

Parkinson, J., Cutts, Q. and Draper, S. (2020) Relating Spatial Skills and

Expression Evaluation. In: UKICER '20: United Kingdom & Ireland Computing

Education Research Conference, Glasgow, UK, 03-04 Sep 2020, pp. 17-23. ISBN

9781450388498 (doi:10.1145/3416465.3416473).

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

© Association for Computing Machinery 2020. This is the author's version of the

work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in Proceedings of UKICER '20: United Kingdom

& Ireland Computing Education Research Conference, Glasgow, UK, 03-04 Sep

2020, pp. 17-23. ISBN 9781450388498.

http://eprints.gla.ac.uk/223925/

Deposited on: 14 October 2020

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1145/3416465.3416473
http://eprints.gla.ac.uk/190276/
http://eprints.gla.ac.uk/190276/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Relating Spatial Skills and Expression Evaluation
Jack Parkinson

jack.parkinson@glasgow.ac.uk
University of Glasgow

Quintin Cutts
quintin.cutts@glasgow.ac.uk

University of Glasgow

Steve Draper
s.draper@psy.gla.ac.uk
University of Glasgow

ABSTRACT
Work connecting spatial skills to computing has used course grades
or marks, or general programming tests as the measure of comput-
ing ability. In order to map the relationship between spatial skills
and computing more precisely, this paper picks out a particular sub-
set of possible programming concepts and skills, that of expression
evaluation. The paper describes the development of an expression
evaluation test, which aims to identify participants’ ability to per-
form evaluations of expressions across a range of complexity. The
results indicate participants’ expression evaluation ability was sig-
nificantly correlated with a spatial skills test (r=0.48), even more so
when only considering those with less prior programming experi-
ence (r=0.58). Thus, we have determined that spatial skills are of
value in expression evaluation exercises, particularly for beginners.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
spatial skills, introductory computing, programming test, expres-
sion evaluation

1 INTRODUCTION
There is a connection between spatial skills and computing sci-
ence [1, 4, 6, 7, 9, 10, 16], but we still have a very limited under-
standing of how this connection manifests. Spatial skills are more
strongly associated with some areas of computing than others [6, 9],
but typically work in this area consists of large-scale studies which
use broad measures of ability. Each of these studies is important
in painting a picture of the relationship: we now know that spa-
tial skills are associated with code navigation [7], they are more
strongly associated with programming specifically than other areas
of computing [6] and they can be trained to improve computing out-
comes [2, 4, 10]. They also correlate with success at many different
levels in higher education [2, 6, 9, 10]. Every new piece of research
expands our understanding of the nature of the relationship.

Our intention is to expand further by observing the interaction
between spatial skills and a fine-grained computing task. Spatial
skills are associated with broad measures of computing ability,
like exam and course grades, but challenges arise in using these
measures: they cover large portions of course content (often weeks
of learning) and while they may be effective tools for identifying
ability levels at individual institutions, they are high-level, specific
to an institution and not available for inspection. They may be
testing some fine-grained skills, but are likely testing much more.

By fine-grained, we mean to strip away the abstract layers of
computing and observe specific processes of program comprehen-
sion. This isn’t because we consider other elements of computing
to be unimportant: rather we wish to determine whether spatial

Figure 1: An item from the Revised PSVT:R (answer: C)

reasoning is applied broadly in programming or if its effects can be
isolated to highly specific activities. We are also aware that there is
more to computing than programming, but we do consider the abil-
ity to program to be a core part of computing education. Therefore,
we present the development of a fine-grained test of one aspect of
computing ability, focusing on a highly specific but widely applied
facet of programming. We then use it in an experiment to compare
results with spatial skills testing outcomes.

2 BACKGROUND
2.1 Defining Spatial Skills
A breakdown of spatial skills was a contribution of Parkinson &
Cutts [9], who give an extensive, well-developed breakdown of
the many factors within spatial skills. In brief, spatial skills lack a
concise definition, but are fundamentally related to one’s under-
standing of space and objects, particularly how they enable one
to mentally construct internal representations of structures and
manipulate them. Many spatial skills tests involve parsing flat fig-
ures, constructing mental models of represented structures and
performing some change in their structure or orientation.

Different factors of spatial skills are best understood by con-
sidering tests used to measure them. The Revised Purdue Spatial
Visualisation Test of Rotations (PSVT:R) is a test of spatial visuali-
sation widely used in engineering and computing research, and is
used in this study as a test of spatial skills (see figure 1) [18].

2.2 Measures of Computing Ability
Roughly in order of decreasing granularity, the following measures
of computing ability have been correlated with spatial skills: Aca-
demic attainment by Parkinson & Cutts [9], who determined
that spatial skills increase with academic progression; Retention
and GPA by Veurink & Sorby [15], who observed that first years

The version of copy of this manuscript appears in UKICER ’20 at https://doi.org/10.1145/3416465.3416473

students in computing and engineering showed higher average re-
tention by spatial ability; Programming module marks by Jones
& Burnett [6] and Parkinson & Cutts [10], who observed that intro-
ductory course module marks correlated with a spatial skills test;
Source code navigation by Jones & Burnett [7], who used a com-
bination of time taken and movements around and between files
required for students as a proxy for navigation effectiveness, which
correlated with spatial ability; Programming tests by Cooper et
al. [4] and Bockmon et al. [2], who observed a correlation between
spatial skills and the Advanced Placement (AP) Computer Science
test and the SCS1R [1] respectively. Note that in most of these stud-
ies the authors examine more factors than those described, but for
the purpose of this research we are interested specifically in the
measures of computing ability used.

2.3 Understanding the Relationship
One may question, if spatial skills training has already been shown
to be effective for computing students and the relationship has
already been established with the SCS1R, why is it useful to expose
the relationship with more fine-grained skills?

The first obvious reason is scientific curiosity. Even with all
the evidence for the relationship which now exists, it is still an
unexpected pairing. Indeed, Matti Tedre quotes an early learning
psychologist in computing in his ITiCSE keynote this year [14] as
having stated that practically one is never likely required to de-
termine “whether two programs were the same if one was rotated
90 degrees” [17]. One would probably assume that Weinberg was
being facetious; in this context, rotation of programs is not a re-
quirement, but it appears that rotation itself does indeed correlate
with success in computing, as ridiculous as it may sound.

The study presented in this paper also shows that the impact of
spatial skills training is not simply affective, ruling out anecdotal
criticism which could be levelled at Sorby’s interventions [12]: one
could argue that, by taking a proportion of students aside, dedicat-
ing more time to them and giving them more face-to-face contact
with faculty, their engagement with their studies will improve re-
gardless of the intervention’s content. This experiment is designed
to be completely removed of any affective factors, concerned with
only a short test on either side of the relationship to see if the
relationship still holds.

This kind of work helps us to determine not only a subset of
what skills in computing depend upon spatial skills, but also when
trainingmay be of most value. For example, if it could be determined
that spatial skills are only of value in navigating large programs,
first-year students are not likely to need good spatial skills in order
to grapple with their early learning. However, if spatial skills can
be observed as interacting with one’s ability to perform simple
variable assignments, it would be beneficial for the students to
have their spatial skills developed as early as possible, given how
central variable assignments are to early-stage programming. Such
a finding would also corroborate Margulieux’s theory that spatial
skills are of more value to novices who have yet to develop domain-
specific strategies and rely on transferable skills which are exposed
by spatial skills tests [8].

Finally, this kind of work opens up the possibility of finding more
targeted methods of improving programming ability than a spatial

skills training course. The intervention devised by Sorby [13] and
used in computing [2, 4, 9] covers several areas of visualisation – we
do not know, however, how computing skills interact specifically
with each chapter. Given how widely it has been tested, 3D mental
rotation clearly correlates with computing, but in what ways? In
what areas of computing? What about symmetry, or construction
from flat patterns? With answers to these questions we can refine
and focus interventions to remove redundancy which may exist.

2.4 Expression Evaluation as a Fine-Grained
Domain of CS

We selected expression evaluation as our starting point. We con-
sider this to involve the comprehension of expressions at the struc-
tural and text-surface level, demonstrated (in this context) by the
ability to hand execute them. A structural understanding of ex-
pressions is required to construct an internal model of execution.
The ability to parse the text surface (i.e. elements in the atomic
layer in the Block model [11]) is important to piece together which
operations need to be compiled into the internal mental model of
execution. We selected expression evaluation as the computing
activity for the following broad reasons:

Flexibility of complexity. Expressions can range from trivial
arithmetic combinations to highly complex data manipulations.
There is flexibility within the domain of expression evaluation to
generate a range of tasks which can vary substantially in complexity
whilst still being rooted in the same procedures. Expressions act as
a framework around which to build layers of difficulty so that we
can observe how differently-skilled readers will evaluate them.

Contained, limited context. Evaluating expressions needn’t
rely upon a wide range of CS skills or apply a wealth of practi-
cal activities. One does not need to have a good understanding of
problem-domain analysis, for example, which is often a require-
ment (or is at least of benefit) in code comprehension exercises.
Expression evaluation appears to us as comprehension at its lowest,
least-bloated level, with no need for reliance on other areas of, or
skills involved in, CS. We can further constrain this context by
limiting the operations involved.

Limited domain knowledge required. Even if students have
the skills required to complete computing exercises but do not have
the specific knowledge of the execution domain, they are unlikely to
perform well. Computing has developed a multitude of jargon and
domain-specific language that we often take for granted and would
mean very little to outsiders. The keywords print or println are
fairly common in programming languages, but someone without
the relevant domain knowledge may associate this with a physical,
paper printing function rather on-screen output. Any attempt at
completing programming tasks requires at least two distinct parts:
skills related to execution, and domain knowledge. While we ac-
knowledge the importance of domain knowledge, we do not believe
it is related to spatial skills (following the theories of Parkinson &
Cutts [9] and Marguliuex [8]), so the authors intend to eliminate it
as a factor as much as possible, and expression evaluation gives us a
context in which we can do this effectively. As long as a reader has a
basic understanding of the mechanical operations involved and the
language-specific syntax, even novices can successfully complete
expression evaluation tasks. Therefore, we can generate expression

https://doi.org/10.1145/3416465.3416473

The version of copy of this manuscript appears in UKICER ’20 at https://doi.org/10.1145/3416465.3416473

evaluations which are complex and cognitively challenging to solve,
but do not require extensive domain knowledge and thus add an
extra factor of variance into the study.

Easy to practically develop and deliver. Expressions require
very little setup or context to be valid. Expressions can be evaluated
in isolation, in just a few lines of code. This makes them easy
to develop en masse and also limits the materials and resources
required to deliver the tasks as exercises. There is no need for a
development environment, a codebase or a fully formed program
to be developed: because of the highly limited context, expression
evaluation tasks can be developed and delivered easily.

3 RESEARCH QUESTIONS
Based on prior work, which indicates that:

• a hypothetical cognitive relationship exists between spatial
skills and program comprehension [8, 9]

• spatial skills are more strongly correlated with programming
than non-programming modules [6]

• spatial skills correlate with success in a dedicated set of
programming test questions [2]

• spatial skills are likely to be of more value to novices than
experts in solving problems [8]

we hypothesise that a correlation between spatial skills and pro-
gramming exists on a cognitive level, relating spatial skills to the
ability to mentally execute programs, specifically program compre-
hension tasks. This leads us to ask two research questions:

• RQ1: Is there a correlation between spatial skills and the
structural component of expression evaluation?

• RQ2: If so, does this correlation hold for both beginners and
experts?

4 DEVELOPMENT OF A TEST OF EXPRESSION
EVALUATION

Due to the selected participant pool (first year computing students
at the authors’ institution) the test is in Python, as our students
are well-versed in Python and should have the appropriate do-
main knowledge to understand the expressions mechanically. The
formulation of the test had two primary guiding principles:

• “Low Python.”We wanted to limit prior understanding of
Python specifically as a factor for accurately completing the
test as much as possible.

• “High Cognition.” Instead, we focused on the cognitive
procedures involved in expression evaluation. E.g. interpre-
tation of syntax, forming strategy, incorporating complex
data structures and dynamically executing internally.

In short, although Python is a requirement for completing the test
accurately, we wanted to flatten it as much as possible and develop
a test which tapped into the cognitive strategies being applied.

Given that the participants’ ability to complete the test would be
directly correlated with the PSVT:R, it made sense to structure the
tests similarly to reduce bias towards a participant’s preferred style
of testing. Therefore, we present in this section the development
process for a test of Expression Evaluation in Python (EEP) consist-
ing of 30 multiple choice questions, tailored to take 20 minutes.

4.1 Developing Expressions of Varied
Complexity

Much like the PSVT:R, the EEP was intended to be developmental:
each question was to be more difficult or complex than the previous.
This process involved the authors generating a large number of ex-
pression evaluation tasks and devising a complexity ranking factor.
The ranking factor was generated from two facets of complexity:
operational and data complexity.

4.1.1 Operational complexity. This relates primarily to the number
of distinct operations required to evaluate an expression and how
“complex” the operations are. The number of operations was the
primary metric considered, with the expectation that this would
be the main factor determining the structure of the abstract syntax
tree that the participant must construct and maintain, considerably
impacting the developed mental model of the expression.

The operational complexity factor was also influenced by how
“difficult” the operations involved were. In general terms a Python
addition operator (+) was considered less “difficult” than exponenti-
ation operations (**), and indexing into a list to extract one element
is easier than extracting several elements with a slice. No such
compounded complexity exists in the PSVT:R: every operation is a
rotation in one axis by 90 degrees. The increased complexity of later
questions arises from the combined number of operations required,
but each individual operation is equally complex.

In order to generate authentic expressions, it simply was not
possible to completely flatten the complexity and reliably order by
the number of operations alone. However, we did select a limited
subset of operations to be used in the questions to reduce the overall
complexity and the effect of domain knowledge on the test. The
subset of permitted operations was limited enough that we could
group them into three tiers according to their perceived complexity.
The only operations appearing in the test are:

• Tier 1: arithmetic operators +, - and negating variables
• Tier 2: indexing into lists with the form list[i], using keys
to extract values from dictionaries, built-in functions str()
and int() and the arithmetic * operator

• Tier 3: extracting slices from lists and strings (data[i:n])
The test also involved some very small locally defined functions,
whose complexity was determined by the number of operations
involved in the function body. For each question, each operation
was counted and multiplied by its tier to give it an operational
complexity metric. For example, consider the Python expression:

x = a * 3 + 7 - 5 + b - c

which has four Tier 1 operations (+, -, +, -: 4 × 1) and a Tier 2
operation (*: 1 × 2) so has an operational complexity of 6. Now
consider the Python expression:

x = s[3] + s[1] – s[4]

which has two Tier 1 operations and three Tier 2 operations, giving
it an operational complexity of 8.

4.1.2 Data Complexity. The other factor used in determining the
order of questions was the complexity of the data structures in-
volved. According to Parkinson & Cutts’ model [9], particularly
referencing notional machines [5], the structure of the expression
(operations used and order of precedence) is not the only thing

https://doi.org/10.1145/3416465.3416473

The version of copy of this manuscript appears in UKICER ’20 at https://doi.org/10.1145/3416465.3416473

which needs to be internally formulated in expression evaluation:
the reader must also have a model of the data involved as part of the
dynamic mental model. Again, the number of structures referenced
in each expression was considered to be the most important metric
in increasing complexity. Once again the data structures permitted
were limited and arranged into tiers:

• Tier 1: scalar variables
• Tier 2: strings, lists and dictionaries
• Tier 3: nested lists (max depth 1) and dictionaries within lists

As with operational complexity, the number of distinct data
structures used was the primary factor, multiplied as necessary by
the each structure’s tier to provide a data complexity metric.

The PSVT:R includes some figures which have enhanced com-
plexity because they can be difficult to parse, i.e. in identifying the
3D structure from the 2D representation. Figure 2 includes some
examples. In our test, we replicate the difficulty of hard-to-parse
complex 2D representations of 3D shapes with hard-to-parse com-
plex 2D representations of data, like nested lists. It is worth noting
that, while claiming to be a test of rotation, the presentation of the
PSVT:R has a persistent factor of ambiguity; some extreme cases
are shown in figure 2, but there is an unwritten expectation upon
the participant to parse line drawings as solids – this is not a trivial
task, so the representation of “data” in the PSVT:R is fairly complex.

Figure 2: A selection of complex representations of 3D
shapes from the Revised PSVT:R

4.1.3 Combined Complexity Factor. Once each question had been
allocated an operational and data complexity metric, these were
multiplied to provide the combined complexity factor. We use mul-
tiplication rather than addition because an additive system does
not account for the compounding complexity of having to develop
a robust mental model of both a program (a sequence of operations)
and data demonstrated by the expressions listed in table 1.

We consider the third example to be considerably more complex
than the other two since a complex model of operations and data
must be generated, whereas in the other two the complexity is
loaded in only one domain. If the combined complexity metric were
additive, these three expressions would be considered of equal com-
plexity, but this does not feel accurate. Combining multiplicatively
adds more complexity to expressions which require robust mental
models of both data and operations to be built.

4.2 Final Structuring and Presentation
To maximise similarity to the PSVT:R and reduce confounds which
could have arisen from differences in test delivery, more steps were
taken to align the tests. The EEP was made multiple choice, with
possible answers A-E. In the PSVT:R, all multiple choice options
presented to the subject are possible orientations of the object being
rotated (i.e. they represent the same object) but cannot be achieved
by following the correct sequence of rotations. We replicated this in

Data complexity: 2 Operational complexity: 8
a = [3, 6, 7, 1, 5, 1, 4, 9]
x = a[4] * a[5 - 3] + 6

Data complexity: 8 Operational complexity: 2
l1 = [[4, 3, 9], [8, 3, 6]]
l2 = [[7, 3], [5, 1], [6, 6]]
a = 2
b = 5
x = l2[a]

Data complexity: 5 Operational complexity: 5
l1 = [[6, 2, 8, 5], [9, 3, 6, 1], [3, 1, 7, 3]]
a = 3
b = 2
x = l1[b][a] + b

Table 1: A selection of sample expressions with the metrics
of data and operational complexity noted

the EEP by making most incorrect answers potentially achievable
if the subject had misinterpreted or incorrectly applied operations
(i.e. there were no completely irrelevant answers).

The questions were then arranged on paper to match the PSVT:R
in style, down to the typesetting used and the format of the example
questions provided. The purpose of this was to try and make sure
that participants didn’t get a distinct “head start” on either test due
to the nuances of the way they were formatted or the examples
provided. The final version of the EEP can be found at http://ccse.
ac.uk/expressionevaluation.believe

5 TESTING THE RELATIONSHIP BETWEEN
THE EEP AND THE PSVT:R

With the EEP developed, we went on to see if there was a con-
nection between expression evaluation and spatial skills. We did
this by having participants take both the EEP and the PSVT:R and
performing an analysis of scores achieved on both sides.

5.1 Participants
Participants were invited from a pool of level 1 students (in both
CS1 and CS0 courses) at the authors’ institution. Students were
invited to sign up during a lecture and through an online, cohort-
wide communique. Amazon vouchers were offered as an incentive
to students who completed both tests. 38 students took part.

5.2 Instruments
The two main instruments were the Revised PSVT:R and the EEP.
There were three other artefacts given to the participants:

(1) Python guidance sheet, which gave the participants guid-
ance on how each of the operations they would encounter
worked and their order of precedence.

(2) Initial Python test, which required determining the out-
come of individual operations (24 questions).

(3) Post-test questionnaire, a 6-question free-text question
designed to extract skills and strategies employed.

Recall the guiding principles in section 4. One of the main princi-
ples this test was designed to fulfil was to reduce load on Python
knowledge and focus on the cognitive process of performing an

https://doi.org/10.1145/3416465.3416473
http://ccse.ac.uk/expressionevaluation
http://ccse.ac.uk/expressionevaluation

The version of copy of this manuscript appears in UKICER ’20 at https://doi.org/10.1145/3416465.3416473

expression evaluation regardless of the context. The guidance sheet
was included to clarify any nuances of the language which could im-
pact the cognitive process, like specifics of order of precedence. The
test was included to identify participants who simply and clearly
did not apply the mechanical Python operations properly; for the
purpose of this study, we wished to eliminate participants who
are unable to comprehend simple Python expressions since we are
concerned more with their cognitive processes. In addition, partici-
pants were explicitly instructed not to mark any of the instruments
with anything but the letter-response to answer questions.

5.3 Delivery
All materials were printed and issued in person under the super-
vision of a researcher who ensured that no conferring took place.
Participants were provided with five minutes to complete the ini-
tial Python test and read through the guidance sheet before being
issued one of the tests. Counterbalanced testing was conducted:
half the participants received the PSVT:R first while the other half
received the EEP first. Counterbalancing was necessary to account
for test fatigue and the possibility that either of the tests had a
training element on the other. Both tests were timed for 20 minutes,
so after 20 minutes the participants were allowed a short break
before starting the next 20 minute test.

Participants were asked not to write on the the question booklets
for either of the tests, and were instead expected to supply the
multiple choice letter answer to each question on dedicated answer
sheets. The main purpose of this was so to avoid participants using
the sheets as a cognitive aid to write intermediate values on.

6 RESULTS & DISCUSSION
6.1 Removed Participants
Before analysing the data, any participant who performed poorly
on the initial Python test was to be removed. In this instance, no
participant got more than one question wrong, so no participants
were removed as a result of poor Python knowledge.

We also eliminated any participants who had excessive working-
out on their answer sheets. The reasoning behind this decision
was based on the expectation that all the working for these tests
should be internal, as per instructions issued to the students before
beginning the test. By writing out solutions step-by-step, the par-
ticipants were eliminating the cognitive load required to complete
the exercises. All of the working-out was in Python (intermediate
values in expressions were written out, but no intermediate shapes
in rotations were sketched), indicating that this would likely skew
results in favour of the EEP. It is unclear whether participants who
wrote out their answers did so because they did not understand
the verbal instructions given at the start of the testing period, or
because they felt that they could not complete the test without
writing our intermediate steps. 5 participants were removed as a
result of this analysis, resulting in a final cohort size of 33, which is
the cohort described in the rest of this section.

6.2 Counterbalancing
Roughly half of the cohort (16 participants) took the PSVT:R first
and the other took the EEP first. The difference between the scores
of each group was not found to be significant in either test by an

ANOVA, so we can assume that taking one test or the other first
did not impact on the overall results of the experiment.

6.3 Correlation
In interpreting the effect size of correlations, we turn to Cohen’s
definitions of effect sizes according to r, with small, medium and
large effect sizes considered to vary around .10, .30 and .50 respec-
tively [3] – we also note, however, that context is important, and
what Cohen determines as generally a large or small effect size
may not be interpreted as such by other researchers. Since the data
showed a skewed distribution, a non-parametric Spearman’s rank
correlation was determined between the PSVT:R and the EEP. The
resulting r statistic was found to be 0.48 where p<0.01, indicating a
significant, large-positive correlation between the results of the EEP
and the PSVT:R. This is strong evidence that there is a connection
between one’s spatial skills and their ability to perform expression
evaluation, which affirmatively answers RQ1.

6.3.1 Ceiling Effect / Homogeneous Upper Division. Table 2 shows
a breakdown of the scores on each test. By chance, the spatial
skills of the level 1 students who volunteered to take the tests were
exceptionally high. According to other literature which has used the
PSVT:R in computing related studies, this score is more comparable
to Parkinson & Cutts’ masters level students than level 1 students.

Mean Max Min SD
PSVT:R 24.61 30 16 3.81
EEP 23.36 30 13 3.92

Table 2: Breakdown of scores achieved in the Revised
PSVT:R and the EEP

Sorby, who has been using the PSVT:R and other spatial visuali-
sation tests for years to determine whose spatial skills are not at an
acceptable level to take part in entry-level engineering (and thus
require supplementary training) has the following breakpoints: a
student scoring 18 and below needs training, a student scoring 19-21
is marginal (would likely benefit from training but does not neces-
sarily require it) and scores of 22+ are considered safe passes [13].
As can be seen in figure 3, the vast majority of the scores attained
were solid passes, indicating that if the students were in Sorby’s
engineering classes they wouldn’t require training. If we consider
this group to be more or less homogeneous – as Sorby does – then
we must assume that attempting to observe a correlation between
these high scores and the EEP scores will not be as strong as one
observed with participants with more spread out scores.

It is possible that upon hearing the description of the experiment,
some students opted not to volunteer because they have an aversion
to spatial tasks (i.e. have poor spatial skills) and therefore only
students with strong spatial skills opted to take part, thus raising
the average substantially. We expected that by offering a cash-
equivalent incentive this would not be an issue, but this appears not
to be the case. As such, we expect a ceiling effect to have occurred
in the spatial skills test, potentially lowering the correlation.

6.4 Splitting the Cohort
In an attempt to answer RQ2, we collected data from the students
on which course they elected to take at the start of the year: CS1

https://doi.org/10.1145/3416465.3416473

The version of copy of this manuscript appears in UKICER ’20 at https://doi.org/10.1145/3416465.3416473

Figure 3: Scores achieved on each test, separated by cohort

or CS0. This is not a perfect distinction between novice and expert,
but in terms of expression evaluation, our knowledge of the co-
horts dictates that CS0 students are unlikely to have performed
any expression evaluation in a formal programming setting before
beginning the academic year, whereas the CS1 students are likely to
have been programming for more than a year prior to starting, so
are likely to be proficient – even expert – in expression evaluation.

Cohort Spearman’s r p n
CS0 0.58 <0.05 14
CS1 0.28 0.24 19
Total 0.48 <0.01 33

Table 3: Correlation coefficients, p values and participant
numbers for correlations between the revised PSVT:R and
the EEP, broken down by self-selected student cohort

The correlation is substantially higher for the CS0 group, and
the CS1 group show a medium, insignificant correlation. If we
consider that a large proportion of CS1 scored highly to begin with
and are essentially indistinguishable from noise at the high end,
this result is to be expected. Conversely, the slightly “less-noisy”
CS0 group is showing a much stronger correlation. This aligns
with Margulieux’s theory of novices being more likely to apply
transferable skills than experts, who use domain specific strategies.
This suggests that we can answer RQ2 with a “no”, however we
are hesitant to make strong claims due to a) the possibility that the
upper division is largely homogeneous in spatial ability and b) the
distinction between expert and novice is not specific to expression
evaluation.

A supplementary observationwhich can bemade regarding these
cohorts: the CS1 cohort elected to take a more advanced program-
ming course because they already had programming experience;
the CS0 cohort is designed for complete beginners, who self-identify

as having little to no programming experience. Although the aver-
age PSVT:R scores of both of these groups are high (25.8 and 22.9
respectively) the CS1 cohort scored substantially higher. This is in
line with Parkinson & Cutts’ findings: those further along in their
academic computing career have better spatial skills on average.

6.5 Summary
We have observed that there is a large correlation between partic-
ipants’ spatial skills and their ability to perform expression eval-
uation when controlling as much as feasibly possible for prior
knowledge, affirmatively answering RQ1. We also observed that
the correlation is higher for CS0 students, which could be described
as novices compared to CS1 experts; this answers RQ2, however
we would want to repeat the experiment with a clearer distinction
between expert and novice before making any firm claims.

7 CONCLUSION
We have examined existing research on spatial skills and computing
science to date, which associates spatial skills with success in pro-
gramming and specifically with a pseudo-code programming test.
The aim of this research was to dig deeper into a very fine-grained
area to see if spatial skills can be associated with one’s ability to
perform expression evaluation. This has been demonstrated, and
is an interesting discovery because it shows that spatial skills – or
the underlying cognitive abilities which spatial skills expose – have
a strong connection with a central part of programming (even in
the early stages) which in turn is central to studying computing. It
also appears that this relationship holds much more strongly for
novices than it does for experts, though our distinction between
these groups is imprecise. This discovery adds another piece of the
puzzle representing our understanding of the relationship between
spatial skills and computing, serving as part of a body of work
contributing towards utilising this relationship for the benefit of
computing students and beyond.

REFERENCES
[1] Ryan Bockmon, Stephen Cooper, Jonathan Gratch, and Mohsen Dorodchi. 2019.

(Re) Validating Cognitive Introductory Computing Instruments. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education. 552–557.

[2] Ryan Bockmon, Stephen Cooper, William Koperski, Jonathan Gratch, Sheryl
Sorby, and Mohsen Dorodchi. 2020. A CS1 Spatial Skills Intervention and the
Impact on Introductory Programming Abilities. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. 766–772.

[3] Jacob Cohen. 1992. A power primer. Psychological bulletin 112, 1 (1992), 155.
[4] Stephen Cooper, Karen Wang, Maya Israni, and Sheryl Sorby. 2015. Spatial

skills training in introductory computing. In Proceedings of the eleventh annual
International Conference on International Computing Education Research. ACM,
13–20. https://doi.org/10.1145/2787622.2787728

[5] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[6] Sue Jones and Gary Burnett. 2008. Spatial ability and learning to program. Human
Technology: An Interdisciplinary Journal on Humans in ICT Environments (2008).
https://doi.org/doi/10.17011/ht/urn.200804151352

[7] Sue Jane Jones and Gary E Burnett. 2007. Spatial skills and navigation of source
code. ACM SIGCSE Bulletin 39, 3 (2007), 231–235. https://doi.org/10.1145/1268784.
1268852

[8] Lauren E Margulieux. 2019. Spatial Encoding Strategy Theory: The Relationship
between Spatial Skill and STEM Achievement. In Proceedings of the 2019 ACM
Conference on International Computing Education Research. 81–90. https://doi.
org/10.1145/3291279.3339414

[9] Jack Parkinson and Quintin Cutts. 2018. Investigating the Relationship Between
Spatial Skills and Computer Science. In Proceedings of the 2018 ACM Conference
on International Computing Education Research. ACM, 106–114. https://doi.org/
10.1145/3230977.3230990

https://doi.org/10.1145/3416465.3416473
https://doi.org/10.1145/2787622.2787728
https://doi.org/doi/10.17011/ht/urn.200804151352
https://doi.org/10.1145/1268784.1268852
https://doi.org/10.1145/1268784.1268852
https://doi.org/10.1145/3291279.3339414
https://doi.org/10.1145/3291279.3339414
https://doi.org/10.1145/3230977.3230990
https://doi.org/10.1145/3230977.3230990

The version of copy of this manuscript appears in UKICER ’20 at https://doi.org/10.1145/3416465.3416473

[10] Jack Parkinson and Quintin Cutts. 2020. The Effect of a Spatial Skills Training
Course in Introductory Computing. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education (Trondheim, Norway)
(ITiCSE ’20). Association for Computing Machinery, New York, NY, USA, 439–445.
https://doi.org/10.1145/3341525.3387413

[11] Carsten Schulte. 2008. Block Model: an educational model of program compre-
hension as a tool for a scholarly approach to teaching. In Proceedings of the Fourth
international Workshop on Computing Education Research. ACM, 149–160.

[12] Sheryl Sorby, Norma Veurink, and Scott Streiner. 2018. Does spatial skills in-
struction improve STEM outcomes? The answer is ‘yes’. Learning and Individual
Differences 67 (2018), 209–222. https://doi.org/10.1016/j.lindif.2018.09.001

[13] Sheryl A Sorby. 1999. Developing 3-D spatial visualization skills. Engineering
Design Graphics Journal 63, 2 (1999).

[14] Matti Tedre. 2020. From a Black Art to a School Subject: Computing Education’s
Search for Status. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education. 3–4.

[15] Norma L Veurink and Sheryl A Sorby. 2011. Raising the bar? Longitudinal study to
determine which students would most benefit from spatial training. In American
Society for Engineering Education. American Society for Engineering Education.

[16] Jonathan Wai, David Lubinski, and Camilla P Benbow. 2009. Spatial ability for
STEM domains: Aligning over 50 years of cumulative psychological knowledge
solidifies its importance. Journal of Educational Psychology 101, 4 (2009), 817.
https://doi.org/doi/10.1037/a0016127

[17] Gerald MWeinberg. 1971. The psychology of computer programming. Vol. 29. Van
Nostrand Reinhold New York.

[18] So Yoon Yoon. 2011. Psychometric properties of the revised purdue spatial visual-
ization tests: visualization of rotations (The Revised PSVT: R). Purdue University.

https://doi.org/10.1145/3416465.3416473
https://doi.org/10.1145/3341525.3387413
https://doi.org/10.1016/j.lindif.2018.09.001
https://doi.org/doi/10.1037/a0016127

	Abstract
	1 Introduction
	2 Background
	2.1 Defining Spatial Skills
	2.2 Measures of Computing Ability
	2.3 Understanding the Relationship
	2.4 Expression Evaluation as a Fine-Grained Domain of CS

	3 Research Questions
	4 Development of a Test of Expression Evaluation
	4.1 Developing Expressions of Varied Complexity
	4.2 Final Structuring and Presentation

	5 Testing the Relationship between the EEP and the PSVT:R
	5.1 Participants
	5.2 Instruments
	5.3 Delivery

	6 Results & Discussion
	6.1 Removed Participants
	6.2 Counterbalancing
	6.3 Correlation
	6.4 Splitting the Cohort
	6.5 Summary

	7 Conclusion
	References

