predictions with measured distributions of paxillin in spreading
fibroblasts.

STATEMENT OF SIGNIFICANCE. Numerous theoretical, experimental and computer simulation studies have
recently probed the mechanisms and signalling pathways mediating the response of a eukaryotic cell to interactions
with a substrate. Integrin-based adhesion complexes are known to be the individual units controlling mechanical
sensing, and their dense aggregation into focal adhesions leads to cells developing polarity, and eventually - loco-
motion. Here we develop a theoretical model that suggests that physical interactions between individual adhesion
complexes, mediated by a double-functional protein, is the factor that defines the initial breaking of symmetry of
the cell spreading on a substrate, and predicts the characteristic period of modulation above the critical size of the
adhesion area.

1 Introduction

Most eukaryotic cells respond to external physical stim-
uli, and exert forces on surrounding cells and the
extracellular matrix (ECM). They do this by sub-
stantially changing their overall shape, and develop-
ing localized mechanosentive and mechanotransducive
organelles, such as focal adhesions (FAs), stress fibres
and motile membrane protrusions (1, 2). These morpho-
logical changes can be rapid and may help to determine
the behavior of the cell, including how it differentiates
(3), moves (4, 5) and proliferates (6).

A cell becomes less symmetric when subjected to
external physical and chemical cues (7). Indeed, eukary-
otic cells become polarised during chemotaxis (8) and
durotaxis (9, 10). Molecular pathways for both of these
mechanisms are currently under investigation (11, 12),
and a full network of interactions between the known
components of the integrin adhesome underpinning
durotaxis has been identified (13). However, we lack
a detailed understanding of how (or rather - why)
their individual sensors arrange themselves spatially. To
progress with this problem, one needs a physical model

accounting for the assembly of the force sensing and
force transduction machinery within a generic cell.

Attempting such an analysis in a general geometry
with a complex set of external cues is very complicated.
Here we begin by reducing the problem down to the sim-
plest possible (while still experimentally viable) config-
uration, which displays a defined allosteric organization
of the constituent molecules. This paper is organized as
follows: in the next section, which continues the Intro-
duction, we summarize the biological background of the
problem, and identify the key elements that will define
our mathematical model. Section 3 (Methods) explains
how we construct the model: we start with the interac-
tion Hamiltonian, sum the partition function to obtain
the effective free energy of the problem, and express
it as a function of the inhomogeneous local density of
individual mechanosensors. This section also examines
the key approximations and limitations of the model,
while the details of analysis are given in Supplementary
Information. Section 4 presents the results of the model,
which predicts the critical size of the expanding cell
when the instability occurs and the characteristic period
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2 2 BIOLOGICAL BACKGROUND

of emerging dense clusters of mechanosensors. This sec-
tion also compares model predictions with experimental
data: specifically, we find that a typical fibroblast on a
flat substrate would generate about 100 nascent FAs,
before they further coarsen into a few well-developed
FAs. We conclude with a more general discussion of the
limitations of our model and of its broader biological
relevance.

2 Biological background

The same mechanosensitive organelles assemble regard-
less of whether or not the cell is subjected to large scale
physical gradients (e.g. of stiffness and force). Moreover,
cells placed in a homogeneous medium can still undergo
stiffness-induced differentiation and, more remarkably,
they can change their shape to allow for short periods of
straight-line motion (14). The clearest example of this
is when a near-spherical cell is taken from suspension
and placed on an isotropic and homogeneous flat sub-
strate: its shape changes drastically in a process known
as cell spreading due to a combination of energetically
favorable surface adhesion and costly remodeling of its
cytoskeleton (15, 16). There are distinct initial fast pas-
sive spreading phase (17, 18), and the subsequent slower
active (energetically costly) spreading phase (19–21).

A symmetry-breaking pattern of membrane protru-
sions develops in the plane of attachment as the cell flat-
tens during spreading. Most of these protrusions form
towards the end of cell spreading: Johnston et al. (22)
found that lamellipodia developed in fibroblasts after 30
minutes of spreading on fibronectin substrate. In com-
parison, key experiments by Fouchard et al. (23), and
others (16, 24), suggest that integrin-mediated adhe-
sion receptors begin to cluster around 3 minutes after
initial contact with substrate. Here we must distinguish
between ‘mechanosensors’ (or equivalently, the individ-
ual protein complexes with integrin at the distal end,
binding to F-actin at the proximal end, providing the
force chain from the substrate to the pulling actin fila-
ment, schematically drawn in Fig. 1), and the growing
clusters of these individual mechanosensors (developing
from nascent into full focal adhesions, where they are
laterally bound into compact clusters).

Time-lapse immunofluorescence imaging (23, 24)
shows that nascent focal adhesions (FAs) first develop
once the cell has reached a particular shape of a spher-
ical dome, and initially localize near the edge of the
contact area. It also appears that clustering occurs with
a specific length scale around the edge. The scenario is
shown schematically in Fig. 2.
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Figure 1: Sketch of a possible mechanism for the 5-step
assembly of a mechanosensing complex, from Bell et al.
(16). The following stages must occur and could limit
the rate of sensor formation: integrin must be activated
and bind to the ECM for adhesion to occur, talin must
bind to F-actin (with paxillin and vinculin participat-
ing in the complex) for the force chain to form, the focal
adhesion kinase (FAK) sensor is incorporated into the
force chain (27), and neighboring sensors must inter-
act to form a cluster. We suggest that α-actinin could
be an appropriate mediator of nearest-neighbor interac-
tions (28). Mechanosensors can only start to aggregate
after a large proportion of them have formed, and the
bridging protein could reach across to the neighbors.

Guo and Levine (25, 26) examined the development
of spatial patterns of aggregates of cell-surface recep-
tors, and showed that simple nearest-neighbor interac-
tions between sensors arranged as a lattice gas lead
to a phase transition when a uniform receptor distri-
bution starts to aggregate into macroscopic clusters.
Here we will find a similar phenomenon with clustering
mechanosensors on the cell adhesion edge. The expan-
sion of the cell-ECM contact area during spreading com-
plicates the analysis of sensor aggregation. As the cell
flattens, the lattice size continuously increases, which
results in a decrease in the average sensor concentra-
tion, but also an increase in the number of possible
arrangements of the sensor distribution. Hence, a phase
transition can occur within a spreading cell, in our case
driven by the competition between the decreasing sensor
density and their attractive nearest-neighbor interaction
that promotes closer proximity.

2.1 Cell shape changes during spreading.

When the cell comes in contact with a plane sur-
face covered with ECM proteins, a small portion of
the cell initially anchors to the substrate, possibly by
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Figure 2: Upper panels: side-on sketch of a cell spreading on a 2D ECM surface. The cell settles by sedimentation,
passive spreading and then active spreading (29). This results in a balance between adhesion energy and acto-myosin
cortex deformation at first, followed by a protrusive force exerted by F-actin polymerization and transduced at focal
adhesions (inset on the right). Lower panels: a view from above on the increasing cell-ECM contact area during
spreading. As observed by Fouchard et al. (23), mechanosensors aggregate into FAs during cell spreading. After
cell spreading, on sufficiently stiff substrates, FAs may aggregate further into super-FAs at fibronexi connected by
large actin stress fibres (rightmost sketch).

hydrophobic or Van der Waals interactions (17, 30);
this corresponds to Phase I of spreading as classified
by Khalili and Ahmad (29). The cell membrane con-
tains a large number of receptors which participate in
binding to ECM ligands (31). These receptors then pro-
vide an added surface tension and serve as an energy
source for the deformation of the cortex that takes
place at the start of cell spreading. This process does
not require the cell to expend any energy in the form
of ATP-dependent protein polymerization or myosin
motor action. This ‘passive spreading’ corresponds to
Phase II of cell spreading following the classification
(29). On sufficiently stiff substrates, this is subsequently
followed by the ‘active spreading’ phase (21), or the
Phase III (29); it lasts longer and involves slower spread-
ing until the flattened cell reaches its maximal area. The
rate of these processes depends on temperature due to
the internal thermally-activated processes (16).

Simple physical models account well for these
phases. Passive spreading matches the spreading of
a composite viscous drop (18, 32). Active spreading
involves a combination of viscous dissipation from the
partial disassembly of the cortex, and the flow of cell
material from F-actin polymerization (19).

Note that thermal fluctuations have a negligible
effect on the shape of the cell during spreading. The

combined effect of the acto-myosin cortex and bleb for-
mation (15) is to create a membrane tension, which only
permits small thermal fluctuations about a spherically
symmetric shape of a eukaryotic cell in planktonic sus-
pension. One can estimate the size of typical membrane
fluctuations: < 25nm, if we assume that a tense giant
unilamellar vesicle (GUV) is a good model for a cell in
suspension. Once the cell adheres to a surface, the ther-
mal membrane fluctuations are even smaller (reduced
to the sub-nm scale) and can be ignored (33).

2.2 Interactions between mechanosensors.

The late stage of cell spreading on a flat substrate
has many membrane protrusions. This angular shape
is essential for biological function: for instance, on stiff
substrates, fibroblasts may differentiate into myofibrob-
lasts in order to participate in fibrosis and wound heal-
ing (34, 35). These cells display a small number of
super-focal adhesions (36), which help set up long-lived
acto-myosin stress fibres and maintain a large tension
throughout (37), as illustrated in Fig. 2.

However, an initial angular shape pattern appears
prior to these large-scale developments, during the
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spreading process itself. The integrin-mediated adhe-
sion complexes from Fig. 1 are amongst the best stud-
ied adhesive organelles (38, 39). Dynamic actin fila-
ments pull against the complex, transmitting a local
force across the cell membrane to the substrate. In the
fully spread cell, macroscopic FAs are large aggregates
of integrin complexes bound to a large number (over
50) of cytoplasmic proteins. Notably, fully-developed
FAs contain vinculin, talin, paxillin, zyxin, α-actinin,
VASP, FAK, phosphotyrosine proteins, integrin and
others (40). We note that the concentration of constitut-
ing proteins (paxillin, talin, etc.) near the cell membrane
is quite small at the start of cell spreading (41), but
easier to detect in developed FAs.

Fouchard et al. (23) measured the paxillin distri-
bution in spreading fibroblasts as a proxy for integrin
mechanosensors. They showed that a spatial pattern
with a specific aggregation length scale develops near
the edge of the growing contact area after about 3 min-
utes of spreading. The cell was nearly hemispherical by
this point. The component proteins of a mechanosen-
sor are recruited to the membrane sites in this time
according to (fast) diffusion, and a (much slower) bind-
ing kinetics. Bell et al. (16) found that a 5th order
kinetics determines the population-average average time
when the spreading cell becomes hemispherical. This
suggests that 5 thermally-activated steps are involved
in the mechanosensor assembly, as sketched in Fig. 1.

Therefore, individual mechanosensors have to be
assembled some time before the cell reaches the hemi-
spheric configuration, and bound clusters start to form
around this time; a mechanism for their aggregation
would require a geometry-related transition between a
uniform and heterogeneous distribution of individual
mechanosensors. Fouchard et al. (23) suggest that the
switch corresponds to the hemispheric configuration,
but we do not see any reason for this observed criterion
to be anything other than coincidental for the specific
experimental situation. Sun et al. (39) suggested that
this aggregation might occur via a kinetic mechanism,
where the integrin-ECM binding would bend the gly-
cocalyx around an adhesion site and thereby create a
long range potential well within which mechanosensors
would aggregate. This would to aggregation at a low
spatial frequency, contrary to the large number (order
100) of nascent FAs found in experiments (23, 24).

Our proposed mechanism of mechanosensor inter-
action via bridging by mediating protein naturally
accounts for the time lag between the formation of
the individual mechanosensors and their clustering into
nascent FAs. Should a short-range interaction be in
play, one of constituents of the talin-bound cytoplasmic
plaque would then mediate such an attractive inter-
action. α-actinin is a possible candidate for this: it is

structurally symmetric and binds as a dimer to com-
ponents of the protein plaque (28). The 36nm long
α-actinin molecule (42) is of the right length to mediate
a direct interaction between mechanosensors. Regard-
less of the nature of the molecular link (whether via
α-actinin, or another multi-functional protein, e.g. vin-
culin), such a direct short-range attractive interaction
is only active at distances comparable to the size of a
mechanosensor. They can be modeled as simple nearest-
neighbor interactions in a lattice gas model of the kind
we develop below.

2.3 Localization of nascent focal adhesions.

But where does the cluster aggregation take place? Pax-
illin, a component of the talin-mediated force chain
of the individual mechanosensor bound to integrin, is
found at a high concentration very near the edge of
the cell-ECM contact area after 3 minutes of spread-
ing, that is, when the cell has reached a hemispherical
shape (23, 24). This in turn suggests that integrins
preferentially arrange themselves along the edge of this
contact area. The true mechanism for the recruitment
of integrin to the leading edge of the cell-ECM contact
area is probably quite complex, but likely benefits from
several cooperating processes, which help to determine
both the spatial localization of the adhesions and their
recruitment at the start of active spreading.

The energetic cost of bending the membrane is
reduced by the presence of a receptor, promoting recep-
tor localization in regions of high membrane curvature.
The most curved region of the cell membrane is clearly
at the edge of the cell-ECM contact area. Integrins pro-
gressively migrate via a succession of unbinding, fast
diffusion and preferential binding to the edge of the
cell-ECM contact area. Because of this, we would expect
the integrin concentration to increase at the edge of this
area on a ring, which we will henceforth dub the ‘contact
ring ’.

An estimate of the integrin-ECM binding force due
to membrane curvature is useful to check whether this
effect is relevant. When the leading cell edge extends
by a distance dLt, additional membrane material is
added in a region of high curvature. This will require
work dW ≈ f0dLt and extends the membrane into a
ring of size dA = 2πRcelldLt. The width of the lead-
ing edge is measured at wleading edge ≈ 150nm (43), so
the energetic cost of the additional membrane will be
dE = 1

2Bc
2dA = πBRcell/R

2
tdLt, where B is the bend-

ing modulus, and c is the curvature of the membrane
at the leading edge: c ≈ 1/wleading edge. This approxi-
mation becomes good when the cell has a spread radius
of 1µm or more. The membrane bending modulus is
known to be 390kBT in the presence of talin, and 70kBT
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without (44), so an estimate of B ≈ 100kBT seems rea-
sonable. Equating dW = dE gives a total force due
to the membrane curvature at the edge of the con-
tact area. To obtain the force per integrin, we scale
to the width of each integrin mechanosensor complex
(wcomplex ≈ 40nm), to give:

f0,per complex ≈
4πBwcomplex

w2
leading edge

≈ 40pN . (1)

Kong et al. (45) have measured the integrin catch bonds
to be most stable near this force value. Membrane curva-
ture therefore stabilises integrin-matrix binding within
a distance of the order of wleading edge of the edge of the
cell. This argument supports a developing contact ring
of the kind that we consider here.

The contractility of cytoskeleton applies the max-
imum tension, and increases the load on each sensor
near the contact ring. This strengthens the integrin-
matrix catch bonds and increases the residence time
of the mechanosensor complexes within the thin inter-
sectional area between the ECM plane and the out-of-
plane cytoskeleton. We suggest that these mechanisms
together help to explain why the paxillin/integrin distri-
bution has a maximum on the contact ring at the start
of active spreading. Note that the synthesis of new pro-
teins is slow relative to the spreading process (in tens
of minutes to an hour). Because of this, the number of
mechanosensor complex constituents does not apprecia-
bly change throughout the initial phases of spreading.
Consequently, we will henceforth assume that the num-
ber of mechanosensors found within this contact ring is
a constant number N once the cell has spread beyond
a critical radius.

2.4 A note on turnover

The question of mechanosensor aggregation is
complicated by the turnover of integrin-talin-FAK
mechanosensors (46–48). When the sensor opens under
force (27), it changes the conformation of FAK to allow
phosphorylation and initiate the signaling pathways.
This irreversibly changes the nature integrin-talin or
the talin-FAK bonds (49), and detaches the protein
complex from the integrin anchor. However, it is
unreasonable to expect the entire complex to fully
disassemble after this. More likely, it stays mostly
intact and can bind anew to free inactive integrins,
after FAK autoinhibition.

Regardless of the exact dynamics of the cytoplas-
mic plaque being bound to integrin, the problem is
much more tractable if we assume that key parts of the
mechanosensing complex remain intact even when FAK,
talin and integrin are in the process of reverting back
to their native conformations. Indeed, for short-range

interactions, the molecule which mediates the nearest-
neighbor interaction could well be bound to some of the
proteins found in the region of talin which is available to
bind in both its closed and open configurations. In that
case, we would expect the binding between neighboring
mechanosensors to be roughly independent of whether
or not the sensor is primed, or open (this certainly is
the case in the developed FAs). In contrast, the kinet-
ics of aggregation due to a long-range interaction (39)
would be seriously affected by integrin decoupling, as
the membrane deformation due to the presence of the
mechanosensor would only come into effect when the
sensor is fully assembled.

3 The model and methods

Two mechanosensing complexes can interact directly at
short range. α-actinin is a prime candidate to mediate
this interaction because it is a symmetrical molecule
which can bind as a dimer, it interacts with the load-
bearing FA proteins vinculin and talin, and it is found
close to where mechanosensors form due to its role as a
cross-linker within the actin cortex.

3.1 Thermodynamic mechanism for aggregation

The formation of nascent FAs (lasting minutes) during
cell spreading is a much faster process than and protein
synthesis (up to an hour), but is much slower than diffu-
sion across 1-10µm distances. This motivates modeling
the mechanosensors within a cell as a thermally equili-
brated distribution of a fixed number N of individual
sensors located along the contact ring. The typical life-
time of about 20s for integrin-ECM bonds complicates
this picture a little, but should not noticeably affect
aggregation kinetics over times of the order of a few
minutes.

We model the contact ring as a 1D lattice with cyclic
boundary conditions. To replicate gradual cell spread-
ing, we adiabatically increase the length of the ring (or,
equivalently, the number of equally-spaced lattice sites
L). Fig. 3 schematically illustrates the situation.

This sort of modeling is typical in a numerical
approach (50, 51). The simplest possible model of the
interaction is an adaptation of the Ising model, as
considered by Guo and Levine (25):

H = −JΣ〈ij〉ninj (2)

where Σ〈..〉 indicates a sum over nearest-neighbor pairs.
The variable n indicates the state of the sensor, which
in our case is the occupation number:

ni =

{
1 sensor present

0 sensor absent
. (3)
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Figure 3: Schematic representation of the 1D lattice model of nearest-neighbor sensor interactions. The sensors
aggregate along the contact ring between the spreading cell and the adhesive surface to which it is attached.

The constant J indicates the binding energy of nearest-
neighbor interaction in this lattice model, whose exact
value likely depends on cell type.

With these simplifications in hand, we will calcu-
late the Ginzburg-Landau action (the free energy of
the mechanosensor density distribution) and examine
the spatio-temporal evolution of the distribution of
mechanosensors located on the contact ring.

3.2 Sensor interaction model

We assume the length of the contact ring between a
cell and an adhesive surface to be constant for any pro-
cess which occurs on a much shorter timescale than
cell spreading (seconds rather than minutes). Here, this
implies that the number of lattice sites L is constant
on the time scale of thermal equilibration. Using this
simplification, we can closely mirror the derivation for
the classical Ising model over a sufficiently short time
interval.

The single-molecule partition function for the lattice
gas model with Hamiltonian H from Eqn. (2) is:

Zi = Σni={0,1}e
−β(− 1

2JΣ〈j〉nj)·ni , (4)

where the sum runs over all of the L sites around the
ring, and β = 1/kBT , as usual.

The full partition function is the product of L par-
tition functions for each site, subject to the constraint
N = Σini of the constant total number of individual
sensors. The Supplementary Information (part A) gives
the calculation of this partition function using the
auxilliary fields method. We need a variable on each
site: φi, whose expectation value can be identified with
the average occupation of a site, which is the order
parameter: 〈φi〉 = 〈ni〉. This identifies the discrete field
φi as the mechanosensor concentration at site i. We
will later transform this into a continuous density φ(s)
which depends on a the position s around the contact
ring. The calculation of Ztot = δ(Σini − N)ΠL

i=1Zi is
exact, but rather unwieldy. We will have to make several
strong approximations in the next section to proceed
towards a manageable form for the effective action S[φ].

Key approximation 1: high occupancy.
Near the start of spreading, we assume that the

majority of sites on the contact ring of an initially small
footprint are occupied by a mechanosensor, so N can be
assumed to be the same order as L. We feel this is a rea-
sonable assumption, as at the very early stages of cell
spreading the contact ring is very small and the cell has
many more integrin units available than there is room
on the ring; this will change as the cell spreads more
and more. This assumption means that the probability
of a single site being in the ‘filled’ state (i.e. contain
a mechanosensor complex) is much greater than that
of being in the ‘empty’ state. This gives the following
condition (see Supplementary, part A):

e(βh+m+xa) =
1

L−N
ΣLi=1e

−x′
i � 1. (5)

As expected, this is a large quantity if the number of
sites and the number of sensors are both large.

Key approximation 2: small non-uniformity.
Initially, the contact ring is fully populated with a

density uniform φ = 1, but as the ring grows the aver-
age density falls. Here we look for the initial instability
when a small inhomogeneous fluctuation of this density
starts growing, eventually leading to a densely packed
FA. Using this approximation, we perform the series
expansion of the action in terms of the fluctuation of
the density, φ′ = φ−N/L (where the average density of
sensors is 〈φ〉 = N/L), details in Supplementary, part
B.

In Supplementary part C, we obtain the effec-
tive action S[φ], transform it into continuous Fourier
space, make it continuous, and finally transform it back
into real space (the last operation generating the spa-
tial gradients). This effective free energy has recogniz-
able features of the Ginzburg-Landau theory, where we
retain cubic and quartic terms in the order parameter
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Figure 4: The ‘phase diagram’ of values of average sen-
sor density N/L vs. the sensor interaction strength βJ ,
showing the transition line at which the coefficient r0

from Eqn. (7) changes sign, and the clustering instabil-
ity becomes possible. r0 remains positive for βJ smaller
than the critical value close to 1, as labelled on the plot.

expansion:

SΛ0 [φ′] =

∫ L

0

ds
[r0

2
φ′2(s) +

c0
2

[∇φ′(s)]2 +
t1
3!
φ′3(s)

+
u1

4!
φ′4(s) +

u2

4!
φ′2(s)

(∫
ds′φ′2(s′)

)]
, (6)

where L is the length of contact ring perimeter, all
lengths are scaled by the size of the individual sensor a,
and the coefficients are defined in Supplementary, part
C. Specifically, the two quadratic-order coefficients take
the form, Eqn. (C.9):

r0 = 2βJ(1− 2g2βJ) ; c0 = 4g2β
2J2 − βJ , (7)

with

g2 =
(3− 2N/L)

(N/L− 2)2
− N

L
.

We see that the control parameter (replacing the
temperature in the classical theory of phase transitions)
is the ratio N/L, which starts at 1 when the small cell
adhesion ring first forms, and then diminishes as the
cell spreads and the ring perimeter L grows. The gra-
dient coefficient c0 remains positive, but the main ‘con-
trol’ coefficient r0 could become negative (thus causing
the instability of the homogeneous density distribution
around the adhesion ring) at a critical value of N/L,
which depends on the coupling strength βJ . Note that
near this critical point c0 takes an approximately con-
stant value c0 = 2g2β

2J2. At large βJ (i.e. when the
sensors are strongly bound across) the instability occurs
almost immediately below N/L = 1, while for βJ < 1
the coefficient r0 remains positive for all N/L and no
instability occurs, see Fig. 4.

4 Results and comparison with experimental data

4.1 Spatial frequency of fluctuations

In the immediate vicinity of the critical point, the
quadratic-order terms in the density of sensor concen-
tration fluctuations φ′ are much larger than all of the
higher order terms. The action (effective free energy)
written in Eqn. (6) can therefore be substantially
simplified in the vicinity of the critical point:

SΛ0 [φ′] =

∫ L

0

ds
[r0

2
φ′2(s) +

c0
2

[∇φ′(s)]2
]
. (8)

The time-dependence of the concentration fluctuation
can be described by the Cahn-Hilliard equation (52),
which takes the following form near the critical point:

∂φ′

∂t
= D∇2

(
r0φ
′ − c0∇2φ′

)
, (9)

where in our case D is the diffusion coefficient of the
sensor along the ring (keeping in mind the factor of a2

that needs to be added if we were to use the proper
dimensional units). The behaviour of the concentration
fluctuation is subject to the boundary conditions:

∇φ′(0, t) = ∇φ′(L, t) = ∇3φ′(0, t) = ∇3φ′(L, t) = 0 . (10)

A well-known solution satisfies these boundary condi-
tions:

φ′(s, t) = 1
2
A0(t) + ΣkAk(0)e

−D k2

4

(
r0+

c0k2

4

)
t
cos

(
ks
2

)
,

(11)
where k is the wavevector, directly related to the num-
ber m of peaks in the azimuthal modulation of sensor
concentration: k = 2πm/L.

The fastest growing wavenumber, which corresponds
to the oscillation length scale that maximizes the expo-
nential term above, is:

kmax =
√
−2r0/c0 . (12)

The critical mode number, for the largest spatial fre-
quency at which the exponential term could grow with
time is

kcrit = 2
√
−r0/c0 (13)

(see Eqn. (7) for the values of r0 and c0, and Fig. 4
showing when r0 becomes negative).

Which of these two wavevectors determines the
timescale and spatial patterns of nascent FA forma-
tion? These equations are only accurate near the crit-
ical point; as the cell spreads, the control parameter
−r0(L,N) increases, so both the fastest growing mode
and the critical mode increase. Once the limit of small
fluctuations no longer applies, we will need to find the
timescale for mode growth in a different manner. In par-
ticular, low frequencies (large spatial periodicity) take
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a long time to grow and develop. We expect that the
limit of small fluctuations will apply for all low modes
until one of the higher frequency modes, namely the
fastest growing mode at a particular spreading time,
can no longer be well described by the small fluctua-
tions approximation. In terms of the Ginzburg-Landau
action in Eqn. (6), aggregates with well-defined bound-
aries form and their sharp edges result in a smaller
energetic cost from the gradient term 1

2c0[∇φ′(s)]2. This
means that we expect the growth rate of the fastest
growing mode to increase once aggregates start to form.
In Supplementary part D we verify that the effective
action (free energy) remains stable when fluctuations
grow larger, which makes the coarsening analysis valid.
In turn, this will result in Cahn-Hilliard coarsening at
the specific frequency of the mode which grows fastest
when fluctuations are no longer small. Let us find this
mode.

4.2 Time until a mode becomes unstable

First, we must determine how long it takes a mode to
become unstable after the cell passes the critical point.
This depends crucially on a combination of the spread-
ing speed and the radius of the cell at the phase tran-
sition. In Supplementary part E, we carry out a series
approximation of the fastest growing mode number near
the critical point. This shows that modes initially grow
proportionally to the square root of changes in the size
of the lattice. In other words, the mode number m is
directly proportional to the square root of changes in
the radius of the cell, and also to the square root of the
time elapsed since the cell was at our phase transition.

Now we must return to proper dimensional length
scales, and thus keep track of the powers of a. The result
of this series expansion (performed in Supplementary
part E) is that we have the following approximation:

m(tdestabilise)
2 ≈ Ψ(βJ)

(
tdestabilise2πṙspread

a
Lcritical

)
,

(14)

where ṙspread is the rate of spreading of the radius of
the cell, and Ψ(βJ) is a complicated function obtained
from the series expansion of the mode number about
the critical point for small changes ∆L(t) of the lat-
tice size. We show in Supplementary part E that the
series approximation is good for an increase in spread
cell area of 5 − 10%. This will therefore apply to the
initial aggregation of mechanosensors.

4.3 Mode growth time

For the fastest growing mode, r0 = −c0k2
max/2, so we

can find the time that it takes to grow by substituting

into the exponent in the solution of the Cahn-Hilliard
equation: Eqn. (11):

e
−D k2

4

(
r0+

c0k2

4

)
t
∣∣∣
max

= eD
k4c0
16 t (15)

Substituting the constants r0 and c0, and recovering the
proper dimensional length scales via a, we find that the
growth time of the mode becomes:

tgrow = α
L4a2

2π4m4Dg2(βJ)2
, (16)

where α is a proportionality constant of order 1.
Goennenwein et al. (53) used FRAP experiments to

find that free integrin diffusion coefficients were of the
order of Dintegrin = 0.6µm2/s. Assuming that the diffu-
sion time of a mechanosensing complex is comparable to
the integrin diffusion time, we may numerically evaluate
the above expression with λmax = 2πrspread/mmax for
a typical radius of the spread cell rspread at the time of
the formation of the nascent adhesions. We must bear
in mind that in doing this we have probably somewhat
overestimated the mechanosensor diffusion coefficient.

4.4 Number of nascent adhesions

The fastest growing mode is determined by a combina-
tion of these two times: the time that it takes the cell
to spread to a radius L0 + ∆L at which the mth mode
becomes unstable, where L0 is the smallest radius at
which the critical mode is unstable, and the time that it
takes the mth mode to grow. We saw in Eqn. (14) that
the spreading time until mode m becomes the fastest
growing mode is proportional to m2 for small changes
in cell size. As for the second time, we saw in Eqn. (16)
that the growth time of the mode is proportional to
m−4. Thus, the total time for a mode to grow is:

ttot = tdestabilise + tmode growth = K1m
2 +K2m

−4 (17)

where K1 and K2 are the proportionality constants in
Eqs. (14), (16). The total time is minimized when:

dttot

dm
= 2K1m− 4K2m

−5 = 0 (18)

⇒ m∗ =
(2K2

K1

)1/6

(19)

The mode corresponding to the number of nascent adhe-
sions is the solution to this equation. We make the pro-
portionality constants explicit and find that the number
of nascent adhesions is

m∗ =
(
α

2L5
criticala

π3Dg2(N,L)(βJ)2
Ψ(βJ)ṙspread

)1/6

(20)

This is the main prediction of this paper.
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Figure 5: Contour plot of the predicted number of
nascent focal adhesions m∗ as a function of interaction
energy (scaled by the energy of thermal fluctuations)
and the spreading rate of the radius of the cell dur-
ing the active spreading phase (in nm/s). We therefore
predict that a large number of cells should display a
hundred or so nascent focal adhesions after these sensors
begin to aggregate. Note that the predicted number of
nascent focal adhesions is very similar for a large range
of spreading velocities.

To make comparisons with experiments we use
the following parameters: mechanosensor spacing a =
40nm, spread radius rspread = 18µm (23), lattice length
at the phase transition Lcritical = 2πrspread/a ≈ 2800,
the diffusion constant D = 0.6µm2/s, and proportional-
ity constant α = 1 for simplicity’s sake. Fouchard et al.
(23) measure the spreading rate after the transition to
active spreading and it is decently approximated by a
constant ṙspread ≈ 0.005µm/s (which depends on tem-
perature, substrate mechanical properties, etc.). While
ṙspread may be constant for a given cell and spreading
phase, it will vary across cultures and cell types, so it
does not make sense to fix its value.

Thus, we vary the spreading rate (around the known
experimental values) as well as the interaction energy
J , and plot the resulting mode number m∗ – which also
corresponds to the number of nascent focal adhesions –
in Fig. 5. The number of nascent FAs is typically of the
order of 100 for a wide range of interaction energies and
spreading rates. Obviously, there is a large uncertainty
in this value, but it is worth noting that due to the sixth-
root dependence of the mode number on its constituent
proportionality constants in Eqn. (20), any one of our
parameter values would typically have to be wrong by
a factor of 106 to lead to a 10 times fewer or more focal
adhesions. Such a discrepancy seems unlikely.

(a)

(b)

Figure 6: Images showing the transformation of the den-
sity of adhesion complexes (labelled by fluorescence of
paxillin) as the contact ring expands on cell spreading.
Images (a) are from Fouchard et al. (23), and images
(b) are from Tee et al. (24), with permission.

Figure 6 illustrates experimental observations of
spreading cells in the early regime we are studying
in this work. It is clear that in both cases the num-
ber of nascent mechanosensor clusters (determined by
proxy from the concentration of paxillin) is of the order
of 100 (possibly slightly fewer). Their number might
already have decreased due to Cahn-Hilliard coarsen-
ing between developed nascent adhesions by the time of
the right-hand picture, but is in line with our theoretical
predictions.

5 Discussion and conclusions

Recent biological data lends credence to the idea that
clustering of integrin-mediated mechanosensors found
in focal adhesions is responsible for the development of
initial azimuthal inhomogeneity. In particular, we sug-
gest the possibility that a thermodynamic mechanism
relying on short-range protein bridging plays a substan-
tial role in cell spreading. We identify the ring at the
intersection of the cell basal plane and the out-of-plane
acto-myosin cortex as a possible location for the recruit-
ment and the aggregation of the constituent proteins of
the mechanosensor complex.

The main appeal of this approach, namely that it
involves an analytically tractable 1D lattice model, is
also its principal limitation. To approach reality some-
what further, an alternative would be to computation-
ally examine the related 2D lattice problem, as in e.g.
(51). Arguably, this would require even more assump-
tions, including concerning the width of the cortex,
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the width and fluctuations of the leading edge, inte-
grin binding and diffusion kinetics and so on. And even
if successful, such an approach would most likely not
qualitatively change the predictions of the simple aggre-
gation kinetics, but merely yield a phase transition at
a somewhat different sensor concentration and possi-
bly result in a slightly different spatial frequency of
aggregation.

This thermodynamic mechanism may potentially
cooperate with a kinetic mechanism of receptor clus-
tering (39), which relies on long-range mechanosensor-
induced membrane deformations to attract other bound
integrins. Although both mechanisms involve very dif-
ferent interactions, it is not immediately clear how to
distinguish their predictions – not only because of the
lack of accurate biological data, but because many of
these are similar: both predict that mechanosensors will
aggregate on a particular length scale for instance.

One could potentially differentiate between the two
models by more accurately measuring the onset time
of the formation of nascent adhesions. The thermody-
namic model would be favoured if this aggregation time
does not coincide with a particular cell shape (e.g. a
quasi-hemispherical cell). One might also be able to test
the validity of the kinetic mechanism by measuring the
membrane deformation stresses around bound integrins
in order to determine the strength and width of the
kinetic well.

The aggregation of integrin-mediated mechanosen-
sors into dense clusters has clear consequences for
the subsequent evolution of the cell shape during the
remainder of spreading. The formation of FAs offers
anchors for the extension of the lamella via actin poly-
merization. Newly formed actin filaments push against
ECM-bound nascent FAs and exert a protrusive force on
the membrane, which leads to further spreading and sets
up a retrograde flow of actin behind the adhesions. This
in turn helps set up a clear radial directionality to the
growth of FAs, which become long and radially-oriented.
Therefore, while a 1D model around the adhesion con-
tact ring was useful in examining the initial aggregation
at the start of the active spreading, it is insufficient to
understand their growth and decay towards the later
stages of cell spreading. Nonetheless, studies clearly
show that the angular distribution of the initial pattern,
which we investigated in this work, correlates strongly
with the subsequent distribution of FAs (23).

Our approach does not require detailed knowledge
about biochemical reactions or mechanical traction
forces. Both of these are implicit in the interaction
energy between neighboring sensors. It is only because
the cell is so highly symmetrical (round) during the
initial stages of spreading, and because the azimuthal
aggregation of sensors does not involve gradients of
either chemical or mechanical properties of interest, that

we are able to keep knowledge of these cellular parame-
ters implicit. Radial processes during cell spreading can-
not be analyzed in such a manner: the changing shape
of the cell, or the radially-oriented maturation of FAs
after the nascent stage, require a detailed understand-
ing of the manner in which chemical and mechanical
quantities change across the cell-matrix contact area.

Finally, we suggest that a similar contact ring might
arise on either side of a cell-cell junction between
two interacting eukaryotic cells. A similar mechanism
might lead to cadherin-based sensors aggregation into
adherens junctions after cadherin-actin bonds have
developed (54, 55). This might have an even more bio-
logically relevant role, as the adhesion surface between
two cells is much more naturally two-dimensional than
an in-vivo ECM surface.
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