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Abstract 26 

CXCR3A and its IFN-inducible ligands CXCL9 and CXCL10 regulate vascular 27 

remodelling and fibroblast motility. IL-13 is a pro-fibrotic cytokine implicated in the 28 

pathogenies of  inflammatory and fibro-proliferative conditions. Previous work from 29 

our lab has shown that CXCR3A is negatively regulated by IL-13 and is necessary for 30 

the basal regulation of the IL-13 receptor subunit IL-13Rα2. This study investigates 31 

the regulation of fibroblast phenotype, function and downstream IL-13 signalling by 32 

CXCR3A in vitro. CXCR3A was overexpressed via transient transfection. CXCR3A-/-33 

lung fibroblasts were isolated for functional analysis. Additionally, the contribution of 34 

CXCR3A to tissue remodelling following acute lung injury was assessed in vivo using 35 

wild type (WT)  and CXCR3-/- mice challenged with IL-13. CXCR3 and IL-13Rα2 36 

displayed a reciprocal relationship following stimulation with either IL-13 or CXCR3 37 

ligands. CXCR3A reduced expression of fibroblast activation makers, soluble 38 

collagen production and proliferation. CXCR3A enhanced the basal expression of 39 

pERK1/2 while inducing IL-13 mediated down-regulation of NFκB-p65. CXCR3A-/-40 

pulmonary fibroblasts were increasingly proliferative and displayed reduced 41 

contractility and α-smooth muscle actin expression. IL-13 challenge regulated 42 

expression of the CXCR3 ligands and soluble IL-13Rα2 levels in lungs and 43 

broncho-alveolar lavage fluid (BALF) of WT mice, this response was absent in 44 

CXCR3-/- mice. Alveolar macrophage accumulation and expression of genes involved 45 

in lung remodelling was increased in CXCR3-/- mice. We conclude that CXCR3A is a 46 

central anti-fibrotic factor in pulmonary fibroblasts, limiting fibroblast activation and 47 

reducing ECM production. Therefore targeting of CXCR3A may be a novel approach 48 

to regulate fibroblast activity in lung fibrosis and remodelling. 49 

Keywords: CXCR3A, fibroblast, fibrosis, contractility, collagen 50 
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Introduction 51 

Regulated fibrogenesis and fibroblast activation are essential for the normal wound 52 

healing response. Fibroblasts are a heterogenous population of multifunctional 53 

extracellular matrix (ECM) protein secreting cells, capable of undergoing activation 54 

into myofibroblasts (25). This contractile phenotype is defined by expression of 55 

contractile proteins and alpha-smooth muscle actin (α-SMA) and is essential for tissue 56 

repair and remodelling in the lung (24, 56). Fibroblastic cells are also important 57 

sources of growth factors, cytokines and chemokines that directly modulate the 58 

immune response occurring during physiological tissue repair (11, 53, 57). The 59 

persistence of aberrantly activated fibroblasts regulates the switch from acute 60 

resolving to chronic persistent inflammation (11). 61 

Classical CXC chemokine receptor 3 (CXCR3) binds pro-inflammatory 62 

non-ELR-motif (glutamate-leucine-arginine motif) chemokines CXCL9, CXCL10 63 

and CXCL11. In humans there are three splice variants of the receptor (CXCR3A, 64 

CXCR3B and CXCR3alt), however due to the presence of an in-frame stop codon 65 

CXCR3B cannot be functionally translated in mice (13). Mice that lack CXCR3A 66 

exhibit more progressive fibrosis and have increased mortality in response to 67 

bleomycin insult (28). Administration of ligands CXCL10 and CXCL11 have been 68 

shown to ameliorate fibrosis, prevent the recruitment of fibroblasts, and decrease 69 

angiogenesis in the lung promoting IFNγ production (12, 27, 30). CXCR3 is 70 

expressed by a variety of cell types including epithelial cells, endothelial cells, 71 

T-lymphocytes and fibroblasts (35, 37, 48, 51). CXCR3A signalling is important for72 

dermal maturation and matrix remodelling (61, 62). Additionally, CXCR3 73 

ligand-receptor signalling regulates a variety of cell-type specific responses regulating 74 

angiogenesis (2), angiostasis (48), tissue remodelling (9) and repair (63). Our group 75 
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and others have shown that CXCR3A is expressed by pulmonary fibroblasts (5, 52) 76 

and plays a role in the regulation of the interleukin-13 receptor α2 subunit (IL-13Rα2) 77 

by pulmonary fibroblasts in vitro (5). 78 

Interleukin-13 (IL-13) is a T-Helper Type-2- cytokine that has been implicated in the 79 

pathogenesis of fibro-proliferative disorders and potentiates experimentally induced 80 

lung injury in numerous experimental settings (6, 8, 31, 32, 64). In human disease, 81 

IL-13 drives tissue remodelling responses in asthma (33) and is elevated in chronic 82 

fibrotic conditions such as systemic sclerosis (22, 45) and idiopathic pulmonary 83 

fibrosis (21, 43, 47). IL-13 binds to receptor chains IL-13Rα1 and IL13Rα2. 84 

Generally considered to be a decoy receptor for IL-13 and devoid of signalling 85 

activity due to a short cytoplasmic tail (65), IL-13Rα2 binds IL-13 at much higher 86 

affinity and specificity than IL-13Rα1 (39). Mice lacking the IL-13Rα2 decoy 87 

receptor have enhanced IL-13 activity (59) and research from our group has shown 88 

that adenoviral over-expression of IL-13Rα2 limits fibrosis in response to bleomycin 89 

induced lung injury (38). 90 

Here, we discover a reciprocal relationship between CXCR3A and IL-13Rα2 91 

following stimulation with CXCR3 ligands. Expression of the CXCR3A splice variant 92 

was negatively regulated by IL-13 treatment and dramatically reduced in the 93 

bleomycin model of pulmonary fibrosis. Overexpression of CXCR3A in vitro in 94 

NIH3T3 fibroblasts reduced the pro-fibrogenic activity of these cells, suppressed 95 

downstream IL-13 signalling (STAT6, ERK1/2 and NFκBp65) and reduced the 96 

secretion of matricellular proteins. CXCR3A-/- fibroblasts secreted more ECM but had 97 

reduced contractile capabilities in vitro. Following IL-13 challenge, CXCR3A-/- mice 98 

displayed dysregulated lung remodelling in vivo and increased inflammatory infiltrate 99 

(alveolar macrophages). IL-13 induced regulation of the CXCR3 ligands and soluble 100 
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IL-13Rα2 was blunted in BALF and lungs of CXCR3A-/-mice compared to wildtype 101 

animals. We identify a novel role for CXCR3A in the regulation of fibroblast 102 

contractility  and secretion of sIL-13Rα2. These findings  identify CXCR3A as a 103 

potential target in the generation of future anti-fibrotic therapies that modulate 104 

fibroblast function. 105 

106 
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Results 107 

Data supplements can be found here: 108 

https://doi.org/10.6084/m9.figshare.11902887 109 

110 

CXCL10 regulates the IL-13Rα2 receptor in a CXCR3A dependent manner and 111 

affects fibroblast proliferation 112 

Previous work from our lab has identified a role for CXCR3A in basal regulation of 113 

the anti-fibrotic decoy receptor IL-13Rα2. To decipher the mechanism of how 114 

CXCR3 ligands CXCL9 and CXCL10 exert regulatory effects on this receptor, we 115 

now used NIH3T3 fibroblasts in vitro. Treatment with CXCR3 ligand CXCL10 116 

resulted in significantly downregulated expression of the CXCR3 receptor (Figure 117 

1A) while upregulating the expression of Il13rα2 mRNA and IL-13Rα2 protein at 24 118 

h (Figure 1B and 1C). To test which function this exerts on fibroblasts we examined 119 

the effect of the ligands on fibroblast proliferation. CXCL10 treatment significantly 120 

induced proliferation of NIH3T3 fibroblasts (Figure 1D). CXCL10 has been shown to 121 

act independently of CXCR3 (13). To investigate if the regulation of IL-13Rα2 by 122 

CXCL10 was dependent on CXCR3A fibroblasts were treated with a CXCR3 123 

antagonist (18) prior to ligand stimulation. In the presence of the antagonist CXCL10 124 

failed to upregulate Il13rα2 gene expression (Figure 1E). There was no change in 125 

cellular viability, determined by the Alamar blue assay (Figure 1F), however 126 

fibroblasts treated with the CXCR3 antagonist proliferated significantly less than 127 

vehicle controls (Figure 1G). Overall, these data suggest that the CXCR3 ligand 128 

CXCL10 regulates expression of IL-13Rα2 and that this regulation by CXCL10 is 129 

dependent on the CXCR3A receptor. 130 

131 
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CXCR3A reduces fibroblast activation, soluble collagen production and 132 

proliferative capacity 133 

We investigated the functional effect of CXCR3A over-expression in fibroblasts. The 134 

cellular localisation of CXCR3A (yellow) was visualised by immunofluorescence 24 135 

h post transfection in NIH3T3 fibroblasts transfected with either empty vector control 136 

or CXCR3A plasmid, antibody specificity was verified with appropriate isotype 137 

control  (Figure 2A).  The number of CXCR3A positive cells per field of view was 138 

higher in CXCR3A transfected fibroblasts compared to empty vector controls. 139 

Cxcr3A gene expression assessed by qRT-PCR (Figure 2B), cellular viability by 140 

Alamar blue (Figure 2C) and CXCR3A protein assessed by western blotting (Figure 141 

2D). CXCR3A gene and protein were significantly increased in transfected fibroblasts 142 

compared to empty vector controls. No differences were detected in cellular viability.  143 

CXCR3A over-expression altered fibroblast gene expression and functional 144 

capabilities. Significant decreases in gene expression of fibroblast activation markers 145 

Acta2, Col1a1, Vim and Fsp1 (Figure 3A-D) were detected  in CXCR3A transfected 146 

fibroblasts. Additionally, gene expression of the anti-fibrotic receptor Il13rα2 was 147 

significantly elevated (Figure 3E) while fibroblast proliferation was reduced (Figure 148 

3F). Secreted levels of key components of the ECM; soluble collagen and active 149 

TGFβ1 (Figure 3G-H) were observed in addition to altered chemokine secretion 150 

(Figure 3I-J). However, IFN-γ levels below the limit of detection. These data show 151 

that CXCR3A functions as a regulator of fibroblast phenotype by modulating 152 

fibroblast activation and by limiting functional capabilities that contribute to tissue 153 

fibrosis.  154 

155 
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CXCR3A regulates downstream IL-13 signaling and secretion of matricellular 156 
proteins 157 

Next, we investigated the effect of CXCR3A over-expression on fibroblast signaling 158 

following stimulation with IL-13. STAT6 is a major downstream mediator of IL-13 159 

signalling (49). A time-course of IL-13 stimulation was performed on NIH3T3 160 

fibroblasts transfected with CXCR3A for 24 h to examine, the phosphorylation of 161 

downstream signaling molecules STAT6, MAPK pathway ERK1/2 (p44 and p42) and 162 

canonical NFκB family member NFκB-p65 (RelA). In CXCR3A overexpressing 163 

fibroblasts phosphorylation of all proteins was delayed  compared to empty vector 164 

controls in a time dependent manner (Figure 4A).  STAT6 phosphorylation was 165 

delayed in response to IL-13 stimulation in CXCR3A transfected fibroblasts by 15 166 

min compared to empty vector controls. CXCR3A overexpression markedly 167 

upregulated pERK1/2 at a basal level with no changes in pERK1/2 observed in 168 

response to IL-13 stimulation. In contrast, IL-13 stimulated empty vector controls 169 

exhibited peak levels of pERK1/2 after 15-30 min.  Interestingly, baseline levels of 170 

pNFκB-p65 were reduced in fibroblasts transfected with CXCR3A and stimulation 171 

with IL-13 resulted in a dramatic reduction of total NFκB-p65 after 15 min. Thus, 172 

CXCR3A overexpression in fibroblasts regulates pERK1/2 and NFκB-p65 at a basal 173 

level, promoting activation of the ERK1/2 pathway and downregulation of 174 

NFκB-p65. These results may indicate that in the presence of CXCR3A ERK1/2 175 

competes with NFκB signaling. 176 

We have previously shown both membrane-bound IL-13Rα2 (mIL-13Rα2) and the 177 

soluble version (sIL-13Rα2) are inhibitory receptors for IL-13 (37). Protein levels of 178 

membrane bound (mIL-13Rα2) and soluble (sIL-13Ra2) were measured in NIH3T3 179 

fibroblasts 24 h post CXCR3A-transfection with and without IL-13 stimulation for 24 180 



9

h. sIL-13Rα2. Alterations in protein levels of mIL-13Rα2 (upper band) and 181 

sIL-13Rα2 (lower band) were detected (Figure 4B). sIL-13Rα2 levels was  elevated in 182 

CXCR3A overexpressing fibroblasts which was more pronounced upon IL-13 183 

stimulation (Figure 4B). Since these results suggest that CXCR3A may also be 184 

important for the decoy function of IL-13Rα2, soluble levels of IL-13Rα2 in cell 185 

supernatants were examined by ELISA. The levels of secreted sIL-13Rα2 were 186 

significantly elevated in IL-13 treated CXCR3A overexpressing fibroblasts compared 187 

to empty vector controls (Figure 4C). Periostin is an ECM protein with a matricellular 188 

function and its expression is induced by IL-13 (40).  Secretion of periostin was 189 

significantly reduced in CXCR3A transfected fibroblasts following IL-13 stimulation 190 

(Figure 4D). Collectively, these results show that CXCR3A alters signaling 191 

downstream of IL-13 and exerts a regulatory function on the availability of the 192 

sIL-13Rα2, impacting secretion of matricellular proteins. 193 

194 

CXCR3A-negative fibroblasts are less contractile and produce more ECM 195 

Given the ability of CXCR3A to potentiate anti-fibrotic effects at baseline and in the 196 

presence of IL-13 we next performed functional assays with fibroblasts isolated from 197 

global CXCR3A-/- mice. We used elastic ‘wrinkling’ silicone substrates to measure 198 

cell contractility following stimulation with IL-13 (Figure 5) (23). Wrinkling force of 199 

WT and CXCR3A-/- fibroblasts was quantified by thresholding and binarizing images 200 

for phase-bright wrinkle signals (Figure 5A-C). WT fibroblasts produced larger 201 

substrate wrinkles, compared with smaller and lower abundance wrinkles produced by 202 

CXCR3A-/- fibroblasts. Without IL-13 stimulation, CXCR3A-/- fibroblasts displayed 203 

increased proliferative capacity (Figure 5D) and produced more soluble collagen 204 
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(Figure 5E). At the protein level Col1A1 protein was elevated accompanied by 205 

increased expression of intermediate filament protein vimentin, however α-SMA 206 

expression was decreased in CXCR3A-/- fibroblasts (Figure 5F). α-SMA is important 207 

for contractility of fibroblasts and is a key marker of myofibroblast activation. The 208 

results of the functional assays indicate CXCR3A-/- fibroblasts are unlikely to be 209 

contractile αSMA+ myofibroblasts and are more likely to be static matrix producing 210 

fibroblasts. 211 

212 

IL-13 regulates chemokine expression and induces alveolar macrophage 213 
accumulation in vivo 214 

In order to evaluate the biological significance of our in vitro data, WT and CXCRA-/-215 

mice were intranasally instilled with IL-13 for 24 h. To assess inflammatory response 216 

and measures of lung  remodelling differential cell counts from the bronchial alveolar 217 

lavage fluid), cytokine/chemokine concentrations in BALF and whole lungs were 218 

examined. The total number of cells in BALF was significantly increased in IL-13-219 

challenged CXCR3A-/- mice when compared to vehicle control WT mice (Figure 6A). 220 

The total protein content in BALF was measured (broad measure of vascular 221 

permeability) and no significant differences were observed (Supplemental Figure 1A). 222 

Assessment of chemokine levels in BALF revealed a significant induction of 223 

CXCL10 levels in WT lungs treated with IL-13 compared to vehicle controls (Figure 224 

6B). Lung macrophages are an important source of CXCL10 following injury (55). 225 

No significant differences were observed in CXCL9 levels in BALF, while soluble 226 

IL-13Rα2 was elevated in 4/5 samples following IL-13 stimulation (Supplemental 227 

Figure 1B-C). Diffquik staining (MGG) was used to identify cell populations in the 228 

BALF. All cells were mononuclear (indicated by black arrows) with large 229 

cytoplasmic space, suggesting they are macrophages that were recruited to the lung 230 
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airspace following IL-13 induced injury (Figure 6C).  Expression of CXCR3 ligands 231 

CXCL9 and CXCL10 was reduced in WT mice following IL-13 treatment (Figure 232 

6D-E), IL-13 treatment also downregulated CXCL10 expression in CXCR3A-/- mice. 233 

Soluble IL-13Rα2 levels were markedly reduced in WT lungs treated with IL-13 but 234 

this response was blunted in CXCR3A-/-mice with levels remaining close to vehicle 235 

controls (Figure 6F). Ccl17, Ccl22 and Il13ra2 gene expression levels were quantified 236 

as measures of lung  remodelling, Il13ra2 mRNA also served as measure of IL-13 237 

response. Ccl17 was significantly elevated in CXCR3A-/- mice challenged with IL-13 238 

compared to IL-13 challenged WT mice (Supplemental Figure 1D), no differences 239 

were observed in Ccl22 levels (Supplemental Figure 1E). No significant differences 240 

were observed in the induction of IL-13Rα2 between WT and CXCR3A-/-  treated 241 

with IL-13 at the gene level. It should be noted that the qPCR primer used does not 242 

discriminate between transcripts for the membrane bound and the soluble form of the 243 

receptor (Supplemental Figure 1F). CXCR3A-/- mice appear to have an enhanced lung  244 

remodelling response following IL-13 stimulation caused by   increased accumulation 245 

of alveolar macrophages and dysregulated expression of chemokines in the lung. 246 

These in vivo findings suggest that in the injured CXCR3A-/- lung communication 247 

between macrophages and stromal cells  is altered, potentially limiting effective tissue 248 

repair.  249 

250 

CXCR3A is negatively regulated by IL-13 stimulation in vitro and during peak 251 

fibrotic phase of bleomycin induced lung injury  252 

We next investigated the effect of IL-13 stimulation on CXCR3A expression. IL-13 253 

stimulation resulted in significantly downregulated Cxcr3A gene (Figure 7A) and 254 

protein expression 7B.  Reduced sIL-13Rα2 levels were detected following IL-13 255 
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stimulation (Figure7C). Taken together, these data highlight IL-13 negatively 256 

regulates expression of  anti-fibrotic receptors CXCR3A and sIL-13Rα2 in fibroblasts, 257 

in vitro. As IL-13 is also a major driver of tissue remodelling and fibrosis, we 258 

examined Cxcr3A gene expression in both peak inflammatory phase (day 5) and 259 

fibrotic phase (day 21) of the bleomycin model of lung injury. CXCR3 expression was 260 

significantly downregulated in lungs at day 21 post bleomycin instillation compared 261 

to vehicle controls (Figure 7D); no change was observed at day 5. Expression of 262 

CXCR3A is limited in the context of acute injury induced by in vitro IL-13 263 

stimulation and in chronic lung fibrosis. 264 

265 

266 
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Discussion 267 

This study provides multiple lines of evidence that CXCR3A regulates fibroblast 268 

function and phenotype in vitro, constraining fibroblast proliferation, matrix secretion 269 

and release of pro-fibrotic soluble mediators. We have highlighted a novel role for 270 

CXCR3A in regulation of fibroblast contractility, in the absence of CXCR3A 271 

fibroblasts have reduced contractile capacity and α-SMA levels. Additionally, 272 

CXCR3A is an upstream regulator of both ERK1/2 and NFκB-p65 signalling, both at 273 

a basal level and in the presence of IL-13. Furthermore, CXCR3 promotes the 274 

secretion anti-fibrotic decoy receptor sIL-13Rα2. This is a novel role for the receptor 275 

independent of its previously recognised role as a regulator cellular proliferation and 276 

chemotaxis. Our in vivo findings demonstrate that IL-13 regulates CXCR3 ligand 277 

expression levels  in the lungs and BALF of WT mice. CXCR3A-/- mice have 278 

increased accumulation of alveolar macrophages and a more pronounced lung 279 

remodelling response following acute lung injury. These findings make this 280 

investigation directly relevant to lung conditions involving lung remodelling and/or 281 

tissue fibrosis. 282 

This study adds to our previous findings that CXCR3 is necessary for the basal 283 

regulation of IL-13Rα2 on cultured pulmonary fibroblasts (5). We focused on CXCL9 284 

and CXCL10 because C57BL/6 mice do not express CXCL11 due to a frameshift 285 

within the coding sequence that leads to a premature stop codon (14). Here, we show 286 

the CXCR3 ligand CXCL10 is responsible for the up-regulation of IL-13Rα2 by 287 

fibroblasts, by acting directly through its own receptor. Functional CXCR3 receptor 288 

expression has been detected on other stromal cell subtypes e.g. hepatic stellate cells 289 

(10) intestinal myofibroblasts (34) and fibroblast-like synovicytes (36) where290 

engagement by CXCL10 stimulated proliferation and/or chemotaxis. CXCL10 is 291 
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downregulated in pulmonary fibrosis (30), we observed reduced CXCR3A levels at 292 

day 21 post bleomycin instillation but not during the inflammatory phase. Peak 293 

expression of IL-13 receptor subunits occurs at day 21 and 28 following bleomycin 294 

instillation (26). Under normal homeostatic conditions CXCR3A and its ligands 295 

downregulate Th2 responses while promoting Th1 cell migration, our data suggest 296 

CXCR3A also regulates fibroblast accumulation following lung injury to sites of 297 

tissue injury. This may be regulated via the CXCR3 receptor itself or by modulation 298 

of cellular crosstalk between fibroblasts and recruited immune cells following lung 299 

injury. 300 

Previous in vivo studies investigating CXCR3 in pulmonary fibrosis by Jiang et al., 301 

have largely neglected and/or underestimated the fibroblast specific expression of the 302 

receptor. Instead focusing the Th1 response and the impact of CXCR3 expression by 303 

immune cells (CD8 T cells and NK cells) on fibroproliferation(28) or  suggesting the 304 

that the actions of CXCL10 were largely independent of CXCR3 (27). This is the first 305 

investigation, to our knowledge, involving the over-expression of CXCR3A in 306 

fibroblasts where direct effects on fibroblast phenotype have been examined. Previous 307 

research has focused ligand-receptor interactions and mechanisms of CXCR3 receptor 308 

internalisation (41, 42), while our study shows a dramatic reduction in fibroblast 309 

activation and production of soluble mediators 310 

Yates et al., have demonstrated CXCR3A receptor expression by fibroblasts regulates 311 

dermal maturation and when CXCR3A is absent total skin collagen content is 312 

reduced, accompanied by immature and disorganised fibrillar collagen (63). The 313 

apparent disparity in results between investigations could be due to several reasons 314 

including differing methodologies and anatomical locations. We demonstrated 315 

reduced collagen secretion in the presence of CXCR3A, while in the absence of 316 
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CXCR3A soluble collagen content was increased. The Sircol assay detects only the 317 

soluble forms of collagen types I-IV. It does not quantify insoluble collagen content 318 

and does not discriminate between different collagen isoforms or assess maturity of 319 

the collagen produced. Additionally, fibroblasts isolated from different tissues display 320 

similar morphology but can exhibit different functional properties, a concept termed 321 

‘positional memory’ (16). Anatomical considerations such a tensile strength and 322 

fibrillar collagen organization will also differ between skin and lung.  323 

Elevated secretion of CXCL9 was accompanied by a decrease in active TGFβ1 324 

secretion, CXCL9 prevents epithelial to mesenchymal transition of lung epithelial 325 

cells by abrogating TGFβ1 induced SMAD2/3 phosphorylation in vitro (44). 326 

Interestingly, in addition to regulating canonical downstream IL-13 signalling e.g. 327 

STAT6 and MAPK-ERK pathways, in the presence of the CXCR3A plasmid, IL-13 328 

stimulation induced NFκB-p65 degradation at 15 mins. Activation of ERK1/2 and 329 

inhibition of NFκB may be due to direct competition between ERK1/2 and  330 

NFκB-p65. Alternately, this could be mediated via up regulation of IκBα which 331 

usually serves to constrain NFκB activation, though we cannot exclude the 332 

involvement of multiple independent pathways. In dermal fibroblasts expression of 333 

NFκB-p65 has been shown to determine extent of collagen synthesis, both in healthy 334 

and systemic sclerosis patient samples (7) and in our study CXCR3A expression was 335 

also associated with Col1a1 regulation. CXCR3A-/- fibroblasts displayed increased 336 

levels of Col1a1 and vimentin protein expression, a recent study by Wohlfahrt et al., 337 

has used expression levels of these proteins to  distinguish between inflammatory and 338 

fibrotic fibroblasts (58). Though CXCR3A-/- fibroblasts appear to have reduced 339 

contractile ability, their phenotype is consistent with a matrix-producing pro-fibrotic 340 

phenotype.  341 
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IL-13Rα2 can act as a decoy receptor capable of binding ligand and thus preventing 342 

productive signaling through Rα1. The soluble form of the receptor (ΔEx10 variant of 343 

the protein) lacks the transmembrane region of the full-length protein. We suggest 344 

that CXCR3A expression may be important in the decoy function of IL-13Rα2. 345 

Secretion of soluble IL-13Rα2 protein is more pronounced in the presence of both 346 

CXCR3A and IL-13 in vitro. Our in vivo findings suggest that IL-13 is ‘mopped up’ 347 

by the soluble receptor in lungs of WT mice, but in CXCR3A-/-mice this decoy 348 

function is potentially absent. However, this was not assessed directly in this 349 

investigation. It should be noted that for gene expression analysis the IL-13Rα2 350 

primer used does not detect the ΔEx10 splice variant. There have been reports of 351 

signalling activity by IL-13Rα2 in macrophages and in a murine model of pulmonary 352 

hypertension (17, 19). However, we propose that IL-13Rα2 serves to limit IL-13 353 

activity/bio-availability, consistent with investigations in lung fibroblasts by 354 

Chandriani and colleagues (15). 355 

We also highlight IL-13 mediated regulation of CXCL9 and CXCL10 in the lung in 356 

vivo. IL-13 up-regulates of CXCL10 protein in BALF, conversely, levels of CXCR3 357 

ligands were decreased in lung homogenates. We identified alveolar macrophages as 358 

the predominant population of cells in the BALF, while lung homogenates contain a 359 

variety of lymphoid, myeloid, epithelial and stromal cells. IL-13 mediated regulation 360 

of the CXCR3 ligands may be dependent on cell type.  CXCL10 is highly expressed 361 

by M1 type macrophages, these macrophages contribute to inflammation. IL-13 is a 362 

key regulator of macrophage polarisation into and M2 or alternatively activated state 363 

(60) these macrophages usually facilitate resolution through secretion of ECM364 

degrading enzymes. Macrophages that lack CXCR3A have a more M2 phenotype (46) 365 

and in a model of breast cancer this contributed to increased accumulation of tumor 366 
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promoting myeloid derived immune cell populations. In the context of our study, 367 

these results suggest dysregulated fibroblast-macrophage cross talk, that may promote 368 

the accumulation and retention of fibroblasts within the CXCR3A-/- lung. Ccl17 gene 369 

expression was elevated in CXCR3A-/- mice following IL-13 challenge. CCL17 is 370 

chemotactic for fibroblasts and accelerates wound healing by enhancing fibroblast 371 

migration (29).  This accumulation/retention could impair the ability of both 372 

macrophages and fibroblasts to successfully co-ordinate tissue repair, becoming a 373 

self-sustaining aberrant process. 374 

The contrasting findings involving cellular proliferation in our study warrant further 375 

discussion. Treatment of NIH3T3 fibroblasts with either a CXCR3 antagonist or 376 

ectopic overexpression of CXCR3A resulted in a significant decrease in cell 377 

proliferation, with no alteration in cellular viability. Previous findings in stromal cells 378 

(epithelial cells and endothelial cells) determined that CXCR3 is expressed at the cell 379 

surface during a portion of the cell cycle (1, 50). The population of cells expressing 380 

CXCR3 on their surface were more likely to be in the late S to G2/M phase of the cell 381 

cycle(50). It is possible that both approaches (antagonism and overexpression) result 382 

in CXCR3 receptor internalisation or alteration of the cell cycle. We have used a 383 

colorimetric BrdU assay as a ‘global readout’ of DNA synthesis/proliferation. 384 

Approaches to quantify BrdU staining combined with CXCR3 surface expression 385 

using immunofluorescence would facilitate additional profiling of the BrdU+ cells. 386 

CXCR3A-/- fibroblasts were more proliferative than wild type cells, these cells may 387 

exist in a constitutively active and/or proliferative state to compensate for the 388 

complete absence of CXCR3. 389 

In order to further dissect the cell specific contributions of CXCR3A to 390 

stromal-immune cell cross-talk, conditional and/or inducible cell specific knockouts 391 
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are preferable to global knockout mice. Such models help to further elucidate 392 

compensatory mechanisms that may exist between different cell types, we 393 

acknowledge that the use of a CXCR3A global knockout is a limitation of our study. 394 

It is difficult to dissect the role of the CXCR3 ligands in vivo, these ligands exert 395 

context dependent regulation on their receptor in addition to having redundant, 396 

collaborative and antagonistic functions. CXCL9 and CXCL10 are highly 397 

promiscuous ligands with numerous potential binding partners including multiple 398 

chemokine receptors, atypical chemokine receptors and  glycosaminoglycans. CXCR3 399 

reporter mice (REX3) have previously been employed in studies by Groom and 400 

colleagues to allow reporting of expression of  CXCR3 ligands by lymphocytes in 401 

vivo (20) and could provide valuable insight if the same approach was employed for 402 

stromal cells. 403 

This study demonstrates that CXCR3A is a key regulator of fibroblast phenotype in 404 

vitro and regulates extracellular matrix production and cellular contractility in 405 

pulmonary fibroblasts. IL-13 stimulation exerts discrete effects on CXCR3 ligand 406 

expression in the lung in vivo that appears to be dependent on cell type e.g. immune 407 

and/or stromal cells. This has far reaching implications for CXCR3A as a regulator of 408 

cellular communication and as a key driver of decisions within the tissue following 409 

lung injury. CXCR3A may act as a ‘phenotypic switch’ preventing prolonged ‘active’ 410 

or aberrant remodelling processes and promoting tissue repair and resolution. 411 

Strategies to target or harness the potential of CXCR3A may help to identify novel 412 

treatments for a variety of fibrotic conditions. 413 

414 
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Materials and Methods 415 

Animals 416 

CXCR3-/- (B6.129P2-Cxcr3tm1Dgen/J, Jackson laboratories) and wild type female 417 

C57Bl6/J mice were obtained from Charles River. Animals were maintained under 418 

specific pathogen-free conditions in line with Irish and European Union regulations. 419 

Experiments were approved by local ethical review and were carried out under the 420 

authority of Ireland’s project license.  10µg of recombinant murine IL-13 (Biolegend) 421 

or PBS was administered intranasally, in a volume of 50µl, for 24 h. Pulmonary 422 

fibrosis was induced as previously described (54). Briefly, 8- to 10-wk C57BL/6 mice 423 

were anesthetized with ketamine/xylazine and instilled intratracheally with 1 U/kg 424 

bleomycin.  Animals were euthanized via intraperitoneal overdose of sodium 425 

pentobarbital, 250 mg/kg. 426 

427 

Cells  and Reagents 428 

NIH-3T3 fibroblasts were obtained from European Collection of Cell Cultures 429 

(ECACC) and  cultured in Dulbecco’s Modified Eagle Medium  (Gibco/Invitrogen, 430 

Ireland) supplemented with 10% heat inactivated FBS, (Sigma Aldrich, Ireland), 431 

5mM L-glutamine (Gibco/Invitrogen) penicillin (100U/ml), and streptomycin 432 

(100μg/ml) (Gibco/Invitrogen) at 37° Celsius in humidified 5% CO2. Primary lung 433 

fibroblasts were isolated from CXCR3-/-mice (B6.129P2-Cxcr3tm1Dgen/J, Jackson 434 

laboratories) or wild type C57BL/6 mice (Charles River, UK.) as previously described 435 

(3). Primary fibroblasts were used between passages 2-8 for all experiments and 436 

cultured in standard media conditions, as above. To prepare samples for analysis, cells 437 

were serum starved for 18h then incubated in medium containing vehicle alone or 438 

supplemented with IL-13 (Biolegend) CXCL9, CXCL10 (Biolegend) at the time 439 
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periods indicated. To investigate CXCR3 dependent signalling cells were pre-treated 440 

with 500nM of CXCR3 antagonist 500586 (Calbiochem) for one hour before 441 

stimulation with cytokines/chemokines. 442 

443 

Transfection 444 

NIH-3T3 fibroblasts were seeded at 1 x 105 cells per well and transfected with a 445 

complex formed using TRANSIT 2020 reagent (Mirus, Madison, WI) in Optimem 446 

(Gibco, life technologies, Carlsbad, CA) and 1μg of pCMV6-CXCR3-tGFP or empty 447 

vector control (Origene, Cambridge, UK). Cells were then serum starved overnight 448 

prior to treatment with cytokines. 449 

450 

Sircol Assay 451 

The Sircol Soluble Collagen Assay (Biocolor, Carrickfergus, UK) protocol was 452 

performed as per manufacturers’ instructions. 453 

454 

Proliferation Assay 455 

Cellular proliferation was measured using the BrdU assay (Roche, Basel, Switzerland) 456 

as per the manufacturers’ instructions. 457 

458 

ELISA 459 

ELISA experiments performed on cell supernatants, mouse lung homogenates and 460 

BAL fluid to detect active-TGFβ1, soluble IL-13Rα2, CXCL9 and CXCL10 (R&D 461 

Systems, Wiesbaden, Germany), were performed as per the manufacturers’ 462 

instructions 463 

464 
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Alamar blue assay 465 

Briefly, Resazurin salt (Sigma) stock was dissolved in PBS and sodium hydroxide and 466 

used at final concentration 44μM in complete culture medium. After the desired 467 

incubation time with drug/treatment, the medium was removed and replaced with 468 

fresh medium containing resazurin salt. Cells were incubated for 2 hours with the 469 

diluted resazurin and kept out of direct light at 37⁰C. The supernatant from each well 470 

was removed to a 96 well plate in duplicate and measured at 535nm/595nm in a 471 

Spectra Max (Grodig, Austria) plate reader.  472 

473 

Contractility Assay 474 

Cell contractility was assessed using deformable silicone substrates as previously 475 

described (11). In brief, polydimethylsiloxane substrates with a Young’s modulus of 5 476 

kPa were coated with 10 µg/ml fibronectin for sparse cell cultures. Wrinkle formation 477 

on substrates, indicating cell contraction, was observed after 24 h in culture with 478 

IL-13. Live phase contrast images were acquired with an inverted microscope 479 

(Olympus 200 phase contrast microscope, 10x objective) and analyzed using ImageJ 480 

customized macros (U.S. National Institutes of Health, NIH, Bethesda, Maryland, 481 

USA, http://imagej.nih.gov/ij/, 1997-2013) by thresholding for phase-bright wrinkles 482 

and analyzing the surface area covered by identified particles in the resulting binary 483 

images. Relative contraction was expressed as image area covered by wrinkles 484 

normalized to cell numbers (4). 485 

486 

Immunofluorescence 487 

NIH-3T3 fibroblasts were seeded at 1x105 cells per mL on sterile 8 well glass 488 

chamber slides (Nunc). NIH-3T3 fibroblasts were fixed in 100% methanol (Sigma) 489 
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and blocked by incubation in 5% BSA (Sigma). They were then incubated with an 490 

1:400 anti-CXCR3 antibody labelled with PE (ab95724)or 1:400 appropriate isotype 491 

control (ab101026; Abcam, Cambridge, UK). Nuclei were counterstained with DAPI 492 

(Invitrogen) and images obtained using a Zeiss Axio Imager M1 microscope. 493 

494 

Western Blotting 495 

NIH-3T3 fibroblast whole cell extracts (WCE) were obtained using RIPA buffer 496 

(Sigma Aldrich) and Western blotting carried out as previously described (38). 497 

Antibodies used were as follows: 1:250 anti-IL 13Rα2 (AF539;R&D Systems), 1:500 498 

anti-CXCR3 (MAB160;R&D Systems), 1:500 anti-phosphorylated-STAT6 (#9361), 499 

1:1000 anti-total STAT6 (#9262), 1:1000 anti-phospho ERK1/2 (#9101), 1:500 500 

anti-total ERK1/2 (#9102), 1:1000anti-phospho NFκB p65 (#3033), 1:1000 anti-total 501 

NFκB p65 (#3034), 1:10000 anti-GAPDH (#2118), 1:1000 anti-vimentin antibody 502 

(#3932) (Cell Signaling Technology, UK), 1:500 anti α-SMA (A2547), 1:10000 anti-503 

β-actin (A5316) (Sigma Aldrich), 1;10000anti-Fibronectin (610077;BD Biosciences) 504 

and 1:200 anti-Col1a1 (Sc-8784; Santa Cruz Biotechnology) Appropriate secondary 505 

HRP-conjugated secondary antibodies were used  (Cell Signalling Technology). 506 

507 

Quantitative real-time PCR 508 

Total RNA was isolated using the RNeasy plus kit (Qiagen, Manchester, UK)) 509 

according to manufacturer’s instructions and500 ng of RNA was reverse transcribed 510 

to cDNA as per manufacturer’s instructions. Quantitative real-time PCR (qRT-PCR) 511 

was performed using TaqMan Universal PCR master mix (Applied Biosystems), 512 

template cDNA and TaqMan Gene Expression assays (Il-13rα2 Mm_01324829_m1, 513 

Cxcl10 Mm_00445253_m1, Cxcl9 Mm_00434946_m1, Cxcr3 Mm_99999054_m1, 514 
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Vim Mm_01333430_s1, Fsp1 Mm_00803374_g1, acta2 Mm_01546133_m1, Col1a1 515 

Mm_00801666_g1) on an ABI Prism 7900HT Sequence Detector (Applied 516 

Biosystems). 18S rRNA served as an endogenous control. Relative changes in 517 

transcript levels in treated samples compared to controls was expressed using the 518 

∆∆Ct method.  519 

520 

Statistics 521 

All experiments were performed independently at least three times. Data were 522 

analysed GraphPad Prism version 5.01 for Windows (GraphPad, San Diego, 523 

California, USA). Data was tested for normality using the Kolmogorov-Smirnov test 524 

with (α=0.05). Data are presented as mean  ±  SEM and P values were calculated 525 

using two-tailed Student’s t-test for pairwise comparison of variables, one-way 526 

ANOVA for multiple comparison of variables, and two-way ANOVA involving two 527 

independent variables. A Sidak’s multiple comparisons test was used. P values < 0.05 528 

were considered significant. 529 
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Figure Legends 805 

806 

Figure 1 807 

Regulation of CXCR3 and IL-13Rα2 by CXCR3 ligands. qRT-PCR was used to 808 

quantify mRNA expression of Cxcr3A (A) and Il13rα2 (B) in NIH3T3 fibroblasts 809 

treated with CXCR3 ligands CXCL9 (10ng/ml), CXCL10 (10ng/ml) or vehicle 810 

control for 24 h. (C) sIL-13Rα2 (pg/ml) detected by ELISA (D) Cellular proliferation 811 

was measured using a BrdU assay (n=5). (E) mRNA expression of Il13rα2 in NIH3T3 812 

fibroblasts treated with CXCR3 antagonist 1 hour prior to stimulation with CXCL9, 813 

CXCL10 or vehicle for 24 h. (G) Cell viability was measured by Alamar blue assay 814 

and (H) proliferation by BrdU assay following treatment with CXCR3 antagonist or 815 

vehicle control at 24 h. Data analysed using the ∆∆Ct method and presented as fold 816 

change versus vehicle control. Two-tailed Student’s t-test for pairwise comparison of 817 

variables, one-way ANOVA for multiple comparison of variables, a Sidak’s multiple 818 

comparisons test was used. Data presented as mean ± SEM and representative of 819 

(n=3) independent experiments unless otherwise stated. Student’s t-test for  *p< 0.05, 820 

** p < 0.01. 821 

822 

Figure 2 823 

Immunofluorescent staining of NIH3T3 fibroblasts seeded on glass chamber slides 824 

transfected with either empty vector control or CXCR3A plasmid for 24 h. (A) 825 

Fibroblasts were stained with anti-CXCR3-PE labelled Ab (yellow) or isotype control 826 

antibody. Nuclei were counterstained with DAPI (blue). Images were digitally 827 

captured using Axiovision software version 4.8 (original magnification x400). 828 

Experiments were repeated independently three times, and representative images are 829 
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shown (scale bars 20µm). (B) Cell viability was measured by Alamar blue assay 830 

(n=3). (C)qRT-PCR was used to determine Cxcr3A mRNA expression using the ∆∆Ct 831 

method of analysis (n=5). Data presented as fold change compared to empty vector 832 

control. Data represented as mean ± SEM. Two-tailed Student’s t-test,**P <0.01 (D) 833 

WCEs (whole cell extracts) were obtained from empty vector controls or CXCR3A 834 

transfected fibroblasts,  Western blotting was performed CXCR3A with β-actin as a 835 

loading control. Data representative of (n=3) independent experiments.  836 

837 

Figure 3 838 

Fibrogenic gene expression, cellular proliferation and production of soluble mediators 839 

following CXCR3A overexpression. NIH3T3 fibroblasts were transfected with either 840 

empty vector control or CXCR3A plasmid for 24 h. mRNA expression levels of 841 

fibrogenic genes (A) Acta2, (B) Col1a1, (C) Vim, (D) Fsp1 and the anti-fibrotic 842 

receptor (E) Il13ra2 were quantified using the ∆∆Ct method of analysis. Data 843 

presented as fold change compared to empty vector controls. Data representative of 844 

(n=5) independent experiments. Functional assays measured proliferation (F) BrdU 845 

assay and soluble collagen production (G) Sircol assay (μg/ml). Release of soluble 846 

mediators in cell supernatants (H) active-TGFβ1 production (pg/ml), (I) CXCL9 847 

(pg/ml) and (J) CXCL10 (pg/ml) was quantified by ELISA. All data are presented as 848 

mean ±  SEM and are representative of (n=4) independent experiments unless 849 

otherwise stated. Two-tailed Student’s t-test, * P < 0.05, ***P <0.001. 850 

851 

Figure 4 852 
Downstream signalling and release of soluble mediators in NIH3T3 fibroblasts 853 

transfected with either empty vector control or CXCR3A plasmid for 24 h in response 854 

to IL-13 stimulation. (A) WCEs were obtained from empty vector controls or 855 
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CXCR3A transfected fibroblasts stimulated with IL-13 (10ng/ml) for 0-120 mins. (A) 856 

Western blotting was performed for phosphorylated and total forms of STAT6, 857 

ERK1/2 and NFκB-p65 with β-actin as a loading control. (B) Western blotting was 858 

performed for IL-13Rα2 following transfection for 24 and stimulation with IL-13 859 

(10ng/ml) for a further 24 h. Data are representative of (n=3) independent 860 

experiments, representative images are shown. Release of soluble mediators in cell 861 

supernatants was quantified by ELISA (C) soluble IL-13Rα2 (sIL-13Rα2, pg/ml) and 862 

(D) Periostin (pg/ml). All data are presented as mean ±  SEM and are representative863 

of (n=3) independent experiments unless otherwise stated. One-way ANOVA for 864 

multiple comparison of variables, a Sidak’s multiple comparisons test was used, 865 

*P<0.05.866 

867 

Figure 5 868 

CXCR3A-/- fibroblasts have reduced contractility, increased proliferative capacity and 869 

soluble collagen production. WT and CXCR3A-/- fibroblasts treated with IL-13 870 

(10ng/ml) for 24h on fibronectin-coated elastic wrinkling silicone substrates. (A) Top 871 

panel are phase contrast images showing contracting cells that produced wrinkles in 872 

the soft silicone substrate surface after treatment with IL-13 (10 ng/ml) for 24 h. (B) 873 

Bottom panel are thresholded for phase-bright wrinkles and binarized in ImageJ.  (C) 874 

Coverage of wrinkles from binarized images was calculated as percentage area 875 

covered. Values are presented as mean ± SEM . At least 4 regions were analyzed per 876 

experimental condition. Scale bars represent 50µm. (D) Basal soluble collagen 877 

production (µg/mL) and (E) cellular proliferation measured by BrdU assay. (F) WCEs 878 

were obtained from WT and CXCR3A-/- fibroblasts cultured under basal conditions, 879 
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Western blotting was performed for fibroblast activation and contractility markers 880 

Col1A1, Vimentin and α-SMA with β-actin as a loading control. All experiments were 881 

performed independently 3 times, representative images are shown. 882 

Figure 6 883 

IL-13 regulates chemokine expression and alveolar macrophage accumulation in vivo. 884 

BAL fluid was aspirated from the lungs of mice 24 h post intranasal administration of 885 

10μg/ml IL-13 or vehicle (PBS). A total cell count per sample was measured (104886 

cells /ml). (B) CXCL10 (pg/ml) levels in cell free BAL were quantified by ELISA (C) 887 

Diffquik staining (1x104) cells per sample was used to stain cells present in the lavage 888 

fluid, black arrows indicate alveolar macrophages, scale bars representative of 100µm 889 

and 25µm on enlarged images. (n=5) animals per group for BAL analysis with the 890 

exception of WT vehicle (n=3). Protein levels were quantified in lung homogenates 891 

(D) CXCL9 (pg/ml), (E) CXCL10 (pg/ml) and soluble IL-13Rα2 (pg/ml) (n=6 mice892 

per group). Data are presented as mean ± SEM and analysed using a two-way 893 

ANOVA involving two independent variables. A Sidak’s multiple comparisons test 894 

was used. *p< 0.05, ** p < 0.01, *** p <0.001. 895 

896 

Figure 7 897 

Cxcr3A is downregulated by IL-13 in vitro and in vivo in response to chronic lung 898 

fibrosis. (A) Cxcr3A mRNA expression. Data analysed using the ∆∆Ct method and 899 

presented as fold change versus vehicle control. Data presented as mean ± SEM and 900 

representative of (n=6) independent experiments. (B) WCEs (whole cell extracts) 901 

were obtained from NIH3T3 fibroblasts treated with IL-13 (10ng/ml) or vehicle for 24 902 

h. Western blotting was performed for CXCR3A with β-actin as a loading control. (C)903 

sIL-13Rα2 (pg/ml) in NIH3T3 fibroblasts treated with IL-13 (10ng/ml) or vehicle for 904 
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24 h. Two-tailed Student’s t test for pairwise comparison of variables * P <0.05, ** P 905 

< 0.01. (D) Cxcr3A mRNA expression in WT murine lungs following bleomycin 906 

instillation at day 5 (inflammatory phase, n=14) or day 21 (fibrotic phase, n=11) 907 

versus sham controls (n=15). Data analysed using the ∆∆Ct method and presented as 908 

fold change versus vehicle control. One-way ANOVA for multiple comparison of 909 

variables, a Sidak’s multiple comparisons test was used, *** P < 0.001. 910 

911 
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