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Abstract

The Stable Roommates problem (SR) is characterized by the preferences of agents over other agents as
roommates: each agent ranks all others in strict order of preference. A solution to SR is then a partition of
the agents into pairs so that each pair shares a room, and there is no pair of agents that would block this
matching (i.e., who prefers the other to their roommate in the matching). There are interesting variations of
SR that are motivated by applications (e.g., the preference lists may be incomplete (SRI) and involve ties
(SRTI)), and that try to find a more fair solution (e.g., Egalitarian SR). Unlike the Stable Marriage problem,
every SR instance is not guaranteed to have a solution. For that reason, there are also variations of SR that
try to find a good-enough solution (e.g., Almost SR). Most of these variations are NP-hard. We introduce a
formal framework, called SRTI-ASP, utilizing the logic programming paradigm Answer Set Programming,
that is provable and general enough to solve many of such variations of SR. Our empirical analysis shows
that SRTI-ASP is also promising for applications.

KEYWORDS: stable roommates problem, answer set programming, declarative problem solving

1 Introduction

The Stable Roommates problem (Gale and Shapley 1962) (SR) is a matching problem (well-
studied in Economics and Game Theory) characterized by the preferences of an even number n
of agents over other agents as roommates: each agent ranks all others in strict order of preference.
A solution to SR is then a partition of the agents into pairs that are acceptable to each other (i.e.,
they are in the preference lists of each other), and the matching is stable (i.e., there exist no two
agents who prefer each other to their roommates, and thus block the matching).

SR is an interesting computational problem, not only due to its applications (e.g., for pairing in
large-scale chess competitions (Kujansuu et al. 1999), for campus house allocation (Arkin et al.
2009), pairwise kidney exchange (Roth et al. 2005), creating partnerships in P2P networks (Gai
et al. 2007)) but also due to its computational properties described below.
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Incomplete preference lists with ties. Upon a question posed by Knuth (1997) in 1976 about the
existence of an algorithm for SR, Irving (1985) developed a linear-time algorithm for SR. Mean-
while, researchers have started investigating variations of SR motivated by further observations
and applications. For instance, in practice (like large-scale chess tournaments), agents may find
it difficult to rank a large number of alternatives in strict order of preference. With such moti-
vations, SR has been studied with incomplete preference lists (SRI) (Gusfield and Irving 1989),
with preference lists including ties (SRT) (Ronn 1990), and with incomplete preference lists in-
cluding ties (SRTI) (Irving and Manlove 2002). Interestingly, some of these slight variations (i.e.,
the existence of a stable matching in SRT and SRTI) are proven to be NP-complete (Table 1).

Stable and more fair solutions. With the motivation of finding more fair stable solutions, varia-
tions of SR have been studied. For instance, Egalitarian SR aims to maximize the total satisfaction
of preferences of all agents; it is NP-hard (Feder 1992). Rank Maximal SRI aims to maximize
the number of agents matched with their first preference, and then, subject to this condition,
to maximize the number of agents matched with their second preference, and so on; it is also
NP-hard (Cooper 2020).

Not stable but good-enough solutions. As first noted by Gale and Shapley (1962), unlike the
Stable Marriage problem (SM), there is no guarantee to find a solution to every SR problem
instance (i.e., there might be no stable matching). When an SR instance does not have a stable
solution, variations of SR have been studied to find a good-enough solution. Almost SR aims to
minimize the total number of blocking pairs (i.e., pairs of agents who prefer each other to their
roommates); it is NP-hard (Abraham et al. 2005).

Alongside these interests in SR, some exact methods and software (SRItoolkit 2019; Match-
ingToolkit 2020) have been developed to solve SR and SRI (both solvable in poly-time) using
Constraint Programming (CP) (Prosser 2014), and based on Irving’s algorithm (Irving 1985).
However, to the best of the authors’ knowledge, there is no exact method (except for the enu-
meration based method for Egalitarian SRI) and implementation, that provides a solution to any
intractable variation of SR, described in three groups above.

Our Contributions. We introduce a formal framework and its implementation, called SRTI-ASP,
that are general enough to provide solutions to all variations of SR mentioned above, includ-
ing the intractable decision/optimization versions: SRT, SRTI, Egalitarian SRTI, Rank Maximal
SRTI, Almost SRTI. SRTI-ASP provides a flexible framework to study variations of SR.

SRTI-ASP utilizes a logic programming paradigm, called Answer Set Programming (ASP)
(Brewka et al. 2016), to declaratively solve stable roommates problems. We represent SRI and
its variations in the expressive formalism of ASP, and SRTI-ASP computes models of these
formulations using the ASP solver CLINGO (Gebser et al. 2011). For each variation of SR, given
a problem instance, SRTI-ASP returns a solution (or all solutions) if one exists; otherwise,
it returns that the problem does not have a solution. We prove that SRTI-ASP is sound and
complete (Theorem 1).

We have evaluated SRTI-ASP over different sizes of SRI instances (randomly generated with
the software (SRItoolkit 2019), called SRI-CP from now on) to understand its scalability, as
the input size, and the degree of completeness of preference lists increase. We have developed a
method to add ties to these instances, and empirically analyzed the scalability of SRTI-ASP on
SRTI instances as well.

We have compared SRTI-ASP with SRI-CP, over SRI instances. We have also investigated
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the use of SRI-CP to solve Egalitarian SRI, Rank Maximal SRI and Almost SRI based on
enumeration-based brute-force methods, and compared SRTI-ASP with these methods.

In addition, we have compared SRTI-ASP with the ASP method proposed by Amendola (2018)
for SR (called SR-AF from now on) based on Argumentation Framework (AF) (Dung 1995),
over SR instances.

Table 1. Summary of the complexities of SR problems

Problem Complexity

SR P (Irving 1985)
SRI P (Gusfield and Irving 1989)
SRTI (super) P (Irving and Manlove 2002)
SRTI (strong) P (Kunysz 2016; Scott 2005)
SRT (weak) (and thus SRTI (weak)) NP-complete (Ronn 1990, Thm 1.1, Prop 2.2)
SRTI (weak) NP-complete∗ (Irving et al. 2009, Thm 5)
Egalitarian SR NP-hard (Feder 1992, Thm 8.3)
Egalitarian SRI NP-hard∗ (Cseh et al. 2019, Cor 4)
Almost SR (and thus SRT (weak)) NP-hard (Abraham et al. 2005, Thm 1)
Almost SRI NP-hard∗ (Biró et al. 2012, Thm 1)

∗ for short lists of size ≤ 3

2 Stable Roommates Problems

Let us start with defining the Stable Roommate problem with Incomplete lists (SRI). Let A be
a finite set of agents. For every agent x ∈ A, let ≺x be a strict and total ordering of preferences
over a subset Ax of A\{x}. We refer to ≺x as agent x’s preference list. For two agents y and z,
we denote by y≺x z that x prefers y to z. Since the ordering of preferences is strict and total, for
every agent x ∈ A, for every two distinct agents y and z in Ax, either y ≺x z or z ≺x y. Note that
the preferences of agents with respect to ≺x are transitive and asymmetric. If an agent x is in y’s
preference list, then x is called acceptable to y. We denote by ≺ the collection of all preference
lists.

A matching for a given SRI instance is a function M : A 7→ A such that, for all {x,y} ⊆ A such
that x ∈ Ay and y ∈ Ax, M(x) = y if and only if M(y) = x. If agent x is mapped to itself, we then
say he/she is single.

A matching M is blocked by a pair {x,y} ⊆ A (x 6= y) if

B1 both agents x and y are acceptable to each other,
B2 x is single with respect to M, or y≺x M(x), and
B3 y is single with respect to M, or x≺y M(y).

A matching for SRI is called stable if it is not blocked by any pair of agents. Fig. 1 illustrates
three examples for SRI.

The Stable Roommates problem (SR) is a special case of SRI where the preference orderings
are strict and complete (i.e., for every agent x ∈ A, Ax=A\{x}), and |A| is even.

Ties. The Stable Roommates problem with Ties and Incomplete Lists (SRTI) is a variation of SRI
where the preference lists are partial orderings and where incomparability is transitive. In this
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sri7 sri4 sri8

a : b e d f g
b : c f a g e
c : d g b e f a
d : a c e f g
e : f a b c d
f : g b e c d a
g : c f d a b

a : b c d
b : c a d
c : a b d
d : a b c

a : c e f g d h
b : d f h c g
c : a b f h e d
d : h g e a b c
e : g c b d a f
f : e a g c h b
g : f h d b c
h : b d a e f

Fig. 1. Three SRI instances. sri7 has a single stable solution {{a,b},{c,d},{ f ,g},{e}}. sri4 has no so-
lutions, since each possible matching is blocked (e.g., {{a,c},{b,d}} is blocked by {a,b}). sri8 has two
stable matchings, M1:{{a,c},{b,h},{d,e},{ f ,g}} and M2:{{a,c},{b,h},{d,g},{e, f}}.

context, ties correspond to indifference in the preference lists: an agent x is indifferent between
the agents y and z, denoted by y∼x z, if y 6≺x z and z 6≺x y. There are three levels of stability (Irving
and Manlove 2002): weak stability, strong stability, and super stability. We will focus on weak
stability in this paper, since it is a harder problem compared to the other two versions (Table 1).
Relative to weak stability, a pair {x,y} of agents blocks a matching M if conditions B1–B3 hold.

The Stable Roommates problem with Ties (SRT) is a special case of SRTI where the preference
ordering of each agent x is over A\{x} and complete, and |A| is even.

Note that, while the problems SR and SRI are in P, SRT and SRTI under weak stability are
NP-complete (Table 1).

Fairness. When an SRI instance has many stable matchings, it may be useful to identify a sta-
ble matching that is fair to all agents. Different fairness criteria on top of stability have led to
optimization variations of SRI.

Let M denote the set of all stable matchings of a given SRI instance (A,≺). For every agent x
and every agent y∈Ax, let rank(x,y) denote the rank of agent y in the preference list Ax of agent x.
We assume that agents prefer matching with a roommate: for every agent x, let rank(x,x) be a
number larger than rank(x,y) for every y ∈ Ax.

Egalitarian SRI aims to maximize the total satisfaction of preferences of all agents. Let M be a
matching. For every agent x, we define the satisfaction cM(x) of x’s preferences with respect to M
as follows: cM(x)=I if rank(x,M(x))=I. Then the total satisfaction of preferences of all agents is
defined as follows: c(M) = ∑x∈A cM(x). Note that for SRI, all matching M have the same number
of contributions of rank(x,x) values to c(M). Since the preferred agents have lower rankings,
the total satisfaction of preferences of all agents is maximized when c(M) is minimized. Then, a
matching M∈M with the minimum c(M) is egalitarian.

Rank Maximal SRI considers different fairness criterion: it aims to maximize the number of
agents matched with their first preferences, and then, subject to this condition, to maximize the
number of agents matched with their second preference, and so on. We start with the set M of
all matchings of a given SRI instance (A,≺), and define a series of subsets Mmax(i) of these
matchings where the maximum number of agents are matched with their i’th preferences:

Mmax(0) = M

Mmax(i) = {M∈Mmax(i−1) : 1≤i≤|A|−1, ∀M′∈Mmax(i−1) s.t. M′ 6=M
|{x∈A : rank(x,M(x))=i,x 6= M(x)}| ≥ |{x∈A : rank(x,M′(x))=i,x 6= M(x)}|}.

Then, a matching M ∈Mmax(|A|−1) is rank-maximal.
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Consider the SRI instance sri8 illustrated in Fig. 1, with two stable matchings. Stable matching
M1 is egalitarian and M2 is rank-maximal.

Almost stable. Unlike the Stable Marriage problem, there is no guarantee to find a solution to
every SRI problem instance (cf. sri4 in Fig. 1). When an SRI instance does not have a stable
matching, further variations of SRI have been studied to find a good-enough solution.

Almost SRI aims to minimize the total number of blocking pairs. Let bpM(x,y) denote the set
of blocking pairs of a given matching M. A matching M∈M is almost stable if it is blocked by
the minimum number |bpM(x,y)| of pairs.

3 Answer Set Programming

SRTI-ASP utilizes Answer Set Programming (ASP) (Brewka et al. 2016) to declaratively solve
stable roommates problems. The idea of problem solving with ASP is (1) to represent the given
problem by a program whose answer sets (Gelfond and Lifschitz 1988; Gelfond and Lifschitz
1991) characterize the solutions of the problem, and (2) to solve the problem using answer set
solvers, like CLINGO (Gebser et al. 2011).

Why ASP? We use ASP as an underlying paradigm for modeling and solving stable roommates
problems for the following reasons. (1) Deciding whether a program in ASP has an answer set is
NP-complete (Dantsin et al. 2001), so ASP is expressive enough for solving hard SR problems.
(2) ASP has expressive languages with a rich set of utilities, such as nondeterministic choices,
hard constraints, weighted weak constraints with priorities, and thus allow us to easily formulate
different variations of SR. (3) Efficient ASP solvers, like CLINGO, supports these utilities. (4)
Such an elaboration tolerant (McCarthy 1998) representation framework and flexible software
environment are useful in studying and understanding variations of SR in different applications.
(5) Due to declarative problem solving in the formal framework of ASP, we can easily prove the
soundness and completeness of SRTI-ASP (see Theorem 1).

Programs in ASP Let us briefly describe the syntax of programs and useful constructs used in
the paper. We consider ASP programs that consist of rules of the form

Head← A1, . . . ,Am,not Am+1, . . . ,not An. (1)

where n≥m≥ 0, Head is an atom or⊥, and each Ai is an atom. A rule is called a fact if m= n= 0
and a (hard) constraint if Head is ⊥.

Cardinality expressions are special constructs of the form l{A1, . . . ,Ak}u where each Ai is an
atom and l and u are nonnegative integers denoting the lower and upper bounds (Simons et al.
2002). Programs using these constructs can be viewed as abbreviations for programs that consist
of rules of the form (1). Such an expression describes the subsets of the set {A1, . . . ,Ak} whose
cardinalities are at least l and at most u. Cardinality expressions can be used in heads of rules;
then they generate many answer sets whose cardinality is at least l and at most u.

Schematic variables A group of rules that follow a pattern can be often described in a compact
way using “schematic variables”. For instance, the cardinality expression 1{p1, . . . , p7}1 can be
represented as 1{p(i) : index(i)}1, along with a definition of index(i) that describes the ranges of
variables: index(1..7).

Weighted weak constraints with priorities The ASP programs can be augmented with “weak
constraints”—expressions of the following form (Buccafurri et al. 2000):

∼←Body(t1, ..., tn)[w@p, t1, ..., tn].
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Here, Body(t1, ..., tn) is a formula (as in the body of a rule) with the terms t1, ..., tn. Intuitively,
whenever an answer set for a program satisfies Body(t1, ..., tn), the tuple 〈t1, ..., tn〉 contributes a
cost of w to the total cost function of priority p. The ASP solver tries to find an answer set with
the minimum total cost. For instance, the following weak constraint

∼← p(i), p(i+1), index(i), index(i+1)[1@2, i]

instructs CLINGO to compute an answer set that does not include both p(i) and p(i + 1), if
possible. However, if CLINGO cannot find such an answer set, it is allowed to compute an answer
set with these atoms p(i) and p(i+ 1) but with an additional cost of 1 per each such i. Weak
constraints are considered by CLINGO according to their priorities.

4 Solving SRI using ASP

We formalize the input I = (A,≺) of an SRI instance in ASP by a set FI of facts using atoms of
the forms agent(x) (“x is an agent in A”) and prefer2(x,y,z) (“agent x prefers agent y to agent
z, i.e., y ≺x z ”). For instance, the preference list of agent a in sri4 of Fig. 1 is described by the
following facts: prefer2(a,b,c). prefer2(a,c,d).

For every agent x, since x prefers being matched with a roommate y in Ax instead of being
single, for every y ∈ Ax, we also add facts of the form prefer2(x,y,x). For the example above, the
input also includes the facts: prefer2(a,b,a). prefer2(a,c,a). prefer2(a,d,a).

In the ASP formulation P of SRI, the variables x, y, z and w denote agents in A. The program P
starts with the definition of preferences of agents with respect to ≺x:

prefer(x,y,z)← prefer2(x,y,z).
prefer(x,y,z)← prefer2(x,y,w),prefer(x,w,z).

(2)

The first rule expresses that being single is the least preferred option. The second rule expresses
that the preference relation is transitive.

Based on the preferences of agents, we define the concept of acceptability for each agent:

accept(x,y)← prefer(x,y, ).
accept(x,y)← prefer(x, ,y).

(3)

and the concept of mutual acceptability:

accept2(x,y)← accept(x,y),accept(y,x). (4)

The output M : A 7→ A of an SRI instance is characterized by atoms of the form room(x,y)
(“agents x and y are roommates”). The ASP formulation P of SRI first generates pairs of room-
mates. For every agent x, exactly one mutual acceptable agent y is nondeterministically chosen
as M(x) by the choice rules:

1{room(x,y):agent(y),accept2(x,y)}1← agent(x). (5)

Here, the roommate relation is symmetric:

← room(x,y),not room(y,x). (6)

The agents who are not matched with a roommate are single agents:

single(x)← room(x,x). (7)
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Then, the stability of the generated matching is ensured by the hard constraints:

← block(x,y) (x 6= y). (8)

Here, atoms of the form block(x,y) describe the blocking pairs (i.e., conditions B1–B3):

block(x,y)← accept2(x,y),single(x),single(y),not room(x,y). (x 6= y)
block(x,y)← accept2(x,y),single(x), like(y,x),not room(x,y). (x 6= y)
block(x,y)← accept2(x,y), like(x,y),single(y),not room(x,y). (x 6= y)
block(x,y)← accept2(x,y), like(x,y), like(y,x),not room(x,y). (x 6= y)

(9)

where x 6=y in each rule, and atoms like(x,y) describe that agent x prefers agent y to her/his
roommate x′ = M(x):

like(x,y)← room(x,x′),prefer(x,y,x′). (x′ 6= y) (10)

Given the ASP formulation P whose rules are described above and the ASP description FI of an
SRI instance I, the ASP solver CLINGO generates a stable matching (or all stable matchings), if
one exists; otherwise, it returns that there is no solution. This is possible since the ASP program P
(i.e., (2)–(10)) is sound and complete.

Theorem 1
Given an SRI instance I = (A,≺), for each answer set S for P∪FI , the set of atoms of the form
room(x,y) in S encodes a stable matching M : A 7→ A to the SRI problem instance. Conversely,
each stable matching for the given SRI instance corresponds to a single answer set for P∪FI .

Proof
First, we show that the answer set for (2)–(4) correctly describes the acceptability relation.

1. Due to Proposition 4 of Erdem and Lifschitz (2003) about the correctness of the transitive
closure definition, the answer set X0 for (2) correctly defines preferences of each agent x (by
means of atoms of the prefer(x,y,z)).

2. Due to Proposition 3 of Erdogan and Lifschitz (2004), adding (3) to (2) conservatively ex-
tends X0 to X1, which also describes the preference lists for each agent x (by means of atoms
of the accept(x,y)).

3. Due to Proposition 3 of Erdogan and Lifschitz (2004), adding (4) to (2)∪ (3) conservatively
extends X1 to X .

4. The answer set X describes the acceptability of every pair of agents x and y to each other (by
means of atoms of the accept2(x,y)).

Next, we show that the answer set for (2)–(6) correctly characterizes a matching.

1. We use the splitting set theorem (Erdogan and Lifschitz 2004; Lifschitz and Turner 1994): Let
Π be the program (2)–(5), and the splitting set U be the set of atoms of the form prefer(x,y,z),
accept(x,y), and accept2(x,y).

2. The bottom bU (Π) consists of (2)–(4), and the top part consists of rules (5).
3. Every answer set Y for the top part eU (Π\bU (Π),X) evaluated with respect to X , describes

a function, via atoms of the form room(x,y), which maps every agent x to exactly one agent
y so that x and y are acceptable to each other (when accept2(x,y) ∈ X). Moreover, every such
mapping can be characterized by a unique answer set for eU (Π\bU (Π),X).

4. According to the splitting set theorem, X ∪Y is an answer set for (2)–(5).
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5. Then, X ∪Y describes a mapping between acceptable pairs of agents. The symmetry of this
mapping is guaranteed by (6), using Proposition 2 of Erdogan and Lifschitz (2004), leading
to a matching.

6. Therefore, there is a one-to-one correspondence between the answer sets for (2)–(6) and the
matchings between acceptable pairs of agents.

Next, using Proposition 3 of Erdogan and Lifschitz (2004) three times, we show that adding
definitions (7), (10), and (9) to (2)–(6) one by one conservatively extends the answer sets for (2)–
(6), by describing singles (by means of atoms of the single(x)), preferences y of every agent x
over her/his roommate (by means of atoms of the like(x,y,z)), and then blocking pairs (by means
of atoms of the block(x,y)).

Finally, we show that stability is guaranteed by (8), using Proposition 2 of Erdogan and Lif-
schitz (2004). Therefore, there is a one-to-one correspondence between every answer set S for
(2)–(8) and every stable matching.

Ties (weak stability). As noted by Cseh (2019), relative to weak stability, stability in SRTI in-
stances can be defined in exactly the same way as for SRI. Therefore, we can use the SRI formu-
lation P to solve SRTI instances too.

Fairness. Let us describe the ranks of agents by a set of facts using atoms of the form rank(x,y, i)
(“the rank of agent y according to agent x’s preferences is i”). For each agent x, since x’s prefer-
ence ordering ≺x is total, we can define the ranks as follows: the i’th agent in the preference list
Ax of x has rank i, and x has a rank larger than the ranks of i.

rank(x,b,1)← #count{a : prefer(x,a,b),a 6= b}=0,accept(x,b)
rank(x,b, i)← rank(x,a, i−1),prefer(x,a,b),

#count{c : prefer(x,a,c),prefer(x,c,b),c 6= a,c 6= b}=0 (a 6= b, i > 1)

Egalitarian SRI aims to maximize the total satisfaction of preferences of all agents by a match-
ing M. The satisfaction cM(x) of an agent x’s preferences with respect to M is defined as the rank
of M(x). Since more preferred agents have lower ranks, the total satisfaction of preferences of all
agents is maximized when c(M)=∑x∈A cM(x) is minimized. Therefore, to solve Egalitarian SRI,
we simply add to the SRI formulation P, the weighted weak constraints:

∼← room(x,y),rank(x,y,r). [r@1,x]

which instruct CLINGO to minimize the sum of the ranks r of roommates.
Rank Maximal SRI tries to maximize the number of agents matched with their first prefer-

ences, and, subject to this condition, tries to maximize the number of agents matched with their
second preferences, and so on. Such an iterative definition can be modeled elegantly by the fol-
lowing weak constraints:

∼← room(x,y),rank(x,y,r). [−1@|A|− r,x,y] (x 6= y)

Note that the priorities of these weak constraints are defined as |A| − r for every pair of room-
mates {x,y} (x 6= y), where rank(x,y) = r. As the rank changes from 1 to |A| − 1, the priority
decreases. The ASP solver CLINGO handles weak constraints with respect to their priorities. On
the other hand, note that the weights of these weak constraints are specified as -1 for every pair of
roommates {x,y} (x 6= y). Therefore, CLINGO first considers the highest priority |A|−1, and tries
to minimize the total weights of agents matched with their first preferences. Then, CLINGO con-
siders the next highest priority |A|− 2, and further tries to minimize the total weights of agents
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matched with their second preferences, and so on. In this way, CLINGO finds a rank maximal
stable matching.

Almost stable. Almost SRI aims to minimize the total number of blocking pairs for a matching M.
For that, we simply replace the hard constraint (8) that ensures stability, with the following weak
constraints in our ASP formulation P of SRI:

∼←block(x,y). [1@1,x,y] (x 6= y)

Elaboration tolerance. According to McCarthy (1998), a representation is elaboration tolerant to
the extent that it is convenient to modify a set of formulas expressed in the formalism to take into
account new phenomena, and the simplest kind of elaboration is the addition of new formulas.
In that sense, our representation P of SRI is elaboration tolerant to variations of SRI, since the
program P is not changed at all (e.g., we add new rules to P for Egalitarian SRI) or it is changed
minimally (e.g., we replace a hard constraint by a weak constraint for Almost SRI).

5 Experimental Evaluations

We have experimentally evaluated SRTI-ASP to understand its scalability over intractable SRTI
problems, and how it compares with two closely related methods over tractable SR problems.

Setup. We have generated instances using the random instance generator that comes with SRI-
CP. It is based on the following idea (Mertens 2005): 1) generate a random graph ensemble
G(n, p) according to the Erdos-Renyi model (Erdös and Rényi 1960), where n is the required
number of agents and p is the edge probability (i.e., each pair of vertices is connected indepen-
dently with probability p); 2) since the edges characterize the acceptability relations, generate a
random permutation of each agent’s acceptable partners to provide the preference lists. We define
the completeness degree for an instance as the percentage p∗100.

In our experiments, we have used CLINGO (Version 5.2.2) on a machine with Intel Xeon(R)
W-2155 3.30GHz CPU and 32GB RAM.

Scalability of SRTI-ASP: SRI and its variations. We have generated instances of different sizes,
where the number of agents are 20, 40, 60, 80,100, 150 and 200, and the completeness degrees
are 25%, 50%, 75% and 100%. For each number of agents and for each completeness degree, we
have generated 20 instances. We have experimented with these randomly generated instances to
analyze the scalability of SRTI-ASP for SRI, Egalitarian SRI, Rank Maximal SRI, and Almost
SRI. The results are shown in Table 2. We make the following observations from this table:

O1 The computation times for finding a stable matching (if one exists) and finding out that
there exists no stable matching are comparable to each other.

Consider, for instance, the completeness degree 25%, and 80 agents. For 13 (out of 20) instances,
the average CPU time to compute a stable matching is 0.167 seconds. For the remaining 7 in-
stances, the average CPU time to find that a stable matching does not exist is 0.183 seconds.
These timings are comparable to each other.

O2 Computing an egalitarian stable matching generally takes slightly less time than computing
a rank maximal stable matching.

For instance, for the 13 instances with a stable matching, computing egalitarian stable match-
ings takes on average 0.255 seconds; computing rank maximal stable matchings takes a similar
amount of time, 0.256 seconds. For larger instances, we can observe that the latter takes a bit
more time.
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Table 2. Scalability of SRTI-ASP in computation time, for SRI, Egalitarian (E) SRI, Rank
Maximal (R) SRI, and Almost (A) SRI.

SRI E SRI R SRI A SRI
#instances average #instances average average average average

completeness with a time without any time time time time
degree |A| solution (sec) solution (sec) (sec) (sec) (sec)

25% 40 11 0.029 9 0.024 0.204 0.201 0.017
60 10 0.068 10 0.077 0.129 0.219 0.479
80 13 0.167 7 0.183 0.255 0.256 4.416

100 14 0.37 6 0.442 0.575 0.602 85.86
150 8 1.995 12 1.994 14.126 17.703 TO
200 10 8.794 10 8.323 59.18 83.85 TO

50% 40 11 0.06 9 0.084 0.106 0.108 0.136
60 16 0.276 4 0.381 0.535 0.56 3.748
80 13 0.852 7 1.106 1.82 1.85 3.748

100 12 3.192 8 2.828 4.97 5.26 343.24
150 14 15.880 6 15.59 153.54 149.447 TO
200 9 69.65 11 72.08 524.58 704.3 TO

75% 40 14 0.136 6 0.207 0.722 0.33 0.486
60 13 0.744 7 0.997 8.171 1.85 15.526
80 8 3.971 12 3.346 6.99 7.16 144.80

100 13 11.06 7 8.801 19.04 20.65 885.39
150 9 50.520 11 51.700 492.7 529.16 TO
200 12 175.81 8 202.46 1757.0 1475.0 TO

100% 40 15 0.227 5 0.301 0.463 0.56 0.675
60 14 1.483 6 2.110 2.534 3.372 27.935
80 13 7.472 7 7.426 14.39 15.47 181.09

100 10 24.43 10 16.268 35.92 40.42 2627.77
150 11 112.23 9 113.21 360.7 362.12 TO
200 12 388.58 8 353.8 844.03 1147.0 TO

TO: Timeout (over 3000 seconds)

O3 Computing an almost stable matching significantly takes more time, compared to comput-
ing an egalitarian or a rank maximal stable matching.

O4 Solving the optimization variants of SRI takes significantly more time, compared to solv-
ing SRI.

For instance, for the 7 instances without any stable matching, computing almost stable matchings
takes in 4.416 seconds on average.

The observations O2 and O3 are interesting, considering all the three optimization variations
of SRI are NP-hard. Though, the observation O4 (better illustrated in Fig. 2) is not surprising,
considering that SRI is in P (Table 1).

We can can further observe the following about scalability:

O5 As the completeness degree increases, the computation times increase.
O6 As the number of agents increases, the computation times increase.
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Fig. 2. Comparison of SRI with its optimization variants, when the completeness degree is 50%.

Table 3. Scalability of SRTI-ASP (completeness degree of 25%): SRI vs. SRTI

SRI SRTI
%25 tie %50 tie %75 tie %100 tie

#inst. avg #inst. avg #inst. avg #inst. avg #inst. avg
with time with time with time with time with time

|A| solns. (sec) solns. (sec) solns. (sec) solns. (sec) solns. (sec)

20 20 0.009 20 0.034 20 0.043 20 0.063 20 0.073
40 11 0.029 18 0.191 20 0.243 20 0.319 20 0.346
60 10 0.068 20 0.967 20 1.297 20 1.746 20 1.752
80 13 0.167 20 2.833 20 3.208 20 3.453 20 4.187

100 14 0.370 20 3.372 20 2.609 20 2.293 20 2.178

Scalability of SRTI-ASP: SRI vs. SRTI. To experiment with SRTI-ASP on SRTI instances (un-
der weak stability), we have randomly generated ties for the randomly generated SRI instances
with the completeness degree 25%. For each agent x, we have 1) identified the set T of agents
that are not acceptable to x and vice versa, and randomly picked one of these agents, say y, 2)
identified the set U of agents that are acceptable to x and vice versa, and randomly picked one of
these agents, say z, and 3) added y in preference list of x so that x is indifferent between y and z.
We have added ties as many as 25%,50%,75%,100% of the number of agents. The results of
these experiments are shown in Table 3. We can observe the following:

O7 Solving SRTI takes significantly more time, compared to solving SRI.
O8 SRI instances that do not have any stable matching, often have stable matchings after ties

are added.

The observation O7 is expected, since SRTI is NP-complete whereas SRI is in P (Table 1). O8 is
reasonable since adding ties reduces the number of potential blocking pairs in general, and thus
allows SRTI-ASP to explore more possibilities.

Scalability of SRTI-ASP vs. SRI-CP. We have experimented with SRI-CP (SRItoolkit 2019),
which utilizes the CP solver CHOCO (Version 2.1.5), on the SRI instances generated by SRI-
CP’s random instance generator. The results for 80–200 agents are shown in Table 4.

O9 For large SRI instances, SRI-CP performs significantly better than SRTI-ASP.
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Table 4. SRTI-ASP vs. SRI-CP

#instances SRTI-ASP SRI-CP
completeness with a average time (sec) average time (sec)

degree #agents solution exists solution no solution exists solution no solution

25% 80 13 0.167 0.183 0.318 0.310
100 14 0.370 0.442 0.389 0.492
150 8 1.995 1.994 0.704 0.697
200 10 8.794 8.323 1.047 0.999

50% 80 13 0.852 1.106 0.481 0.475
100 12 3.192 2.828 0.674 0.646
150 14 15.88 15.59 1.267 1.211
200 9 69.65 72.08 1.940 1.960

75% 80 8 3.971 3.346 0.684 0.682
100 13 11.062 8.801 0.967 0.961
150 9 50.52 51.70 1.795 1.780
200 12 175.81 202.46 3.214 3.263

100% 80 13 7.396 7.426 0.883 0.912
100 10 24.435 16.268 1.190 1.175
150 11 112.23 113.21 2.593 2.674
200 12 388.58 353.8 5.074 5.061

This observation has led to the following idea (mentioned by Prosser (2014)) for SRI instances
that have stable matchings: “Can we solve Egalitarian SRI faster than SRTI-ASP, by first enu-
merating all stable matchings using SRI-CP, and then finding the optimal one?” We have noticed
that the instances (generated by the random instance generator of SRI-CP) generally have one or
two stable matchings. In that case, the answer to this question is Yes. This observation contradicts
with the theoretical result on the NP-hardness of Egalitarian SRI. So we have generated some
instances with more stable matchings. For example, for an instance (sri90) with 90 agents and
with more than 9 million stable matchings, SRTI-ASP takes 1.75 seconds to find an egalitarian
stable matching whereas SRI-CP can not enumerate all these solutions (due to fast consumption
of memory). For SRI instances with many stable matchings, it may be better to use SRTI-ASP
to solve Egalitarian SRI; further investigations are planned as part of our future work.

Meanwhile, we have investigated a similar question for SRI instances that do not have any
stable matching: “Can we solve Almost SRI instances with n agents faster than SRTI-ASP,
by checking whether removing

(n
2

)
,
(n

4

)
, .. agents (i.e., potential blocking pairs) leads to a stable

matching?” We have observed that, for small SRI instances with one blocking pairs, the answer
to this question is Yes: If we remove two agents, then we can find a stable matching. For larger
instances with many blocking pairs, the answer is negative. For example, for an instance (sri60a)
with 60 agents, that does not have any stable matching, we have observed that SRTI-ASP finds
an almost stable matching with 10 blocking pairs in 9.057 seconds. With the enumerate-test
method mentioned in the question, we have to enumerate

(60
2

)
+
(60

4

)
+ ...+

(60
10

)
(more than

7×1010) instances, and check them one by one using SRI-CP until an almost stable matching is
found. Assuming that SRI-CP takes 0.001 seconds per instance, in the worst case we will have
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Table 5. SRTI-ASP vs. SRI-AF

#instances SRTI-ASP SR-AF
completeness with a average time (sec) average time (sec)

degree #agents solution exists solution no solution exists solution no solution

25% 80 13 0.167 0.183 0.118 0.126
100 14 0.370 0.442 0.242 0.254
150 8 1.995 1.994 1.002 1.077
200 10 8.794 8.323 2.674 2.604

50% 80 13 0.852 1.106 0.521 0.527
100 12 3.192 2.828 1.073 1.01
150 14 15.88 15.59 5.029 4.918
200 9 69.65 72.08 13.35 14.19

75% 80 8 3.971 3.346 1.248 1.252
100 13 11.062 8.801 2.795 2.772
150 9 50.52 51.70 12.65 12.222
200 12 175.81 202.46 36.35 35.72

100% 80 13 7.396 7.426 2.525 2.523
100 10 24.435 16.268 5.677 5.479
150 11 112.23 113.21 24.94 24.75
200 12 388.58 353.8 77.89 74.67

to test all 7×1010 instances, and it will take at least 2 years. This observation confirms with the
theoretical result on the NP-hardness of Almost SRI; further investigations are planned as part of
our future work.

Scalability of SRTI-ASP vs. SR-AF The ASP-based method SR-AF (Amendola 2018) uti-
lizes abstract argumentation frameworks (Dung 1995) for the Stable Marriage problem. Ac-
cording to SR-AF, an argumentation framework AF=(Arg,Att) models an SR instance if the
arguments in Arg are pairs of different agents, and the attacks ((a,b),(x,y)) in Att ⊆ Arg×Arg
satisfy the following properties: (i) x = a and b ≺x y, or (ii) y = b and a ≺y x. For every SR
instance, once the arguments and attacks are generated, they are translated into a program PAF

using the existing methods (Wu et al. 2009). In particular, for every argument (a,b) in AF, if
(x1,y1),(x2,y2), . . . ,(xm,ym) are the arguments that attack (a,b), the following rule is included
in PAF:

in(a,b)← not in(x1,y1),not in(x2,y2), . . . ,not in(xm,ym).

There is a one-to-one correspondence between the answer sets for the program PAF and the stable
extensions of AF, due to Theorem 2 of Amendola (2018).

We have extended SR-AF’s argumentation framework from SR to SRI, by defining the argu-
ments as pairs of agents that are acceptable to each other. implemented (in Python) the transfor-
mation of an SRI instance into an argumentation framework AF and then to a program PAF. We
have experimented with this extended SR-AF (called SRI-AF from now on) on the SR instances
generated by SRI-CP’s random instance generator. The results are shown in Table 5.

O10 For large SRI instances, SRI-AF performs significantly better than SRTI-ASP.
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6 Conclusion

We have developed a formal framework, called SRTI-ASP, that is sound and complete (Theo-
rem 1) and general enough to provide solutions to various stable roommates problems, such as,
SR, SRI, SRT, SRTI, Egalitarian SRTI, Rank Maximal SRTI, Almost SRTI. Except for SR and
SRI, all these variations are intractable (Table 1). Our ongoing work involves extending SRTI-
ASP to other computationally hard stable roommates problems.

Since SRTI-ASP utilizes Answer Set Programming (ASP), the formulations of problems are
concise and elaboration tolerant, and thus SRTI-ASP provides a flexible framework to study
variations of stable roommates problems. Having such a flexible framework and implementation
is valuable for studies in matching theory.

We have evaluated SRTI-ASP over different sizes of randomly generated SRI instances, and
have made many interesting observations (O1–O10) about its scalability over different intractable
variations of SRI, and in comparison with SRI-CP and SR-AF over tractable variations of SR.
The results of our empirical analysis of SRTI-ASP are promising, in particular, for computation-
ally hard problems. Considering that the input sizes of the instances are large enough for many
dormitories, the results of experiments are also promising for real-world applications.

Comparisons with SRI-CP and SRI-AF has helped us to better observe the flexibility of
SRTI-ASP due to elaboration tolerant ASP representations. It is easier to extend SRTI-ASP to
address different variations of SR, while SRI-CP and SRI-AF require further studies in model-
ing as well as implementation. Note that SRI-CP uses CHOCO via a Java wrapper, and SRI-AF
solves SRI via an argumentation framework. As a future work, we plan to investigate how SRI-
CP and SRI-AF can be extended to SRTI and its intractable versions.

The Stable Marriage problem with Ties (SMT) under strong stability, which can be solved with
a polynomial time algorithm (Irving 1994), has been used as a benchmark in ASP competitions.
Its representation is based on ranks instead of preferences, and does not utilize choice rules,
cardinality expressions or weak constraints. With its intractable variations (under weak stability),
SRTI-ASP contributes to ASP studies by providing an elaboration tolerant formulation and a
complementary and rich set of benchmark instances of Stable Roommates problems.
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ROTH, A. E., SÖNMEZ, T., AND ÜNVER, M. U. 2005. Pairwise kidney exchange. Journal of Economic

Theory 125, 2, 151 – 188.
SCOTT, S. 2005. A study of stable marriage problems with ties. Ph.D. thesis, University of Glasgow.
SIMONS, P., NIEMELAE, I., AND SOININEN, T. 2002. Extending and implementing the stable model

semantics. AIJ 138, 1, 181–234.
SRITOOLKIT. 2019. http://www.dcs.gla.ac.uk/~pat/roommates/distribution/ (2019-11-21).
WU, Y., CAMINADA, M., AND GABBAY, D. M. 2009. Complete extensions in argumentation coincide

with 3-valued stable models in logic programming. Studia Logica 93, 2-3, 383–403.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000277
Downloaded from https://www.cambridge.org/core. IP address: 92.10.94.9, on 08 Oct 2020 at 13:31:08, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000277
https://www.cambridge.org/core

