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Abstract

A consistent finding in research on conditional reasoning is
that individuals are more likely to endorse the valid modus po-
nens (MP) inference than the equally valid modus tollens (MT)
inference. This pattern holds for both abstract task and prob-
abilistic task. The existing explanation for this phenomenon
within a Bayesian framework (e.g., Oaksford & Chater, 2008)
accounts for this asymmetry by assuming separate probabil-
ity distributions for both MP and MT. We propose a novel
explanation within a computational-level Bayesian account of
reasoning according to which “argumentation is learning”.
We show that the asymmetry must appear for certain prior
probability distributions, under the assumption that the condi-
tional inference provides the agent with new information that
is integrated into the existing knowledge by minimizing the
Kullback-Leibler divergence between the posterior and prior
probability distribution. We also show under which conditions
we would expect the opposite pattern, an MT-MP asymmetry.
Keywords: conditional reasoning; probabilistic reasoning;
Bayesian model; computational-level account

Introduction
Conditionals of the form ”If A, then C“ – for example, “If
global warming continues, then London will be flooded” –
are ubiquitous in everyday language and scientific discourse.
One research question that has attracted a lot of attention is
how individuals reason with conditionals. Usually four con-
ditional inferences are studied, each consisting of the condi-
tional as the major premise, a categorical minor premise, and
a putative conclusion:

• Modus Ponens (MP): If A then C. A. Therefore, B.

• Affirmation of the Consequent (AC): If A then C. C. There-
fore, A.

• Denial of the Antecedent (DA): If A then C. Not A. There-
fore, not B.

• Modus Tollens (MT): If A then C. Not C. Therefore, not A.

According to classical logic MP and MT are valid (i.e.,
truth preserving) inferences and AC and DA are not valid.
Early research with conditional inferences has emulated the
inference process of classical logic; in the abstract task, in-
ferences are presented with abstract content, participants are
asked to treat the premises as true, and are asked to only ac-
cept necessary conclusions. Results generally showed that
even untrained participants are able to distinguish valid from

invalid inferences (i.e., they accept more valid than invalid
inferences). However, their behavior is clearly not in line
with the norms of classical logic. Whereas participants tend
to unanimously accept the valid MP, the acceptance rates for
the equally valid MT inference scheme is considerably lower.
In a meta-analysis of the abstract task, Schroyens, Schaeken,
and d’Ydewalle (2001) found acceptance rates of .97 for MP
compared to acceptance rates of .74 for MT. This MP-MT
asymmetry will be the main focus of the present manuscript.1

Research in recent years has moved away from the ab-
stract task and its focus on logical validity towards tasks more
akin to real-life reasoning within a probabilistic framework
(Oaksford & Chater, 2007; Over, 2009). In the probabilis-
tic task, inferences employ everyday content for which par-
ticipant posses relevant background knowledge and they are
usually asked for their subjective degree of belief in the pu-
tative conclusions. The degree of belief in the conclusion of
course depends on the actual content (i.e., the probabilistic
relationships among premises and conclusion), but there is
still ample evidence for an MP-MT asymmetry that goes be-
yond what would be expected from existing probabilistic ac-
counts. For example, Oaksford, Chater, and Larkin (2000)
created materials for which their Bayesian model of condi-
tional reasoning predicted participants to posses similar be-
liefs in MP and MT. Their results showed that, whereas this
reduced the asymmetry, there were still differences such that
participants expressed stronger beliefs in MP than MT. Sim-
ilarly, Singmann, Klauer, and Over (2014) asked participants
for their subjective degrees of belief, first in both premises,
and then in the conclusion and showed that those only formed
a coherent probability distribution “above chance” for MP,
but not for MT. Essentially the same results were obtained
by Evans, Thompson, and Over (2015). Together, these find-
ings suggest a clear limit for simple probabilistic accounts of
conditional reasoning.

Existing Accounts
To describe existing accounts and our new explanation, let
us formalize the probabilistic structure of the reasoning prob-
lem. We consider an agent who entertains the propositions
A (the antecedent) and C (the consequent) of a conditional

1Participants also tend to erroneously accept the invalid infer-
ences AC and DA. Schroyens et al. (2001) report acceptance rates of
.64 for AC and .56 for DA.
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A C

Figure 1: The Bayesian Network representation of the rela-
tion between A and C.

”If A, then C“. To proceed, we introduce binary proposi-
tional variables A and C (in italic script) which have the val-
ues A and ¬A, and C and ¬C (in roman script), respectively.
A prior probability distribution P is defined over these vari-
ables. It is represented by the Bayesian Network in Figure
1. For now, the exact parameterization of P is not yet rele-
vant, however there exist several with three free parameters.
In addition, we define the (absolute) endorsement of MP as
E1 := P′(C). Similarly, we define the (absolute) endorsement
of DA as E2 := P′(¬C), the (absolute) endorsement of AC
as E3 := P′(A), and the (absolute) endorsement of MT as
E4 := P′(¬A).

The original Oaksford et al. (2000) model makes two as-
sumptions. First, it assumes that belief in the conclusion
reflects the conditional probability of the conclusion given
the minor premise. For example, E1 = P(C|A) and E4 =
P(¬A|¬C). Second, it assumes that P is fixed throughout
the reasoning process; that is, P is the same for responses to
the four conditional inferences (Oaksford and Chater call this
the ”invariance assumption“). In other words, this model as-
sumes that reasoning amounts to consulting ones fixed proba-
bility distribution and responding in line with it (e.g., by sam-
pling from memory; Costello & Watts, 2014) . As shown by
Oaksford and Chater (2007, ch.5) this model does a good job
in accounting for many of the existing data from the abstract
task, but underestimates the MP-MT asymmetry.

To account for the MP-MT asymmetry, the solution first
proposed in Oaksford and Chater (2007, ch.5) and subse-
quently defended in (Oaksford & Chater, 2008, 2013) is to
give up on the second of their assumptions, that P is fixed for
responses to all four inferences. Specifically, they argue (e.g.,
Oaksford & Chater, 2013) that MP represents a special case
that does not require changing P as it basically reflects the
probabilistic information already present in the conditional
(i.e., P(C|A)). Thus, presenting MP does not allow the agent
to learn new information about P. However, the other three
inferences, MT, AC, and DA, present new information and
thus require an updated probability distribution P′, which in-
dividuals “learn“. Practically, they did not specify many re-
striction of P′, other than that P(C|A)> P′(C|A), which was
primarily motivated by fitting their model to the extant data.
From a statistical point of view, it not too surprising that a
model that then essentially has one free parameter for fitting
E1 and three free parameters for fitting the remaining three
observations (i.e., responses to the other three inferences, E2,
E3, and E4) does a relatively good job in accounting for the
existing data.

Therefore, there are two main theoretical shortcomings in
Oakford and Chater’s approach. First, their revised model

assumes that the endorsement for MP, E1, comes from one
probability distribution, P, whereas the endorsement for the
other inferences, E2 to E4, comes from the updated probabil-
ity distribution P′. This seems somewhat unsatisfactory from
a rational Bayesian perspective and more of an ad-hoc solu-
tion than a principled argument. Second, the actual processes
in which the agent updates P to arrive at P′ are not specified
well enough. What does it entail for the agent to learn the new
information presented in MT? How can we characterize the
cognitive processes involved in making a probabilistic MP or
MT inference?

Our answer to these questions is based on Eva and Hart-
mann’s (2018) recent Bayesian account of reasoning ac-
cording to which “argumentation is learning”. In line with
Oaksford and Chater (2013), learning is specified as updating
an agent’s prior belief state, represented by P, in light of new
information resulting in the posterior belief state P′. Specif-
ically, the premises of an inference will affect specific parts
of P (e.g., for MP, the agent learns the new values of both
P(C|A) and P(A)). The novel assumption is that as a conse-
quence, the agent needs to incorporate this new information
into their existing beliefs which requires her to update poten-
tially all parts of P. According to Eva and Hartmann (2018),
this updating follows a well-defined Bayesian rule which gen-
eralizes conditonalization and Jeffrey conditionalization and
requires that a suitably defined distance (or divergence) be-
tween P′ and P is minimized. Eva and Hartmann (2018) ar-
gue that these divergencies should be members of the fam-
ily of f -divergences. One important member of this family
is the Kullback-Leibler (KL) divergence (Diaconis & Zabell,
1982), which we will use in the remainder. In this way, updat-
ing satisfies the constraints provided by the new information
and is conservative (i.e., the changes are as minimal as pos-
sible). We will show that from this assumption, the typically
found MP-MT asymmetry must appear for certain P. How-
ever, in some situations the opposite pattern (i.e., E4 > E1)
should also be observed.

The Model
Our new explanation for the MP-MT asymmetry is based on
the Bayesian Network in Figure 1 representing the prior prob-
ability distribution P. In addition, we assign

P(A) = a, (1)

for the prior probability of the antecedent and the conditional
probabilities of the consequent C, given the values of its par-
ent:

P(C|A) = p , P(C|¬A) = q (2)

With this, the joint prior probability distribution P over the
variables A and C is given by

P(A,C) = a p , P(A,¬C) = a p

P(¬A,C) = aq , P(¬A,¬C) = aq , (3)
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where we have used the shorthand notation P(A,C) for
P(A∧C) which we will use throughout this paper. We also
use the shorthand x for 1− x and assume that a, p,q ∈ (0,1).

Following the slogan “argumentation is learning”, the
agent then learns the premises of the argument. More specifi-
cally, she learns the major premise “If A, then C” and sets the
new probability of P′(C|A) = p′ = 1 in turn. This is the first
constraint on P′. She also learns a minor premise: A in the
case of MP, and ¬C in the case of MT. For completeness, we
also consider AC and DA. In the case of AC, she addition-
ally learns C, and in the case of DA she additionally learns
¬A. Following Eva and Hartmann (2018), we model this by
assuming that the probability of the minor premise increases.
This is the second constraint on P′. More specifically, we
assume that the agent changes the probabilities of the minor
premise in the following way:

P′MP(A) = λ+λP(A) , P′DA(A) = λP(A) (4)
P′AC(C) = λ+λP(C) , P′MT (C) = λP(C)

Here λ ∈ (0,1] measures to what extent the agent changes
the probability of the minor premise. For λ→ 0, the new
probability of the minor premise does not change at all, and
for λ = 1 it goes to its maximal value, i.e. to 1.

To find the full new probability distribution P′, we then
minimize the KL-divergence between P′ and P. This al-
lows us to compute the new probability of the conclusion
of the corresponding argument. For example, in the case
of MP (A,A→ C, therefore C) the conclusion is C and the
new probability of C, i.e. P′(C) measures to what extent
the agent endorses the corresponding inference pattern. More
specifically, we define the (absolute) endorsement of MP as
E1 := P′(C). As described above, we define the (absolute)
endorsement of DA as E2 := P′(¬C), the (absolute) endorse-
ment of AC as E3 := P′(A), and the (absolute) endorsement
of MT as E4 := P′(¬A). Furthermore, we define the relative
endorsement of inferences i and j as ∆i j := Ei−E j with i < j.
These quantities will be calculated in the next section.

It is worth pausing here to note that these endorsement
quantities should be conceptually distinguished from the cor-
responding acceptance rates discussed in the introduction.
While the former are interpreted as representations of the ex-
tent to which a single idealised Bayesian agent will endorse
an inference in a probabilistic reasoning task, the latter rep-
resent the relative frequency with which those inferences are
accepted at the population level. There is no a-priori reason
to expect a close correspondence between these two differ-
ent quantities. In what follows, we try to explain the MP-MT
asymmetry in terms of individual endorsement rates.

The Results
Our formal results can be summarized in the following two
propositions (all proofs are in the Appendix):

Proposition 1 An agent considers the binary propositional
variables A and C with a probability distribution P de-
fined over them. She then learns (i) the major premise

of an argument and sets P′(C|A) = 1 and (ii) the minor
premise and sets its new probability to a value according
to eqs. (4) with λ ∈ (0,1]. To find the full new prob-
ability distribution P′, we minimize the KL-divergence be-
tween P′ and P. The (absolute) endorsements are then given
by E1 = λ+λP(A∨C), E2 = λP(¬C|¬A)+λP(¬A,¬C),
E3 = λP(A|C)+λP(A,C) and E4 = λ+λP(¬A∨¬C).

Proposition 2 Proposition 1 implies the following state-
ments: (i) MP > AC. (ii) MT > DA. (iii) If P(A) ≥ 1/2,
then MP > DA (iv) If P(A,C)≥ P(¬A,¬C), then MP > MT,
AC > DA and E1 +E2 < E3 +E4. (v) If P(A,C)≤ 1/2, then
MT > AC. (vi) MP > MT iff AC > DA. (vii) If P(A∨C) ≥
1/2, then MP > DA.

Here we have used the notation MP > AC for ∆13 > 0 etc.
Note that the assumptions stated in the various if-sentences in
Proposition 2 are only sufficient conditions. It turns out that
the respective consequents also hold in a large range of other
contexts. These depend, however, on the value of both P and
λ as shown in Figure 2.

The two left panels of Figure 2, panels (a) and (c), show
a situation in which the probability of the antecedent is rela-
tively high (i.e., large a), the conditional expresses a relation-
ship with reasonable confidence (i.e., the conditional proba-
bility of the consequent given the antecedent, p, is at least .5),
and exceptions are somewhat uncommon (i.e., relatively low
conditional probability of the consequent given that the an-
tecedent, q, does not hold). In this situation we see the typical
MP-MT asymmetry pattern (as long as λ < 1), when compar-
ing the blue (MP) and red (MT) line. We also see that the
degree of the MP-MT asymmetry crucially depends on λ and
increases with decreasing λ. Furthermore, the degree of the
MP-MT asymmetry also depends on the specific parameters
of P. If the conditional expresses a more certain relationship,
as in panel (c), the MP-MT asymmetry is larger than if the
relationship expressed by the conditional is more uncertain,
as in panel (a).

An interesting pattern is observed if the prior probability
of the antecedent is low (i.e., a < .5), as shown in panels (b)
and (d). We can see that in this case the sign of the MP-MT
asymmetry flips. Now, we expect stronger endorsement to
MT than to MP. However, as for the case in which the prior
probability of the antecedent is relatively large, we see that
the extent of this reversed asymmetry also depends on λ and
the other parameters of P.

Figure 2 also shows the predicted endorsement for the
other two inferences, AC and DA. Their ordering (i.e.,
whether endorsement is expected to be larger for AC or DA)
follows the same general pattern also observed for MP and
MT. For panels (a) and (c) we expect larger endorsement for
AC and DA (as is commonly observed in the literature). How-
ever, if the prior probability of the antecedent is low, we ex-
pect the same flip; larger endorsement for DA than for AC. In
addition, the figure shows another interesting empirical pre-
diction. For certain values of P, see panel (c), we expect ei-
ther AC > MT or MT > AC, depending on the value of λ
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(a) a = .7, p = .5, and q = .2
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Figure 2: The absolute endorsements E1 (MP, blue), E2 (DA, orange), E3 (AC, green) and E4 (MT, red) as a function of λ for
different prior probability distributions P.

(the qualitatively similar also holds between MP and DA, see
panel (d)).

Discussion
These results show that the MP-MT asymmetry is predicted
by the behavior of a rational agent who updates her belief af-
ter encountering new information that is part of the premises
of a conditional inference under certain conditions. In con-
trast to previous probabilistic accounts (Oaksford & Chater,
2008, 2013), we do not need to assume two different proba-
bility distributions for MP and the other inferences. Instead,
we describe a rational account of how agents update their be-
liefs in light of new information and use this updated proba-
bility distribution as the basis for her endorsement to the four
conditional inferences. With this model, we can also make
specific predictions when we would expect the opposite pat-
tern, a MT-MP asymmetry.

Disabling Conditions
So far we have assumed that the agent only considers two
propositions, i.e. A and C. In many cases, however, there
are other relevant propositions and learning new informa-
tion might affect them. This might have implications for the
endorsement of the various inference patterns we have dis-
cussed. Consider the following case (Oaksford & Chater,
2008): Let A be the proposition “you turn the key of your

car” and let C be the proposition “the car starts”. You then
learn the premises of a MT inference, i.e. A→ C and ¬C. In
that case it seems reasonable to not infer ¬C, but rather that
the car is broken or, more generally, that a disabler is present
(D). To model this situation, we consider the Bayesian Net-
work in Figure 3 and assume that

P(A) = a , P(D) = d, (5)

where a is large (you will be pretty certain that you turned the
key of your car if you did so) and d is somewhat smaller, but
it seems reasonable to take the possibility that the car might
be broken into account before actually turning the key of the
car.

Furthermore, we have to specify the likelihoods

P(C|A,D) = α , P(C|A,¬D) = β

P(C|¬A,D) = 0 , P(C|¬A,¬D) = 0. (6)

Here we have assumed that the car does not start if the key
is not turned. Note that the context suggests that β > α ≈ 0
although we will not need the left inequality. All we will need
is that α is fairly small.

The agent then learns the conditional A→ C which im-
poses the constraint β′ > β on P′.2 The agent furthermore

2β′ could be 1, but we will see that this does not matter. All we
need is that β,β′ > 0.
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Figure 3: The Bayesian Network representation of the rela-
tion between A,C and D.

learns that P′(C) = 0. (We set this value to 0 as it will be hard
to doubt that the car did not start if in fact it did not start.) We
then note that

P′(C) = a′ (d′α′+d′β′) = 0, (7)

where we have assumed that P′ can be parameterized analo-
gously to P. Given that β′ > β > 0, eq. (7) has two solutions:
(i) a′ = 0 and (ii) α′ = 0 and d′ = 1. Obviously, solution (i)
corresponds to the proper MT inference. However, this infer-
ence is implausible in the present case. To explore this issue
further, let us consider the KL-divergence between P′ and P:

KL = Φa +Φd +a′ d′Φα +a′ d′Φβ (8)

We have to minimize KL with the constraint (7). Let us
consider solution (i) first. Then KL1 = − loga+Φd . This
expression minimizes for d′ = d and therefore KLmin

1 =
− loga. Next, consider (ii). Here KL2 = Φa − a′ logα−
logd. Minimizing this expression with respect to a′ yields
a′ = aα/(aα+a) and KLmin

2 =− log((aα+a)d). Hence,
KLmin

2 < KLmin
1 iff (aα+a)d > a or aα > ad. This condi-

tion is fulfilled in the present case as α≈ 0 and a≈ 1. (Note
that the value of d does not matter too much here, but it should
not be too low. If it is very low and the inequality is violated,
then the agent should make a MT inference and infer ¬A.)

Conclusions
Our main goal was to provide a novel probabilistic explana-
tion for the MP-MT asymmetry found in both the traditional
abstract task as well as in probabilistic tasks with conditional
inferences. In contrast to previous explanations within a prob-
abilistic framework (Oaksford & Chater, 2007, 2013, 2008),
our explanation is based on a principled approach of how
agents update a probability distribution P in light of new in-
formation provided by the premises of a conditional inference
resulting in a updated probability distribution P′. Following
the idea that “argumentation is learning” (Eva & Hartmann,
2018), we propose that agents update their probability distri-
butions in light of new information by minimizing the KL-
divergence between the posterior and prior probability dis-
tribution. In this conceptualization, reasoning does not only
amount to a read-out from memory, but requires the agent to
actively integrate the new knowledge with the existing one.
The exact cognitive processes how this is achieved (e.g., by
creating new memory traces or overwriting existing ones), is
an open question for future work. Our work provides a full
computational-level account (in the sense of Marr, 1982) of
conditional reasoning.

The theoretical results presented here provide evidence that
the MP-MT asymmetry is a direct consequence from this
Bayesian conceptualization of conditional reasoning. Specifi-
cally, it occurs if the prior probability of the conditional prob-
ability of C given A (i.e., the relationship expressed in the
conditional) and the the prior probability of the antecedent is
at least .5. In the case that these conditions do not hold, we
expect the opposite pattern, an inverted MP-MT asymmetry.

Minimizing the KL-divergence, as proposed here, is one
rational way for an agent to update her prior probability dis-
tribution in light of new information which implies Jeffrey
conditionalization (Diaconis & Zabell, 1982). Importantly,
the results shown here do not only apply to updating via min-
imizing the KL-divergence, but for updating based on min-
imizing the distance between P′ and P for any divergence
measure that is a member of the family of f -divergences. All
these divergence metrics are rational in the same sense and
also predict the MP-MT asymmetry under the same circum-
stances. This is an important aspect of our results in light of
the findings of Singmann, Klauer, and Beller (2016). They
have investigated the empirical adequacy of conditional rea-
soning based on KL-minimization between P′ and P in a two-
step conditional reasoning task – which allowed to obtain
estimates of both P and P′ in an independent manner – and
found that it did not provide a very adequate account. How-
ever, as soon one is willing to give up the assumption that
P′(C|A) = p′ = 1 and assumes that P′(C|A) < 1 (as done in
Singmann et al.’s study), different members of the family of
f -divergences make different predictions. Preliminary work
suggests that a more empirically adequate account of condi-
tional reasoning is provided if we assume reasoners update
their probability distribution by minimizing the inverse-KL
divergence between prior and posterior distribution.

Proof of Proposition 1
We use the parameterization of the prior probability distri-
bution P according to eqs. (1) and (2) and begin with MP
and DA. Here we set the new value of the probability of
the antecedent to a′. Disregarding constant terms, the KL-
divergence is then given by KL = a′Φq with

Φx := x′ log
x′

x
+ x′ log

x′

x
. (9)

Differentiating KL with respect to q′ and setting the result-
ing expression equal to zero yields q′ = q. Hence, P′(C) =
a′+a′ q. We now insert the appropriate values of c′ from eqs.
(4) and use the definition of the respective (absolute) endorse-
ments to obtain

E1 := P′(C)
= λ+λ(a+aq)

= λ+λP(A∨C)
E2 := P′(¬C)

= λq+λaq

= λP(¬C|¬A)+λP(¬A,¬C).
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Let us now consider AC and MT. In this case, learning the
minor premise amounts to the constraint

a′+a′ q′ = c′, (10)

with c′ specified in eqs. (4). We therefore have to minimize
the function

L = Φa +a′ log
1
p
+a′Φq +µ(a′+a′ q′− c′),

with the Lagrange multiplier µ.
Differentiating L with respect to q′ and setting the resulting

expression equal to zero yields

q′ =
1

q+qx
, (11)

with x := exp(λ). Hence,

L = Φa +a′ log
1
p
+a′ log

1
q+qx

+µc′.

Differentiating this expression with respect to a′ and setting
the resulting expression equal to zero yields

a′ =
a p

a p+a(q+qx)
. (12)

From eqs. (10), (11) and (12), we then obtain

a′ =
a pc′

a p+aq
. (13)

We now insert the appropriate values of c′ from eqs. (4) in
eq. (13) and use the definitions of the respective (absolute)
endorsements to obtain

E3 := P′(A)

= λ
a p

a p+aq
+λa p

= λP(A|C)+λP(A,C)
E4 := P′(¬A)

= λ+λ(1−a p)

= λ+λP(¬A∨¬C).

This completes the proof of Proposition 1.

Proof of Proposition 2
We use Proposition 1 to compute the relative endorsements:

∆12 = λq+λ [2(a+aq)−1]

∆13 = λ
aq

a p+aq
+λ(a p+aq)

∆14 = λ(a p−aq)

∆23 = −(a p−aq) ·
[

λ
q

a p+aq
+λ

]
∆24 = −λq−λ(a p+aq)

∆34 = −λ
aq

a p+aq
+λ(2a p−1)

From these results, the statements made in the proposition
follow. For example, the third statement in (iv) follows by
noting that ∆14 +∆23 < 0.
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