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Abstract 

Understanding the conditions which promote adaptation is a key goal of evolutionary 

biology, and a pressing issue across fields of biology. Addressing this involves investigating 

not just the genetic and developmental mechanisms through which adaptive phenotypes arise, 

but also the environmental and ecological conditions which promote their spread. A major 

challenge in addressing these aims is that contemporary examples of rapid adaptive evolution 

are difficult to study, owing to the difficulty of identifying traits under selection during the 

early stages of adaptation. In this thesis, I use a Hawaiian field cricket system which provides 

a useful exception; males of the species Teleogryllus oceanicus ordinarily sing to attract 

females, however adaptive male-silencing (‘flatwing’) phenotypes have recently emerged and 

spread on at least three islands, under selection against male song exerted by a parasitoid fly, 

Ormia ochracea, which is attracted to singing males. Prior work indicates at least two of 

these flatwing phenotypes, from islands of Kauai and Oahu, have evolved independently 

under this shared selection pressure. This example of rapid, convergent evolution provides an 

opportunity to identify conditions which have promoted and resulted from rapid adaptation in 

wild populations evolving under extreme selection pressure. I investigate features which have 

contributed to the ability of these populations to rapidly, and repeatedly, adapt under strong 

selection against male song. The results indicate convergent sexual trait loss has been 

promoted by sex-biased development pathways maintained by sexually antagonistic 

selection; that pleiotropic, or associated, effects of adaptive mutation(s) in both sexes have 

played an important role in their spread; that adaptive male song-loss phenotypes have 

evolved repeatedly, above and beyond flatwing morphology; and that silent males 

nevertheless invest as much energy in practicing wing movement patterns associated with 

song and, despite reduced sexual dimorphism, are just as likely to be involved in aggressive 

intrasexual contests.  
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1. Introduction 

1.1 What limits the rate of adaptive evolution? 

A central goal in the study of evolutionary biology is to understand features of populations’ 

biology which allow them to adapt to environmental and ecological change. Various genetic 

and developmental constraints are known to impede adaptive evolution, having received 

substantial consideration from evolutionary biologists laying the groundwork of the modern 

synthesis (Darwin 1859; Wright 1922; Fisher 1930; Dobzhansky 1937): these include limited 

standing genetic variation and the paucity, and pleiotropic effects of, adaptive de novo 

mutations (Barton & Turelli 2003; Nei 2005; Orr 2000). Despite these various constraints, it 

has been shown that populations nevertheless frequently adapt rapidly over contemporary 

timescales (Stockwell et al. 2003; Losos 2014). Moreover, similarly adaptive phenotypes 

often arise independently across populations and lineages evolving under shared selection 

pressures (Alves et al. 2019; Sackton et al. 2019; Therkildsen et al. 2019). Understanding 

how and under what conditions populations are able to rapidly and repeatedly adapt to 

extreme selection pressures therefore provides a compelling topic for study in evolutionary 

biology, with a range of important applications across related fields such as conservation 

biology and medicine (Prentis et al. 2008; Davies & Davies 2010; Sarrazin & Lecomte 2016).  

Genetic adaptation requires either that there is sufficient standing variation for 

selection to act upon, or that newly beneficial mutations are able to arise and spread. The 

relative contribution of these two processes to adaptation across various scenarios is debated, 

but it is often thought standing variation will be of particular importance in the early stages of 

rapid adaptation (Hermisson & Pennings 2005; Lai et al. 2019). However, evolutionary 

forces such as genetic drift and stabilising or purifying selection are expected to erode 

standing genetic variation (Barton & Turelli 2003), thereby impeding rapid adaptive 
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evolution. Where there is not sufficient standing genetic variation for adaptation to occur 

through changes in frequencies of existing alleles, the capacity for adaptive evolution relies 

on beneficial mutations arising de novo. The rate of adaptation is therefore linked with 

mutation rate across species from the same lineage (Rousselle et al. 2019), but mutations are 

most often deleterious (Nei 2005) and so mutation rates are constrained by negative selection 

(Desai & Fisher 2007), imposing a further impediment to adaptation. Reconciling the 

anticipated erosion of genetic variation, and the paucity of novel adaptive mutations, with the 

observed ability of populations to rapidly and repeatedly adapt to changes in ecology or 

environment has presented a persistent challenge in evolutionary research (Hunt et al. 2007; 

Roff & Mousseau 1987; Stockwell et al. 2003).  

These fundamental genetic constraints on adaptation are themselves shaped by 

features of the environment in which populations have evolved. Selectable genetic variation 

is theoretically related to factors of population size, fluctuating selection pressures associated 

with environmental stochasticity and frequency-dependent selection, heterozygote advantage, 

and admixture between genetically distinct populations (Barton & Turelli 2003; Charlesworth 

2006). Small, fragmented populations with little or no migration between them are likely to 

suffer depleted genetic variation, while populations evolving under balancing selective forces 

such as negative frequency-dependent selection and fluctuating environmental pressures will 

likely harbour greater genetic variation. Larger populations are likely to produce a greater 

number of beneficial mutations, though their initial spread will be influenced by the fitness of 

the individual in which they arise (Charlesworth et al. 1993; Sniegowski et al. 1997). This 

linked selection, or genetic hitchhiking, is one further avenue through which standing genetic 

variation might be reduced in contemporary populations under selection. For example, in the 

case of a ‘hard sweep’ where a single adaptive mutation confers an extreme fitness advantage 

and quickly spreads to fixation, this will purge ancestral variation in nearby genomic regions 
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(Hermisson & Pennings 2005). This contrasts with soft selective sweeps, in which multiple 

adaptive mutations may arise, spread, and recombine, retaining greater levels of ancestral 

variation (Messer & Petrov 2013). The capacity for populations to generate and maintain 

genetic diversity is therefore strongly influenced by features of past selection and 

demography, and is likely to be substantially diminished in small, isolated populations, and 

those which have been exposed to extreme selection pressures. 

 

1.2 Pleiotropy and evolvability 

Another widely anticipated constraint upon adaptive evolution arises from genetic correlation 

between traits (Lande & Arnold 1983). The likelihood of adaptive change occurring in 

association with a given genetic variant is theoretically influenced by its pleiotropy, which is 

expected to limit the rate of evolution by reducing the likelihood of adaptive changes in value 

for one trait effecting a net fitness increase, due to non-adaptive ‘off-target’ effects (Fisher 

1930; Orr 2000). For example, Chevillon et al. (1997) showed that in the mosquito Culex 

pipiens three insecticide resistance-associated alleles, each with an independent origin, all 

have negative pleiotropic effects upon other traits such as longevity, but nevertheless spread 

under extreme selection pressure.  

The related ‘cost of complexity’ hypothesis states that more complex organisms 

should be evolutionarily constrained due to the greater number of interacting genes, i.e. 

greater extent of pleiotropy (Orr 2000). This constraint might be mitigated by genomic 

modularity (Welch & Waxman 2003): modules represent groups of ‘integrated’, tightly 

associated traits, while modules themselves are much less intrinsically associated with one 

another (Klingenberg 2008). Mutations in modular networks would therefore primarily affect 

a subset of integrated, related traits rather than the sum, reducing the likelihood of pervasive 
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negative pleiotropic fitness effects (Needham 1933; Wagner & Altenberg 1996; Welch & 

Waxman 2003). Consistent patterns of genetic or developmental integration of related traits 

are apparent in studies across morphological features and taxa (Cheverud et al. 1997; 

Klingenberg & Zaklan 2000; Klingenberg et al. 2001; Klingenberg et al. 2003). 

Genomic modularity and related considerations have informed development of 

‘evolvability’ frameworks, describing the likelihood of heritable and thus selectable, adaptive 

variants arising for a given trait, without widespread deleterious effects (Kirschner & Gerhart 

1998). The latter feature is regulated through factors such as integration of related traits, the 

former by mutability of genomic regions. Once a controversial idea, primarily of interest to 

the field of ‘evo-devo’, there is growing evidence of differences in trait-specific evolvability, 

and heightened evolvability has been implicated in classic examples of adaptive evolution. A 

landmark recent study demonstrated that enhanced mutability of the pelvic enhancer region 

of the Pitx1 gene in sticklebacks, caused by ‘fragile’ regions of repetitive thymine-guanine 

content in associated regulatory DNA sequences, is implicated in the repeated convergent and 

putatively adaptive loss of pelvic hind fins in freshwater populations (Xie et al. 2019). 

Similarly, Brimacombe et al. (2019) recently found evidence that genetically underpinned 

changes in chromatin composition which induce chromosome missegregation, and thereby 

aneuploidy, positively influence the ability of the yeast Candida albicans to evolve under 

environmental stress.  

Whether features which influence a trait’s mutability can feasibly be the product of 

selection is a topic of persistent debate (Kirschner & Gerhart 1998; Pigliucci 2008). The 

evolution of increased mutator rates in Escherichia coli (Zeyl & Bell 1997; Colegrave 2002; 

Peabody et al. 2017) is widely considered to represent one such example of selection for 

evolvability in novel environments (Pigliucci, 2008). Selection for genetically determined 

‘evolvability’ has also been reported in E. coli, based on the finding that less fit clones are 
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able to evolutionarily out-compete those better adapted to the initial environment (Woods et 

al. 2011). However, the applicability of these second-order dynamics of selection to non-

clonal populations, and to sexually reproducing Eukaryotes in particular, is unclear. Yet, 

sexual reproduction may itself provide an example of an evolved capacity to adapt under 

selection. Populations of dioecious fresh-water snails Potamopyrgus antipodarum exposed to 

greater rates of infection by trematode parasites exhibit a greater proportion of sexually 

reproducing individuals (Lively 1987), apparently due to selection for rare resistant 

phenotypes which arise with greater frequency in sexually reproducing populations (Dybdahl 

& Lively 2006).  

An important tenet of the evo-devo framework is that phenotypic evolution occurs 

largely through changes to gene regulation, rather than ‘structural’ protein coding sequences, 

and that modularity and non-lethality of these changes are associated with changes to cis-

regulatory regions (Monod and Jacob, 1961). These changes are expected to affect respective 

genes’ regulation, and thus phenotype, with fewer widespread deleterious effects than would 

be expected from structural changes to coding sequences (Wray 2007). Though this 

hypothesis is difficult to test explicitly (but see Sackton et al., 2019), and was met with early 

opposition (Hoekstra & Coyne 2007), the pervasiveness of cis-regulatory changes in studies 

of causal mutations underlying selected (be it natural or artificial) phenotypes is difficult to 

ignore (Chan et al. 2010; Mou et al. 2011; Feng et al. 2014; Guo et al. 2016; Kim et al. 2019; 

Sackton et al. 2019). Cis-regulatory changes and genomic or developmental integration, i.e. 

the parcellation of related traits, could therefore readily complement one another in 

promoting coordinated adaptive evolution of functionally related traits. 
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1.3 Adaptation over contemporary timescales 

Despite the clear and numerous constraints upon the rate of adaptation, a key insight from 

research over the last century is that patterns of evolutionary change are not restricted to 

geological timescales, but can in fact be observed in real time over few generations 

(Stockwell et al. 2003; Losos 2014; Marchini et al. 2014). A famous example is that of the 

evolutionary response to coal pollution of populations of the peppered month, Biston 

betularia, in which the common pale form was rapidly supplanted by a darker, melanic form 

which benefited from lower predation rates owing to its reduced conspicuousness to 

predators (Cook 2003). In this case, the adaptive mutant phenotype was produced by the 

insertion of a transposable element into an untranscribed region of the gene ‘cortex’ (van't 

Hof et al. 2016). This capacity for rapid adaptation is also readily demonstrated in 

experimental evolution studies such as the ‘Longshanks’ experiment, where researchers 

observed an increase in tibia length of approximately 13% over 20 generations of selective 

breeding in mice (Castro et al. 2019). Such examples of rapid adaptation have generated 

particular interest in recent decades, given the unprecedented rate and extent of 

environmental change to which many wild populations are being subjected, largely through 

anthropogenic influence, and to which they must presumably adapt to survive (Stockwell et 

al. 2003). For example, Conover and Munch (2002) reported dramatic changes in body length 

of silverside fish (Menidia menidia) across replicate lines after just six generations of 

selective harvesting for size, with clear relevance to the impacts of anthropogenic fishing. 

Genetic adaptation is not the only mechanism by which populations are able to 

respond to changes in selection. Just as individual reproductive fitness hinges on surviving to 

reproductive age (i.e. viability selection), genetic adaptation depends on populations 

persisting for long enough under selection for adaptive genetic combinations to arise and/or 

spread, and adaptive phenotypic plasticity is widely considered to play an important role in 
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this context (Ghalambor et al. 2007; Lande 2009). Some have gone further to argue plastic 

responses to selection will often precede genetic adaptation by producing beneficial 

phenotypes that will subsequently be genetically ‘accommodated’ (West-Eberhard 2005), for 

example through mutations which allow initially plastic adaptive phenotypes to be reached 

more efficiently (Baldwin 1896). In Daphnia melanica, production of melanic pigment is 

plastically down-regulated under low levels of UV radiation, reducing conspicuousness to 

predators, and these changes appear to have been genetically accommodated, as inferred from 

the loss of plasticity in populations evolving under consistently low UV and high predation 

rates (Scoville & Pfrender 2010). Experiments with Arabidopsis thaliana exposed to a range 

of environmental stressors show a plastically induced heightened recombination rate, which 

persists over generations and is heritable from both sexes (Molinier et al. 2006). Many 

adaptive plastic responses are nevertheless likely to depend largely on underlying genetic 

variation (Bradshaw 1965), so will be similarly constrained by features such as small 

population size, and low levels of gene flow. Additionally, while adaptive plastic responses to 

selection might act as an important buffer, benefitting fitness and permitting populations to 

persist in the short-term, they might also impede genetic adaptation by weakening selection 

pressures to which the individual is subject (Ghalambor et al. 2007). 

 

1.4 How repeatable is adaptive evolution? 

One way in which genetic and developmental constraints upon evolution might be 

investigated is to consider the repeatability of adaptation at these respective levels. Gould 

(1990) pondered how things would differ if one were able to ‘replay the tape of life’, arguing 

evolutionary outcomes are largely contingent on specific events, so would show limited 

similarity between lineages with dissimilar ancestral environments irrespective of their 
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current selection pressures. This question is especially pertinent to the study of convergent 

evolution, whereby phenotypic similarity is independently derived across multiple lineages 

(Losos 2011). Given an ‘adaptive landscape’ for a given trait, a single prominent peak would 

indicate that selection should lead populations to converge accordingly (Wright 1932). 

However, if the landscape is ‘rugged’ with multiple peaks, selection will be expected to 

produce different evolutionary ‘solutions’ under differing starting conditions (Blount et al. 

2018), and evolutionary trajectories may differ between populations facing the same selection 

pressure. This conceptualisation is a simplification, however, and the likelihood of a given 

evolutionary trajectory will also depend on properties such as the specific developmental 

processes involved, i.e. the relationship between genotype and phenotype (Maynard Smith et 

al. 1985; Wagner & Altenberg 1996; Hall 2003).  

Extended experimental evolution studies, such as the Long-Term Evolution 

Experiment (LTEE) in Escherichia coli (Lenski et al. 2002) in which 12 initially identical 

populations have been evolving in a glucose-limited medium to which they are poorly 

adapted since 1988, provide an excellent opportunity to test Gould’s view that evolutionary 

outcomes are highly contingent on small differences between populations in their ‘histories’. 

These studies have tended to document highly parallel increases in fitness across populations 

(Blount et al. 2018). For example, in the LTEE, after 50,000 generations derived populations 

had on average approximately 1.7 times the fitness of the ancestral population, growing 70% 

faster. Moreover, many of the genetic changes which have taken place show similarity 

between populations, with changes to protein coding sequences disproportionately affecting 

the same genes or genomic regions (Lenski 2017). There are nevertheless also important 

differences between derived populations owing to apparent evolutionary contingencies which 

are consistent with Gould’s conception. Just one population evolved the ability to exploit 

citrate, an additional carbon source present in the growth medium, and subsequent ‘replay’ 
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experiments performed by re-evolving populations archived at various timepoints indicate 

that the evolution of this citrate-using variant benefited from a ‘potentiating’ mutation which 

arose by some 20,000 generations (Blount et al. 2008). This mutation might not have 

conferred any immediate fitness benefit, but is thought to have facilitated the subsequent 

evolution of citrate-use and concomitant fitness increase in a later generation.  

In contrast with experimental evolution experiments, addressing the repeatability or 

contingency of adaptive evolution in wild populations is complicated by differences between 

populations in standing genetic variation, and the specific environmental factors they 

experience (Blount et al. 2018), begging the question of what qualifies as ‘contingency’. 

Convergent evolution is nevertheless pervasive throughout nature, and studies of underlying 

genetic changes can help elucidate whether phenotypic convergence is recapitulated at the 

genetic level – through targeting the same alleles, genes, or gene pathways (Sackton & Clark 

2019). These studies frequently find that convergent evolution is associated with genetic 

mutations within, or in the region of, the same few key genes. For example, mutations in the 

Mc1r gene are persistently associated with adaptive colour polymorphisms in mammals and 

birds (Theron et al. 2001; Mundy et al. 2004; Eizirik et al. 2003; Hoekstra et al. 2006). In 

another example, Alves et al. (2019) showed that wild rabbit populations from three countries 

which have suffered myxomatosis endemics – the United Kingdom, France and Australia – 

have independently evolved resistance through highly similar changes in allelic frequencies 

of the same genes, each benefitting from standing variation which preceded their 

intercontinental dispersal. This pattern, of convergent evolution being associated with shared 

selection pressures acting upon existing standing variation, is another emerging theme in 

studies of genetic changes underlying phenotypic convergence (Sackton & Clark 2019). 

Convergent evolution may be brought about through changes at a number of levels in 

the developmental hierarchy bridging genome and phenotype. Phenotypic convergence might 
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be underpinned by identical changes in allelic frequencies a single gene; this might be 

common where populations share ancestral standing genetic variants (Alves et al. 2019), or 

where adaptive variants are introgressed from another population or closely related species 

through hybridisation (The Heliconius Genome Consortium, 2012). Alternatively, parallel 

changes in allele frequencies might occur in the event that identical adaptive mutations arise 

and spread. While presumably rare, this emergence and spread of identical genetic variants 

might be promoted in cases where particular genetic mutations are more likely to occur than 

others (Xie et al. 2019). Different mutations in nearby genomic regions may also have similar 

phenotypic effects, for example if they disrupt the function of the same regulatory elements, 

proteins, or downstream signalling pathways (Therkildsen et al. 2019). Next, different 

mutations in non-overlapping or distant genomic regions might affect expression of the same 

key genes (Warner et al. 2019), or components of the same gene expression networks (Parker 

et al. 2015), with shared effects upon downstream biological processes and phenotypes. Each 

of these are routes through which phenotypically similar patterns of convergent adaptation 

might occur, however their respective prevalence and the degree to which they account for 

phylogenetic patterns of pervasive phenotypic convergence is unclear (Stern 2013).  

Losos (2011) detailed a number of ways in which convergent adaption might be 

wrongly inferred, or conversely overlooked, particularly in comparative phylogenetic studies 

which constitute the bulk of the empirical literature on the topic. Convergent adaptation 

might be wrongly inferred if populations have phenotypically converged for reasons other 

than adaptation under shared selection pressures (Gould & Vrba 1982); for example, through 

processes of genetic drift, or shared biases in the production of phenotypic variation 

(Maynard Smith et al. 1985). Moreover, phenotypes shared between populations might in fact 

represent correlated responses to selection on a trait not directly under selection (Lande & 



 
 

24 

Arnold 1983), potentially leading to the misidentification of convergent evolution on this 

associated trait.  

In contrast, a scenario identified by Losos (2011) in which convergent adaptation 

would not be identified in comparative phylogenetic studies is where a variety of phenotypic 

‘solutions’ exist to a given selection pressure, as in the divergent physiological modifications 

by which subterranean rodents have evolved to dig burrows (Stein 2000). Whether this 

constitutes convergent evolution in the strictest sense is a subject for debate, however other 

studies more clearly demonstrate that convergent evolution can occur through not just 

differing, but phenotypically divergent, morphological changes. Threespine sticklebacks, 

Gasterosteus aculeatus, have evolved morphologically divergent but ecologically and 

functionally similar adaptive specialisation to dietary differences following colonisation of 

benthic freshwater habitat, and this pattern of convergent but morphologically varied 

adaptation has not only benefited fitness of the derived populations but also generated 

phenotypic diversity (Mcgee & Wainwright 2013). Thus, functionally convergent but 

morphologically varied convergent adaptations might be one mechanism through which 

phenotypic variation is produced, potentially contributing to macroevolutionary processes 

such as population divergence and speciation (Bailey et al. 2019). However, if functional 

convergence is frequently overlooked in favour of morphological convergence, as may well 

be the case in phylogenetic studies, it is clear how this would bias understanding of the 

relationship between phenotypic and genetic convergence, and of convergent evolution more 

broadly.  
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1.5 What is the role of sexual dimorphism in evolution? 

In sexually dimorphic organisms, a very large proportion of observable intraspecific 

phenotypic variation is associated with differences between sexes in pre- and post-

translational processing and expression of shared genes (Mank 2017). This is most clearly 

demonstrated by sexually dimorphic species in which sex is determined by environmental 

variation, e.g. mediated by temperature as in many reptile species (Ciofi & Swingland 1997), 

or by differences in ploidy of shared chromosomes (e.g. XO/ZO sex determination; Bachtrog 

et al. 2014), but where all genes are shared. Some of these differences in processing or 

expression are involved in the development of sexually dimorphic reproductive organs, such 

as testes and ovaries (Dean & Mank 2016), however others relate to tissues not directly 

involved in reproduction, and are generally thought to represent contrasting selection 

pressures to which sexes are subject (Lande 1980).  

 Sex differences in gene expression and phenotype are both shaped by, and contribute 

to, evolutionary dynamics. Patterns of sex-biased gene expression appear to be strongly 

affected by mating system, apparently due to differences in the strength of sexual selection on 

males, though treatment-associated changes are not always consistent in direction between 

studies (Hollis et al. 2014; Veltsos et al. 2017), nor are sex differences necessarily consistent 

through ontogeny (Perry et al. 2014). Differences in the extent of sex-biased gene expression 

also contribute substantially to phenotypic variation within each sex, underlying alternative 

reproductive strategies (Pointer et al. 2013; Stuglik et al. 2014) and contributing to variance 

in fitness between individuals of the same sex (Dean et al., 2018). These differences thereby 

play an important contributing role in evolutionary dynamics, by producing both inter- and 

intra-sexual phenotypic differences. 

 Of particular interest with respect to the role of sex differences in evolution is 

sexually antagonistic selection, i.e. differences in selection pressures acting upon males and 
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females. These differences result in conflict over allelic identity or expression of shared 

genes, termed intralocus sexual conflict (Bonduriansky and Chenoweth, 2009); such 

intragenomic conflicts themselves represent a constraint upon the ability of evolution to 

achieve optimal phenotypic solutions. Sexually antagonistic intralocus genomic conflict is 

widely thought to be mitigated by differences in expression of shared genes via their sex-

specific regulation, leading to phenotypic sex differences despite shared genes (Mank 2017), 

and which are often regulated by relatively few key genes. One family of genes with a 

taxonomically widespread, conserved role in regulating sexual dimorphism is that of the 

doublesex/mab-3 related transcription factors (DMRT), all of which share a conserved DNA-

binding domain and regulate sexual dimorphism through a variety of mechanisms across 

insects, mammals and nematodes (Kopp 2012). Sexually dimorphic patterns of phenotypic 

variation represent one of the clearest examples of integration of ecologically related traits – 

those which consistently differ between males and females in a coordinated manner – and the 

genetic and developmental modularity of these integrated traits is clearly defined (Bachtrog 

et al. 2014). 

 While it is clear that the evolution of sexually dimorphic phenotypes and divergent 

life histories will impose selection pressures of their own, e.g. through associated sexual 

conflict over optimal dietary composition (Rapkin et al. 2016), they may also contribute to a 

population’s ability to evolve under selection. The importance of sexual reproduction in the 

production and maintenance of genetic variation is widely appreciated (Lively 1987; Zeyl & 

Bell 1997; Brimacombe et al. 2019). What is perhaps less often considered is that disruptive 

selection associated with sexually antagonistic selection pressures will also generate and 

maintain genetic variation (Lonn et al. 2017; Wright et al. 2018) which, in addition to novel 

variants produced by sexual recombination (Peabody et al. 2017), might provide an important 

substrate for evolution in sexually reproducing species (Fierst 2011). While sexually 
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antagonistic selection and associated intragenomic conflict will therefore reduce the absolute 

fitness values of either sex, it might also increase the ability of each to respond to changes in 

selection pressures by maintaining genetic variation associated with key ecologically 

important traits; similarly male-beneficial and female-beneficial variants will each be 

selected for and against.  

 

1.6 Hawaiian field crickets: a model system for studying rapid adaptation 

The oceanic field cricket Teleogryllus oceanicus exists in small, fragmented populations 

across the Hawaiian archipelago, having originally spread from Polynesian populations 

(Tinghitella & Zuk 2009; Tinghitella et al. 2011). At some point in the 20th century, a 

Tachinid fly, Ormia ochracea, was introduced to the Hawaiian islands from the mainland 

USA. The fly is a parasitoid of grylline crickets: gravid females are attracted to the songs of 

male crickets and deposit larvae on or near to singing males. These larvae latch onto and 

burrow into their host – be they male or female – and internally devour the cricket before 

emerging, killing them. O. ochracea do not occur in T. oceanicus’ ancestral range across 

Australia and Polynesia, and so the introduction of this fatal parasitoid fly exposed them to an 

extreme and novel selection pressure. (Zuk et al. 1993) 

 In 2003, Robin Tinghitella, a researcher studying populations of T. oceanicus 

evolving under parasitism from O. ochracea on the island of Kauai, located an unusual 

looking individual. The cricket was missing an ovipositor, a female-specific trait required for 

the deposition of eggs into substrate, indicating it was a male. However, the cricket’s wings 

also lacked visually distinctive male-specific sound-producing structures which are required 

to produce song (Fig 1.1), a secondary sexual trait which attracts females and thus creates 

mating opportunities. The cricket was confirmed as male, and Zuk et al. (2006) observed that 



 
 

28 

this male wing phenotype (‘flatwing’) spread to near-fixation in the population within just a 

few generations. The reason for this rapid spread was readily apparent: male crickets without 

sound-producing structures cannot sing, so do not attract the parasitoid fly: dissections 

revealed flatwing males were, like females, considerably less likely to harbour parasitic 

larvae compared with normal-wing males which retain the ability to sing. (Zuk et al. 2006)  

 Approximately three years after the discovery of the flatwing male phenotype in the 

Kauai population, a superficially similar phenotype was observed to emerge and rapidly 

spread on a second island, Oahu (Zuk et al. 2006). As in Kauai, males exhibiting the 

phenotype were unable to sing, so could not produce the signal which attracts the parasitoid 

fly, and the flatwing phenotype spread rapidly. In the years since their discovery, flatwing 

phenotypes appear to have spread to fixation in at least one population on each of Kauai and 

Oahu (Chapter Five; Rayner et al., 2019), and similar flatwing phenotypes have also spread 

on two further islands of Hawaii and Molokai (Pascoal et al. 2014; Tinghitella et al. 2018). 

The process of adaptation has therefore been extremely rapid. Stockwell et al. (2003) define 

‘contemporary evolution’ as observable phenotypic change over fewer than one-hundred 

years. In the case of T. oceanicus, flatwing phenotypes were observed to emerge and spread 

to near-fixation in fewer than ten (between 30 and 40 generations), despite small population 

sizes. This rapid change had dramatic knock-on consequences for parasitised populations, 

drastically altering their social environment through the elimination of important male inter- 

and intrasexual acoustic cues (Bailey et al. 2010; Logue et al. 2010; Pascoal et al. 2018). 
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Figure 1.1 Diagrams of female and male forewing phenotypes 
Traced micrographs showing forewing venation patterns (adapted from Pascoal et al. 2014) 
of a female and normal-wing (Nw) male and flatwing (Fw) males from Kauai and Oahu, with 
sound-producing structures highlighted (purple, harp; green, mirror; yellow, plectrum). 
 

Flatwing phenotypes on Kauai and Oahu are heritable, and segregate in the manner of 

a single X-linked locus (Tinghitella 2008; Pascoal et al. 2014) – T. oceanicus follow an XO 

system of sex-determination, so the genetic variants (flatwing [Fw], or normal-wing [Nw]) 

are carried in single-copy in males, whereas females can be homo- or hetereozygous. 

Comparison of SNPs which segregate between male wing morphs has shown the vast 

majority of flatwing-associated SNPs on each island are non-overlapping, and those which do 

overlap show allelic reversal between islands, suggesting the two phenotypes have arisen 

independently and represent an example of rapid adaptive convergent evolution in the wild 

(Pascoal et al. 2014). Flatwing phenotypes have since been observed on islands of Hawaii 

and Molokai, however it is not known whether these phenotypes represent independent 

evolutionary origins, or have introgressed from other populations (Pascoal et al. 2014; 

Tinghitella et al. 2018).  

 The primary role of male field cricket song is to attract female mates. Males typically 

produce two types of song which are attractive to females. Calling song, consisting of longer 
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length ‘chirps’ and shorter, paired ‘pulses’ (Fig. 1.2A), enables female phonotaxis, drawing 

sexually receptive females within earshot towards the calling male (Alexander 1962). 

Crucially, calling song can also attract other males which pursue satellite mating tactics to 

intercept and attempt to mate with approaching females. Once physical contact has been 

made with the female, the singing male will begin to produce courtship song, distinguished 

from calling song by an especially energetically costly ‘trill’ feature (Hack, 1998; Fig 1.2B), 

and the features of which are under strong sexual selection (Rebar et al. 2009). Besides these 

two primary roles in attracting female mates, a distinctive third form of male song 

(‘aggressive song’) is characterised by repetitive, monotonous chirps, and functions as an 

aggressive display signal in male-male interactions (Logue et al. 2010).  

 

 

Figure 1.2 Calling and courtship song waveforms 
Typical features of two forms of song produced by T. oceanicus males to attract and court 
females: (a) long-range calling song, (b) short-range courtship song. Figure adapted from 
Zuk, Rebar and Scott (2008). 
 

In the presence of calling normal-wing males, flatwings are able to achieve matings by 

adopting satellite mating tactics and intercepting phonotactic females (Zuk et al. 2006). 

However, in the years following the emergence of flatwings on Kauai and Oahu, the 

respective phenotypes appear to have reached fixation in at least two separate populations, 

rendering them completely silent (Chapter Five; Rayner et al., 2019). Flatwing males in these 
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populations must achieve matings, despite their inability to produce important sexually 

selected acoustic signals. T. oceanicus are active between the hours following sunset and 

preceding sunrise, under little-to-no light (Zuk et al. 1993); it is therefore unclear how 

individuals are able to locate one-another in the absence of acoustic or visual stimuli, but 

behavioural studies have demonstrated males and females raised in environments without 

song show increased phonotaxis (Bailey et al. 2010), and males from the Kauai population 

also show increased locomotion (Balenger & Zuk 2015), each of which might improve their 

chances of contacting conspecifics. This sensitivity to the acoustic environment appears to be 

a plastic response shaped by evolution (Bailey & Zuk 2012; Pascoal et al. 2018); individuals 

in less densely populated regions will be less exposed to acoustic signals, and will therefore 

benefit from heightened acoustic responsiveness and increased locomotion. It appears, 

therefore, that phenotypic plasticity, on the part of both silent males and receptive females, 

has played an important capacitating role in the rapid spread of flatwing phenotypes.  

 

1.7 Using Hawaiian field crickets to test factors that promote and constrain 

adaptation 

A substantial body of research has documented the spread of flatwing phenotypes in 

populations on multiple islands of Kauai, Oahu and Hawaii (Zuk et al. 2006; Pascoal et al. 

2014; Zuk et al. 2018), the behavioural dynamics which have accompanied and perhaps 

facilitated their spread (Bailey et al. 2010; Balenger & Zuk 2015; Pascoal et al. 2018), and 

also begun to characterise their genetic underpinnings (Pascoal et al., 2014, 2016, Appendix 

1). This system provides an opportunity to address several outstanding questions with respect 

to the genetic and behavioural circumstances surrounding rapid adaptation. Following the 

view that pervasive pleiotropic effects of otherwise adaptive genetic variants should inhibit 
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their spread, the extent of off-target effects of mutations underlying flatwing phenotypes is of 

particular interest. For example, my analysis examining effects of the Kauai Fw genotype 

upon gene expression in developing embryos, presented in Appendix 1, revealed pervasive 

effects on gene expression across the full range of sex chromosomes and autosomes, and 

further work demonstrates it also feminises male cuticular hydrocarbon profiles (Appendix 1; 

Fig. 1.3). This suggests it may well have widespread phenotypic effects, but that any negative 

fitness consequences are outweighed by the adaptive loss of song (Chevillon et al. 1997), 

perhaps due in part to plastic or genetic accommodation of deleterious phenotypes.  

Pleiotropic effects of the flatwing genotype might be expected not just in males, but in 

females too; what effects, if any, do the underlying genotypes have upon females, in which 

wing morphology is unaffected? The Kauai Fw genotype is known to have some effect upon 

female neural transcriptomes, but whether these changes affect females at the phenotypic 

level is unclear (Pascoal et al. 2018). Females carry two copies of the underlying genotype, 

while males carry just one, so any effects upon female phenotype and thus fitness will be 

evolutionary important owing to females’ greater genetic contribution to the next generation 

(Rice, 1986). Additionally, the fact that flatwing genotypes underlie the loss of a male 

secondary sexual trait which is not expressed in females, but for which they share with males 

all the necessary genes, suggests that they might affect levels of sexual antagonism at the loci 

involved. Previous research supports the view that secondary sexual traits are associated with 

intralocus sexual conflict (Joag et al. 2016), even when the traits are themselves sex-limited 

in their expression (Harano et al. 2010). Patterns of sexually antagonistic selection are 

frequently considered in the evolution of secondary sexual traits (Lande, 1980; Rice, 1986), 

and expected to be attenuated, for example, through subsequent evolution of modifier genes 

in the sex to which they confer no fitness benefit. However, the idea that intralocus sexual 

conflict could play an important role in their eventual – and surprisingly common (Wiens 
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2001; Kraaijeveld 2014) – loss does not appear to have been addressed. Potentially important 

pleiotropic effects of the Kauai flatwing genotype are evaluated in Chapter Two by testing 

associated changes in gene expression across multiple tissues in each sex, and the effects of 

these changes upon patterns of sex-biased gene expression are used to evaluate whether 

intralocus sexual conflict might have played a facilitating role in the phenotype’s rapid 

spread. 

Understanding the causative genetic variants underlying adaptive evolution in the 

wild is crucial to understanding how, and under what circumstances, populations can rapidly 

adaptive to strong selective pressures. The genetic modifications underlying convergently 

evolved flatwing phenotypes remain unclear (Pascoal et al. 2014; Pascoal et al. 2016; 

Appendix 1). Addressing these underpinnings will greatly contribute to understanding how 

the underlying mutations were able to independently emerge and spread on at least two 

islands, despite small and fragmented populations. A recently produced map of quantitative 

trait loci statistically associated with the Kauai Fw genotype constitutes nearly a third of the 

length of the X-chromosome, likely due to a large number of hitchhiking genes following a 

recent selective sweep (Appendix 1). Complementary efforts in determining important genes 

within this region might involve testing for differences in gene expression associated with 

divergent wing phenotypes and cross-referencing with quantitative trait loci to identify 

candidates (Wainberg et al., 2019). Moreover, differences in expression of genes between 

male wing morphs and sexes could be compared, to examine whether rapid adaptation 

benefitted from genetic and phenotypic variation associated with sexual dimorphism and, by 

extension, sexually antagonistic selection pressures (Fierst 2011; Wright et al. 2018). 

Whether convergently evolved flatwing phenotypes affect similar gene expression pathways, 

particularly those involved in regulating sexual dimorphism, forms the focus of Chapter 

Three. Given their female-like wing vein morphology, it is plausible flatwing males exhibit 
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feminised patterns of wing development. If flatwing males are less sexually dimorphic at the 

level of gene expression (Pascoal et al. 2018), this could also explain associated phenotypes 

such as their feminised cuticular hydrocarbon profiles (Appendix 1).  

Sexual dimorphism is widely expected to play an important role in regulating male-

male conflict and same-sex sexual behaviour (Steiner et al. 2005; Dukas 2010). Reduced 

sexual dimorphism might therefore impact not just inter-sexual, but also intra-sexual, 

interactions, for example by reducing levels of aggression flatwing males receive from 

conspecifics, if they are less readily distinguished from females (Norman et al. 1999), and 

this could have important implications for understanding the rapid spread of the phenotypes. 

The idea that flatwing males might in some circumstances benefit from feminised appearance 

and inability to produce characteristic male song through being mistaken for females is 

addressed in Chapter Four, by comparing the incidence of same-sex sexual behaviour across 

normal-wing, mixed, and flatwing pairs of males. 

 Patterns of rapid adaptation are frequently mirrored across populations through 

selection on shared ancestral variants, introgression between populations, or independent 

emergence of similarly adaptive phenotypes (Sackton & Clark 2019). Given flatwing 

phenotypes’ clear fitness benefits in the context of natural selection conferred by the 

parasitoid fly, it is unclear why their distribution throughout the Hawaiian archipelago is 

highly heterogeneous (Fig. 1.3). The parasitoid fly is observed at the sites of all study 

populations of T. oceanicus, yet the proportion of silent flawing males varies between ~5% in 

a study population on the island of Hawaii, to 100% in at least one population on each of 

Kauai and Oahu (Zuk et al. 2018). Moreover, in a second high-density population on Hawaii, 

flatwing males are not observed at all, begging the question of how this population has 

persisted in the face of extreme selection against song. One possibility is that populations in 

which flatwing phenotypes have either not emerged or have not spread to an appreciable 
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degree have adapted under selection by O. ochracea through different means; for example 

through reduced calling effort, or alternative routes to silence. However, there is not yet 

strong evidence for these predictions. Chapter Five describes field observations and 

experiments which reveal many of the males in populations in which flatwing phenotypes 

have not spread to a high degree are nevertheless incapable of producing acoustic signals at 

ordinary levels, due to changes in wing shape and morphology, and are therefore protected 

against parasitism from the fly.  

 

 

Figure 1.3 Distributions of normal-wing and flatwing phenotypes 
Geographic distributions of parasitized populations of T. oceanicus and proportions of males 
showing flatwing and and normal-wing phenotypes from 2018 surveys. Two-letter codes 
correspond to site IDs. Figure adapted from Chapter 5. 
 

Also surprising is the persistence of calling behaviour in silent populations. Flatwing males 

continue to practice the energetically costly patterns wing movement which in normal-wing 

males are associated with song, despite their inability to produce song at any appreciable 

amplitude (Schneider et al. 2018), and associated fitness costs (Hunt et al. 2004). One 
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possibility is that, while flatwing males still attempt to sing, they have evolved to invest less 

energy in doing so, due to the lack of fitness benefits in the context of sexual selection. Such 

evolutionary accommodation could play an important role in facilitating the spread of de 

novo mutations, and reduction in male calling behaviour among silent populations could 

provide important insight into evolutionary dynamics underlying the elaboration, 

maintenance and loss of sexually selected traits. Behaviour is often considered to play a key 

role in the early stages of adaptation (Wong & Candolin 2015; Bailey et al. 2018), and 

Chapter Six tests the hypothesis that silent males and/or silent populations should have 

evolved to invest less energy in calling effort. 
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2. Evolved loss of a male sexual trait 

demasculinises female gene expression*† 

The loss of sexual ornaments is observed across taxa, and pleiotropic effects of such losses 

provide an opportunity to gain insight into underlying dynamics of sex-biased gene 

expression and intralocus sexual conflict (IASC). We investigated this in Hawaiian T. 

oceanicus, in which an X-linked genotype (flatwing) feminises males’ wings and eliminates 

their ability to produce sexually selected songs. We profiled adult gene expression across 

somatic and reproductive tissues of both sexes. Despite the feminising effect of flatwing on 

male wings, we found no evidence of feminised gene expression in males. Instead, female 

transcriptomes were more strongly affected by flatwing than males’, and exhibited 

demasculinised gene expression. These findings are consistent with a relaxation of IASC 

constraining female gene expression through loss of a male sexual ornament. In a follow-up 

experiment we found reduced testes mass in flatwing males, whereas female carriers showed 

no reduction in egg production. In contrast, female carriers exhibited greater measures of 

body condition. Our results support the view that sex-limited phenotypic expression offers 

only partial resolution to intralocus sexual conflict, owing to pleiotropic effects of the loci 

involved. Benefits conferred by release from intralocus conflict could help explain 

widespread loss of sexual ornaments across taxa. 

  
                                                

* This chapter is published as: Rayner, Pascoal, et al. (2019) ‘Release from intralocus sexual conflict? 

Evolved loss of a male sexual trait demasculinizes female gene expression’, Proceedings of the Royal 

Society B: Biological Sciences, vol. 286 (1901). 

† Trimmed RNA-seq reads are available at the European Nucleotide Archive (PRJEB27211) 
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2.1 Introduction 

Sex-biased gene expression produces striking phenotypic differences in species where the 

sexes share a substantial portion, if not all, of the same genome (Connallon & Knowles 2005; 

Ellegren & Parsch 2007; Bachtrog et al. 2014; Mank 2017). Such evolved differences 

between sexes in gene regulation play an important role in attenuating intralocus sexual 

conflict (IASC), which arises when sexes are under contrasting selection pressures at shared 

loci, by achieving phenotypic dimorphism (Lande 1980; Pizzari & Snook 2003; 

Bonduriansky & Chenoweth 2009; Harrison et al. 2015). However, it is increasingly 

recognised that resolution of such conflict is not necessarily complete (Rice & Chippindale 

2001; Cox & Calsbeek 2009; Connallon et al. 2010; Berger et al. 2014), and that IASC can 

persist even when genes and phenotypes have evolved under contrasting selection pressures 

to exhibit sex-biased or even sex-limited expression (Harano et al. 2010; Cheng & 

Kirkpatrick 2016). One of the reasons for this is pleiotropy exerted by loci involved in the 

conflict upon other traits which are not directly under selection (Fig. 2.1). Sexual trait loci 

can thus exert spillover effects across sexes and tissues. For example, the enlarged mandibles 

of male broad-horned flour beetles Gnatocerus cornutus are genetically associated with 

reduced female lifetime fecundity (Harano et al. 2010) despite their male-limited expression, 

illustrating incomplete resolution of associated IASC.  

 As well as its role in regulating differences between sexes, recent studies have 

demonstrated that varying degrees of sex-biased gene expression are associated with intra-

sexual phenotypic variance, often with fitness-associated effects (Dean et al. 2018). Pointer et 

al. (2013) found subordinate males of the wild turkey Meleagris gallopavo exhibit feminised 

patterns of gene expression relative to more ornamented dominant males. Similarly, in the 

bulb mite Rhizoglyphus robini, ‘fighter’ male morphs show exaggerated transcriptional 

sexual dimorphism compared with unarmoured ‘scrambler’ males (Stuglik et al. 2014), and 
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are associated with increased IASC at the population level (Joag et al. 2016; Plesnar-Bielak et 

al. 2014). An assumption of sexual selection models is that elaborated, dimorphic sexual 

traits should eventually be checked by countervailing natural selection (Fisher 1915; Lande 

1981; Kirkpatrick 1982), but evidence for the involvement of sex-biased pathways of gene 

expression in naturally-selected adaptations is limited, and the consequences for IASC after 

sexual trait reduction or loss are of particular interest.  

To explore these consequences, we examined the effects of sexual trait loss on 

patterns of sex-biased gene expression in Hawaiian populations of T. oceanicus. Adaptive, 

obligate silence is caused by mutation(s) that cause males to develop female-like wing 

venation, erasing sound-producing structures and protecting them against fatal parasitism. 

The flatwing phenotype segregates as a single-locus variant (the flatwing genotype) on the X 

chromosome (sex determination is XX/XO; males and females share all genes), though the 

exact nature of the mutation(s) is not known (Appendix 1). Although it is transmitted on the 

X, flatwing’s effects upon wing phenotype appear to be male-limited; female carriers show no 

readily detectable wing differences. There is evidence for widespread pleiotropic effects of 

flatwing in both sexes (Pascoal et al. 2016; Pascoal et al. 2018), and males carrying the 

genotype exhibit more female-like cuticular hydrocarbons (Appendix 1), in addition to their 

feminised wing membranes. We profiled gene expression from a range of non-wing, somatic 

and gonad tissues of adults from lines that were pure-breeding for flatwing or normal-wing 

genotypes. Our aims were to test the role of sex-biased genes in evolved song loss, and 

explore the latter’s consequences for IASC. 

If flatwing widely impacts sex-biased pathways of gene expression, we anticipated 

one of two patterns among affected loci. Given its feminising effect in male wing tissues and 

upon male cuticular hydrocarbons, flatwing might be associated with a general increase in 

female-biased gene expression, demasculinising female carriers and feminising male carriers 
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(Hypothesis 1 in Fig. 2.1) (Plesnar-Bielak et al. 2014; Hollis et al. 2014). An alternative, but 

non-mutually exclusive, scenario is that the loss of the male sexual trait relaxes pleiotropic 

IASC-associated constraints upon female gene expression, in which case we anticipated up-

regulation of female-biased (or down-regulation of male-biased) gene expression 

(demasculinisation) predominantly affecting females (Hypothesis 2 in Fig. 2.1). The results 

of this study will inform debate regarding the roles of pleiotropy and intralocus sexual 

conflict in evolutionary dynamics of rapid adaptation and the widely observed loss of sexual 

traits (Wiens 2001). 

 

 

Figure 2.1 Hypothetical effects of male sexual trait loss on IASC 
The schematic shows expression levels (") and fitness (#) for a transcript assumed to be 
pleiotropically influenced by a sexual trait locus, thus contributing to incompletely resolved 
IASC. Expression optima ("$) and observed average expression values ("%) differ between 
the sexes, and shaded curves illustrate frequency distributions for sex-specific expression. 
Within each sex, fitness is a function of expression level, maximized at the optimum (top red 
and blue lines indicating hypothetical stabilizing fitness functions for females and males, 
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respectively). Thus, Δ" describes displacement from the optimum level of expression for 
each sex. The descriptors ‘feminisation’ and ‘demasculinisation’ refer to the identity of the 
individual under consideration: females whose gene expression shifts away from the male 
optimum are demasculinised, whereas males whose gene expression shifts in the same 
direction are feminized. 
 

2.2 Methods 

2.2.1 Cricket rearing and production of lines 

Pure-breeding normal-wing (Nw) and flatwing (Fw) lines from which RNA samples were 

collected were derived from individuals caught in Kauai in 2012 following the procedures 

detailed in Pascoal et al. (2016), and thereafter maintained under common garden conditions 

at 25 °C on a 12h:12h light:dark cycle in an incubator with calling males present. All crickets 

were reared under common-garden conditions, exposed to acoustic signals of other crickets in 

the environment. Note that Fw and Nw lines have not been found to differ in development 

time (Rayner & Bailey, unpublished data). 

2.2.2 Collection and sequencing of RNA samples 

We collected tissue samples from virgin adults (ca. 3 months from egg stage) from replicate 

lines breeding pure with respect to each morph genotype (homozygous flatwing ‘Fw’ or 

homozygous normal-wing ‘Nw’). RNA was extracted from three tissues (neural, thoracic, and 

gonad of a single male and a single female from each of 6 lines (N=3 lines of each morph), 

for a total of 36 samples from 12 individuals. Multiple lines were included in each group to 

account for between-line variance and to enable detection of expression differences 

attributable to morph genotype. Females were homozygous diploid for the respective 

genotype while males were hemizygous (XX/XO).  

In sampling tissues, head and body tissues were separated and the digestive tract 

discarded, and tissue samples stored in RNAlater at -20 °C. Immediately prior to RNA 
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extraction, neural tissue was dissected from the head capsule, and thoracic muscle and testes 

or ovaries were dissected from the body cavity. Trizol RNA extractions were performed 

following Pascoal et al. (2018a). Quantity and integrity of RNA samples were assessed using 

Qubit broad range (Invitrogen) and Agilent Bioanalyzer assays, respectively. Total RNA was 

depleted with RiboZero and used in the ScriptSeq protocol (Epicentre), following 

manufacturer instructions. Samples were sequenced on an Illumina HiSeq 2000 with version 

3 chemistry, generating 2×100 bp paired end reads. CASAVA v1.8.2 (Illumina) was used for 

basecalling and de-multiplexing of indexed reads. Adapter sequences were trimmed from 

fastq files using Cutadapt v1.2.1 (Martin 2011) and low quality bases were removed using 

Sickle v1.200 with a minimum window quality score of 20.  

2.2.3 Sampling, sequencing and differential expression analysis  

Paired-end reads of all 36 samples were generated on an Illumina HiSeq 2000, and a de novo 

transcriptome was assembled from trimmed reads of all samples in Trinity using in silico 

normalisation (Grabherr et al. 2013). Similar transcripts were then clustered in CD-hit-est (Li 

& Godzik 2006), and lowly expressed transcripts (those not expressed at >1 counts per 

million in at least 3 samples) and transcripts without an open reading frame of >100 amino 

acids were filtered from the transcriptome. Reads were aligned to the transcriptome using 

Bowtie2 (Langmead & Salzberg 2012) with strand-specific settings, and quantified in RSEM 

(Li & Dewey 2011). Differential expression (DE) analyses were performed in edgeR 

(Robinson et al. 2010) at the level of Trinity ‘genes’; henceforth referred to as ‘transcripts’ in 

acknowledgement that not all Trinity-identified genes passing filtering will represent genes in 

the strictest sense. Because our analysis was at the gene level, isoform variants should not 

contribute to the patterns of DE we observe. Clustering of similar genes by CD-hit-est was 

used to further ensure isoform variants were not represented as multiple genes, and we used 
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the results of BUSCO analysis of conserved genes (Simão et al. 2015) to validate that our 

transcriptome was not highly duplicated. Separate models were constructed for somatic 

(neural, thoracic muscle) and gonad tissues, to examine effects of sex and morph, with 

significance testing performed using likelihood ratio tests. To restrict our analyses to 

transcripts showing strong evidence of DE, we adopted a conservative significance threshold 

of FDR<0.01 to consider a transcript significantly DE or sex-biased. We checked whether 

results qualitatively changed if we used another common approach of imposing a fold-change 

threshold of >2 for a transcript to be considered DE/sex-biased, with FDR <0.05 (e.g. 

Immonen et al. 2017), and found they did not (see Results). 

Sequences of DE transcripts were entered as BLASTX queries against the NCBI non-

redundant protein database, with an e-value threshold of 10-3 and a maximum of 20 hits. 

Mapping and annotation were performed in Blast2GO (Conesa et al. 2005) with default 

parameters. Functional enrichment of gene ontologies (GO) was assessed for all transcripts 

passing the expression filter against all Drosophila melanogaster proteins.  

2.2.4 Differential Expression Analyses 

Prior to constructing models, transcripts not expressed at a level above one count per million 

in a minimum of three samples were filtered from the dataset, as these were considered to 

have little empirical support and because their removal increased power to identify DE 

transcripts. After filtering, input counts were adjusted using trimmed mean of M-values 

(TMM) normalisation.  

 Separate models were initially constructed for somatic (including neural tissue and 

thoracic muscle from both sexes), and gonad (testes and ovaries) samples. Scaled 

normalisation procedures assume that no more than 50% of transcripts in a dataset are 

differentially expressed between any two groups of samples, which was likely to be violated 
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in a single model including both reproductive and somatic tissues. Importantly, however, the 

TMM method is relatively robust against violations of this assumption (Robinson & Oshlack 

2010). For downstream investigation of sex-biased patterns of gene expression it was 

convenient to combine gonad tissues from both sexes in a single model, despite the 

expectation that a very large proportion of transcripts would be differentially expressed 

between the sexes. We tested the validity of results from this combined gonad model by also 

constructing and comparing separate models for testes and ovaries samples. For downstream 

analyses involving gonad tissues we used results from the model including gonad tissues 

from both sexes, as comparison of the identity of statistically DE transcripts indicated a high 

degree of overlap between separate and combined-sex models for ovaries (140 DE in ovaries 

model, 185 DE in combined sex model; 123 out of 140 (87.76%) DE transcripts shared 

between the two), while 16 transcripts were DE in testes samples in the separate sex model, 

versus 9 in the combined-sex model (6 out of 9 shared between the two). 

 Negative binomial generalised linear models (GLMs) were constructed in edgeR 

(Robinson et al. 2010), and tested using likelihood ratio tests. Once models had been 

constructed, pairwise contrasts were performed between groups of samples, as recommended 

by the authors of EdgeR for more complex experimental designs (Robinson et al. 2010), with 

a Benjamini and Hochberg-adjusted significance threshold of FDR<0.01. Contrasts were 

specified to examine the number of DE transcripts between morph genotypes for each of the 

tissues in each sex, as well as a sex comparison which was performed by contrasting average 

male and female expression values (i.e. samples for both morph genotypes were included for 

each sex). The approach of including both morph genotypes in sex comparisons was adopted 

to avoid statistical artefacts that could result from defining sex-biased transcripts using only 

normal-winged samples, i.e. using the same reference groups in both sex (Nw male vs Nw 

female) and morph (e.g. Nw male vs Fw male) comparisons (see: Mallard et al. 2018). 
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2.2.5 Gene expression feminisation, demasculinisation and tissue-specificity  

We defined feminised and demasculinised expression, applied to males and females 

respectively, as up-regulation of female-biased transcripts (or down-regulation of male-biased 

transcripts) in males, and down-regulation of male-biased transcripts (up-regulation of 

female-biased transcripts) in females (Fig. 2.1). Thus, the terminology indicates the sex 

experiencing the effect. Identification of sex-biased genes was performed using differential 

expression analysis, averaging expression values across both morph genotypes in each sex; 

genes up-regulated at FDR<0.01 in males were considered male-biased, and genes up-

regulated in females considered female-biased. To test for feminisation and 

demasculinisation, we took the subset of transcripts that were DE in both morph genotype 

and sex comparisons and compared the direction of change between the two for each tissue 

separately. 

To understand whether changes in expression associated with morph genotype were 

correlated between sexes, we tested whether log-fold changes in expression for transcripts 

DE in one or both sexes were correlated between males and females. We also investigated the 

level of tissue-specificity of genotype-associated effects in each sex by comparing log-fold 

changes among all transcripts DE in either comparison (Dean & Mank 2016). To test whether 

sex-limited and tissue-specific transcripts were less likely to be DE between morph 

genotypes, which could support the involvement of pleiotropy affecting genes shared 

between sexes, we subset for each sex*tissue combination transcripts expressed at >1cpm in 

all 6 samples, and transcripts expressed at <1cpm in all 6 samples, then compared identity 

across tissues to define sets of sex-specific and tissue-specific transcripts.  
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2.2.6 Reproductive tissue and condition measures 

We investigated whether sex-specific reproductive fitness measures differed between 

separate, recently outcrossed (see Supporting Information) pure-breeding Nw (N=4) and Fw 

(N=3) lines derived from the same base population. These lines were descended from the 

same lines from which RNA samples were collected, but had since been outcrossed by 

breeding Nw and Fw lines together to reduce effects of inbreeding. Pure-breeding Nw and Fw 

lines were subsequently re-established by mating heterozygous females with males of the 

desired morph, then backcrossing in the next generation and screening offspring to retain 

homozygous families. At 7 days post-adult eclosion, gonad characteristics were measured in 

virgin male (N=140; 18 to 21 per biological line) and female (N=145; 19 to 24 per biological 

line) crickets that had been reared at standard stock densities. As proximate measures of 

reproductive output, we obtained wet mass of dissected testes to the nearest mg, and for 

females counted the number and measured the total wet mass in mg of eggs contained within 

the ovaries. Next, scaled mass index (SMI) was calculated using the following equation 

following Peig & Green (2009), with pronotum length as the linear measurement. 

 Testes mass was analysed using a linear mixed model (LMM), while female total egg 

mass was analysed using a generalised linear mixed model (GLMM) with a negative 

binomial distribution. Total egg mass followed a negative binomial distribution owing to the 

Poisson distribution of egg numbers. Both models included predictor variables of morph 

genotype, log pronotum length, log somatic mass, and a random effect of biological line. We 

calculated somatic (i.e. not including gonad masses) scaled mass index (SMI) from pronotum 

length and somatic wet mass, often used as a proximate measure for individual body 

condition (Peig & Green 2009). Log-transformed SMI was analysed using an LMM with 

predictor variables of morph genotype, sex, an interaction between the two, and a random 

effect of biological line. Following the SMI comparison, contributions of differences in 
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pronotum length and somatic wet mass were investigated using LMMs with the same 

predictors and random effect. Mixed models were run in the R package lme4 (Bates et al. 

2016), with MASS used to fit the negative binomial GLMM. Significance of predictor terms 

was tested using Wald’s c2. 

 

2.3 Results 

2.3.1 Morph genotype has larger effects on gene expression in females 

Female transcriptomes were more strongly impacted by carrying the flatwing genotype than 

were males’. The unfiltered T. oceanicus transcriptome contained complete sequences for 

90.6% conserved insect BUSCO genes, with low duplication rates (1.8% of complete genes; 

see Supporting Information), and 42,496 transcripts (Trinity-identified ‘genes’) passed 

filtering. Differential expression results are summarised in Table 2.1. In all tissues the number 

of DE transcripts (FDR<0.01) associated with morph genotype was greater among females 

than males, and female thoracic muscle and ovaries were particularly strongly affected 

(neural tissue: c21=11.571, P<0.001; thoracic muscle: c21=310.77, P<0.001; gonads: 

c21=159.67, P<0.001) (Fig. 2.2a). This interpretation remained unchanged if a fold-change of 

>2 and FDR <0.05 was instead adopted (greater DE in females: all P<0.001). 
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Figure 2.2 The flatwing genotype’s effects on gene expression.  
The top panel shows tissues sampled. a) Numbers of transcripts up-regulated in Nw-carrying 
crickets for males (light blue) and females (light red), versus up-regulated in Fw-carrying 
individuals of either sex (dark blue/red). b) Sex-biased genes that differed between female 
morph genotypes showed patterns of demasculinisation in Fw females. (Too few sex-biased 
genes were DE between male genotypes for statistical comparison.) Numbers of sex-biased 
transcripts up-regulated in each morph genotype with respect to the other are plotted, and 
colours show female-biased (red) vs. male-biased (blue) expression. Significance (*** 
P<0.001, * P<0.05) is shown for differences between genotypes in the number of transcripts 
showing masculinised/demasculinised expression. Significance was not tested for neural 
tissue, in which just 5 sex-biased transcripts were DE between genotypes. 
 

 

 Of 560 unique transcripts DE between genotypes in either sex, 296 (52.86%) had 

significant BLASTX hits. None of the annotated transcripts had obvious known functions or 

GO terms related to sexual dimorphism in insects. Overrepresented GO terms among 

transcripts up-regulated in each of the female genotypes are given in Table 2.2. Neither male 

morph showed significant overrepresentation for any GO categories. 
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2.3.2 Male trait loss is associated with demasculinised female gene expression 

Fw females showed demasculinised gene expression compared with Nw females (Fig. 2.2b). 

Of the 119 sex-biased transcripts DE between female genotypes across all tissues, 87 

(73.11%) showed expression patterns consistent with demasculinisation of Fw females (either 

female-biased transcripts up-regulated in Fw females or male-biased transcripts up-regulated 

in Nw females), compared with only 32 transcripts (26.89%) showing the reverse pattern 

(c21=25.420, P<0.001). The pattern of demasculinisation in Fw relative to Nw samples was 

consistent across female thoracic muscle and ovaries tissues (thoracic muscle: c21=31.837, 

P<0.001; ovaries: c21=4.070, P=0.044), but numbers were too low for quantitative 

comparison in neural tissues. Interpretation of demasculinised expression remained 

unchanged under fold-change >2 and FDR <0.05 criteria (neural tissue: too few for 

comparison; thoracic muscle: c21=57.791, P<0.001; ovaries: c21=5.921, P=0.015). 

2.3.3 Magnitude of DE associated with male trait loss across sexes and tissues  

For transcripts DE between genotypes in one or both sexes, changes in gene expression were 

positively correlated between sexes in neural (Spearman’s rank: r=0.920, N=26, P<0.001) 

and gonad (r=0.203, N=193, P=0.005) tissues, but not in thoracic muscle (r=0.046, N=378, 

P=0.372). Across the 19 transcripts showing concordant and significant DE in males and 

females, after relaxing the significance threshold to FDR<0.05 to increase sample size, there 

was no indication that females showed greater log-fold changes; male genotypes tended to 

exhibit greater differences (male log2-fold change – female log2-fold change: average = 

0.386, P=0.123). Changes in expression associated with the Fw genotype were concordant in 

pairwise comparisons across tissues within each of the sexes (Spearman’s rank: all r>0.465, 
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P<0.01), suggesting a relatively high degree of pleiotropy. Interpretations above were 

unchanged under fold-change >2 and FDR <0.05 criteria.  

 Transcripts showing sex-limited expression did not show substantial DE between 

genotypes. In ovaries, the female tissue which showed the greatest degree of sex-limited 

expression, sex-limited transcripts (expressed >1cpm in all ovaries samples and <1cpm in all 

testes samples) tended to be underrepresented among those DE between morph genotypes (11 

of 185 DE transcripts sex-limited, vs 1,782 of the 17,254 transcripts >1cpm in all 6 samples; 

c21=3.350, P=0.067). No sex-limited transcripts were DE between morph genotypes in testes, 

or neural and thoracic muscle tissues of either sex. 

Among transcripts showing tissue-specific expression within each sex (e.g. expressed 

at >1cpm in all female neural samples but <1cpm in all female thoracic muscle and ovaries 

samples) fewer than expected were DE between morph genotypes in ovaries (7/178 DE 

transcripts showed tissue-specific expression, versus 1,576/17,254 of those expressed at 

>1cpm in all 6 samples; c21=5.161, P=0.023). No tissue-specific transcripts were DE between 

genotypes in any of the other tissues; including testes, despite the large number of tissue-

specific transcripts (0/9 versus 6,658/20,998). In somatic tissues, tissue-specific transcripts 

were less likely to show sex-bias than were non- tissue-specific transcripts also expressed at 

>1cpm in all 6 samples for the respective tissue (c2: P<0.001 in both tissues and sexes), but 

this pattern was reversed in ovaries, where tissue-specific transcripts were more likely to 

show sex-bias (c2=26.763, P<0.001). There was no difference in testes samples (c2=0.300, 

P=0.584). 

2.3.4 Sex and morph variation in reproductive tissues and condition 

Adult Nw males grew larger testes (LMM: c21=8.800, P=0.003; Fig. 2.3A), but there was no 

difference in the mass of eggs produced by females of either genotype (GLMM: c21=0.011, 
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P=0.916; Fig. 2.3B) (Table 2.3). Nevertheless, Fw females achieved better condition. Their 

SMI was greater than that of Nw females, but a significant sex × morph interaction (LMM: 

c21=14.006, P<0.001) indicated there was no similar effect observed in males (Fig. 2.3C, 

Table 2.3). Thus, Fw lines showed greater divergence in SMI between sexes, and this effect 

appeared largely related to changes in mass. (Table 2.3,2.4) 

 

 

Figure 2.3 Sex-specific differences in fitness-associated phenotypes between genotypes 
a) Male testes mass, and b) female total egg mass, at 7 days post-eclosion. Black points 
illustrate means and 95% non-parametric confidence intervals, and ** indicates a significant 
difference at P<0.01 (see Table 2.3). c) Fw females showed increased SMI compared to Nw 
females, but SMI did not differ between male genotypes. Points illustrate means, error bars ± 
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2 standard errors. Points in a) and b) are scattered along the X-axis for purposes of 
visualisation only, with solid outlines representing density distributions. 
 

2.4 Discussion 

Influential models of sexual selection and sexual conflict predict that sex differences in gene 

expression underlying sexually selected traits arise due to IASC (Bonduriansky & Chenoweth 

2009). However, such resolution of IASC is often expected to be incomplete, and costly 

elaboration of sexual traits should eventually be checked by natural selection (Fisher 1915; 

Lande 1981; Kirkpatrick 1982). Surprisingly, we found that the naturally-selected, genetic 

loss of a male sexual signal in crickets, via feminisation of male wing structures, affected 

gene expression more strongly in adult females than in males. There was no evidence of 

feminisation detectable in adult flatwing males, though this does not preclude such a role 

during earlier stages of development (e.g. Perry et al. 2014), which is hinted at by their 

reduced testes mass, and feminised CHCs (Appendix 1). In contrast, gene expression was 

demasculinised in female carriers of the flatwing genotype, which also showed increased 

body condition. These results best support our predictions under a scenario of relaxed IASC 

following male sexual trait loss (Fig. 2.1)  

 Sex-biased gene expression is likely to be associated with underlying IASC at loci 

where selection pressures differ between males and females (Mank 2017; Pizzari & Snook 

2003), and sexual ornaments provide a clear example of a trait with contrasting fitness optima 

between sexes (Harano et al. 2010). The association between sexually selected traits and 

sexual conflict has frequently been inferred by comparing laboratory lines reared under 

contrasting selection regimes (Plesnar-Bielak et al. 2014; Hollis et al. 2014; Rice 1996; 

Holland & Rice 1999; Crudgington et al. 2005). In T. oceanicus, our results raise the 

intriguing possibility that relaxed IASC among females accompanied evolutionary loss of a 
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male sexual trait in the wild. Relaxation of IASC-associate constraints on expression of genes 

or traits in females could occur more widely than is generally considered, given repeated 

secondary losses of sexually-selected male traits across taxonomic groups (Wiens 2001; 

Porter & Crandall 2003; Morris et al. 2005; Ptacek et al. 2011), and could even facilitate 

these losses given the arms race-like dynamics with which IASC is frequently associated 

(Pennell et al. 2016).  

 Recent evidence suggests increased sexually dimorphic gene expression is associated 

with increased fitness (Dean et al. 2018). Following the results of the differential gene 

expression analyses, we therefore antipicated males and females from flatwing lines would 

show contrasting fitness effects of the mutant genotype, with females benefitting from 

demasculinised gene expression and males showing no variation. Flatwing males exhibited 

reduced testes mass, consistent with a previous report (Bailey et al. 2010) and contrary to our 

expectations, but females carrying the flatwing genotype did not differ in reproductive output. 

Instead, they exhibited increased SMI, a proximate measure of body condition, whereas 

flatwing males showed no such increase. While we are cautious about making direct 

inference about fitness effects of SMI, evidence of IASC over body size in species as diverse 

as humans (Stulp et al. 2012) and Indian meal moths Plodia interpunctella (Lewis et al. 

2011), illustrates that males and females are frequently subject to contrasting optima for mass 

and structural size. In T. oceanicus, structural body size is likely to have an important 

influence on male mating success through male-male competition and female choice, while 

females less subject to pressures of sexual selection may benefit from maximising energy 

reserves (Whitman 2008). Phenotypic evidence suggests, therefore, that flatwing males are 

disadvantaged above and beyond their inability to signal, whereas female flatwing carriers are 

not strongly disadvantaged, and may actually benefit, potentially as a result of relaxed IASC.  
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While demasculinised gene expression and increased body condition in flatwing-

carrying females support a hypothesis of relaxed IASC following male sexual trait loss, 

several caveats are worth considering. For example, demasculinised expression does not itself 

illustrate female benefit, though this interpretation is supported by the increased body 

condition observed, which may or may not be directly related to demasculinised gene 

expression, and by others’ findings of an association between greater sex-biased gene 

expression and fitness-associated traits (Dean et al. 2018). Additionally, while our focus was 

on sex-biased transcripts, genotype also affected many transcripts in both sexes which did not 

show sex-bias. It is difficult to make inferences about the importance of these changes, or 

relate them to phenotypic traits, however it would affect interpretation of female benefit from 

carrying the Fw genotype if changes to non- sex-biased transcripts had contrasting fitness-

associated effects (Chevillon et al. 1997). Finally, we examined differences between pure-

breeding lines derived from a single wild population, but interpretation of our results would 

benefit from future work testing patterns of sex-specific selection across lines derived from 

wild populations with contrasting proportions of flatwing/normal-wing male phenotypes, to 

assess whether this influences IASC at the population level (Joag et al. 2016; Perry et al. 

2017). 

Comparing gene expression profiles across tissues within each sex revealed a strong 

pattern for transcripts differentially expressed between morphs in one tissue to show evidence 

of concordant differences in others. A lack of tissue specificity is often used as a proxy 

measure for pleiotropy (i.e. more pleiotropic loci are likely to be less tissue-specific) (Dean & 

Mank 2016), and extensive pleiotropy is widely expected to constrain the rate of evolution 

due to the reduced likelihood of a net increase in fitness (Orr 2000). We found that very few 

transcripts showing tissue-specific or sex-limited expression differed in expression between 

genotypes. This supports the view that changes we observe to be associated with carrying 
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flatwing are primarily among transcripts that have detectable levels of expression in both 

sexes, across tissues, and represent spillover effects of the flatwing locus in non-wing tissues. 

As well as showing flatwing has pervasive pleiotropic effects across multiple tissues, these 

results are consistent with the idea that the adaptive benefit of the flatwing phenotype in 

males outweighs costs associated with pleiotropic effects in non-focal tissues. Given the 

observed demasculinisation of female transcriptomes, and evidence for increased female 

body condition, our results also raise the intriguing prospect that positive pleiotropic effects 

of flatwing on females through relaxed IASC could actually have facilitated its rapid spread. 

Our results are consistent with theoretical expectations for relaxed genomic conflict 

following reduction of sexual selection (Cox & Calsbeek 2009). The relaxation of genomic 

conflict may be an underappreciated yet capacitating feature of the widely-observed loss of 

sexual ornaments, for which the genetic and evolutionary mechanisms are not well 

understood (Wiens 2001). It is generally expected that the maintenance of sexually ornaments 

will be associated with IASC, and also acted against to varying degrees by natural selection. 

In T. oceanicus, the evolutionary loss of a male-specific sexual ornament may reduce IASC-

associated constraints upon female gene expression, supporting the view that sex-biased gene 

expression only partially resolves underlying forces of intralocus sexual conflict even when 

phenotypes are sex-limited in their expression (Connallon et al. 2010; Harano et al. 2010). 

More generally, IASC may be an underappreciated driver during the evolutionary reduction 

or loss of secondary sexual traits.  

  



 
 

56 

Table 2.1. Numbers of DE genes for contrasts examining sex-biased expression and morph 

genotype in each tissue and sex. 

Tissue DE_Down2 DE_Up2 DE_Sum2 

Sex (M)1 

Neural 379 152 631 

Muscle 726 492 1218 

Gonads 9030 11267 20297 

Male genotype (Nw) 

Neural 0 5 5 

Muscle 9 10 19 

Testes 5 4 9 

Male total 14 19 33 

Female genotype (Nw) 

Neural 9 14 23 

Muscle 160 204 364 

Ovaries 50 135 185 

Female total 219 353 572 

1 Reference group for each contrast is given in parentheses: 
M=males, Nw=normal-wing 
2 All DE inferred using FDR<0.01 
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Table 2.2 Significantly enriched GO categories for each of the female genotypes. Male genotypes showed no significant GO enrichment. 

 
Genotype GO Name GO Category FDR 

Nr 
Test 

Nr 
Reference 

Non Annot 
Test 

Non Annot 
Reference 

Female.Fw endomembrane system CELLULAR_COMPONENT 1.82E-09 30 648 104 14195 
Female.Fw endoplasmic reticulum CELLULAR_COMPONENT 1.96E-07 15 160 119 14683 
Female.Fw ncRNA metabolic process BIOLOGICAL_PROCESS 0.005780891 9 118 125 14725 
Female.Fw tRNA aminoacylation for protein translation BIOLOGICAL_PROCESS 0.0179214 5 33 129 14810 
Female.Fw cytoplasm CELLULAR_COMPONENT 0.0179214 40 2291 94 12552 
Female.Fw ligase activity, forming aminoacyl-tRNA and related compounds MOLECULAR_FUNCTION 0.0179214 5 32 129 14811 
Female.Fw ligase activity, forming carbon-oxygen bonds MOLECULAR_FUNCTION 0.0179214 5 32 129 14811 
Female.Fw aminoacyl-tRNA ligase activity MOLECULAR_FUNCTION 0.0179214 5 32 129 14811 
Female.Fw tRNA aminoacylation BIOLOGICAL_PROCESS 0.0179214 5 33 129 14810 
Female.Fw amino acid activation BIOLOGICAL_PROCESS 0.0179214 5 33 129 14810 
Female.Fw tRNA metabolic process BIOLOGICAL_PROCESS 0.029074957 6 64 128 14779 
Female.Fw phenylalanyl-tRNA aminoacylation BIOLOGICAL_PROCESS 0.041903784 2 0 132 14843 
Female.Fw cell CELLULAR_COMPONENT 0.041903784 63 4622 71 10221 
Female.Fw phenylalanine-tRNA ligase activity MOLECULAR_FUNCTION 0.041903784 2 0 132 14843 
Female.Fw endodermal digestive tract morphogenesis BIOLOGICAL_PROCESS 0.041903784 2 0 132 14843 
Female.Fw cell part CELLULAR_COMPONENT 0.041903784 63 4622 71 10221 
Female.Fw intracellular part CELLULAR_COMPONENT 0.041903784 55 3827 79 11016 
Female.Fw UDP-glucose:glycoprotein glucosyltransferase activity MOLECULAR_FUNCTION 0.041903784 2 0 132 14843 
Female.Fw cellular process BIOLOGICAL_PROCESS 0.041903784 71 5412 63 9431 
Female.Fw intracellular CELLULAR_COMPONENT 0.049092922 55 3861 79 10982 
Female.Nw muscle cell development BIOLOGICAL_PROCESS 1.80E-12 15 87 91 14784 
Female.Nw striated muscle cell development BIOLOGICAL_PROCESS 1.80E-12 15 86 91 14785 
Female.Nw myofibril assembly BIOLOGICAL_PROCESS 8.63E-11 13 75 93 14796 
Female.Nw striated muscle cell differentiation BIOLOGICAL_PROCESS 8.63E-11 15 121 91 14750 
Female.Nw muscle cell differentiation BIOLOGICAL_PROCESS 1.25E-10 15 128 91 14743 
Female.Nw sarcomere CELLULAR_COMPONENT 1.67E-09 12 77 94 14794 
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Female.Nw supramolecular complex CELLULAR_COMPONENT 1.67E-09 16 196 90 14675 
Female.Nw supramolecular polymer CELLULAR_COMPONENT 1.67E-09 16 194 90 14677 
Female.Nw actomyosin structure organization BIOLOGICAL_PROCESS 1.67E-09 13 103 93 14768 
Female.Nw myofibril CELLULAR_COMPONENT 1.99E-09 12 83 94 14788 
Female.Nw contractile fiber part CELLULAR_COMPONENT 1.99E-09 12 82 94 14789 
Female.Nw contractile fiber CELLULAR_COMPONENT 1.99E-09 12 83 94 14788 
Female.Nw A band CELLULAR_COMPONENT 1.23E-08 7 11 99 14860 
Female.Nw cellular component assembly involved in morphogenesis BIOLOGICAL_PROCESS 1.23E-08 13 129 93 14742 
Female.Nw supramolecular fiber CELLULAR_COMPONENT 1.23E-08 15 194 91 14677 
Female.Nw muscle structure development BIOLOGICAL_PROCESS 9.56E-08 16 272 90 14599 
Female.Nw sarcomere organization BIOLOGICAL_PROCESS 3.15E-07 9 55 97 14816 
Female.Nw skeletal myofibril assembly BIOLOGICAL_PROCESS 4.20E-07 5 3 101 14868 
Female.Nw organelle assembly BIOLOGICAL_PROCESS 1.34E-06 13 198 93 14673 
Female.Nw muscle thin filament assembly BIOLOGICAL_PROCESS 1.60E-06 5 5 101 14866 
Female.Nw adult somatic muscle development BIOLOGICAL_PROCESS 1.60E-06 6 14 100 14857 
Female.Nw skeletal muscle myosin thick filament assembly BIOLOGICAL_PROCESS 4.36E-06 4 1 102 14870 
Female.Nw striated muscle myosin thick filament assembly BIOLOGICAL_PROCESS 4.36E-06 4 1 102 14870 
Female.Nw supramolecular fiber organization BIOLOGICAL_PROCESS 6.40E-06 13 232 93 14639 
Female.Nw muscle contraction BIOLOGICAL_PROCESS 2.89E-05 6 26 100 14845 
Female.Nw actin cytoskeleton organization BIOLOGICAL_PROCESS 4.46E-05 13 278 93 14593 
Female.Nw myosin filament assembly BIOLOGICAL_PROCESS 5.12E-05 4 4 102 14867 
Female.Nw actin filament-based process BIOLOGICAL_PROCESS 7.67E-05 13 294 93 14577 
Female.Nw muscle system process BIOLOGICAL_PROCESS 8.63E-05 6 33 100 14838 
Female.Nw structural constituent of muscle MOLECULAR_FUNCTION 1.10E-04 5 17 101 14854 
Female.Nw non-membrane-bounded organelle CELLULAR_COMPONENT 5.72E-04 25 1251 81 13620 
Female.Nw intracellular non-membrane-bounded organelle CELLULAR_COMPONENT 5.72E-04 25 1251 81 13620 
Female.Nw myosin filament organization BIOLOGICAL_PROCESS 0.001041773 4 12 102 14859 
Female.Nw anatomical structure formation involved in morphogenesis BIOLOGICAL_PROCESS 0.001205333 14 450 92 14421 
Female.Nw myosin complex CELLULAR_COMPONENT 0.002402313 5 36 101 14835 
Female.Nw tissue development BIOLOGICAL_PROCESS 0.003135179 21 1035 85 13836 
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Female.Nw somatic muscle development BIOLOGICAL_PROCESS 0.003667131 6 70 100 14801 
Female.Nw cytoskeleton organization BIOLOGICAL_PROCESS 0.004851486 15 588 91 14283 
Female.Nw actin cytoskeleton CELLULAR_COMPONENT 0.005463022 7 115 99 14756 
Female.Nw single-organism organelle organization BIOLOGICAL_PROCESS 0.007631604 14 541 92 14330 
Female.Nw actin-dependent ATPase activity MOLECULAR_FUNCTION 0.00827667 3 7 103 14864 
Female.Nw collagen trimer CELLULAR_COMPONENT 0.010052005 2 0 104 14871 
Female.Nw Z disc CELLULAR_COMPONENT 0.012809765 5 55 101 14816 
Female.Nw I band CELLULAR_COMPONENT 0.013560177 5 56 101 14815 
Female.Nw flight behavior BIOLOGICAL_PROCESS 0.019818808 4 31 102 14840 
Female.Nw flight BIOLOGICAL_PROCESS 0.021919929 3 11 103 14860 
Female.Nw developmental process BIOLOGICAL_PROCESS 0.026149506 38 3005 68 11866 
Female.Nw structural molecule activity MOLECULAR_FUNCTION 0.028546329 9 270 97 14601 
Female.Nw cytoskeletal part CELLULAR_COMPONENT 0.043255702 13 573 93 14298 
Female.Nw single-organism developmental process BIOLOGICAL_PROCESS 0.044807148 37 2977 69 11894 
Female.Nw anatomical structure development BIOLOGICAL_PROCESS 0.044807148 36 2864 70 12007 



Table 2.3 Results from mixed models for proximate measures of reproductive output, body 

condition and body size. 
 

N 
 

c2
1 df P-value 

ln testes mass (mg)1 139         
  

Morph  8.800 1 0.003 
  

ln pronotum length 0.875 1 0.350 
  

ln somatic mass  33.841 1 <0.001 

Egg mass (mg)2 145         
  

Morph  0.011 1 0.916 
  

ln pronotum length 1.190 1 0.275 
  

ln somatic mass  2.688 1 0.101 

ln somatic SMI (mg)1 284         
  

Sex  14.071 1 <0.001 
  

Morph  5.095 1 0.024 
  

Sex × Morph 14.006 1 <0.001 

All mixed models included a random effect of biological line, and pronotum length and 
somatic mass measures were standardized. ln indicates natural log. 
1 LMM 
2 Negative binomial GLMM 
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Table 2.4 Results from LMMs for measures of pronotum length and somatic mass. 
 

N 
 

c2
1 df P-value 

Pronotum length (mm) 284     

  Sex 6.925 1 0.008 

  Morph 1.109 1 0.292 

  Sex × Morph 0.007 1 0.934 

Somatic mass (mg) 284     

  Sex 5.521 1 0.019 

  Morph 0.000 1 0.998 

  Sex × Morph 6.493 1 0.011 

All mixed models included a random effect of biological line.   
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3. Convergent adaptive trait loss is associated with 

parallel changes to transcriptomic sex differences  

Sexes are often under contrasting selection pressures for shared traits, resulting in disruptive 

selection at associated loci. However, it is not well understood whether genetic variation 

associated with sexual dimorphism might also contribute to adaptation under natural 

selection. We investigated whether this process contributed to recurrent adaptive song loss in 

Hawaiian populations of T. oceanicus. Song loss on neighbouring islands occurred through 

genetic loss or reduction of sound-producing features on the male wing, resulting in female-

like wing morphology. Using RNA-seq, we investigated whether, despite different underlying 

genetic mutations, ‘flatwing’ phenotypes arise through convergent disruption of 

transcriptomic sex differences which underlie sexual dimorphism in wings. Evidence for this 

prediction would suggest that independently evolved, adaptive flatwing genotypes have each 

targeted shared regulatory pathways involved in producing phenotypic sex differences. Our 

results show that the vast majority of changes in gene expression associated with genotypes 

underlying male song-loss are non-overlapping between island populations. However, sex-

biased genes are highly represented among the few genes which do show parallel changes in 

expression, and include doublesex domains involved in insect sex-determination. Our results 

support the prediction that adaptive loss of male song occurred through convergent disruption 

of sex-specific wing development trajectories, and that genetic variation maintained by 

sexual dimorphism can be an important factor influencing the adaptive potential under 

natural selection.  



 
 

63 

3.1 Introduction 

It is widely appreciated that evolutionary adaptation can occur and be observed over very few 

generations (Prentis, Wilson, Dormontt, Richardson, & Lowe, 2008; Losos, 2014). Standing 

genetic variation enhances the potential for this rapid adaptation (Hermisson & Pennings 

2005; Lai et al. 2019; Alves et al. 2019), particularly given the very low frequency at which 

newly beneficial mutations are expected to arise (Nei 2005). In a seeming paradox, however, 

standing genetic variation should be eroded by evolutionary forces of genetic drift and 

stabilising or directional selection, particularly in small populations with low levels of gene 

flow (Barton & Turelli 2003). How small and fragmented populations subject to these 

constraints are able to adapt to changes in selection pressure is therefore a topic of enduring 

interest (Hunt et al. 2007).  

Balancing selection is widely expected to play an important role in maintaining 

genetic variation. For example, sexually dimorphic traits maintained by sexually antagonistic 

selection pressures might play an important role in maintaining genetic variation affecting a 

range of ecologically important traits. Differences in gene expression between sexes underlie 

a considerable portion of the phenotypic diversity observed in populations (Pointer et al. 

2013; Immonen et al. 2014; Mank 2017), accounting in large part for the sexual dimorphism 

which is ubiquitous across sexually reproducing organisms (Andersson 1994; Bachtrog et al. 

2014), and helping mitigate underlying genomic conflict resulting from contrasting selection 

pressures acting on males and females (Bonduriansky & Chenoweth 2009; Mank 2017). This 

sexually antagonistic selection acting upon shared genes is associated with disruptive 

selection at the population level, creating and maintaining genetic diversity at loci involved in 

the conflict (Connallon & Clark 2014; Cheng & Kirkpatrick 2016; Lonn et al. 2017; Wright 

et al. 2018). Given the variety of phenotypic traits which exhibit sexual dimorphism, this 

balancing selection associated with sexually antagonistic selection is likely increase the 
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ability of either sex to rapidly adapt to changes in ecology or environment (Fierst 2011).  

Where genomes are shared, individuals of each sex must carry the genes which underlie both 

male and female-specific traits, and the expression of these genes across tissues will be 

regulated by existing sex determination pathways. 

A factor which has been argued to be of key importance in promoting genetic 

adaptation is compartmentalisation, through which mutations have coordinated phenotypic 

effects restricted to some subset of related traits (Kirschner & Gerhart 1998; Welch & 

Waxman 2003). Sexual dimorphism is achieved largely through differences in gene 

expression (Perry et al. 2014; Mank 2017), often regulated in a coordinated manner by 

relatively few key genes (Bachtrog et al. 2014). For example, the doublesex/mab-3 related 

(Dmrt) family of transcription factors plays a key, conserved role in the determination of 

phenotypic sex differences across insects, nematodes and mammals (Kopp 2012) which are 

regulated via differences in expression or splicing between males and females (Price et al. 

2015). Differences in the extent of sex-biased gene expression are also associated with 

phenotypic variation within each sex (Pointer et al. 2013; Stuglik et al. 2014), and carry 

adaptive significance (Dean et al. 2018). Thus, existing developmental pathways which 

regulate the production of sexually dimorphic phenotypes could provide a substrate for 

evolution by coordinated phenotypic change among ecologically related traits (Wagner & 

Altenberg 1996), such as morphology and diet, that can be effected by changes to just one or 

a few key regulatory genes (Kijimoto et al. 2012).  

 Whether, or to what degree, convergent phenotypic changes tend to be underpinned 

by the same sets of genes and pathways is not yet clear (Stern 2013; Warner et al. 2019). To 

test a role for phenotypic variation maintained by sexual dimorphism in adaptive evolution, 

we capitalised on the emergence and rapid spread of adaptive song-loss in Hawaiian 

populations of T. oceanicus. Adaptively silent flatwing males are unable to produce song 
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owing to female-like forewing vein morphology, and a key feature of interest is that multiple 

male-limited sound-producing structures are concomitantly reduced (Wagner & Altenberg 

1996; Bailey et al. 2019) (Fig. 3.1). Although the ages of mutations underlying flatwing 

phenotypes are not known, both adaptive phenotypes appear to have emerged and spread 

recently in populations on multiple islands, and contemporarily, having been first observed in 

continuously-monitored populations from Kauai and Oahu within 3 years of one another 

(Zuk et al. 2006). Genomic analyses suggest the two silent male phenotypes have distinct 

underlying genetic architectures (Pascoal et al. 2014), indicative of rapid convergent 

evolution. Despite their different underlying architectures, flatwing phenotypes from both 

islands segregate as single X-linked Mendelian traits (Pascoal et al. 2014).  

 We tested whether flatwing and normal-wing genotypes from Kauai and Oahu show 

overlapping differences in expression affecting genes involved in regulating sexual 

dimorphism. Because flatwing male wings appear similar to those of females (Fig. 3.1), we 

anticipated any overlapping changes in gene expression would include genes involved in 

regulating phenotypic sex differences, which would support the idea rapid adaptation was 

facilitated by variation maintained by sexual dimorphism. Note that, given T. oceanicus have 

an XO sex determination system, with males carrying just one copy of the X-chromosome 

and females two, sexual dimorphism must result from differences in expression of shared 

genes related to differences in X-dosage. We predicted: 1) flatwing and normal-wing 

phenotypes would show partially overlapping differences in gene expression in the two island 

populations, despite their distinct genetic architectures; and, 2) among these shared changes 

in gene expression, sex-biased genes should be highly represented: more so in Kauai, where 

loss of male-specific sound-producing structures is more complete (Fig. 3.1). Evidence to 

support these predictions would indicate that rapid convergent adaptation was promoted by 

genetic and phenotypic variation maintained by sexually antagonistic selection pressures. 



 
 

66 

 

3.2 Methods 

3.2.1 Terminology 

We refer to the genotype underlying normal-wing morphology as Nw, and to those underlying 

flatwing morphology on Kauai and Oahu as FwK and FwO, respectively. Female wings appear 

the same irrespective of genotype, but we nevertheless indicate their genotype using the same 

terminology (i.e. ♀Nw, ♀FwK, or ♀FwO). Note that females used in experiments are all 

homozygous, and males hemizygous, for the respective genotype. 

 

 

Figure 3.1 Male and female wing phenotypes 
Developing forewings (red; hindwings are highlighted in blue) were sampled from second-
penultimate instars. The inset shows adult wing vein phenotypes for a female ( in which 
venation does not appear to differ between genotypes), a Nw male, and Fw males from Kauai 
(♂FwK) and Oahu (♂FwO), with sound-producing structures highlighted (green: mirror; pink: 
harp; orange: plectrum). Note the less complete reduction of sound-producing features in 
Oahu. Wing drawings are tracings of wing micrographs, adapted from Pascoal et al. (2014).  
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3.2.2 Rearing of experimental populations and biological lines 

Laboratory populations were reared in a growth chamber at 25 C, under a 12-hour L:D cycle. 

Populations used in the experiment were derived from eggs laid by wild-caught females from 

populations of Wailua in Kauai and La’ie in Oahu in 2014, from which purebreeding Nw and 

Fw lines were produced by performing genetic crosses described in Pascoal et al. (2016); 

males and females from these lines are therefore purebreeding for the respective genotype, 

with males carrying one copy and females two. Kauai lines were recently outcrossed by 

mixing Nw and Fw lines, and purebreeding lines were reconstituted by performing genetic 

crosses two generations prior to the current experiment; otherwise Kauai and Oahu lines were 

reared and maintained under identical conditions, in 20L boxes with cardboard shelter, and 

food and water available ad libitum. 

3.2.3 Sampling and extraction of RNA 

We collected and sequenced 24 RNA samples, including Nw and Fw genotypes of both sexes 

from each island population, with 3 replicate purebreeding lines per group. For sampling, 

individuals were removed from stock boxes at second-penultimate instar (Fig. 3.1), when 

developing wings are first externalised, ca. 1.5 months after hatching. Wing differences 

between Nw and Fw genotype males arise early during their development, and become 

pronounced between second-penultimate and penultimate instar (Pascoal et al. 2016). 

Individuals were briefly anesthetised using CO2, and the dorsal-right forewing bud 

(henceforth ‘wingbud’) removed using micro-dissection scissors then placed in RNAlater. 

Wingbuds from five individuals were pooled per sample, and samples were frozen at -20C 

after 24 hours at 4C.  

 RNA extractions were performed using a Trizol protocol. Extracted RNA purity was 

assessed using a NanoDrop ND-1000 spectrophotometer, and quality assessed using a Agilent 
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2100 Bioanalyzer. Following library preparation with RiboZero, samples were sequenced on 

an Illumina HiSeq 4000, generating 2×150 bp paired end reads. Due to logistical constraints, 

library preparation and sequencing were performed separately for samples from the two 

populations, but using identical protocols; we restrict differential expression analyses to 

within-population comparisons, so this should not affect our results. CASAVA v1.8.2 

(Illumina) was used for basecalling and de-multiplexing of indexed reads. Adapter sequences 

were trimmed from fastq files using Cutadapt v1.2.1 (Martin 2011) and low quality bases 

were removed using Sickle v1.200 with a minimum window quality score of 20. Sequences 

with high similarity to Eukaryotic ribosomal RNAs were removed from the dataset using 

sortmeRNA (Kopylova et al. 2012). 

3.2.4 Genome alignment and transcriptome assembly 

Genome alignment, transcriptome assembly and quantification of expression were performed 

following Pertea et al. (2016). Reads were aligned to the T. oceanicus genome (v1, available 

from http://chirpbase.org/) using HiSat2 v2.1.0. A genome-guided transcriptome was then 

assembled from output files using StringTie v1.3.4, and gene expression values quantified for 

each of the samples. To retain in our transcriptome only genes with strong empirical support 

and which appear to be protein-coding, we filtered any without open reading frames of >100 

amino acids, and which weren’t expressed at >1 count per million in at least 3 samples from 

each population, as well as a previously sequenced Kauai wingbud RNA-seq dataset (see 

below). 

3.2.5 Differential expression analysis 

Gene counts produced by StringTie were prepared for input into edgeR v 3.20.9 (Robinson et 

al. 2010) using the prepDE.py script made available by the authors (Pertea et al. 2016). In 

edgeR, counts were normalised by trimmed means of M-values (TMM), after which a single 
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negative binomial GLM was fit incorporating all data, using per-gene normalised expression 

values as the response variable. Differential expression (DE) analyses were performed using 

likelihood ratio tests for pairwise comparisons between morph genotypes and sexes. P-values 

were FDR-adjusted using the Benjamini–Hochberg procedure, and genes were considered 

DE between groups if FDR values were < 0.05. This less stringent threshold was adopted due 

to relatively high variance within groups. Statistical analyses were performed within R v3.4.1 

(R Core Team 2017). 

 As partial validation of our results, we compared the identity of genes DE between 

morph genotypes from Kauai with those found to be DE between male morphs in previously-

sequenced samples from male Kauai wingbuds (see: Pascoal et al. 2016). The latter data were 

collected using methods considerably different to our own: individuals came from different 

biological lines, were not anaesthetised prior to sampling, there were fewer individuals per 

pooled sample and more samples per group (N=3 individuals per pool; N=6 samples per male 

morph). Samples were also sequenced on a different platform (Illumina HiSeq 2000). Thus, a 

high degree of overlap between datasets in genes identified as DE would be indicative of 

biologically meaningful and robust experimental procedures. We aligned these samples to the 

transcriptome and performed DE analysis following the same procedure as above.  

 To test hypotheses of overlapping changes in gene expression between Kauai and 

Oahu’s respective Nw and Fw genotypes, we first subset genes which were significantly DE 

in one or both comparisons. We then used a chi-squared test to statistically compare the 

number of these DE genes for which log-fold changes were positively and negatively 

correlated between islands. Similarly, to test whether flatwing genotypes showed generally 

‘feminised’ expression patterns, we subset genes which were DE between genotypes on each 

island, and which were also sex-biased, and compared the direction of change (in this case 

there were too few genes for statistical comparison). 
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3.2.6 Testing disproportionate involvement of the X chromosome 

Because both flatwing phenotypes segregate as X-linked traits, and differences in expression 

of X-linked genes might play a particularly important role in producing sexual dimorphism, 

we tested for disproportionate differential expression of genes which are known to be located 

on the X chromosome, using the linkage map of Pascoal et al. (2018). To do so, we compared 

the proportion of X-linked genes passing filtering which showed differential expression 

between Nw and Fw genotypes, with that of autosomes. Additionally, we tested whether 

males and females showed differences in expression of X-linked relative to autosomal genes. 

Given the XO sex-determination system, males might exhibit complete or partial dosage 

compensation of X-linked genes, or females may exhibit deactivation of one of their X 

chromosomes, which could affect the number of genes identified as sex-biased. We 

calculated ‘relative X expression’ (RXE) as log2(x) – log2(a), where x and a refer to X-linked 

and autosomal genes, respectively, and RXE values <0 indicate incomplete X up-regulation 

in males (or incomplete inactivation in females), while >=0 indicates full up-regulation 

(complete inactivation in females) (Duan et al. 2019). For comparison, we performed the 

same analyses above to test for sex differences in X-dosage in existing RNA-seq data for 

adult neural, thoracic and gonad tissues from males and females from Kauai (Chapter 2), for 

which alignment and quantification was re-performed (cf. Chapter 1) as above, using 

HISAT2, Stringtie and EdgeR. We also tested for disproportionate representation of X-linked 

genes among those DE between morph genotypes by comparing the proportion of DE genes 

which were X-linked with the proportion of genes in the linkage map which were X-linked, 

using a Chi-squared test. 
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3.2.7 Gene ontology and functional enrichment analyses 

DE genes were entered as BLASTX queries against the NCBI non-redundant protein 

database, with an e-value threshold of 10-3 and a maximum of 20 hits. Mapping and 

annotation were performed in Blast2GO (Conesa et al. 2005) with default parameters. 

Functional enrichment of gene ontologies (GO) was assessed for all transcripts passing the 

expression filter against all Drosophila melanogaster proteins.  

 

3.3 Results 

After filtering, the genome-guided transcriptome assembly contained 30,299 unigenes 

(henceforth ‘genes’). There was a proportionally high degree of overlap between genes found 

to be differentially expressed (DE) between Kauai male genotypes in the new and previously-

collected datasets (10 of 30 shared; compared with 20 of 30,269 not), and their log-fold 

changes were positively correlated (rho=0.648, P=0.049), despite substantial differences in 

the methods used to collect each (see Methods). This consistency demonstrates our DE 

results are technically and biologically robust.  

3.3.1 Gene expression changes strongly correlated between sexes 

In each of the populations the effect upon gene expression of carrying the respective flatwing 

genotype (FwK or FwO) was highly correlated between males and females. About half the 

genes DE between male genotypes were also significantly DE between female genotypes in 

each population (Kauai: N=11 of 25 [44%]; Oahu: N=26 of 50 [52%]), and changes were 

strongly correlated across all genes showing DE in one or both sexes (Kauai: N=41, 

Spearman’s rank rho=0.771, P<0.001; Oahu: N=90, rho=0.775, P<0.001). (Fig. 3.2A,B) 
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Figure 3.2 Correlated effects on gene expression between sexes but not islands 
The effects of Fw genotypes on male and female transcriptomes were strongly correlated 
within each population for both (A) Kauai and (B) Oahu. (C) The correspondence of Fw 
effects in Kauai vs. Oahu (FwK and FwO), pooled across sexes; genes DE in both populations 
are highlighted in orange. In plots (A – C), points show differences in mean expression 
values (log2 counts per million) between Nw and respective Fw genotypes. Points > 0 and < 0 
are Nw- and Fw-biased, respectively. Annotations show significant (P<0.001) Spearman’s 
rank correlation coefficients. D) Multidimensional scaling plot showing differences along 
two major axes of variation (dim1 and dim2) between samples in expression of genes 
identified as significantly DE between genotypes in either population. Labels signify 
individual sex and genotype (F.FwO= female with FwO genotype, etc.), and ellipses show 
95% confidence intervals assuming a multivariate t-distribution, for each genotype × island 
combination, again pooled across sexes. Ellipses are coloured by population, with 
solid/dotted outlines indicating the genotype underlies normal-wing/flatwing male 
phenotypes, respectively. 
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3.3.2 Largely discordant gene expression changes between populations 

There was very little overlap in gene expression changes associated with FwK and FwO 

genotypes from the two respective populations. Because changes were strongly correlated 

between sexes in each population (Fig. 3.2A,B), we maximised our statistical power to 

identify shared differences between populations by pooling sexes for each genotype from 

both populations (Kauai: N=205 genes DE between genotypes; Oahu N=464). Just 15 

(7.31%) of the 205 genes DE between Kauai genotypes were also DE between Oahu 

genotypes, and only 10 (4.88%) of these showed concordant changes; all showing concordant 

Nw-bias. Surprisingly, across genes DE between genotypes in either population, expression 

differences between genotypes in the other population were more likely to be in the opposite 

direction (concordant: N=230, non-concordant: N=409; X12=50.142, P<0.001) (Fig. 3.2C). 

For these genes DE between Nw and respective Fw genotypes in either population, a 

multidimensional scaling plot clearly separated FwO and FwK genotypes along the first major 

axis of variation, along which Nw genotypes on the two islands showed no apparent 

differences. In contrast, the two Fw genotypes differed from Nw genotypes in the same 

direction along the second major axis of variation (Fig. 3.2D). 

3.3.3 Sex-biased genes represented among those DE between genotypes 

In contrast with the very small overlap in genotype-associated changes between populations, 

13 of the 20 (65%, cf. 4.88% above) genes identified as sex-biased in Kauai were also sex-

biased in Oahu, in all cases concordantly. Despite being few in number, genes which were 

sex-biased in either population were highly represented among those DE between genotypes 

in the two populations (Kauai: 3 of 20 sex-biased genes DE; Oahu: 7 of 30). Overall, 14 of 

the 654 (2.14%) of unique genes DE between genotypes in one or both populations reported 

sex-bias; contrasting with 23 sex-biased of the remaining 29,645 (0.078%) genes in the 



 
 

74 

transcriptome (X12=206.71, P<0.001). Sex-biased genes were especially highly represented 

among genes DE in both populations (3/15 [20%]). There was, however, no clear evidence of 

feminised gene expression in flatwing genotypes; 2 of 3 concordantly DE between flatwings 

and females on Kauai, and 2 of 7 on Oahu, though our ability to make conclusions is 

precluded by the few genes involved in comparisons. 

3.3.4 Down-regulation of doublesex across Fw genotypes 

Despite the lack of feminised patterns of gene expression in Fw genotypes, 2 of the 10 genes 

showing concordant genotype-associated changes across both populations showed significant 

BLAST homology with doublesex (dsx) proteins: one of these contained the conserved DNA 

binding domain superfamily, the other the DNA dimerisation domain superfamily; these two 

domains are considered essential for dsx transcription factor activity (Price et al. 2015). Each 

showed strongly correlated down-regulation in Fw genotypes across sexes and populations, 

and differences between genotypes were stronger in Kauai (Fig. 3.4). We did not identify sex-

specific dsx isoforms, which are often observed in insects; instead, expression patterns were 

consistent across isoforms. Both domains were also validated as DE in the previously 

collected Kauai wingbud data (unadjusted P < 5e-04) from Pascoal et al. (2016), and we 

found by cross-referencing with the QTL of Pascoal et al. (2018) that the DNA dimerization 

domain strongly co-localises with the FwK-associated region of the X-chromosome (Figs 

3.3C, 3.4). The DNA-binding domain is not present in the linkage map.  
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Figure 3.3 Genes and genomic regions of significance to flatwing morphology 
A. Expression values in counts-per-million, scaled by row (i.e. gene), for all genes reported 
as DE between genotypes in both populations. Labels show BLASTX annotations; red are 
those also showing significant sex-bias. Bi. Positions of DE genes located on the X-
chromosome. Lines show densities of DE genes for each contrast. Bii. Kauai flatwing-
associated genomic QTL markers from Pascoal et al. (Appendix 1). Dotted lines show the 
physical position of the doublesex dimerization domain. Y-values in both Bi and Bii illustrate 
inverse log10 FDR (i.e., larger values on the Y-axis indicate greater significance in DE or 
QTL comparisons), and chromosomal positions on the x-axes are aligned. C. Venn diagram 
showing overlap in the identity of genes DE between Kauai (purple) and Oahu (green) 
genotypes, and those showing sex-biased expression (blue). 
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Of the other 8 DE genes showing correlated changes in both populations, 6 had 

BLASTX annotations; an RNA-directed DNA polymerase, a mariner Mos1 transposase, a 

retrovirus-related Pol polyprotein, and 4 uncharacterised or hypothetical proteins. All of these 

that could be localised on the linkage map of Pascoal et al. were within the QTL region of the 

X-chromosome which is statistically associated with the Kauai Fw genotype. A homolog of 

fem-1, essential for sex-determination in Caenorhabditis elegans (Doniach & Hodgkin 1984), 

was up-regulated in males and females with FwO genotypes, but showed no correlated change 

in the Kauai population. 

 

 

Figure 3.4 Coordinated down-regulation of doublesex domains 
Loss of male song due to forewing feminisation is associated with down-regulation of dsx in 
developing wingbuds. Relative expression values (log2 counts-per-million) are shown for the 
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two consistently DE dsx domains. Both are down-regulated, in FwK and FwO genotypes, and 
in both sexes. However, the extent of down-regulation is less  in FwO, a genotype which is 
associated with less complete loss of sound-producing features on the wings of males which 
carry it (see wing diagrams, top). Points illustrate means, error bars the minimum and 
maximum values across replicates (N=3 per group of samples).  
 

3.3.5 Functional enrichment, KEGG and GO analyses 

KEGG analysis identified purine and thiamine metabolism pathways represented among 

genes DE between genotypes in both populations, and these were also the only pathways 

represented among sex-biased genes. Overall, 310 (45.99%) genes reported as DE between 

genotypes reported significant homology. Of the 30,299 total genes in the transcriptome, 

12,182 (40.21%) reported significant BLASTX hits to proteins from Drosophila 

melanogaster. Only the set of genes up-regulated in Kauai normal-wing lines reported 

significant functional enrichment (FDR<0.05), for biological processes involved in 

cytokinesis, bearing similarity with previous results (Pascoal et al. 2018; Chapter 3). 

3.3.6 No differences in dosage or disproportionate involvement of X-linked genes 

There was no evidence of differences across sexes and genotypes of the two populations in 

summed expression of X-linked (N=6,091), relative to autosomal (N=13,224), genes 

(Kruskal-Wallis rank sum test: X27=3.453, P=0.840). Relative expression of X-linked genes 

did not differ significantly between sexes despite differences in ploidy (Wilcoxon rank-sum 

test: P=0.143), indicative of X- dosage compensation in males or inactivation in females, and 

contrasting with adult tissues from Chapter 2, in which female relative expression of X-

linked genes was consistently significantly greater than males (Wilcoxon rank-sum tests: all 

P<0.01).  

There was also no evidence X-linked genes were overrepresented among those DE 

between developing wings of Nw and Fw genotypes (pooled across sexes) from either 
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population, compared with autosomal genes: 30 of the 116 DE (25.86%) genes present in the 

linkage map of Pascoal et al. (2018) were X-linked, versus 6,091 of the total 19,315 (31.54%) 

genes present in the linkage map (X2=1.467, P=0.226). 

 

3.4 Discussion 

One way in which sexual reproduction might produce and maintain genetic variation, thereby 

contributing to populations’ ability to adapt under selection, is through sexually antagonistic 

patterns of selection which are associated with balancing selection at the population level 

(Cheng & Kirkpatrick 2016; Wright et al. 2018). Such genetic variation produced and 

maintained at loci which underlie ecologically important, sexually dimorphic traits might 

therefore provide an important substrate for adaptive evolution. Our results show gene 

expression changes associated with adaptive silent phenotypes in T. oceanicus strongly 

involve genes with conserved roles in regulating phenotypic sex differences, supporting our 

prediction that variation associated with sexually dimorphic wing venation in T. oceanicus 

promoted their loss in flatwing males.  

Most of the differences between genotypes underlying normal-wing and convergently 

evolved flatwing phenotypes were distinct between islands. Less than 5% of genes identified 

as DE between morph genotypes in either island population were the same and showed 

coordinated changes between convergently evolved flatwing phenotypes. In contrast, 65% of 

sex-biased genes were shared and showed correlated changes between island populations. 

Moreover, among the 95% of genes that did not show parallel changes in convergently 

evolved flatwing genotypes, the majority showed opposing patterns of expression changes. 

These results appear to support previous data indicating flatwing phenotypes evolved 

independently in the two populations. Pascoal et al. (2014) compared flatwing-associated 
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nucleotide polymorphisms from Kauai and Oahu, and found a considerable majority of 

differences between Nw and Fw genotypes in each island population were non-overlapping, 

while that those few that did overlap showed allelic reversal. The divergent changes in 

expression we observe in association with Fw genotypes underlying convergent flatwing 

phenotypes also supports growing evidence that convergent adaptation can provide a source 

of genetic and phenotypic variation between populations, which could promote future 

diversification (Mcgee & Wainwright 2013; Bailey et al. 2019). 

Interestingly, however, there was a small but notable overlap in effects of the different 

genotypes upon gene expression, among which sex-biased genes were highly represented. 

Sex-biased genes were disproportionately affected by flatwing-associated genotypes, and 

among these was doublesex (dsx). Males and females carrying FwK and FwO were 

consistently associated with down-regulation of dsx domains. One of these, the dimerization 

domain, strongly co-localises with a QTL for the Kauai Fw genotype, and is downstream of a 

region with strongly reduced genetic diversity in flatwing males from Oahu, indicative of 

recent selection in this region (Xiao Zhang, unpublished data). Dsx was an early candidate for 

involvement in flatwing morphology (Pascoal et al. 2016) owing to its primary role in 

mediating sexual dimorphism in insects and related arthropods (Kunte et al. 2014; Price et al. 

2015), particularly in sex-specific expression of sexual traits (Kijimoto et al. 2012). For 

example, in horned beetles Onthophagus taurus, males exhibit large exaggerated horns which 

function as a weapon in aggressive encounters, while females are typically hornless. 

However, down-regulation of dsx drastically reduces the size of males’ horns while, 

counterintuitively, leading to their expression in ordinarily hornless females, illustrating its 

sex-specific effects in regulating phenotypic expression (Kijimoto et al. 2012). Our results 

suggest a similar pattern of sex-specific expression of male sound-producing wing structures 

in T. oceanicus, where multiple losses of the male sexual trait are associated with down-
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regulation of dsx, the extent of which correlates with completeness of reduction of male 

sound-producing structures.  

It is plausible that down-regulation of dsx and related pathways in developing tissues 

could also contribute to a range of ‘feminised’ phenotypes observed in adult males; including 

reduced reproductive tissue mass (Bailey et al. 2010; Rayner et al. 2019), and female-like 

cuticular hydrocarbon profiles (Appendix 1). It is nevertheless clear that the extent of 

‘feminisation’ of flatwing males is substantially greater in the developing forewings, in which 

they strongly resemble females, compared with other sexually dimorphic phenotypes such as 

the gonads. Differences in expression of dsx might therefore be largely or partially restricted 

to developing forewings (Kunte et al. 2014). A recent study of Drosophila melanogaster 

demonstrated the extent of sexual dimorphism, in relation to differences in regulation of 

doublesex, is modified in a tissue-specific manner (Rice et al. 2019), reiterating the tissue-

specific evolvability of gene expression networks underlying sexual dimorphism (Wagner & 

Altenberg 1996; Fierst 2011). 

Transcriptional regulation of sex differences by dsx is frequently observed to involve 

sex-specific splicing, which we did not observe in T. oceanicus, however studies of 

arthropods and insects distantly related to model organisms such as Drosophila melanogaster 

have found that this is often not the case (Price et al. 2015; Ruiz et al. 2015). In these cases 

dsx appears to regulate sex differences largely via differences in expression, as are apparent 

in our data. In holometabolous insects, sexual differentiation involving sex-specific splicing 

of dsx is regulated by transformer (tra) (Kopp 2012), however no sequences in the T. 

oceanicus genome show significant homology with tra. Given that Nw females exhibit much 

greater expression of both dsx domains, compared with males, but their expression is strongly 

down-regulated in Fw females which show no apparent changes in wing morphology, it is 

clear that if dsx is responsible for effecting differences in wing venation it does so in a male-
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limited manner. Dsx could play a primary role in mediating male-specific development (Kopp 

2012) through sex-specific downstream effects; as in the male-specific effects of distal-less in 

regulating sexually dimorphic antennal shape in water striders Rheumatobates rileyi, despite 

expression in both sexes (Khila et al. 2012). Indeed, the strong correlation between gene 

expression effects of FwK and FwO between sexes, as well as the relatively few genes 

identified as showing sex-bias (20 in Kauai, 30 in Oahu, cf. substantial sex-bias in adult 

tissues (Chapter Two; Rayner, Pascoal, et al. 2019), suggests that many of the same genes 

must have sex-specific effects.  

Our findings reveal the involvement of transcriptomic sex differences in rapid 

convergent loss of a male sexual trait and, specifically, show this loss is associated with 

down-regulation of a phylogenetically conserved sex-differentiating gene, doublesex, in 

developing wing tissues. By implicating parallel down-regulation of sex-determining 

pathways in the convergent adaptive loss of male song, these findings support our hypothesis 

for the role of variation maintained by sexually antagonistic selection in rapid adaptation in 

capacitating rapid adaptive loss of a male sexual trait. Our results are also consistent with a 

more general role for variation maintained within the genome by sexually antagonistic 

patterns of selection in providing a substrate for adaptive evolution (Fierst 2011). 

Additionally, our finding that convergently evolved mutant genotypes affect the expression of 

largely non-overlapping sets of genes, but do both affect the expression of a small, but 

perhaps key, subset of genes, contributes to understanding of how convergent evolution is 

able to occur through different genetic mutations by targeting the same developmental 

pathways (Stern 2013). 
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4. Same-sex sexual behaviour and the evolution of 

alternative male reproductive phenotypes* 

Male same-sex sexual behaviour (SSB), where males court or attempt to mate with other 

males, is common among animal taxa. Recent studies have examined its fitness costs and 

benefits in attempts to understand its evolutionary maintenance, but the evolutionary 

consequences of SSB are less commonly considered. One potential impact of SSB might be 

to facilitate the evolution of traits associated with less sexually dimorphic males, such as 

alternative reproductive tactics, by diverting costly aggression from other males. To test this, 

we capitalized on the recent spread of a silent males in Hawaiian T. oceanicus, which are 

unable to produce characteristic male acoustic signals, benefit from satellite mating 

behaviour, and exhibit feminized appearance and cuticular hydrocarbon profiles. We tested 

the prediction that interactions involving these nonsignalling, less sexually dimorphic male 

morphs would show heightened rates of SSB, which could reduce the strength of male–male 

competition and permit greater access to females. We found no evidence that SSB was more 

common in trials involving silent males. Instead, SSB was predicted by courtship of females 

presented during a pretrial treatment. Our results provide evidence supporting the view that 

SSB represents a spillover of sexually selected courtship behaviour in a nonadaptive context, 

but do not support a strong role for SSB in the evolution of less ornamented males in this 

system. 

 

                                                

* This chapter is published as: Rayner & Bailey (2019) ‘Testing the role of same-sex sexual behaviour 

in the evolution of alternative male reproductive phenotypes’, Animal Behaviour, vol. 157. 
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4.1 Introduction 

Same-sex sexual behaviour (SSB), where individuals court or attempt to mate with members 

of the same sex, is taxonomically widespread (Bailey & Zuk 2009). Recent studies have 

tested various adaptive and nonadaptive explanations offered for the evolutionary origins and 

persistence of these behaviours. These have provided some support for nonadaptive 

hypotheses of SSB resulting from mistaken identity (Harari et al. 2000; Sales et al. 2018), 

with influences of social environment (Bailey & French 2012; Han & Brooks 2015; Han et 

al. 2016) and mating system (MacFarlane et al. 2007). However, SSB might also play 

important roles in mediating male competition (Lane et al. 2016; Kuriwada 2017) and 

increasing relative fitness under sexual selection of males that express it (McRobert & 

Tompkins 1988; Steiner et al. 2005; Preston-Mafham 2006; Bierbach et al. 2012). Despite 

these research efforts, little is known about the influence SSB might have upon evolutionary 

change of other traits (Bailey & Zuk 2009; Scharf & Martin 2013; Hoskins et al. 2015).  

Often viewed as evolutionarily counterintuitive or costly (Maklakov & Bonduriansky 

2009; Scharf & Martin 2013; Boutin et al. 2016), the prevalence of SSB across taxa 

nevertheless suggests it could exert a substantial influence on evolution, for example by 

affecting the social selection pressures individuals experience. One way in which it has been 

suggested to do so is by altering the fitness consequences of same-sex encounters (Lane et al. 

2016). For example, same-sex female pairs of a female-biased population of Laysan 

albatross, Phoebastria immutabilis, exhibit cooperative breeding (Young et al. 2008), 

increasing their fitness and suggesting a role for SSB in facilitating the expression of 

alternative reproductive strategies (Young & VanderWerf 2014). In males, SSB is generally 

expected to reduce the strength of aggressive interaction (Peschke 1985; Preston-Mafham 

2006; Bailey & Zuk 2009; Kuriwada 2017), although evidence for this is mixed (Ruther & 

Steiner 2008; Bailey & French 2012; Lane et al. 2016).  
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Perhaps the most intuitive evolutionary consequence that SSB could have, at least 

among invertebrates, arises from its well-supported link to ‘mistaken identity’ (Harari et al. 

2000; Dukas 2010; Bailey & French 2012; Scharf & Martin 2013; Macchiano et al. 2018). In 

mating systems characterized by scramble competition, individuals that court or attempt to 

mate with a member of the same sex may do so because they have mistaken them for a 

member of the opposite sex. If mistaken identity is an important factor contributing to the 

incidence of male SSB, interactions involving less sexually dimorphic males should have a 

heightened likelihood of SSB (Preston-Mafham 2006; Steiner et al. 2005), conceivably to 

their benefit (Peschke 1985). For example, Norman et al. (1999) reported field-based 

observations that small, female-like males of the giant cuttlefish, Sepia apama, seem to avoid 

attack by mate-guarding males, while Dukas (2010) found immature male fruit flies, 

Drosophila melanogaster, are subject to heightened levels of SSB, apparently due to the 

ambiguity of their incompletely developed cuticular sex pheromones. These observations 

suggest an evolutionarily important role for SSB in facilitating the evolution of less sexually 

dimorphic males, through benefits arising from mistaken sex. Such benefits might 

consequently promote the evolution of alternative reproductive tactics, but this role for SSB 

in facilitating the spread of less sexually dimorphic males does not appear to have been 

evaluated. 

We tested the prediction that interactions involving less sexually dimorphic males 

should show an increased incidence of SSB, by capitalizing on the recent evolutionary spread 

of adaptive, songless male morphs of Hawaiian T. oceanicus. Male calling and courtship 

songs are an important determinant of mating success in field crickets (Balakrishnan & 

Pollack 1996; Bailey & Zuk 2008; Rebar et al. 2009). However, flatwing males are rendered 

silent by genetically determined female-like wing morphology. Loss of song also has 

important consequences for male–male interactions. For example, aggressive song plays an 
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important role in agonistic contests (Logue et al. 2010). As well as feminized wing 

morphology, flatwing males have cuticular hydrocarbon profiles more similar to those of 

females, compared with more sexually dimorphic ‘normal-wing’ males (Appendix 1), and 

their neural transcriptomes are feminized (Pascoal et al. 2018). Importantly, flatwing males 

benefit from satellite mating strategies (Zuk et al. 2006; Zuk et al. 2018), and may thus profit 

from heightened levels of mistaken identity in male–male interactions. Increased incidence of 

SSB in interactions involving these less sexually dimorphic males could therefore have 

facilitated their recent and rapid evolution, by reducing the levels of aggression they 

experience, and enabling access to females. 

To test these predictions, we conducted trials involving normal-wing and silent 

flatwing males, and a mixture of both, and recorded the incidence of SSB across treatments. 

We predicted that interactions involving less sexually dimorphic flatwing males would 

exhibit heightened levels of SSB, which could potentially benefit them and thereby have 

facilitated their rapid spread. 

 

4.2 Methods  

4.2.1 Stocks and rearing 

Crickets used in experiments were taken from a mixed-morph laboratory stock population, 

derived from eggs laid by females from a population on Kauai in 2014 (Pascoal et al. 2016). 

The stock population has since been maintained at >100 individuals with approximately 

equal proportions of normal-winged (Nw) and flatwing (Fw) males. Populations were reared 

in 20-litre plastic containers, with Burgess Excel Junior and Dwarf rabbit pellets and water 

available ad libitum, at 25 oC under a 12:12 h photoreversed light:dark cycle. 
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Males were removed from the mixed-stock population as mature adults less than 4 

weeks post-eclosion. To obtain a sufficient sample size, the stock population was sampled 

over four generations. The adult males were isolated in cylindrical clear plastic containers (65 

mm diameter × 40 mm depth) for 3 days prior to trials, with cardboard shelter and food and 

water available ad libitum as above. On the second day of isolation, to enable their 

differentiation during trials, each individual’s dorsal right wing was marked with one or two 

spots using a similar amount of white correction fluid (Tipp-Ex). Marking was performed on 

the day prior to males’ use in trials to minimize the likelihood it would affect their behaviour. 

4.2.2 Trials 

Males of each wing morph were haphazardly assigned to one of three ‘dyad’ groups: normal-

wing versus normal-wing (Nw.Nw), normal-wing versus flatwing (Nw.Fw) and flatwing 

versus flatwing (Fw.Fw). Trials and pretrial treatments were conducted in an incubator at 24 

oC, under red light. Immediately prior to use in trials, each male was introduced to a 210 × 

230 mm arena containing a female from the stock population of unknown age and mating 

status, and left to interact for 10 min. This pretrial exposure to females has been found to 

increase the incidence of SSB in subsequent male–male trials due to mistaken identity 

(Bailey & French 2012). As SSB is an infrequent behaviour, we performed the pretrial 

exposure to females to facilitate comparisons between dyads by increasing the incidence of 

SSB across trials. Presence/absence of wing movement patterns of male courtship song 

(flatwing males still perform wing movement patterns associated with the production of song, 

despite obligate silence; Schneider et al., 2018) and female mounting was recorded over the 

course of the 10 min treatment. In field crickets, females must mount the male for mating to 

occur (Rebar et al. 2009), and male courtship is characterized by the production of distinctive 

courtship song (Balakrishnan & Pollack 1996). If the female mounted the male, the two were 
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gently separated using a paintbrush to prevent copulation (Bailey & French 2012). The same 

female was not used in multiple pretrial treatments.  

 After the pretrial treatment, the two males were removed from their respective arenas 

and gently placed at opposite ends of a third arena with the same dimensions. They were left 

to interact for 10 min, the duration of which was filmed using a Nikon D3300 digital camera, 

with no observers present. After trials, males were weighed to the nearest mg and their 

pronotum length recorded to the neared 0.01 mm. Equipment was cleaned with 80% ethanol 

between trials. 

4.2.3 Scoring SSB and agonistic behaviours 

Each film was studied by the same observer (J.G.R.) and the presence of SSB and agonistic 

behaviours recorded. Videos were scored without audio to avoid biasing measurements 

between normal-wing and flatwing males. The strength of agonistic contests was scored 

between 0 and 3 using a weighting adapted from Dixon and Cade (1986), frequently used in 

studies of field cricket interactions (Bailey & French 2012; Kuriwada 2017): no aggressive 

contests=0; antennal fencing=1; mandible engagement=2; flipping=3. Presence of SSB was 

recorded when one or both males produced wing movement patterns characteristic of 

courtship song in the vicinity of the other. Courtship song could be distinguished by 

distinctive wing movement patterns; it includes a long, constant-intensity trill, distinct from 

the short chirps of calling song and intense repetitive aggressive song in which the lateral 

magnitude of wing movements is much greater and is visually distinctive (Balakrishnan & 

Pollack 1996). 

4.2.4 Statistical analyses 

We first tested factors that might influence whether females mounted males in pretrial 

treatments using a generalized linear model (GLM) with binomial error distribution. The 
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response was whether females mounted the male. To examine whether the effect of male 

courtship upon female mounting differed between male wing morphs, we included in the full 

model ‘courted’ (yes or no) and ‘morph’ (flatwing or normal-wing) as categorical factors, 

their interaction, and ‘mass’ and ‘pronotum length’ as covariates. We also used a binomial 

GLM to test whether, given their inability to produce song, flatwing males were any less 

likely to produce wing movements associated with courtship song in the pretrial exposure to 

females. Here the response was whether or not the focal male produced courtship song wing 

movements, with the same covariates and ‘morph’ modelled as a categorical factor. 

We next examined factors influencing the likelihood of SSB during the subsequent 

male–male behavioural trials. We treated the expression of SSB observed in each male–male 

dyad, irrespective of which cricket exhibited it, as a response in a binomial GLM. The unit of 

analysis in this initial test was therefore behaviour observed at the level of the dyad rather 

than the level of individual crickets (see below), which avoided pseudoreplication. 

Differences in mass and pronotum length for the two interacting males were included as 

covariates. Whether interacting males courted females in the pretrial treatment (‘courtship’) 

and whether they were mounted by females in the pretrial treatment (‘mounted’) were both 

modelled as categorical factors: because each male–male trial involved two males, these 

variables had three factor levels (i.e. neither male expressed or experienced the behaviour, 

only one did or both males did).  

We performed a post hoc analysis to distinguish whether a given focal male’s 

tendency to express SSB was affected by his own prior experience with females, his 

interacting male partner’s prior experience or both. To do this, we randomly selected one 

male from each dyad. Using this randomly selected focal male’s expression of SSB as a 

response, we ran a GLM with binomial distribution to examine the effects of pretrial 

experiences (male courtship and female mounting) of the focal male and his interacting 
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partner. The model also included predictor terms of focal and interacting male morph, mass 

and pronotum length. The process of randomly selecting focal and interacting males for the 

above GLM was repeated 10 000 times to avoid random sampling bias, discarding results 

from models that produced convergence errors. Distributions of coefficients and significance 

of predictors describing pretrial experiences of focal versus interacting males across all 

model runs were then compared, allowing us to evaluate whether SSB displayed by focal 

males was more strongly predicted by their own previous experience or by the previous 

experience of their interacting partner. 

All GLMs also included ‘generation’ as a categorical predictor variable, specified as a 

fixed rather than random effect because it only had four levels, to account for any differences 

between cohorts. The strength of agonistic contests could not easily be transformed to 

approximate a normal distribution, so we used nonparametric Kruskal–Wallis and Wilcoxon 

rank sum tests to evaluate whether the strength of aggressive contests differed between trials 

in which SSB was or was not observed, or across dyads. Analyses were performed in R 

v3.4.4 (R Core Team, 2018). Binomial GLMs were checked for overdispersion and 

significance testing was performed using chi-square tests, with type II and III sum of squares 

for models with and without interaction terms, respectively. 

4.2.5 Ethical note 

We followed the ASAB/ABS Guidelines for the treatment of animals in behavioural research 

and teaching. Individuals were marked using a noninvasive procedure, that is, with temporary 

correction fluid, which gradually wore off over approximately 7 days. Arenas were large 

enough for males to escape aggressive rivals. After use in experiments, crickets were returned 

to the original stock population, with food and water available ad libitum. 
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4.3 Results 

A total of 98 trials, involving 196 males, were recorded. Of these, 27 involved two normal-

winged males (Nw.Nw), 30 two flatwing males (Fw.Fw) and 41 one of each male wing 

morph (Nw.Fw). Of trials in which males interacted (N=89), 60 (67.42%) exhibited 

aggressive interactions, 23 (25.74%) exhibited SSB and 14 (15.73%) exhibited both 

aggressive interactions and SSB (Fig. 4.1). 

 

 

Figure 4.1 Proportions of trials showing SSB and aggressive interaction 
(a) Proportions of trials in which neither, one or both interacting males expressed SSB. (b) 
Proportions of trials involving aggressive contests of varying strength (see Methods for 
criteria used to score aggressive contests). 
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4.3.1 Behaviour in pretrial treatment 

Results for male courtship and female mounting behaviours during pretrial treatments are 

shown in Table 4.1. In the presence of a female, flatwing males were no less likely to attempt 

courtship song than normal-wing males, despite flatwing males’ inability to generate an 

audible signal when making wing movements. Nevertheless, the effect of flatwing and 

normal-wing courtship efforts on female mounting differed significantly and in a predictable 

manner: flatwing males were less successful at eliciting female mounting behaviour if they 

tried to produce courtship song than were normal-wing males (Wilcoxon rank sum test: 

P=0.013). In cases where males did not attempt courtship, there was a nonsignificant trend 

for flatwing males to receive more mountings (Wilcoxon rank sum test: P=0.074). 

Attempting to court did nevertheless increase the likelihood of flatwing males being mounted 

(Fig. 4.2).  
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Figure 4.2 Effects of courtship on female mounting 
The likelihood of females mounting males of each wing morph that did and not attempt 
courtship. Fw: silent flatwing males; Nw: singing normal-wing males. Numbers in/above bars 
indicate sample sizes. Asterisks indicate significance  for ‘courtship’ in the overall GLM (top 
comparison) and ‘morph’ in post hoc tests within each courtship category (comparisons 
between Nw and Fw males): *P<0.05, ***P<0.001. 
 

4.3.2 Rates of SSB  

Results from the GLM for the incidence of SSB across trials are given in Table 4.2. The 

incidence of SSB was affected by the number of interacting males that had previously courted 

the female in the pretrial exposure: trials in which both males had courted females were on 

average 3.29 times more likely to exhibit SSB than those in which neither male had courted 

the female (Fig. 4.3). There was, however, little evidence for an effect of signalling ability or 

differences in size of males on the expression of SSB, with no indication that expression of 
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SSB differed between dyads with differing proportions of Nw and Fw males or that it was 

affected by differences in mass or pronotum length (Table 4.2).  

 

 

Figure 4.3 Effects of prior male courtship on expression of SSB 
The relationship of male SSB to prior courtship of females across dyads with varying 
proportions of singing normal-wing (Nw) and silent flatwing (Fw) males. (a) Proportions of 
trials showing SSB, for each dyad group, in association with the number of males that 
previously courted a female. (b) Proportions of males from each dyad group that expressed 
SSB, in relation to whether they had previously courted a female. Numbers above bars show 
sample sizes, and numbers inside bars show the number of trials in which SSB was observed. 
Note differences in Y-axis limits between (a) and (b). 
 

Follow-up analysis indicated that prior courtship by a focal male, rather than by their 

interacting male partner, increased the focal male’s expression of SSB. Across 10 000 random 

subsets of single focal males selected from each dyad, prior courtship by the focal male was a 

significant positive predictor (P<0.05) of focal SSB in 5932 subsets, while prior courtship by 

the interacting male was a significant positive predictor in only 84. There was also little 

evidence that the interacting male having been mounted by the female in the pretrial 
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treatment had an effect on SSB (a significant positive predictor of focal SSB in 594 

iterations), making it unlikely that focal SSB was positively influenced by residual female 

olfactory cues on the interacting male. (Supplementary Figure 4.1) 

4.3.3 Rates of aggression 

The strength of aggressive contests did not appear to differ between trials in which SSB was 

or was not observed (Wilcoxon rank sum test: W=785, P=0.803) or between dyads (Kruskal–

Wallis rank sum test: c22=1.383, P=0.501). Similarly, the likelihood of an aggressive contest 

occurring did not appear to be associated with whether or not SSB occurred (W=803, 

P=0.443) or with the type of dyad (c22=0.679, P=0.712).  

 

4.4 Discussion 

There is an intuitive hypothetical mechanism linking mistaken identity, frequently associated 

with SSB, with the evolutionary spread and persistence of alternative reproductive tactics. A 

common assumption in systems where males adopt alternative mating tactics is that males 

that are less readily distinguished from females will benefit from reduced levels of male–

male competition (Peschke 1985; Norman et al. 1999; Dukas 2010), enabling access to 

receptive females. SSB has been considered likely to reduce the strength of aggressive 

interactions that occur during such competition (Kuriwada 2017; Lane et al. 2016). The 

interaction of these two processes suggests a potential role for SSB in the evolutionary spread 

of less sexually dimorphic males that adopt alternative mating tactics. Despite these 

expectations, we found no evidence that a less sexually dimorphic, non-signalling male 

morph of field cricket, which benefits from satellite mating behaviours (Zuk et al. 2006), is 

more likely to express or be the recipient of SSB compared with more sexually dimorphic 

males. These results indicate that the rapid adaptive spread of silent, partially feminized male 
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crickets is unlikely to have been facilitated by flexible expression of SSB leading to a 

decrease in the fitness costs of aggressive contests. Instead, the best predictor of SSB was 

whether males courted females in pretrial treatments, a result that emphasizes the behaviour 

of the individual expressing SSB (‘libido’ sensu Logue et al., 2009).  

A male cricket’s expression of SSB was predicted by his prior courtship behaviour but 

was not strongly affected by the phenotype or prior experiences of the male with whom he 

interacted. Whether dyads were all flatwing, all normal-wing or a mix had no apparent 

bearing on the likelihood that SSB would be expressed. These findings support the view that 

expression of SSB is influenced primarily by behaviour of the individual expressing it, rather 

than appearance or signalling of the male conspecific (Han et al. 2016), and is consistent with 

interpretations of SSB as a spillover of ordinary courtship behaviour into a nonadaptive 

context (Bailey & Zuk 2009; Logue et al. 2009), i.e. a behavioural syndrome (Sih et al. 2004; 

Boutin et al. 2016). Selection for male courtship behaviour is likely to be particularly strong 

in field crickets such as T. oceanicus, in which copulation can only occur if females mount 

males (Rebar et al. 2009), perhaps helping to explain the prevalence of SSB in this and 

related species (Bailey & French 2012; Kuriwada 2017; Boutin et al. 2016) due to fitness 

benefits of increased courtship behaviour (Logue et al. 2009). 

 We introduced each of the males used in the experiment to a female prior to male–

male behavioural trials, which has been shown to increase the rate of SSB owing to mistaken 

identity (Bailey & French 2012). Flatwing males were no less likely to attempt courtship 

song during these pretrial treatments, despite being unable to produce song at an appreciable 

amplitude (Schneider et al. 2018). However, patterns of wing movement associated with the 

production of courtship song (whether silent in the case of flatwing males or audible in the 

case of normal-wing males) were not equally effective in inducing female mounting 

behaviour; not surprisingly, courtship song by normal-winged crickets has a stronger effect in 



 
 

96 

eliciting female mounting. This illustrates that flatwing males incur the substantial energetic 

costs associated with wing movement patterns that ordinarily generate song, despite their 

inability to sing (Hunt et al. 2004); courtship song is particularly costly, incurring twice the 

energetic expenditure of long-range advertisement song in the related field cricket Acheta 

domesticus (Hack 1998). Although being silent clearly had a negative impact on male 

courtship ability, courtship by flatwing males nevertheless had a positive effect on the 

likelihood of female mounting. This could be due to low levels of noise produced during 

stridulation (Tinghitella et al. 2018); however a more plausible explanation is that this 

increase is due to the involvement of non-acoustic courtship cues, such as posturing and time 

spent near the female, which were not recorded.  

 We did not find support for the prediction that less sexually dimorphic males of T. 

oceanicus receive, or benefit from, increased exposure to SSB, suggesting that SSB is 

unlikely to be a prominent mechanism of reducing male–male competition in this system. 

Nevertheless, observations from other species suggest this might be the case elsewhere 

(Mason & Crews 1985; Norman et al. 1999; Peschke 1985; Dukas 2010). Reduced sexual 

dimorphism, frequently referred to as ‘female mimicry’, is common among males of many 

species, and is thought to be an adaptive strategy that reduces the strength of intrasexual 

competition to which they are exposed, but whether a result of inconspicuousness, lack of 

perceived threat or mistaken sex is often unclear. For example, in the ruff, Philomachus 

pugnax, less sexually dimorphic ‘faeder’ males sneak matings in the vicinity of territorial, 

ornamented males. Observations suggest these ‘female mimics’ benefit from mistaken sex, 

and both express and receive SSB in interactions with aggressive territorial males (Jukema & 

Piersma 2006). In red-sided garter snakes, Thamnophis sirtalis parietali, and marine isopods, 

Paracerceis sculpta, less sexually dimorphic males benefit from production of female-like 

pheromones in the former, and female-like appearance in the latter, by avoiding male–male 
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competition and thereby gaining access to receptive females (Mason & Crews 1985; Shuster 

1987) 

In cases where less sexually dimorphic males that use alternative reproductive tactics 

benefit from reduced competition, they are often thought to do so by avoiding aggression 

from territorial males due to mistaken sex (Dominey 1980; Mason & Crews 1985). However, 

benefits of reduced investment in sexually dimorphic ornamentation could also derive from 

reduced conspicuousness to conspecific males and predators alike, and reallocation of 

nutritional and energetic resources (e.g. greater testes size in drab ‘faeder’ males of the ruff; 

Jukema and Piersma, 2006). Whether less sexually dimorphic males benefit from mistaken 

sex, providing a clear potential role for eliciting SSB as an adaptive strategy, or simply 

represent less conspicuous, unornamented males, is often unclear. Although we did not find 

evidence to support the hypothesis that SSB facilitated the spread of less sexually dimorphic 

male crickets, the potential for SSB to play a role in the spread of alternative reproductive 

tactics may be greater in cases where males actively ‘mimic’ female behaviours associated 

with courtship and reproduction (Arnold 1976; Thornhill 1979; Dominey 1980) (Arnold, 

1976; Thornhill, 1979; Dominey, 1980).  
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Table 4.1. Results of binomial GLMs for male courting and female mounting behaviours in 

the pretrial treatment. 

Response R2 Predictor c2 df P 
Male courtship 0.052 Wing morph 0.379 1 0.538  

 Mass 2.911 1 0.088  
 Pronotum length 0.073 1 0.787 

  Generation 3.755 3 0.289 
      
Female mounting 0.394 Wing morph 4.593 1 0.032  

 Courted 17.390 1 <0.001  
 Mass 3.573 1 0.059  
 Pronotum length 0.557 1 0.455 

  Generation 0.960 3 0.811  
 Morph:Courted 9.645 1 0.002 

      
Significant (P<0.05) P values are highlighted in bold. Data are from 196 observations.  
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Table 4.2. Results of a binomial GLM for the incidence of SSB across trials. 

Predictor c2 df P 

Dyad  2.105 2 0.349 
Proportion courted female 6.830 2 0.033 

Proportion mounted by female 2.072 2 0.355 

Mass difference 1.752 1 0.186 

Pronotum difference 3.080 1 0.079 
Generation 3.003 3 0.391 

    

Significant (P<0.05) P values are highlighted in bold. Data are from 89 trials. The model had 

an R2 of 0.236. 
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Supplementary Figure 4.1 Results from GLMs iterated across random subsets of males 
from each dyad. 
(a-d) Histograms showing the distribution of P values, and (e-h) density plots showing the 
distribution of estimates of effect upon SSB by focal males, of predictor terms describing 
courtship behaviour performed by (a, e) focal males and (b, f) interacting male partners and 
female mounting elicited by (c, g) focal males and (d, h) interacting male partners, in the 
pretrial exposure to females. Dotted blue lines illustrate P=0.05 and dotted red lines illustrate 
an estimate of 0 (i.e. no effect upon expression of SSB in the focal individual). X-axes in 
plots of model coefficients have been truncated at ±30. Predictor terms were included in a 
GLM with a binomially distributed response variable of individual SSB, for randomly 
selected combinations of single males from 89 dyads. This process was repeated for 10 000 
iterations. 
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5. Convergent song loss is morphologically varied 

and widespread* 

Whether convergently evolved adaptive phenotypes reveal developmental and evolutionary 

constraints upon the direction of evolutionary change, or, in contrast, the ability of organisms 

to repeatedly find solutions to the same problem, is a topic of debate. While genomic lines of 

enquiry have found phenotypically similar adaptations are often underpinned by genetic 

changes to nearby genomic loci, broadly supporting the former view, convergent adaptation 

might be frequently overlooked where phenotypically distinct but functionally similar 

phenotypes independently arise and spread. It is well established that flatwing male morphs 

of T. oceanicus lost the ability to sing via genetically determined feminised wing venation 

which rapidly spread under selection from a parasitoid fly that locates them by their song. 

Here, we present evidence that males expressing previously unidentified and phenotypically 

dissimilar song-loss phenotypes are similarly unable to produce song at perceptible levels, 

and appear to be protected from the parasitoid fly. Our findings show that in at least two of 

the populations exhibiting surprisingly low proportions of flatwing males, a much larger 

proportion of males are unable to sing than was previously appreciated, and that silence has 

evolved on at least four occasions under the same selection pressure. These findings illustrate 

how multiple solutions to a selective pressure can result in the evolution of functionally 

convergent, but morphologically varied, adaptive phenotypes. 

  
                                                

* This chapter is a modified, extended version of an article published as: Rayner, Aldridge, et al. 

(2019) ‘A silent orchestra: convergent song loss in Hawaiian crickets is repeated, morphologically 

varied, and widespread’ in Ecology, vol. 100 (8). 
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5.1 Introduction 

Convergent adaptive evolution has been considered variously as illustrative of the ability of 

organisms to repeatedly find solutions to the same selection pressure, and as evidence of 

constraints upon the evolution of new adaptive phenotypes (Gould & Lewontin 1979; Gould 

1989; Losos 2011). This latter view is often thought to be supported by accumulating 

evidence indicating convergently evolved, phenotypically similar phenotypes are frequently 

underpinned by mutations or parallel changes in allelic frequencies at or near to the same, 

key loci (Alves et al. 2019; Sackton & Clark 2019). On the other hand, it is likely that 

established examples of convergent adaptation are subject to a degree of observer bias, being 

more readily recognised when phenotypic changes show greater similarity, and that 

convergent adaptation through phenotypically dissimilar means is frequently overlooked in 

wild populations (Losos 2011).  

Functionally convergent phenotypes which are adaptive in the same ecological or 

physiological context, but which are reached through disparate phenotypic means, might 

provide important insight into the potential for evolution to find multiple solutions to same 

problem. For example, sticklebacks have adapted to parallel changes in diet following 

repeated colonisation of freshwater benthic habitats through morphologically divergent 

phenotypic changes, in each case promoting adaptive suction-based feeding strategies, and 

with the added effect of increasing the phenotypic variation between populations (Mcgee & 

Wainwright 2013). Additionally, fossorial rodent species exhibit various adaptive changes in 

morphology which render them suited to burrowing, but which show little phenotypic 

similarity, or involve different limbs entirely (Stein 2000; Losos 2011). In these scenarios, 

convergent adaptation through disparate phenotypic changes can be considered to 

demonstrate unambiguously that adaptive evolution has repeatedly occurred under shared 

selection pressures, not confined to the same genes, gene networks or even morphological 
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traits. This phenomenon of ‘functional convergence’ might, however, be frequently 

overlooked in studies that do not take into consideration important ecological contexts and 

selection pressures, instead relying largely on morphological similarity between populations 

or species. 

The loss of male song in T. oceanicus subject to fatal parasitism by O. ochracea is a 

textbook example of rapid adaptive evolution (Dugatkin 2008). Song loss is caused by 

genetic mutations that greatly reduce or eliminate sound-producing structures by superficially 

feminising male wing venation (‘flatwing’, Fw; Fig. 5.1A), and which have independently 

arisen on at least two islands. Surprisingly, given that the parasitoid fly is observed at 

locations of all known T. oceanicus populations across the Hawaiian archipelago, the 

distribution of flatwing phenotypes across populations is highly heterogeneous (Zuk et al. 

2018). Here, I present data which show a large proportion of males in populations within 

which flatwing phenotypes have not arisen or spread to predominate nevertheless express 

altered wing morphologically, which reduces their ability to sing and protects them against 

parasitism from the fly. These observations may help explain the heterogeneous spread of 

flatwing phenotypes across populations, and illustrate the multiple means through which T. 

oceanicus have lost the ability to sing under shared selection pressure from the acoustically-

orienting parasitoid fly. 

 

5.2 Methods and Results 

5.2.1 Fieldwork observations 

On visits to parasitized cricket populations in 2017 and 2018, we discovered two wing 

phenotypes – ‘small-wing’ (Sw: Fig. 5.1B) and ‘curly-wing’ (Cw: Fig. 5.1B) – which have 

not previously been described, and which differ phenotypically from normal-wing and 
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flatwing phenotypes. These aberrant wing phenotypes were discovered while performing 

annual transect surveys in parasitized populations of T. oceanicus to record numbers of 

normal-wing and flatwing males (Fig. 5.2A). We first identified curly-wing morphology in 

the ‘CC’ population (Fig. 5.2A) in 2017, and performed follow-up lab and field work in 2018, 

during which we identified the small-wing phenotype. Thus, curly-wing phenotypes 

constitute the primary focus of this section, but the results are likely to be similarly applicable 

to small-wing morphology (see 5.2.3). 

The curly-wing phenotype we observed has not been previously described in crickets, 

so we named it for its similarity with the Drosophila wing mutation described nearly a 

century ago by Ward (1923). In lab populations reared from eggs of ca. 30 wild-caught 

females, curly-wing morphology persisted across five generations at similar proportions 

(~50%), strongly suggesting a heritable basis. The trait is observable immediately upon adult 

eclosion, and other lab populations reared in the same growth chamber do not express it. 

Males of T. oceanicus produce song through rhythmic movements of their forewings, leading 

sound-producing structures on either forewing to engage and produce resonating frequencies 

(Pfau & Koch 1994). We anticipated that curly-wing morphology would prohibit the 

engagement of the plectrum and stridulatory file, reducing the ability of males expressing this 

phenotype to produce song and protecting them against parasitism by O. ochracea (Zuk et al. 

2006). 
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Figure 5.1 Alternative male-silencing wing morphs of Hawaiian T. oceanicus. 
 (A) Venation variants: traced micrographs showing forewing venation patterns (adapted 
from Pascoal et al. 2014) of a female and Nw male, and Fw males from the different islands, 
with sound-producing structures highlighted (purple=’harp’, green=’mirror’, 
yellow=’plectrum’). (B) Newly described shape and size variants: typical Nw male (left) 
alongside CwNw male and SwNw male; note that both forewings and hindwings are reduced. 
(C) Micro-CT scans of a CwFw male with forewings in resting position and head and thorax 
omitted, showing how marginal wing surfaces ‘peel up’ and preclude physical engagement 
during wing movement. 
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5.2.2 Curly-wing recordings and playback trials 

We found strong support for our prediction that curly-wing morphology protects calling 

males from parasitoid attack relative to typical Nw males (Fig. 5.2B,C). First, we found that 

males with Nw venation, but exhibiting curly-wing morphology like that shown in Fig. 5.1C, 

do not sing as loudly as typical Nw males (Wilcox rank sum test: N=15, P<0.001; Fig 5.2B; 

comparing songs measured in the lab using a CEM DT-805 sound level meter 5 cm from test 

subjects). Flatwing males also attempt to sing (Schneider et al. 2018), but the amplitude of 

acoustic stimuli produced during wing movement did not differ between CwNw and Fw 

males (N=13, P=1.000). Like Fw males, CwNw males produced variable, but lower-

amplitude, peak frequencies (Fig. 5.2B).  

To test whether CwNw males were protected from the parasitoid fly, we performed 

playback trials at the CC site using looped calling songs recorded in the lab at 25±1°C from 4 

Nw and 4 CwNw males. Songs were played on SanDisk Mp3 players through Sony SRS-m30 

speakers underneath fly traps (modified 1.5L plastic bottles with the funnel-end inverted), 

broadcast at their originally-recorded volumes. Since Cw males were only found in 

populations that also contained calling Nw males (Fig. 5.2A), we designed playbacks to 

mimic natural conditions by placing three traps 11m apart in a triangle: one typical Nw song, 

one CwNw song, and a third without playback as a negative control. Trials lasted 5 minutes 

and were performed in dry weather between sunset (~6.10pm) and 8.30pm when the fly is 

active (Beckers & Wagner 2012). All pairings of typical Nw and CwNw song models were 

repeatedly tested over 4 nights and rotated among speakers between trials. Like the negative 

controls, CwNw songs never resulted in a fly entering the trap, whereas typical Nw songs 

attracted flies in 28.13% of trials (paired Wilcoxon signed rank test: N=64, P<0.001). (Fig. 

5.2C) 
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5.2.3 Small-wing observations 

In the same field season, when surveying a different parasitised population of Hawaiian T. 

oceanicus (‘UH’ in Fig. 2A) in which less than 5% of males exhibit flatwing morphology , 

we noted a substantial proportion of males (N=28, 27.18%) with unusually small, but 

normally-veined forewings (‘SwNw’, Fig. 5.1B). We temporarily removed 12 SwNw males 

from the field and measured courtship song that they produced when exposed to females 

(mean = 61.83 dB ± 2.99 SE, see supplementary videos). Two of the 12 produced acoustic 

stimuli below the recordable atmospheric noise level of ca. 45 dB, so we conservatively 

dummy-coded these in analyses as producing song at 45 dB. One of the 12 had forewings of 

differing lengths and sang at up to 80 dB, towards the lower end of the normal range 

(Balakrishnan & Pollack 1996), but this was the exception. The other 11 produced acoustic 

signals at substantially lower than normal levels.  
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Figure 5.2 Distributions, song features and fly attack rates 
A. Distributions of parasitized populations of T. oceanicus and proportions of males showing 
typical Fw and Nw morphology plus newly-identified CwNw, CwFw and SwNw phenotypes 
from 2018 surveys. Two-letter codes correspond to site IDs. B. Differences in calling song 
properties for Nw, Fw and CwNw males recorded using a Sennheiser ME66 microphone 5 
cm from subjects in the lab. C. Flies attracted to CwNw, negative control and Nw playbacks 
in the field: points illustrate means and bars are 95% non-parametric confidence intervals. 
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5.3 Discussion  

Whether convergent adaptive evolution demonstrates the surprisingly ability of populations 

to repeatedly adapt under shared selections, or, instead, the presence of developmental 

constraints upon the route that adaptive evolution may take is much debated (Gould & 

Lewontin 1979; Losos 2011). Our observations, alongside prior work (Zuk et al. 2006; 

Pascoal et al. 2014), reveal that silent phenotypes have independently arisen in Hawaiian 

field crickets predated by an acoustically-orienting parasitoid on at least four occasions. 

While convergent flatwing phenotypes from Kauai and Oahu populations share superficial 

phenotypic similarity (Pascoal et al. 2014), the two newly observed phenotypes reported here 

are morphologically distinct from flatwing phenotypes and from each other, illustrating that 

functionally convergent adaptation (i.e. loss of male song) can occur through a variety of 

phenotypic changes. This range of phenotypic variants, all of which appear to have spread 

under selection against male song, demonstrate convergent adaptation through 

morphologically dissimilar means. The finding that these silent male phenotypes coexist in 

multiple populations is also consistent with expectations of soft selective sweeps, in which 

multiple adaptive variants arise and spread under shared selection pressures (Messer & 

Petrov 2013); likely better preserving ancestral genetic variation in populations in which 

multiple adaptive variants have emerged. 

We observed that small-wing morphology not only affected crickets’ forewings, 

which males use to produce song, but also the hindwings, which both sexes use for flight 

(Fig. 5.1B). Brachyptery is commonly observed in the hindwings of related species (though 

not, to our knowledge, in T. oceanicus) and is highly heritable in related species (Roff 1994). 

An important distinction is that brachypterous forms of field crickets such as Gryllus firmus 

gain a fitness advantage by divesting energy from maintaining large hindwings and flight 

muscle, while boosting their attractiveness to females through increased calling effort using 
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the forewings (Crnokrak & Roff 1998). In T. oceanicus, small-wing males are unable to 

produce ordinary calling or courtship song, owing to their reduced forewings, and so would 

gain no such benefit. Intriguingly, however, small-wing males may still derive benefit from 

reduced investment in wing growth and associated wing musculature. Dealation – the active 

removal of wings – is known to occur across a variety of insect taxa, and in Orthopterans is 

known to enhance the rate of egg production in females (Tanaka 1976; Roff 1984). Even 

more striking, the experimental removal of wings in two species that do not practice 

dealation, Gryllus firmus and T. oceanicus, also increases the rate of egg production, 

seemingly related to histolysis of associated wing muscles (Roff 1989). Future work could 

investigate whether small-wing males and females similarly benefit from resource re-

allocation associated with their drastically reduced wings. 

 The initial discovery of flatwing stimulated research into behavioural and 

physiological consequences of trait loss and rapid evolution, and a population of T. oceanicus 

was recently described on Molokai in which flatwing males produce severely attenuated, 

broad-band acoustic stimuli (Tinghitella et al. 2018). Our identification of additional 

protective, reduced-song wing morphs raises many questions. The emergence of alternative 

adaptive phenotypes may have inhibited the spread of flatwing males and could account for 

their variable proportions observed in different populations (Zuk et al. 2018). Do flatwing, 

curly-wing and small-wing males differ in attractiveness to females, and does one phenotype 

have an advantage over others? All phenotypes appear capable of co-expression in the same 

male, and females also express curly-wing and small-wing, so it will be important to dissect 

their genetic architecture. The repeated appearance of adaptive phenotypes through different 

underlying genetic changes is consistent with expectations of a soft selective sweep (Messer 

& Petrov 2013), so tracking their relative success in populations where multiple adaptive 
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phenotypes have appeared could provide important insight into their relative costs and fitness 

benefits.  

The recurrent adaptive loss of song across small, fragmented populations of Hawaiian 

field crickets illustrates the multiple, morphologically varied routes by which this male trait 

can be functionally lost. Our observations are consistent with recent evidence for high 

evolvability of trait loss under negative selection (Xie et al. 2019), a phenomenon widely 

observed among costly sexually selected traits (Wiens 2001), and which may play an 

important role in rapid adaptation of populations to novel environments or selection 

pressures. While functionally convergent adaptive phenotypes have been observed across a 

range of phenotypic gains such as novel feeding and burrowing morphologies (Losos 2011; 

Mcgee & Wainwright 2013), it is plausible that this functionally convergent adaptation is 

particularly likely to occur under selection against traits, given the multitude of means by 

which an ecological trait might reasonably lost or reduced. 
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6. Persistence of behavioural singing effort in 

silent cricket populations* 

Evolutionary loss of sexual signals is widespread. Examining the impact on behaviours 

associated with such signals can provide insight into factors promoting or inhibiting trait loss. 

We tested whether a costly behavioural component of a sexual trait, male calling effort, has 

been evolutionary reduced in populations of silent Hawaiian field crickets (Teleogryllus 

oceanicus). Sexual advertisement song requires energetically costly wing movements, but 

silent flatwing males have genetically feminised wings that preclude song and protect against 

a lethal, eavesdropping parasitoid. Flatwing males express wing motor patterns associated 

with singing, but in contrast to normal-wing males, sustained periods of wing movement 

cannot confer sexual selection benefits and should be subject to strong negative selection. We 

developed a novel, automated technique to quantify how long males spend expressing wing 

movements associated with song. We compared calling effort among populations of 

Hawaiian crickets with different proportions of silent males, and between male morphs. 

Contrary to expectation, silent populations invested as much in calling effort as non-silent 

populations. Flatwing and normal-wing males did not differ in calling effort. The lack of 

evolved reduction in behaviour following morphological change in silent Hawaiian crickets 

illustrates how behaviour might sometimes impede, rather than facilitate, evolutionary trait 

loss.  

                                                

* This chapter is currently under review: Rayner, JG, Schneider, WT, & Bailey, NW (in review) ‘Can behaviour 
impede evolution? Persistence of singing effort after morphological song loss in crickets’. 



 
 

113 

6.1 Introduction 

A common intuition is that traits which no longer serve an adaptive function should be 

evolutionarily lost (Porter & Crandall 2003). The secondary loss and vestigialisation of 

morphological traits is well-documented (Fong et al. 1995), but whether behaviours 

associated with such traits are also evolutionarily lost, for example through the accumulation 

of neutral mutations (Carson et al. 1982; Wilkens 1988), is less well understood. 

Alternatively, behaviours could remain expressed and therefore available for evolutionary co-

option (Moczek 2008). Secondary sexual traits provide an excellent opportunity to test this, 

because they frequently involve display behaviours such as limb, appendage or other bodily 

movements that work in tandem with specialised morphological features to produce a 

conspicuous signal. The reduction and loss of sexual signals under natural selection is 

theoretically predicted (Fisher 1930; Lande 1981) and widely observed (Wiens 2001; 

Kraaijeveld 2014). Here we use Hawaiian populations of field cricket T. oceanicus that have 

recently lost the ability to sing due to a morphological change (Zuk et al. 2006), yet retain 

central pattern generators that produce the behavioural component of song (Schneider et al. 

2018), to test whether selection has reduced the amount of effort males expend on non-

functional signalling behaviour.  

Male crickets produce song via rhythmic movement of their forewings, causing 

sound-producing wing structures to resonate (Pfau & Koch 1994). Females strongly prefer 

males that sing more (Cade & Cade 1992; Crnokrak & Roff 1995; Holzer et al. 2003; Hunt et 

al. 2005; Drayton et al. 2010), but calling behaviour incurs substantial energy expenditure 

(Prestwich & Walker 1981; Hoback & Wagner 2008; Hack 1998) and is condition-dependent 

(Holzer et al. 2003; Hunt et al. 2004; Judge et al. 2008; Houslay et al. 2017). In T. oceanicus, 

males from populations on multiple Hawaiian islands have lost the ability to produce acoustic 

signals under selection from an acoustically-orienting parasitoid fly, Ormia ochracea (Zuk et 
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al. 2006). In the best characterised example, silence is caused by the loss of sound-producing 

structures on the wings (the ‘flatwing’ phenotype). The timeline of flatwing’s appearance and 

spread has been well-documented in several populations on different islands: Kauai (first 

observed in 2003), Oahu (2005), and Hawaii (2010) (Pascoal et al. 2014). In both Kauai and 

Oahu, flatwing segregates as a single-locus trait underpinned by mutation(s) on the X-

chromosome (Zuk et al. 2006; Pascoal et al. 2014). Silent males are strongly disadvantaged in 

the context of sexual selection (Tanner et al. 2019; Rayner & Bailey 2019), but nevertheless 

spread rapidly under selection from the fly. Flatwing males are capable of expressing the 

precise patterns of rhythmic forewing movement that produce advertisement song in normal-

wing males (Schneider et al. 2018). Given its energetic costs, behavioural calling effort – the 

amount of time spent producing wing movements associated with calling song – should be 

selected against.  

We developed a novel, automated video analysis technique to assay calling effort of 

males from populations with consistent but contrasting proportions of normal-wing and 

flatwing male phenotypes (Zuk et al. 2018). In at least one population of T. oceanicus on each 

of Kauai and Oahu, 100% of males are now silent (Chapter Five). We predicted these silent 

populations would show reduced calling effort compared with populations where more 

normal-wing males are found. We also estimated male condition and measured testes mass to 

evaluate whether calling effort is associated with proxy measures of male quality. Finally, we 

tested whether, within a population, flatwing males show lower calling effort than normal-

wing males. Evidence consistent with our predictions of reduced calling effort in silent 

populations would support the idea that behaviour played an important role in the rapid 

spread of a mutation causing adaptive silence in Hawaiian crickets. No difference in calling 

effort among populations or between morphs, however, would suggest that selection has not 
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reduced this non-adaptive trait, and its persistence could diminish the overall advantages of 

flatwing and enable co-option for other functions (Porter & Crandall 2003). 

 

6.2 Methods 

6.2.1 Sampling and rearing of test populations 

We sampled sites on Kauai (KVL: 100% flatwing), Hawaii (HCL: 90-100% normal-wing), and 

two nearby (~1km apart) sites on Oahu with contrasting proportions of silent and non-silent 

males (OAC: 100% flatwing; OCC: ~50% flatwing) in 2017 (Fig. 6.1A) (Chapter Five). Our 

estimation that ~50% of OCC males would be able to sing owing to normal-wing venation was 

revised down to ~25%, following the identification of an additional silencing phenotype in 

this population (‘curly-wing’; Chapter 5). No curly-wing males were used in the current 

experiment. Assuming ca. 4 generations per year, flatwing males had been present in the 

Kauai and Oahu populations for approximately 56 and 48 generations, respectively, at the 

time of sampling; well within the ability of populations to exhibit adaptive evolution (Fricke 

& Arnqvist 2007; Marchini et al. 2014; Szűcs et al. 2017; Foucault et al. 2018). Flatwing 

males have been observed in Hawaii since 2010 (approx. 28 generations before sampling), 

but at consistently low proportions (<10%) (Pascoal et al. 2014; Zuk et al. 2018; Chapter 

Five).  

 Offspring from approximately 30 wild-caught females and 30 wild-caught males were 

reared and maintained in an incubator at 25C, on a 12:12 LD cycle. Lab stocks were 

maintained at >150 individuals for two generations prior to testing to minimise field-based 

maternal effects, with food (Burgess Excel Junior and Dwarf rabbit pellets) and water ad 

libitum. Penultimate instar males from F2 lab populations were isolated in clear plastic 
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containers (65mm diameter × 40mm depth) until use in trials between 7 and 11 days post-

adult eclosion.  

Upon adult eclosion, the plectrum of the right wing, which is necessary to produce 

song, was surgically removed from normal-wing males (Fig. 6.1B). Flatwing males were 

sham-operated. All males were therefore silent to avoid confounds that could arise if males 

receive auditory feedback from their own song or sing in response to others (Jang 2011). 

Calling effort estimates thus reflect the constitutive tendency of males to produce wing 

movements associated with advertisement songs, rather than social feedback. Experimental 

males were tested once between 7 and 11 days post-adult eclosion; previous studies have 

found cricket calling behaviour is repeatable across adult ages (Kolluru 1999; Bertram et al. 

2011), and is heritable (Hedrick 2002; Webb & Roff 1992; Gray & Cade 1999). Experimental 

males were weighted to the nearest 0.001 g and pronotum lengths measured to the nearest 

0.01 mm. Scaled mass index (SMI) was calculated as a proxy of body condition (Peig & 

Green 2009), with pronotum length as the linear measurement. 

6.2.2 Trials and video processing 

On the day before trials, a small reflective tag (3-4mg) was attached near the distal end of 

males’ dorsal-right forewing using a small amount of superglue (Loctite, Germany) (Fig. 

6.1B). After a ca. 12-hour recovery period, we filmed two-hour calling effort trials using a 

Nikon D3300 digital camera, recording under dim red light. Trials began 15 minutes after 

onset of the dark cycle to coincide with peak calling activity in wild Hawaiian populations 

(Kolluru 1999). During trials, males occupied 55 × 43 × 35mm compartments within a larger 

box containing 20 such compartments, visually isolated from one another but visible to the 

camera, which recorded the red light reflected from each cricket’s wing tag. Between 12 and 

16 crickets were filmed in each trial. Crickets were allowed 15 minutes to acclimate prior to 
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the start of the trial. After trials, crickets were massed to the nearest mg and the length of 

their pronota measured to the nearest .01mm. Males were euthanised by freezing at -20C, 

with the exception of those needed for maintaining lab stocks (N=24). Frozen males were 

dissected and their testes massed to the nearest mg.  

Automated analysis was performed in MATLAB using custom scripts to quantify the 

duration of wing movement bouts associated with calling song for each cricket (Supporting 

Information). Briefly, image brightness and contrast were adjusted and the background 

removed so that only reflective wing tags were visible. Centre coordinates for each tag were 

recorded so distances moved between frames could be calculated. Differences between X-

coordinates were used to determine whether each distance was positive or negative. Distances 

were converted into the time/frequency domain using a continuous wavelet transform (CWT) 

between 1 to 20 Hz. For wing movements to qualify as singing, four criteria needed to be 

met: (1) mean power between 10-16 Hz (13 Hz being the observed frequency of T. oceanicus 

wing movements during calling song, based on Schneider et al. (2018)) exceed a threshold of 

0.7 of the CWT output, (2) 90% of the power in the CWT output was between 10-16 Hz, (3) 

peak frequency power was between 9 and 17 Hz, and at this peak the CWT output power was 

greater than 1.5, (4) the duration of singing exceeded 0.6 seconds. Episodes of singing that 

restarted within 10 seconds were recorded as a single bout.  

The novel methodology employed for assaying calling effort by video tracking was 

validated using separate trials of audibly-singing crickets (N = 22, 9 hours 34 minutes of 

video) to ensure accurate detection of singing. Spectrograms of the audio from these trial 

videos were manually assessed to determine whether a singing bout (defined as successive 

chirps and trills) occurred. This information was then cross-referenced with the results of the 

automated detection algorithm. All occurrences of singing bouts were successfully detected 

by the video tracking approach, though cross-referencing did report a low rate of false 
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positives. During the 573.85 minutes of video, the code detected a total of 49.65 minutes of 

singing. Of this, 48.64 minutes was corroborated, in that it lined up with manually scored 

singing, whereas 1.02 minutes (ca. 2%) was incorrect and was caused by unusual movements 

in the video.  

6.2.3 Statistical analysis 

Statistical analysis was performed in R v.3.4.4. Calling effort (i.e. time spent singing, 

(Hunt et al. 2004; Judge et al. 2008; Houslay et al. 2017)), was normalised by log-

transformation (log2[time singing+1]). Variation in calling effort was analysed using a linear 

mixed model (LMM), with population modelled as a categorical factor and trial ID as a 

random effect to account for batch effects. Age in days post-eclosion, total mass, and SMI 

were included as covariates. Morph variation within mixed populations was analysed in the 

same way, but with morph replacing population as the categorical variable. Visualisation 

indicated a non-linear effect of SMI, so it was included as both a linear and quadratic 

predictor using the R function poly to account for covariance.  

 

6.3 Results 

Calling effort was recorded for 342 males (HCL=95 [90 normal-wing, 5 flatwing]; OCC=82 

[45 normal-wing, 37 flatwing]; OAC=85 flatwing, and KVL=80 flatwing). Consistent with our 

expectations based on field observations, OAC and KVL populations reared in the lab from 

eggs collected from wild-caught females contained only silent flatwing males, supporting the 

observation that normal-wing males are absent in these populations (Tinghitella et al. 2018; 

Zuk et al. 2018; Rayner, Aldridge, et al. 2019).  

There was no evidence males from silent populations spent less time calling (Table 

6.1; Fig 6.1C). Similarly, there was no evidence in the OCC population, in which normal-wing 
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and silent flatwing morphs co-occur, of any reduced investment in song by flatwing males 

(Table 6.2); there was a similar pattern in the HCL population, though with too few flatwing 

males for statistical comparison (Fig. 1D). Time spent calling scaled positively with 

condition, but this relationship appeared to tail off at the highest measures of condition (Fig. 

6.S1). Mass was negatively associated with time spent calling but this was only significant 

when SMI was included in the model. Overall, the LMM accounted for little of the total 

variance in calling effort (R2=0.083). Including testes mass in the model as an additional 

covariate (reducing N from 342 to 318) alongside somatic measures of mass and SMI 

produced similar results, and testes mass did not predict time spent calling (Table 6.3).  

 

 

 

Figure 6.1 No reduction in calling effort among silent populations 
A) Map of the Hawaiian islands, with locations of the study populations. The inset graph 
shows proportions of silent males in respective wild populations (see Chapter Five): the 
segmented bar for OCC illustrates that ~33% of the silent males (the lighter portion) are silent 
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due to curly-wing rather than flatwing morphology. B) Diagram of an adult normal-wing 
male with a reflective tag (black) applied to its dorsal-right forewing. The plectrum, which 
was surgically removed or sham-operated in all test males, is highlighted in red. C) Calling 
effort (time spent singing) for males from each population. D) Time spent singing by Nw and 
Fw males in OCC and HCL populations in which they co-occur. In C) and D), points are 
jittered along the X-axis, and black points and error bars represent means and standard 
deviations. Points in C) and D) are scattered along the X-axis for purposes of visualisation 
only, with solid outlines representing density distributions. 
 

6.4 Discussion 

Sexually selected traits are often opposed by countervailing natural selection (Fisher 1930; 

Zahavi 1975; Lande 1981; Andersson 1986), which can lead to their evolutionary reduction 

or loss (Wiens 2001; Kraaijeveld 2014). Understanding the consequences for behaviours 

previously associated with the signal can provide information about factors that may facilitate 

(if behaviour is rapidly lost) or stymie (if costly behaviour persists) such trait losses. We 

found no evidence of reduced investment in energetically costly calling effort among male T. 

oceanicus in which wing movements do not produce song. Neither silent populations, nor 

silent males in mixed populations, showed any indication of reduced calling effort. This 

costly calling effort will deplete energy reserves and involve resource allocation tradeoffs 

(Hack 1998; Hoback & Wagner 2008), reducing the relative fitness advantages of silent 

males, and its persistence appears inconsistent with the view that behaviour generally 

facilitates the early stages of adaptive evolution (Wong & Candolin 2015; Bailey et al. 2018). 

Here, persistent signalling behaviour imposes a double cost on flatwing males: not only can 

they not produce signals, they still expend considerable effort trying to do so. 

Evolved loss of song in Hawaiian populations of T. oceanicus has been well-

documented, and has occurred convergently through a variety of morphological means (Zuk 

et al. 2006; Pascoal et al. 2014; Chapter Five). Nevertheless, in all cases, males which cannot 

produce song at ordinary levels persist in attempting to sing (Schneider et al. 2018; Chapter 
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Five; Rayner, Aldridge, et al. 2019). It is unsurprising that silent flatwing males from mixed-

morph populations exhibit the same calling effort as normal-wing males: to evolve a lower 

investment in song effort would require that mutations underlying reduced investment are or 

have become genetically linked with the flatwing genotype on the X-chromosome, which is 

perhaps unlikely. However, it is counter-intuitive that a seemingly optimal solution to 

selection against song by the parasitoid fly – for males to evolve lower calling effort – has not 

evolved in predominantly silent populations. Shifts in diurnal patterns of calling in response 

to the fly have previously been documented in this system which suggests a capacity for such 

behavioural evolution (Zuk et al. 1993), so it remains an open question why morphological 

losses of sexual signalling in this system appear to be the more successful adaptations.  

The persistence of costly calling behaviours in silent males and in silent populations 

of T. oceanicus is not without parallel in other species, and has important implications for the 

evolvability of the same, or novel, phenotypes. For example, populations of rattlesnakes, such 

as Crotalus catalinensis and C. ruber lorenzoensis in the gulf of California, express only 

vestigial rattles and are incapable of producing a warning signal, but nevertheless silently 

‘rattle’ their tails when disturbed by humans (Johnson 1972; Shaw 1964; Radcliffe & Maslin 

1975). Along similar lines, several species of the adiastola group of Hawaiian Drosophila 

exhibit a courtship ritual in which they raise and vibrate their abdomen, yet males of only one 

species express long clavate hairs which sweep the female’s head as this occurs. The 

elaboration of the hairs is suggested to have evolved following the courtship behaviour, rather 

than having been lost in related lineages (Carson 1978). Note, however, that in Hawaiian 

Drosophila, abdomen vibration is likely to function as a courtship signal even in the absence 

of the elaborated hairs, and it is feasible also that tail display behaviours in rattlesnakes could 

retain functionality as a visual signal following the vestigialisation of the rattle appendage. It 

is feasible that the wing movements associated with song could be similarly co-opted for 
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non-acoustic courtship displays, or otherwise lead to the regain of song in Hawaiian field 

crickets if selection against song is relaxed (Tinghitella et al. 2018). Gray et al. (2018) 

demonstrated the feasibility of such a scenario by inducing the expression of calling song in a 

cricket species, Gryllus ovisopis, in which it has been evolutionarily lost.  

Our results suggest an interesting counterpoint to the widely supposed role of 

behaviour in the early stages of rapid adaptation (Wong & Candolin 2015; Bailey et al. 2018); 

constraints associated with less evolutionarily responsive phenotypes might reduce the 

benefit of novel adaptive variants. In the case of song-loss in Hawaiian T. oceanicus the costs 

of this evolutionary lag are evidently marginal compared with the overwhelming benefits of 

evading parasitism, but under different conditions, similar costs could inhibit or even 

preclude populations from rapidly adapting to changes in their environment, and the 

maintenance of ‘vestigial behaviours’ could play an important role in eventual re-emergence 

of previously lost traits over longer-term evolutionary timescales (Tinghitella et al. 2018; 

Bailey et al. 2019).  
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6.5 Tables 

 
Table 6.1. The results of an LMM (N=342, R2=0.083) for total time spent singing (log2-

transformed), with a random effect of trial ID. 

Predictor df X2 P 

Population 3 3.108 0.375 

Age 1 0.311 0.577 

Mass 1 4.901 0.027 

SMI* 2 16.055 <0.001 

 
Significant P-values (<0.05) are highlighted in bold. 
* SMI is included in the model as an orthogonal polynomial with 2 degrees to account for non-linear 
effects  
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Table 6.2 The results of an LMM (N=82, R2=0.045) for time spent singing (log2-

transformed) for males from the OCC population, with a random effect of trial ID. 

Predictor df X2 P 

Wing morph 1 0.268 0.605 

Mass 1 0.008 0.927 

SMI* 2 2.846 0.241 

* Somatic SMI is included in the model as an orthogonal polynomial with 2 degrees, to account for non-

linear effects  
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Table 6.3. The results of an LMM (N=318, R2=0.075) for total time spent singing (log2-

transformed), with a random effect of trial ID, including testes mass as an additional 

predictor variable. Significant P-values (<0.05) are highlighted in bold. 

Predictor df X2 P 

Population 3 3.799 0.284 

Age 1 0.054 0.816 

Somatic mass 1 1.646 0.199 

Somatic SMI* 2 13.094 0.001 

Testes mass 1 1.789 0.181 

 
Significant P-values (<0.05) are highlighted in bold. 
* Somatic SMI is included in the model as an orthogonal polynomial with 2 degrees to account for non-
linear effects  
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6.6 Supporting Figures 

 

 

Supplementary Figure 6.1 Relationship between SMI and calling effort 
The non-linear relationship between scaled mass index and log2-transformed calling effort 
across all populations. The line shows predicted values for the SMI term from the linear 
mixed model in Table 6.1, and with 95% confidence intervals. 
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Supplementary Figure 6.2 Arrangement of experimental males 
Screenshot from a trial video, showing 16 isolated male crickets under a low level of red 
light, with their reflective tags visible. 
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7. General Discussion 

Understanding the factors which promote rapid adaptive evolution in the face of the various 

ecological and genetic features which act to constrain it is central to the study of evolutionary 

biology, and has motivated a great deal of research. In this thesis I have used the loss of male 

song in Hawaiian populations of T. oceanicus as a system in which to test factors that have 

promoted and resulted from recurrent and rapid adaptive evolution across small, diffuse and 

fragmented wild populations evolving under extreme selection from the acoustically-

orienting parasitoid fly, O. ochracea. Alongside prior work, the results have shown that song 

loss has evolved repeatedly, and through a variety of independent means, but with potentially 

key unifying characteristics which provide insight into the conditions which promote rapid 

adaptation. For example, the evolution of genetically distinct flatwing phenotypes appears to 

have been facilitated by variation underlying sexual dimorphism (Chapter Three), and 

pleiotropic or otherwise associated effects on non-focal phenotypes of the underlying 

mutations in each sex are likely to have played an important role in promoting or constraining 

their spread (Chapter Two). Additionally, all characterised adaptive variants involve the loss 

of male song rather than alternative adaptive strategies, such as reduced investment in song 

(Chapters Five and Six), suggesting morphological – rather than behavioural – trait losses 

may lend themselves particularly to rapid adaptation, given the multitude of ways in which a 

trait may be functionally lost.  

In contrast, and despite expectations that phenotypic plasticity will play a key role in 

the early stages of adaptation (West-Eberhard 2005), the results reported here do not add to 

existing evidence of behaviour, plasticity or alterations to the male social environment having 

played an important capacitating role in the spread of adaptive song-loss variants. All males 

which cannot sing (due to obligate, or experimentally manipulated, silence) continue to 
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expend considerable energy trying to do so (Chapter Five), as do populations which have 

evolved in silence for upwards of 50 generations, despite the readily apparent fitness 

advantages of divesting energy from the costly behaviour in the absence of benefits in female 

mate choice (Chapter Six). Additionally, there was no evidence that the loss of the male 

sexual trait, or associated feminised appearance and cuticular pheromones, had any 

mitigating effect with respect to reducing the aggressiveness of male agonistic encounters 

(Chapter Four). While there are various potential explanations for these null findings, the 

results of this thesis hint at a primary importance of genetic and developmental factors, such 

as balancing selection and pleiotropy, in promoting the rapid adaptive spread of songless 

male phenotypes. While an important role for associated phenotypic plasticity and 

evolutionary accommodation in this system is supported by prior work (Zuk et al. 2006; 

Bailey et al. 2010; Bailey & Zuk 2012; Balenger & Zuk 2015), this role might be secondary 

to that of more immediate genetic and developmental constraints in determining the ability of 

small and fragmented populations to evolve under strong selection.  

 

7.1 Standing genetic variation and rapid adaptation 

A primary constraint acting upon the evolution of novel adaptive phenotypes is the amount of 

standing genetic variation in the genome (Barton & Turelli 2003). This existing variation is 

widely expected to play a primary role in determining the ability of small or medium-sized 

populations to adapt to rapid changes in ecology (Hermisson & Pennings 2005), as de novo 

adaptive mutations may be vanishingly rare (Lai et al. 2019). At least in Kauai and Oahu, 

adaptive flatwing phenotypes are underpinned by separate mutations which appear to have 

arisen and spread under selection from the parasitoid fly (Zuk et al. 2006). Evidence from the 

differential expression study in Chapter Three indicates each of these adaptive mutations 
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interact with and disrupt existing patterns of sex-biased gene expression in the affected 

developing wing tissues. This suggests that evolution of newly adaptive mutant phenotypes 

nevertheless benefitted from the existence of variation underlying sexual dimorphism; 

specifically, variation associated with sex-specific developmental trajectories (i.e. genes 

expressed differently between sexes) which are regulated by differences in expression of key 

modifier genes, and which are shared across populations (Alves et al. 2019; Lai et al. 2019). 

This would in turn indicate that two fundamental substrates for genetic adaptation – genomic 

variation and mutation – interacted synergistically in bringing about the emergence and 

spread of flatwing phenotypes. Such a pattern of de novo mutations, i.e. those underlying 

flatwing phenotypes in Kauai and Oahu, interacting with standing variation, i.e. variation 

underlying sexually dimorphic wing venation patterns, to produce adaptive change is 

consistent with the idea that existing, evolutionarily shaped patterns of developmental 

regulation play an important role influencing genomes’ evolvability (Wagner & Altenberg 

1996; Kirschner & Gerhart 1998). 

 In contrast, the results of Chapters Five and Six illustrate that while song-loss 

phenotypes have repeatedly emerged, males carrying each of these phenotypes still invest 

heavily in trying to sing, and the energy invested in attempting to produce song does not 

differ between silent and non-silent populations. The fitness benefits of investing less energy 

in costly calling effort following the erosion of sound-producing features are clear, and a 

more intuitive and advantageous route of adaptation under selection from the parasitoid fly 

might have been to simply stop exhibiting this costly behaviour, or to modulate the timing 

and level of singing behaviour to avoid the fly (Zuk et al. 1993). The persistence of calling 

behaviour in silent and non-silent populations alike therefore hints at constraints upon the 

adaptive modulation of calling behaviour, and a plausible explanation for this is depleted 

standing genetic variation in associated regions as a result of many thousands of generations 
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of selection for substantial investment in male song (Wagner & Reiser 2000; Barton & Turelli 

2003). Thus, while standing variation associated with sexually antagonistic selection 

pressures, and thus sexual dimorphism, might have capacitated the multiple emergence of 

adaptive songless male phenotypes, modulation of calling behaviour might have been 

impeded by the purging of variation in associated genomic regions under strong sexual 

selection for calling effort (Wagner & Reiser 2000).  

 The finding that multiple adaptive songless phenotypes have apparently emerged and 

spread under selection from the parasitoid fly raises an intriguing question for future 

research. Soft selective sweeps, in which multiple adaptive variants arise and spread under 

shared selection pressure, are expected to less drastically reduce standing genetic variation 

compared with hard selective sweeps, in which a single adaptive variant arises in a single 

ancestor (Hermisson & Pennings 2005). If so, populations in which combinations of flatwing, 

curly-wing, and/or small-wing males co-exist might be expected to exhibit greater levels of 

genetic variation – and thus effective population size – compared with those in which 

flatwing (or other adaptive songless variant) phenotypes emerged and spread to fixation. 

These dynamics might therefore increase the probability of evolutionary rescue, and promote 

evolvability in future environments (Wilson et al. 2017). 

 

7.2 Phenotypic plasticity and compensatory adaptation 

Phenotypic plasticity, of which behavioural flexibility is one form, is expected by many to 

play an important role in the early stages of adaptation (West-Eberhard 2003; Ghalambor et 

al. 2007; Wong & Candolin 2015; Bailey et al. 2018). Consistent with this, the spread of 

flatwing males appears to have benefitted from pre-existing flexibility in female mate choice 

(Zuk et al. 2006; Bailey et al. 2008), and plastic responses to the acoustic environment 
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(Bailey et al. 2010; Balenger & Zuk 2015; Pascoal et al. 2018); the latter presumably 

representing an ancestral form of phenotypic plasticity in response to changes in population 

density (Tinghitella & Zuk 2009).   

 Besides this behavioural flexibility in the context of the level of acoustic stimulation, 

I found little evidence of phenotypic plasticity or behavioural flexibility having played 

further important roles in the adaptive emergence and spread of song-loss phenotypes. The 

loss of song does not appear to influence the incidence of same-sex sexual behaviour via 

mistaken identity, which might have reduced the levels of male-male aggressiveness to which 

they are subject. This is perhaps surprising, as a large body of literature supports the view that 

less sexually dimorphic males, such as juveniles (Dukas 2010), and those which pursue 

alternative reproductive tactics (Mason & Crews 1985; Norman et al. 1999), tend to be 

exposed to lower levels of intra-specific aggression via increased likelihood of conspecific 

males expressing same-sex sexual behaviour. In fact, a previous study of T. oceanicus found 

that silent males actually experience greater levels of aggression, apparently owing to their 

inability to produce the victory display of aggressive song (Logue et al. 2010).  

Additionally, there was no evidence silent flatwing males from mixed-morph 

populations, or experimentally silenced males, showed any behavioural flexibility in terms of 

refraining from expending substantial energetic resources in trying to sing, despite the 

obvious benefits of refraining from doing so. Much discussion of the important role played 

by plasticity, and particularly of behavioural flexibility, in the early stages of adaptive 

evolution places emphasis on the consequences of initially adaptive changes in individual 

behaviour following a change in environment or ecology (Wong & Candolin 2015). These 

initially adaptive changes might represent ancestral reaction norms selected for in the 

presence of fluctuating ecological parameters (Chevin & Lande 2015), or could be produced 

by chance (Moczek 2008); for example as a result of stress-induced variation some of which 
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will be in an adaptive direction (Lande 2009). However, plasticity or behavioural flexibility is 

likely to be eroded for traits which are under strong, persistent directional or stabilising 

selection (Lande 2009), such as those under sexual selection.  

7.3 The repeatability of adaptive evolution 

Genomic approaches to studying convergent evolution have provided insight into the genetic 

changes which underlie morphologically similar but evolutionarily independent changes in 

phenotype under shared selection pressures (Sackton & Clark 2019). While the insights from 

this research into the features of genetics and development that underlie the multiple 

emergence and spread of similar phenotypes are undeniable, it is also likely that this avenue 

of research biases understanding of the routes by which populations independently adapt to 

common selection pressures (Losos 2011). Recent work has shown that convergent 

adaptation can occur through contrasting morphological changes (Mcgee & Wainwright 

2013), and the results of Chapter Five showing that adaptive silence has arisen through at 

least three distinct mechanisms (feminised wing veins, altered 3D wing morphology, and 

reduced wing size) demonstrate this potentially key but underappreciated feature of 

convergent adaptation. While the genomic changes underlying these divergent phenotypes 

have not yet been characterised, it is beyond reasonable doubt, given the divergent 

morphological changes with which they are associated, that they are underpinned by different 

causative genetic changes.  

 Research into convergent patterns of phenotypic evolution, particularly those relying 

largely on comparative phylogenetic analyses, might frequently overlook important patterns 

of parallel adaptation under similar selection pressures through divergent means. Moreover, if 

patterns of convergent evolution are considered to provide insight into the repeatability of 

adaptive evolution (Blount et al. 2018), or the genetic and developmental constraints to which 
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it is subject (Losos 2011), then it is especially important that the phenomenon of functionally 

convergent, but morphologically variable, evolution is not overlooked. It is nevertheless 

apparent from the results of Chapter Three that morphologically similar flatwing phenotypes 

are associated with overlapping changes in expression of potentially key genes, consistent 

with growing evidence that convergent evolution through phenotypically similar changes 

frequently occurs via changes at nearby genomic regions (Sackton & Clark 2019). 

 

7.4 The role of sexual dimorphism in rapid adaptation 

Two potentially key features that might have contributed to the rapid evolutionary dynamics 

with respect to flatwing phenotypes are 1) that flatwing male wings lack male-specific sound-

producing structures, rendering them female-like in appearance, and 2) that the XO system of 

sex-determination requires that males and females share all genes – though females are 

diploid and male haploid for the X-chromosome on which flatwing genotypes reside. 

Combined, these two features suggest gene expression variation associated with sexual 

dimorphism might have played an important capacitating role in flatwing’s emergence –

supported by results from Chapter Three – and that pleiotropic or otherwise genetically 

linked effects of the flatwing genotypes in females could have played an important role in 

promoting or constraining their spread.  

 Although gene expression data from Chapter Three show down-regulated expression 

of phylogenetically conserved sex-determining doublesex transcripts in wings of males and 

females carrying flatwing genotypes, there was no evidence of pervasive ‘feminisation’ of 

male gene expression in the wings or across adult non-wing tissues (Chapter Two). There 

nevertheless remains a strong indication that flatwing males exhibit reduced sexual 

dimorphism: apart from the female-like wing membranes, they also exhibit feminised 
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cuticular pheromones (Appendix 1) and reduced testes mass (Chapter Two; Bailey et al. 

2010) in Kauai males. It is possible feminisation of gene expression occurs at an earlier stage 

of development, or that phenotypic feminisation occurs through some other means, such as 

changes to hormonal regulation which could result from differences in the expression of 

genes such as dsx during development (Li et al. 2018). 

 There was, however, evidence in the results of Chapter Two that the Kauai flatwing 

genotype affects patterns of sex-biased gene expression in a manner consistent with 

‘demasculinisation’ of these females, i.e. down-regulation of male-biased genes and/or up-

regulation of female-biased genes. We also found females homozygous for the Kauai flatwing 

genotype showed greater measures of body condition. Together, these results could indicate a 

reduction in negative, sexually antagonistic pleiotropy affecting females via the emergence of 

a genotype which erodes the male-limited sexual trait. An important consequence of these 

results is the implication that females might benefit from carrying the adaptive flatwing 

genotype, which could therefore have facilitated its rapid spread, particularly owing to 

females’ greater genetic contribution with respect to X-linked genes (Rice 1986). In contrast, 

negative pleiotropic effects of the underlying mutation in males which are potentially 

consistent with a shift in the expression of sexual dimorphism in females’ favour – i.e. 

reduced expression of male-specific traits – are likely to have been outweighed by the 

extreme immediate benefits of song loss in the context of natural selection conferred by the 

parasitoid fly.  

While the results of Chapter Two replicate an earlier study in finding flatwing males 

from Kauai exhibit reduced testes mass (Bailey et al. 2010), which might be expected to 

reduce their competitive ability in the context of post-copulatory sexual selection, a recent 

study found counter-intuitive evidence flatwing males from Kauai actually sire more 

offspring per successful mating event, suggesting they might carry a reproductive advantage 
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(Heinen-Kay et al. 2019). However, there was no overall indication in that study that flatwing 

males exhibit greater reproductive success once zero-counts (i.e. mating events that did not 

produce offspring) were accounted for. Moreover, while the results of Chapter Two revealed 

no difference in female fecundity associated with the Kauai flatwing genotype, Heinen-Kay 

et al. (2019) find that these females experience more instances of mating failure than do 

females homozygous for the normal-wing genotype. While these results are not directly 

contradictory, these potential inconsistencies suggest further, clearly outlined hypothesis-

driven research into pleiotropic effects of flatwing genotypes across populations would be 

beneficial. 

 

7.5 Future research 

The results of this thesis provide several avenues for future research, which will offer insight 

into the evolutionary dynamics of the flatwing system and some of the conditions which 

might promote rapid adaptation more generally. The causative genetic mutations underlying 

flatwing phenotypes remain largely unclear, though recent work has narrowed down genomic 

regions of interest (Chapter Three; Appendix 1; Xiao Zhang unpublished data), and the newly 

adaptive variants documented in Chapter Five are also yet to be characterised at the genetic 

level. For example, it is not known whether mutations underlying flatwing morphology are 

located in intronic or exonic regions, which could contribute to ongoing debate regarding the 

importance of cis-regulatory and structural genetic changes (Wray 2007; Hoekstra & Coyne 

2007; Sackton et al. 2019). Continuing advances in sequencing technology mean that 

identifying these genetic changes is increasingly feasible, and could conceivably also provide 

an approximate date for the emergence of the respective mutations (van’t Hof et al. 2016). 

While it appears that flatwing phenotypes arose under selection from the parasitoid fly (Zuk 
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et al. 2006), it is also plausible that the respective underlying genotypes had persisted at low 

levels in the population or nearby populations but only spread to appreciable frequencies 

under this introduced selection pressure. Addressing whether mutations underlying flatwing 

phenotypes arose prior to or following the introduction of the parasitoid fly is complicated by 

the lack of an established introduction date for O. ochracea (Zuk et al. 1993), but could 

involve evaluating rates of recombination and mutation in the regions of associated QTL 

regions. For example, this approach has suggested the melanic form of the peppered moth 

first emerged and subsequently persisted at low levels in the decades prior to its adaptive 

proliferation as a result of industrial pollution, in the region of the year 1819 (van’t Hof et al. 

2016). Similarly, the suggestion in Chapter Five that functionally convergent curly-wing and 

small-wing phenotypes arose under the same direct selection pressure conferred by the 

parasitoid fly would benefit from further examination. 

 The results of Chapter Three provide an important candidate pathway for future 

research into the causative genetic basis of convergently evolved flatwing phenotypes from 

Kauai and Oahu. Both phenotypes were found to be associated with down-regulation of 

doublesex (dsx), a gene with a key conserved role in the regulation and expression of sexual 

dimorphism in insects (Kijimoto et al. 2012; Kopp 2012; Kunte et al. 2014; Price et al. 2015; 

Ruiz et al. 2015). Moreover, the genomic position of dsx on the X-chromosome places it at 

the centre of the recently produced QTL for the Kauai flatwing genotype (Appendix 1), and 

recent work has revealed similar results in association with Oahu and Hawaii flatwing 

genotypes (Xiao Zhang, unpublished data). Accumulated transcriptomic and genomic 

evidence for the involvement of dsx in the production of flatwing phenotypes, as well as the 

intuitive mechanism by which down-regulation of sex differences might lead to the loss of 

the male sexual trait, therefore provides a clear avenue for future research. RNAi knockdown 

of dsx transcripts in normal-wing lines could be used to functionally validate the importance 
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of associated sex-determination pathways (Kijimoto et al. 2012). If knockdown of dsx 

transcripts induces a flatwing-like phenotype this would strongly support a causative role for 

this gene, also corroborating the interpretation that genetic variation associated with sexual 

dimorphism played an important capacitating role in the repeated emergence of flatwing 

phenotypes. Efforts to accurately quantify expression of doublesex and reference genes 

through RT-qPCR are ongoing, representing a further step in corroborating the expression 

patterns observed in Chapter Three, and which will be vital for validating successful dsx 

knockdown.  

 Still less is known with respect to curly-wing and small-wing phenotypes. Initial 

research into understanding their genetic basis will involve performing crosses between 

laboratory strains to understand whether, like flatwing phenotypes, they segregate as single 

locus traits, or are instead polygenic, and to what extent. This will also reveal whether the 

phenotypes show sex-linkage, as in the case of flatwing (Tinghitella 2008; Pascoal et al. 

2014), and whether curly-wing phenotypes identified on multiple islands share a genetic 

basis, or are similarly convergently evolved (Pascoal et al. 2014). Further research into these 

alternative song-loss phenotypes will involve studying their frequencies over time, especially 

in populations where they co-occur with flatwing phenotypes. The conditions following a 

soft-selective sweep, in which multiple adaptive variants co-occur (Hermisson & Pennings 

2005), provide an intriguing and rare opportunity to investigate the relative costs and benefits 

of each of the alternative variants that might influence their subsequent success.  

 In spite of its overarching importance to this well-studied system, remarkably little is 

known about the ecology of the parasitoid fly, Ormia ochracea, which targets T. oceanicus. 

An important step in understanding more about the host-parasite interaction, and the 

conditions under which song-loss variants have repeatedly evolved, will be to quantify the 

population density of O. ochracea across various study sites. This is of particular interest 
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given the multiple adaptive silent male phenotypes that have been identified, and how the 

proportion of silent males varies across populations. Addressing this gap in understanding 

represents the focus of an upcoming research project, in which I will be involved as a post-

doc, titled “How Repeatable is Adaptive Evolution? Testing What Promotes Rapid 

Adaptation in a Replicated Natural System”. Utilising flytraps similar to those used to 

corroborate the fitness benefit of curly-wing males in Chapter Five, we will play back 

standardised song recordings from normal-wing males across multiple habitats which harbour 

populations of T. oceanicus. The number of flies captured per unit of time will be used as 

indicative of the relative density of parasitoid flies targeting males in that population. 

Combined with mating crosses and genetic analyses designed to elucidate the genomic 

underpinning of short-wing and curly-wing phenotypes, these data will inform understanding 

of the interplay between forces of mutation, migration and selection in wild populations. For 

example: do proportions of silent males (flatwing or otherwise) vary across populations in a 

predictable manner, based on the relative density of O. ochracea? And do mutations 

underlying adaptive changes in wing morphology disproportionately target nearby loci, i.e. 

‘hotspots’ of genomic adaptation, such as regions involved in wing development and 

morphology (Sackton et al. 2019)?  

A recent study by Tanner et al. (2019) quantified the fitness costs experienced by 

flatwing males in the context of sexual selection, by contrasting the proportion of normal-

wing male offspring in female clutches with that of normal-wing males in the population, and 

reported a strong overrepresentation of normal-wing male phenotypes consistent with strong 

female discrimination against silent males. The persistence of silent male morphs in the face 

of these fitness costs therefore indicates that selection against male song in the context of 

natural selection must also remain very strong. If these two selection pressures are 

approximately equal to one another, this could indicate that the proportion of silent males in a 
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population might eventually reach a predictable evolutionarily stable state, though likely 

complicated in populations where there are multiple adaptive variants. Outcomes from these 

evolutionary interactions between alternative adaptive phenotypes will help to inform debate 

about what factors promote and constrain their spread. For example; are less pleiotropic, or 

more complete, routes to the loss of male song favoured by selection? Do flatwing males 

suffer a cost of feminised wing venation through reduced sexual dimorphism in other tissues, 

such as via reduced testes mass (Chapter Two; Bailey et al. 2010) and feminised cuticular 

pheromones, whereas males that cannott sing due to reduced forewings and hindwings 

benefit from histolysis of wing muscle (Roff 1989)?  

 

7.6 Conclusions 

Adaptive songless flatwing phenotypes appear to have benefitted from genetic variation 

underlying sexually dimorphic phenotypes, which are associated with sexually antagonistic 

selection. Flatwing males from Kauai are phenotypically feminised, and demasculinised 

patterns of gene expression and increased body condition suggest females may have 

benefitted from the loss of the male sexual trait via relaxation of sexual conflict over shared 

genes. Despite this phenotypic feminisation, flatwing males do not appear any more likely to 

be mistaken for females by conspecific males, nor are they less frequently involved in 

aggressive male-male contests. While flatwing phenotypes seem to have benefitted from the 

maintenance of genetic variation associated with sexually dimorphic wing phenotypes, 

additional silent wing phenotypes have evolved which do not morphologically resemble those 

observed in males or females of other populations. Together, these newly identified male-

silencing ‘small-wing’ and ‘curly-wing’ phenotypes suggest that functional traits such as the 

ability to produce song can be lost in a variety of ways, and demonstrate that convergent 
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evolution does not rely upon parallel changes in allelic frequencies, or highly similar 

morphological changes. Finally, there was no evidence that silent male morphs or silent 

populations divest energy from singing, signifying constraints upon the capacity for adaptive 

phenotypic accommodation of novel song-loss phenotypes, nor do these less sexually 

dimorphic silent males benefit from reduced intrasexual competition. Altogether, the results 

support the view that genetic constraints such as limited standing genetic variation and 

extensive pleiotropy impede adaptive evolution, but illustrate a number of ways in which 

these constraints can be partially overcome, such as through balancing selection and reduced 

sexual conflict.  

  



 
 

142 

8. References 

Alexander, R.D., 1962. Evolutionary change in cricket acoustical communication. Evolution, 

16, pp.443–467. 

Alves, J.M. et al., 2019. Parallel adaptation of rabbit populations to myxoma virus. Science, 

363(6433), pp.1319–1326. 

Andersson, M., 1986. Evolution of condition-dependent sex ornaments and mating 

preferences: sexual selection based on viability differences. Evolution, 40(4), pp.804–

816. 

Arnold, S.J., 1976. Sexual behavior, sexual interference and sexual defense in the 

salamanders Ambystoma maculatum, Ambystoma tigrinum and Plethodon jordani. 

Zeitschrift für Tierpsychologie, 42(3), pp.247–300. 

Bachtrog, D. et al., 2014. Sex determination: why so many ways of doing it? PLoS Biology, 

12(7), pp.1–13. 

Bailey, N.W. & French, N., 2012. Same-sex sexual behaviour and mistaken identity in male 

field crickets, Teleogryllus oceanicus. Animal Behaviour, 84(4), pp.1031–1038. 

Bailey, N.W., Gray, B. & Zuk, M., 2010. Acoustic experience shapes alternative mating 

tactics and reproductive investment in male field crickets. Current Biology, 20(9), 

pp.845–849. 

Bailey, N.W., Marie-Orleach, L. & Moore, A.J., 2018. Indirect genetic effects in behavioral 

ecology: Does behavior play a special role in evolution? Behavioral Ecology, 29(1), 

pp.1–11. 

Bailey, N.W., McNabb, J.R. & Zuk, M., 2008. Preexisting behavior facilitated the loss of a 

sexual signal in the field cricket Teleogryllus oceanicus. Behavioral Ecology, 19(1), 

pp.202–207. 



 
 

143 

Bailey, N.W., Pascoal, S. & Montealegre-Z, F., 2019. Testing the role of trait reversal in 

evolutionary diversification using song loss in wild crickets. Proceedings of the National 

Academy of Sciences, 116(18), pp.8941–8949. 

Bailey, N.W. & Zuk, M., 2008. Acoustic experience shapes female mate choice in field 

crickets. Proceedings of the Royal Society B: Biological Sciences, 275(1651). 

Bailey, N.W. & Zuk, M., 2009. Same-sex sexual behavior and evolution. Trends in Ecology & 

Evolution, 24(8), pp.439–446. 

Bailey, N.W. & Zuk, M., 2012. Socially flexible female choice differs among populations of 

the Pacific field cricket: geographical variation in the interaction coefficient psi ( ). 

Proceedings of the Royal Society B: Biological Sciences, 279(May), pp.3589–3596. 

Balakrishnan, R. & Pollack, G.S., 1996. Recognition of courtship song in the field cricket, 

Teleogryllus oceaniens. Animal Behaviour, 51(353–366). 

Baldwin, J.M., 1896. A new factor in evolution. The American Naturalist, 30(354), pp.441–

451. 

Balenger, S.L. & Zuk, M., 2015. Roaming romeos: male crickets evolving in silence show 

increased locomotor behaviours. Animal Behaviour, 101, pp.213–219. 

Barton, N.H. & Turelli, M., 2003. Evolutionary quantitative genetics: how little do we know? 

Annual Review of Genetics, 23, pp.337–370. 

Bates, D., Maechler Martin & Walker, S., 2016. Package “lme4.” CRAN Repository, p.113. 

Berger, D. et al., 2014. Multivariate intralocus sexual conflict in seed beetles. Evolution, 

68(12), pp.3457–3469. 

Bertram, S.M. et al., 2011. Variation in cricket acoustic mate attraction signalling explained 

by body morphology and metabolic differences. Animal Behaviour, 82(6), pp.1255–

1261. 

Bierbach, D. et al., 2012. Homosexual behaviour increases male attractiveness to females. 



 
 

144 

Biology Letters, 9(1), p.20121038. 

Blount, Z.D., Borland, C.Z. & Lenski, R.E., 2008. Historical contingency and the evolution 

of a key innovation in an experimental population of Escherichia coli. Proceedings of 

the National Academy of Sciences, 105(23), pp.7899–7906. 

Blount, Z.D., Lenski, R.E. & Losos, J.B., 2018. Contingency and determinism in evolution: 

Replaying life’s tape. Science, 362(6415). 

Bonduriansky, R. & Chenoweth, S.F., 2009. Intralocus sexual conflict. Trends in Ecology & 

Evolution, 24(5), pp.280–288. 

Boutin, S.R.T. et al., 2016. Same-sex sexual behaviour in crickets: Understanding the 

paradox. Animal Behaviour, 114, pp.101–110. 

Bradshaw, A.D., 1965. Evolutionary significance of phenotypic plasticity in plants. Advances 

in Genetics, 13(C), pp.115–155. 

Brimacombe, C.A. et al., 2019. A natural histone H2A variant lacking the Bub1 

phosphorylation site and regulated depletion of centromeric histone CENP-A foster 

evolvability in Candida albicans. PLOS Biology, 17(6), p.e3000331. 

Cade, W.H. & Cade, E.S., 1992. Male mating success, calling and searching behaviour at 

high and low densities in the field cricket, Gryllus integer. Animal Behaviour, 43(1), 

pp.49–56. 

Carson, H.L., 1978. Speciation and sexual selection in Hawaiian Drosophila. In P. F. 

Brussard, ed. Ecological Genetics: The Interface. Berlin: Springer-Verlag, pp. 93–107. 

Carson, H.L., Chang, L.S. & Lyttle, T.W., 1982. Decay of female sexual behavior under 

parthenogenesis. Science, 218(4567), pp.68–70. 

Castro, J.P. et al., 2019. An integrative genomic analysis of the Longshanks selection 

experiment for longer limbs in mice. eLife, 8, p.e42014. 

Chan, Y.F. et al., 2010. Adaptive evolution of pelvic reduction in sticklebacks by recurrent 



 
 

145 

deletion of a pitxl enhancer. Science, 327(5963), pp.302–305. 

Charlesworth, B., Morgan, M.T. & Charlesworth, D., 1993. The effect of deleterious 

mutations on neutral molecular variation. Genetics, 134(4), pp.1289–1303. 

Charlesworth, D., 2006. Balancing selection and its effects on sequences in nearby genome 

regions. PLoS Genetics, 2(4), p.e64. 

Cheng, C. & Kirkpatrick, M., 2016. Sex-specific selection and sex-biased gene expression in 

humans and flies. PLoS Genetics, 12(9). 

Cheverud, J.M., Routman, E.J. & Irschick, D.J., 1997. Pleiotropic effects of individual gene 

loci on mandibular morphology. Evolution, 51(6), pp.2006–2016. 

Chevillon, C. et al., 1997. Pleiotropy of adaptive changes in populations: comparisons among 

insecticide resistance genes in Culex pipiens. Genetical Research, 70(3), pp.195–203. 

Chevin, L.M. & Lande, R., 2015. Evolution of environmental cues for phenotypic plasticity. 

Evolution, 69(10), pp.2767–2775. 

Ciofi, C. & Swingland, I.R., 1997. Environmental sex determination in reptiles. Applied 

Animal Behaviour Science, 51, pp.251–265. 

Colegrave, N., 2002. Sex releases the speed limit on evolution. Nature, 420, pp.646–666. 

Conesa, A. et al., 2005. Blast2GO: A universal tool for annotation, visualization and analysis 

in functional genomics research. Bioinformatics, 21(18), pp.3674–3676. 

Connallon, T. & Clark, A.G., 2014. Balancing selection in species with separate sexes: 

Insights from fisher’s geometric model. Genetics, 197(3), pp.991–1006. 

Connallon, T., Cox, R.M. & Calsbeek, R., 2010. Fitness consequences of sex-specific 

selection. Evolution, 64(6), pp.1671–1682. 

Connallon, T. & Knowles, L.L., 2005. Intergenomic conflict revealed by patterns of sex-

biased gene expression. Trends in Genetics, 21(9), pp.495–499. 

Conover, D.O. & Munch, S.B., 2002. Sustaining fisheries yields over evolutionary time 



 
 

146 

scales. Science, 297(5578), pp.94–96. 

Cook, L.M., 2003. The rise and fall of the carbonaria form of the peppered moth. Quarterly 

Review of Biology, 78(4), pp.399–417. 

Cox, R.M. & Calsbeek, R., 2009. Sexually antagonistic selection, sexual dimorphism, and the 

resolution of intralocus sexual conflict. The American Naturalist, 173(2), pp.176–187.  

Crnokrak, P. & Roff, D.A., 1995. Fitness differences associated with calling behaviour in the 

two wing morphs of male sand crickets, Gryllus firmus. Animal Behaviour, 50(6), 

pp.1475–1481. 

Crnokrak, P. & Roff, D.A., 1998. The genetic basis of the trade-off between calling and wing 

morph in males of the cricket gryllus firmus. Evolution, 52(4), pp.1111–1118. 

Crudgington, H.S. et al., 2005. Experimental removal and elevation of sexual selection: does 

sexual selection generate manipulative males and resistant females? The American 

Naturalist, 165, pp.s72-87. 

Darwin, C., 1859. On the origin of species by means of natural selection, London: John 

Murray. 

Davies, J. & Davies, D., 2010. Origins and evolution of antibiotic resistance. Microbiologia 

and Molecular Biology Reviews, 74(3), pp.417–433. 

Dean, R. et al., 2018. Masculinization of gene expression is associated with male quality in 

Drosophila melanogaster. Evolution, 72(12), pp.2736–2748. 

Dean, R. & Mank, J.E., 2016. Tissue specificity and sex-specific regulatory variation permit 

the evolution of sex-biased gene expression. The American Naturalist, 188(3), pp.E74–

E84. 

Desai, M.M. & Fisher, D.S., 2007. Beneficial mutation-selection balance and the effect of 

linkage on positive selection. Genetics, 176(3), pp.1759–1798. 

Dixon, K.A. & Cade, W.H., 1986. Some factors influencing male-male aggression in the field 



 
 

147 

cricket Gryllus integer (time of day, age, weight and sexual maturity). Animal 

Behaviour, 34(2), pp.340–346. 

Dobzhansky, T., 1937. Genetics and the origin of species 3rd ed., New York: Columbia 

University Press. 

Dominey, W.J., 1980. Female mimicry in male bluegill sunfish - A genetic polymorphism? 

Nature, 284, pp.546–548. 

Doniach, T. & Hodgkin, J., 1984. A sex-determining gene, fem-1, required for both male and 

hermaphrodite development in Caenorhabditis elegans. Developmental Biology, 106(1), 

pp.223–235. 

Drayton, J.M. et al., 2010. Inbreeding and advertisement calling in the cricket Teleogryllus 

commodus: Laboratory and field experiments. Evolution, 64(10), pp.3069–3083. 

Dugatkin, L.A., 2008. Principles of animal behavior 2nd ed., New York City: W.W. Norton 

and Co. 

Dukas, R., 2010. Causes and consequences of male-male courtship in fruit flies. Animal 

Behaviour, 80(5), pp.913–919. 

Dybdahl, M.F. & Lively, C.M., 2006. Host-parasite coevolution: evidence for rare advantage 

and time-lagged selection in a natural population. Evolution, 52(4), pp.1056–1066. 

Eizirik, E. et al., 2003. Molecular genetics and evolution of melanism in the cat family. 

Current Biology, 13(5), pp.448–453. 

Ellegren, H. & Parsch, J., 2007. The evolution of sex-biased genes and sex-biased gene 

expression. Nature Reviews Genetics, 8(9), pp.689–698. 

Feng, C. et al., 2014. A cis-regulatory mutation of pdss2 causes silky-feather in chickens. 

PLoS Genetics, 10(8), p.e1004576. 

Fierst, J.L., 2011. Sexual dimorphism increases evolvability in a genetic regulatory network. 

Evolutionary Biology, 38(1), pp.52–67. 



 
 

148 

Fisher, R.A., 1915. The evolution of sexual preference. The Eugenics review, 7(3), pp.184–

192. 

Fisher, R.A., 1930. The genetical theory of natural selection, Oxford, England: Clarendon 

Press. 

Fong, D.W., Kane, T.C. & Culver, D.C., 1995. Vestigialization and loss of nonfunctional 

characters. Annual Review of Ecology and Systematics, 26, pp.249–268. 

Foucault, Q. et al., 2018. Rapid adaptation to high temperatures in Chironomus riparius. 

Ecology and Evolution, 8(24), pp.12780–12789. 

Fricke, C. & Arnqvist, G., 2007. Rapid adaptation to a novel host in a seed beetle 

(Callosobruchus maculatus): The role of sexual selection. Evolution, 61(2), pp.440–454. 

Ghalambor, C.K. et al., 2007. Adaptive versus non-adaptive phenotypic plasticity and the 

potential for contemporary adaptation in new environments. Functional Ecology, 21(3), 

pp.394–407. 

Gould, J.S., 1989. Wonderful life: The Burgess shale and the nature of history, New York: 

W.W. Norton. 

Gould, S.J. & Lewontin, R.C., 1979. The spandrels of San Marco and the Panglossian 

paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of 

London - Biological Sciences, 205(1161), pp.581–598. 

Gould, S.J. & Vrba, E.S., 1982. Exaptation—a missing term in the science of form. 

Paleobiology, 8(1), pp.4–15. 

Gray, D.A. et al., 2018. Induced expression of a vestigial sexual signal. Biology Letters, 

14(5). 

Gray, D.A. & Cade, W.H., 1999. Quantitative genetics of sexual selection in the field cricket, 

Gryllus integer. Evolution, 53(3), pp.848–854. 

Guo, Y. et al., 2016. A complex structural variation on chromosome 27 leads to the ectopic 



 
 

149 

expression of hoxb8 and the muffs and beard phenotype in chickens. PLoS Genetics, 

12(6), p.e1006071. 

Hack, M.A., 1998. The energetics of male mating strategies in field crickets (Orthoptera: 

Gryllinae: Gryllidae). Journal of Insect Behavior, 11(6), pp.853–867. 

Hall, B.K., 2003. Evo-Devo: Evolutionary developmental mechanisms. International Journal 

of Developmental Biology, 47(7), pp.491–495. 

Han, C.S. & Brooks, R.C., 2015. Same-sex sexual behaviour as a by-product of reproductive 

strategy under male-male scramble competition. Animal Behaviour, 108, pp.193–197. 

Han, C.S., Santostefano, F. & Dingemanse, N.J., 2016. Do social partners affect same-sex 

sexual behaviour in male water striders? Animal Behaviour, 116, pp.53–59. 

Harano, T. et al., 2010. Intralocus sexual conflict unresolved by sex-limited trait expression. 

Current Biology, 20(22), pp.2036–2039. 

Harari, A.R., Brockmann, H.J. & Landolt, P.J., 2000. Intrasexual mounting in the beetle 

Diaprepes abbreviatus (L.). Proceedings of the Royal Society B: Biological Sciences, 

267(1457), pp.2071–2079. 

Harrison, P.W. et al., 2015. Sexual selection drives evolution and rapid turnover of male gene 

expression. Proceedings of the National Academy of Sciences, 112(14), pp.4393–4398. 

Hedrick, A. V., 2002. Female choice and the heritability of attractive male traits: an empirical 

study. The American Naturalist, 132(2), pp.267–276. 

Heinen-Kay, J.L., Urquhart, E.M. & Zuk, M., 2019. Obligately silent males sire more 

offspring than singers in a rapidly evolving cricket population. Biology Letters, 15(7). 

Hermisson, J. & Pennings, P.S., 2005. Soft sweeps: Molecular population genetics of 

adaptation from standing genetic variation. Genetics, 169(4), pp.2335–2352. 

Hoback, W.W. & Wagner, W., 2008. The energetic cost of calling in the variable field cricket, 

Gryllus lineaticeps. Physiological Entomology, 22(3), pp.286–290. 



 
 

150 

Hoekstra, H.E. et al., 2006. A single amino acid mutation contributes to adaptive beach 

mouse color pattern. Science, 313(5783), pp.101–104. 

Hoekstra, H.E. & Coyne, J.A., 2007. The locus of evolution: Evo devo and the genetics of 

adaptation. Evolution, 61(5), pp.995–1016. 

Holland, B. & Rice, W.R., 1999. Experimental removal of sexual selection reverses 

intersexual antagonistic coevolution and removes a reproductive load. Proceedings of 

the National Academy of Sciences, 96(9), pp.5083–5088. 

Hollis, B. et al., 2014. Evolution under monogamy feminizes gene expression in Drosophila 

melanogaster. Nature Communications, 5. 

Holzer, B., Jacot, A. & Brinkhof, M.W.G., 2003. Condition-dependent signaling affects male 

sexual attractiveness in field crickets, Gryllus campestris. Behavioral Ecology, 14(3), 

pp.353–359. 

Hoskins, J.L., Ritchie, M.G. & Bailey, N.W., 2015. A test of genetic models for the 

evolutionary maintenance of same-sex sexual behaviour. Proceedings of the Royal 

Society B: Biological Sciences, 282(1809), p.20150429. 

Houslay, T.M. et al., 2017. Mating opportunities and energetic constraints drive variation in 

age-dependent sexual signalling. Functional Ecology, 31(3), pp.728–741. 

Hunt, J. et al., 2004. High-quality male field crickets invest heavily in sexual display but die 

young. Nature, 432(7020), pp.1024–1027. 

Hunt, J. et al., 2007. Reconciling strong stabilizing selection with the maintenance of genetic 

variation in a natural population of black field crickets (Teleogryllus commodus). 

Genetics, 177(2), pp.875–880. 

Hunt, J., Brooks, R. & Jennions, M.D., 2005. Female mate choice as a condition-dependent 

life-history trait. The American Naturalist, 166(1), pp.79–92. 

Immonen, E., Snook, R.R. & Ritchie, M.G., 2014. Mating system variation drives rapid 



 
 

151 

evolution of the female transcriptome in Drosophila pseudoobscura. Ecology and 

Evolution, 4(11), pp.2186–2201. 

Jang, Y., 2011. Male responses to conspecific advertisement signals in the field cricket 

Gryllus rubens (Orthoptera: Gryllidae). PLoS ONE, 6(1), p.e16063. 

Joag, R. et al., 2016. Transcriptomics of intralocus sexual conflict: Gene expression patterns 

in females change in response to selection onamale secondary sexual trait in the bulb 

mite. Genome Biology and Evolution, 8(8), pp.2351–2357. 

Johnson, W.W., 1972. Baja California: The American Wilderness, New York: Time-Life 

Books. 

Judge, K.A., Ting, J.J. & Gwynne, D.T., 2008. Condition dependence of male life span and 

calling effort in a field cricket. Evolution, 62(4), pp.868–878. 

Jukema, J. & Piersma, T., 2006. Permanent female mimics in a lekking shorebird. Biology 

Letters, 2(2), pp.161–164. 

Khila, A., Abouheif, E. & Rowe, L., 2012. Function, developmental genetics, and fitness 

consequences of a sexually antagonistic trait. Science, 336(6081), pp.585–589. 

Kijimoto, T., Moczek, A.P. & Andrews, J., 2012. Diversification of doublesex function 

underlies morph-, sex-, and species-specific development of beetle horns. Proceedings 

of the National Academy of Sciences, 109(50), pp.20526–20531. 

Kim, K.-W. et al., 2019. Genetics and evidence for balancing selection of a sex-linked colour 

polymorphism in a songbird. Nature Communications, 10(1), p.1852. 

Kirkpatrick, M., 1982. Sexual selection and the evolution of female choice. Evolution, 36(1), 

pp.1–12. 

Kirschner, M. & Gerhart, J., 1998. Evolvability. PNAS, 95(15), pp.8420–8427. 

Klingenberg, C.P. et al., 2001. Inferring developmental modularity from morphological 

integration: Analysis of individual variation and asymmetry in bumblebee wings. 



 
 

152 

American Naturalist. 

Klingenberg, C.P., 2008. Morphological integration and developmental modularity. Annual 

Review of Ecology, Evolution, and Systematics, 39, pp.115–132. 

Klingenberg, C.P., Mebus, K. & Auffray, J.C., 2003. Developmental integration in a complex 

morphological structure: How distinct are the modules in the mouse mandible? 

Evolution and Development, 5(5), pp.522–531. 

Klingenberg, C.P. & Zaklan, S.D., 2000. Morphological integration between developmental 

compartments in the Drosophila wing. Evolution, 64(4), pp.1273–1285. 

Kolluru, G.R., 1999. Variation and repeatability of calling behavior in crickets subject to a 

phonotactic parasitoid fly. Journal of Insect Behavior, 12(5), pp.611–626. 

Kopp, A., 2012. Dmrt genes in the development and evolution of sexual dimorphism. Trends 

in Genetics, 28(4), pp.175–184. 

Kopylova, E., Noé, L. & Touzet, H., 2012. SortMeRNA: Fast and accurate filtering of 

ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28(24), pp.3211–3217. 

Kraaijeveld, K., 2014. Reversible Trait Loss: The Genetic Architecture of Female Ornaments. 

Annual Review of Ecology, Evolution, and Systematics, 45, pp.159–177. 

Kunte, K. et al., 2014. doublesex is a mimicry supergene. Nature, 507(7491), pp.229–232. 

Kuriwada, T., 2017. Male–male courtship behaviour, not relatedness, affects the intensity of 

contest competition in the field cricket. Animal Behaviour, 126, pp.217–220. 

Lai, Y.T. et al., 2019. Standing genetic variation as the predominant source for adaptation of a 

songbird. Proceedings of the National Academy of Sciences of the United States of 

America, 116(6), pp.2152–2157. 

Lande, R., 2009. Adaptation to an extraordinary environment by evolution of phenotypic 

plasticity and genetic assimilation. Journal of Evolutionary Biology, 22(7), pp.1435–

1446. 



 
 

153 

Lande, R., 1981. Models of speciation by sexual selection on polygenic traits. Proceedings of 

the National Academy of Sciences, 78(6), pp.3721–3725. 

Lande, R., 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic 

characters. Evolution, 34(2), pp.292–305. 

Lande, R. & Arnold, S.J., 1983. The measurement of selection on correlated characters. 

Evolution, 37(6), pp.1210–1226. 

Lane, S.M. et al., 2016. Same-sex sexual behaviour as a dominance display. Animal 

Behaviour, 114, pp.113–118. 

Lenski, R.E., 2017. Convergence and divergence in a long-term experiment with bacteria. 

The American Naturalist, 190, pp.S57–S68. 

Lenski, R.E. et al., 2002. Long-term experimental evolution in escherichia coli. I. Adaptation 

and divergence during 2,000 generations. The American Naturalist, 138(6), pp.1315–

1341. 

Lewis, Z., Wedell, N. & Hunt, J., 2011. Evidence for strong intralocus sexual conflict in the 

indian meal moth, plodia interpunctella. Evolution, 65(7), pp.2085–2097. 

Li, S. et al., 2018. Identification and characterization of a doublesex gene which regulates the 

expression of insulin-like androgenic gland hormone in Fenneropenaeus chinensis. 

Gene, 649, pp.1–7. 

Li, W. & Godzik, A., 2006. Cd-hit: A fast program for clustering and comparing large sets of 

protein or nucleotide sequences. Bioinformatics, 22(13), pp.1658–1659. 

Lively, C.M., 1987. Evidence from a New Zealand snail for the maintenance of sex by 

parasitism. Nature, 328, pp.519–521. 

Logue, D.M. et al., 2009. A behavioral syndrome linking courtship behavior toward males 

and females predicts reproductive success from a single mating in the hissing cockroach, 

Gromphadorhina portentosa. Behavioral Ecology, 20(4), pp.781–788. 



 
 

154 

Logue, D.M. et al., 2010. Does signalling mitigate the cost of agonistic interactions? A test in 

a cricket that has lost its song. Proceeding of The Royal Society B: Biological Sciences, 

277, pp.2571–2575. 

Lonn, E. et al., 2017. Balancing selection maintains polymorphisms at neurogenetic loci in 

field experiments. Proceedings of the National Academy of Sciences, 114(14), pp.3690–

3695. 

Losos, J.B., 2011. Convergence, adaptation, and constraint. Evolution, 65(7), pp.1827–1840. 

Losos, J.B., 2014. What darwin got wrong. Chronicle of Higher Education, pp.B13–B15. 

Macchiano, A., Razik, I. & Sagot, M., 2018. Same-sex courtship behaviors in male-biased 

populations: evidence for the mistaken identity hypothesis. Acta Ethologica, 21(3), 

pp.147–151. 

MacFarlane, G.R. et al., 2007. Same-sex sexual behavior in birds: Expression is related to 

social mating system and state of development at hatching. Behavioral Ecology, 18(1), 

pp.21–33. 

Maklakov, A.A. & Bonduriansky, R., 2009. Sex differences in survival costs of homosexual 

and heterosexual interactions: evidence from a fly and a beetle. Animal Behaviour, 

77(6), pp.1375–1379. 

Mank, J.E., 2017. The transcriptional architecture of phenotypic dimorphism. Nature Ecology 

and Evolution, 1(1). 

Marchini, M. et al., 2014. Impacts of genetic correlation on the independent evolution of 

body mass and skeletal size in mammals. BMC Evolutionary Biology, 14, p.258. 

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing 

reads. EMBnet.journal, 17(1), p.10. 

Mason, R.T. & Crews, D., 1985. Female mimicry in garter snakes. Nature, 316(6023), pp.59–

60. 



 
 

155 

Maynard Smith, J. et al., 1985. Developmental constraints and evolution. The Quarterly 

review of biology, 60(3), pp.265–287. 

Mcgee, M.D. & Wainwright, P.C., 2013. Convergent evolution as a generator of phenotypic 

diversity in threespine stickleback. Evolution, 67(4), pp.1204–1208. 

McRobert, S.P. & Tompkins, L., 1988. Two consequences of homosexual courtship 

performed by drosophila melanogaster and Drosophila affinis males. Evolution, 42(5), 

pp.1093–1097. 

Messer, P.W. & Petrov, D.A., 2013. Population genomics of rapid adaptation by soft selective 

sweeps. Trends in Ecology and Evolution, 28(11), pp.659–669. 

Moczek, A.P., 2008. On the origins of novelty in development and evolution. BioEssays, 

30(5), pp.432–447. 

Molinier, J. et al., 2006. Transgeneration memory of stress in plants. Nature, 442(7106), 

pp.1046–1049. 

Monod, J. & Jacob, F., 1961. General conclusions: teleonomic mechanisms in cellular 

metabolism, growth, and differentiation. Cold Spring Harbor Symposia on Quantitative 

Biology, pp.389–401. 

Morris, M.R. et al., 2005. The role of sexual selection in the loss of sexually selected traits in 

the swordtail fish Xiphophorus continens. Animal Behaviour, 69(6), pp.1415–1424. 

Mou, C. et al., 2011. Cryptic patterning of avian skin confers a developmental facility for loss 

of neck feathering. PLoS Biology, 9(3), p.e1001028. 

Mundy, N.I. et al., 2004. Conserved genetic basis of a quantitative plumage trait involved in 

mate choice. Science, 303(5665), pp.1870–1873. 

Needham, J., 1933. On the dissociability of the fundamental processes in ontogenesis. 

Biological Reviews, 8(2), pp.180–223. 

Nei, M., 2005. Selectionism and neutralism in molecular evolution. Molecular Biology and 



 
 

156 

Evolution, 22(12), pp.2318–2342. 

Norman, M.D., Finn, J. & Tregenza, T., 1999. Female impersonation as an alternative 

reproductive strategy in giant cuttlefish. Proceedings of the Royal Society B: Biological 

Sciences, 266(1426), p.1347. 

Orr, H.A., 2000. Adaptation and the cost of complexity. Evolution, 54(1), pp.13–20. Available 

at: http://doi.wiley.com/10.1111/j.0014-3820.2000.tb00002.x. 

Parker, D.J. et al., 2015. How consistent are the transcriptome changes associated with cold 

acclimation in two species of the Drosophila virilis group? Heredity, 115, pp.13–21. 

Pascoal, S. et al., 2018. Increased socially mediated plasticity in gene expression 

accompanies rapid adaptive evolution. Ecology Letters, 21(4), pp.546–556. 

Pascoal, S. et al., 2014. Rapid convergent evolution in wild crickets. Current Biology, 24(12), 

pp.1369–1374. 

Pascoal, S. et al., 2016. Rapid evolution and gene expression: a rapidly evolving Mendelian 

trait that silences field crickets has widespread effects on mRNA and protein expression. 

Journal of Evolutionary Biology, 29(6), pp.1234–1246. 

Peabody, G.L.V., Li, H. & Kao, K.C., 2017. Sexual recombination and increased mutation 

rate expedite evolution of Escherichia coli in varied fitness landscapes. Nature 

Communications, 8, p.2112. 

Peig, J. & Green, A.J., 2009. New perspectives for estimating body condition from 

mass/length data: The scaled mass index as an alternative method. Oikos, 118(12), 

pp.1883–1891. 

Pennell, T.M. et al., 2016. Contrasting effects of intralocus sexual conflict on sexually 

antagonistic coevolution. Proceedings of the National Academy of Sciences of the 

United States of America, 113(8), pp.E978–E986. 

Perry, J.C., Garroway, C.J. & Rowe, L., 2017. The role of ecology, neutral processes and 



 
 

157 

antagonistic coevolution in an apparent sexual arms race. Ecology Letters, 20(9), 

pp.1107–1117. 

Perry, J.C., Harrison, P.W. & Mank, J.E., 2014. The ontogeny and evolution of sex-biased 

gene expression in drosophila melanogaster. Molecular Biology and Evolution, 31(5), 

pp.1206–1219. 

Pertea, M. et al., 2016. Transcript-level expression analysis of RNA-seq experiments with 

HISAT, StringTie and Ballgown. Nature Protocols, 11, pp.1650–1667. 

Peschke, K., 1985. Immature males of Aleochara curtula avoid intrasexual aggressions by 

producing the female sex pheromone. Naturwissenschaften, 72(5), pp.274–275. 

Pfau & Koch, 1994. The functional morphology of singing in the cricket. The Journal of 

experimental biology, 195(1), pp.147–167. 

Pigliucci, M., 2008. Is evolvability evolvable? Nature Reviews Genetics, 9(1), pp.75–82. 

Pizzari, T. & Snook, R.R., 2003. Perspective: Sexual conflict and sexual selection: Chasing 

away paradigm shifts. Evolution, 57(6), pp.1223–1236. 

Plesnar-Bielak, A. et al., 2014. Selection for alternative male reproductive tactics alters 

intralocus sexual conflict. Evolution, 68(7), pp.2137–2144. 

Pointer, M.A. et al., 2013. Masculinization of gene expression is associated with exaggeration 

of male sexual dimorphism. PLoS Genetics, 9(8). 

Porter, M.L. & Crandall, K.A., 2003. Lost along the way: The significance of evolution in 

reverse. Trends in Ecology & Evolution, 18(10), pp.541–547. 

Prentis, P.J. et al., 2008. Adaptive evolution in invasive species. Trends in Plant Science, 

13(6), pp.288–294. 

Preston-Mafham, K., 2006. Post-mounting courtship and the neutralizing of male competitors 

through “homosexual” mountings in the fly Hydromyza livens F. (Diptera: 

Scatophagidae). Journal of Natural History, 40(1–2), pp.101–105. 



 
 

158 

Prestwich, K.N. & Walker, T.J., 1981. Energetics of singing in crickets: Effect of temperature 

in three trilling species (Orthoptera: Gryllidae). Journal of Comparative Physiology, 

143(2), pp.199–212. 

Price, D.C., Egizi, A. & Fonseca, D.M., 2015. The ubiquity and ancestry of insect doublesex. 

Scientific Reports, 5, p.13068. 

Ptacek, M.B. et al., 2011. Phylogenetic Evidence for the Gain and Loss of a Sexually 

Selected Trait in Sailfin Mollies. ISRN Zoology, 2011, p.251925. 

R Core Team, 2017. R: A language and environment for statistical computing. R 

 Foundation for Statistical Computing, Vienna, Austria.  

R Core Team, 2018. R: A language and environment for statistical computing. R 

  Foundation for Statistical Computing, Vienna, Austria. 

Radcliffe, C.W. & Maslin, T.P., 1975. A new subspecies of the red rattlesnake, Crotalus ruber, 

from San Lorenzo Sur Island, Baja California Norte, Mexico. Copeia, 1975(3), pp.490–

493. 

Rapkin, J. et al., 2016. Macronutrient intake regulates sexual conflict in decorated crickets. 

Journal of Evolutionary Biology, 29(2), pp.395–406. 

Rayner, J.G., Aldridge, S., et al., 2019. A silent orchestra: convergent song loss in Hawaiian 

crickets is repeated, morphologically varied, and widespread. Ecology, 100(8), 

p.e02694. 

Rayner, J.G. & Bailey, N.W., 2019. Testing the role of same-sex sexual behaviour in the 

evolution of alternative male reproductive phenotypes. Animal Behaviour, 157. 

Rayner, J.G., Pascoal, S. & Bailey, N.W., 2019. Release from intralocus sexual conflict? 

Evolved loss of a male sexual trait demasculinizes female gene expression. Proceedings 

of the Royal Society B: Biological Sciences, 286(1901). 

Rebar, D., Bailey, N.W. & Zuk, M., 2009. Courtship song’s role during female mate choice in 



 
 

159 

the field cricket Teleogryllus oceanicus. Behavioral Ecology, 20(6), pp.1307–1314. 

Rice, G.R. et al., 2019. Modular tissue-specific regulation of doublesex underpins sexually 

dimorphic development in Drosophila. Development, 146, p.dev178285. 

Rice, W.R., 1986. Sex chromosomes and the evolution of sexual dimorphism. Evolution, 

38(4), pp.735–742. 

Rice, W.R., 1996. Sexually antagonistic male adaptation triggered by experimental arrest of 

female evolution. Nature, 381(6579), pp.232–234. 

Rice, W.R. & Chippindale, A.K., 2001. Intersexual ontogenetic conflict. Journal of 

Evolutionary Biology, 14(5), pp.685–693. 

Robinson, M.D., McCarthy, D.J. & Smyth, G.K., 2010. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 

pp.139–140. 

Roff, D.A., 1989. Exaptation and the evolution of dealation in insects. Journal of 

Evolutionary Biology, 2(2), pp.109–123. 

Roff, D.A., 1984. The cost of being able to fly: a study of wing polymorphism in two species 

of crickets. Oecologia, 63(1), pp.30–37. 

Roff, D.A., 1994. Why is there so much genetic variation for wing dimorphism? Researches 

on Population Ecology, 36, p.145. 

Roff, D.A. & Mousseau, T.A., 1987. Quantitative genetics and fitness: Lessons from 

drosophila. Heredity, 58, pp.103–118. 

Rousselle, M. et al., 2019. Is adaptation limited by mutation? A timescale-dependent effect of 

genetic diversity on the adaptive substitution rate in animals. bioRxiv. Available at: 

https://doi.org/10.1101/643619. 

Ruiz, M.F. et al., 2015. An unusual role for doublesex in sex determination in the dipteran 

Sciara. Genetics, 200(4), pp.1181–1199. 



 
 

160 

Ruther, J. & Steiner, S., 2008. Costs of female odour in males of the parasitic wasp 

Lariophagus distinguendus (Hymenoptera: Pteromalidae). Naturwissenschaften, 95(6), 

pp.547–552. 

Sackton, T.B. et al., 2019. Convergent regulatory evolution and loss of flight in 

paleognathous birds. Science, 364, pp.74–78. 

Sackton, T.B. & Clark, N., 2019. Convergent evolution in the genomics era: new insights and 

directions. Philosophical Transactions of the Royal Society B: Biological Sciences, 

374(1777), p.20190102. 

Sales, K. et al., 2018. Experimental evolution with an insect model reveals that male 

homosexual behaviour occurs due to inaccurate mate choice. Animal Behaviour, 139, 

pp.51–59. 

Sarrazin, F. & Lecomte, J., 2016. Evolution in the Anthropocene. Science, 351(6276), 

pp.922–923. 

Scharf, I. & Martin, O.Y., 2013. Same-sex sexual behavior in insects and arachnids: 

Prevalence, causes, and consequences. Behavioral Ecology and Sociobiology, 67(11), 

pp.1719–1730. 

Schneider, W.T. et al., 2018. Vestigial singing behaviour persists after the evolutionary loss of 

song in crickets. Biology Letters, 14(2), p.20170654. 

Scoville, A.G. & Pfrender, M.E., 2010. Phenotypic plasticity facilitates recurrent rapid 

adaptation to introduced predators. Proceedings of the National Academy of Sciences, 

107(9), pp.4260–4263. 

Shaw, C.E., 1964. A snake easily ruffled but unrattled. Zoonoz, 37, pp.1–7. 

Shuster, S.M., 1987. Alternative reproductive behaviors: three discrete male morphs in 

paracerceis sculpta, an intertidal isopod from the northern gulf of california. Journal of 

Crustacean Biology, 7(2), pp.318–327. 



 
 

161 

Sih, A., Bell, A. & Johnson, J.C., 2004. Behavioral syndromes: An ecological and 

evolutionary overview. Trends in Ecology and Evolution, 19(7), pp.372–378. 

Sniegowski, P.D., Gerrish, P.J. & Lenski, R.E., 1997. Evolution of high mutation rates in 

experimental populations of E. coli. Nature, 387(6634), pp.703–705. 

Stein, B.E., 2000. Morphology of subterranean rodents. In J. L. Patton & G. N. Cameron, eds. 

Life underground: the biology of subterranean rodents. Chicago, IL: The University of 

Chicago Press, pp. 19–61. 

Steiner, S., Steidle, J.L.M. & Ruther, J., 2005. Female sex pheromone in immature insect 

males - A case of pre-emergence chemical mimicry? Behavioral Ecology and 

Sociobiology, 58(2), pp.111–120. 

Stern, D.L., 2013. The genetic causes of convergent evolution. Nature Reviews Genetics, 14, 

pp.751–764. 

Stockwell, C.A., Hendry, A.P. & Kinnison, M.T., 2003. Contemporary evolution meets 

conservation biology. Trends in Ecology and Evolution, 18(2), pp.94–101. 

Stuglik, M.T. et al., 2014. Alternative reproductive tactics and sex-biased gene expression: 

The study of the bulb mite transcriptome. Ecology and Evolution, 4(5), pp.623–632. 

Stulp, G. et al., 2012. Intralocus sexual conflict over human height. Biology Letters, 8(6), 

pp.976–978. 

Szűcs, M. et al., 2017. Rapid adaptive evolution in novel environments acts as an architect of 

population range expansion. Proceedings of the National Academy of Sciences, 114(51), 

pp.13501–13506. 

Tanaka, S., 1976. Wing polymorphism, egg production, and adult longevity in Pteronemobius 

taprobanensis Walker (Orthoptera: Gryllidae). Kontyû, 44(3), pp.327–333. 

Tanner, J.C., Swanger, E. & Zuk, M., 2019. Sexual signal loss in field crickets maintained 

despite strong sexual selection favoring singing males. Evolution, 73(7), pp.1482–1489. 



 
 

162 

The Heliconius Genome Consortium et al., 2012. Butterfly genome reveals promiscuous 

exchange of mimicry adaptations among species. Nature, 487, pp.94–98. 

Therkildsen, N.O. et al., 2019. Contrasting genomic shifts underlie parallel phenotypic 

evolution in response to fishing. Science, 365(6452), pp.487–490. 

Theron, E. et al., 2001. The molecular basis of an avian plumage polymorphism in the wild: 

A melanocortin-1-receptor point mutation is perfectly associated with the melanic 

plumage morph of the bananaquit, Coereba flaveola. Current Biology, 11(8), pp.550–

557. 

Thornhill, R., 1979. Adaptive female-mimicking behavior in a scorpionfly. Science, 

205(4404), pp.412–414. 

Tinghitella, R.M. et al., 2011. Island hopping introduces Polynesian field crickets to novel 

environments, genetic bottlenecks and rapid evolution. Journal of Evolutionary Biology, 

24(6), pp.1199–1211. 

Tinghitella, R.M. et al., 2018. Purring crickets: the evolution of a novel sexual signal. The 

American Naturalist, 192(6), pp.773–782. 

Tinghitella, R.M., 2008. Rapid evolutionary change in a sexual signal: genetic control of the 

mutation “flatwing” that renders male field crickets (Teleogryllus oceanicus) mute. 

Heredity, 100(3), pp.261–267. 

Tinghitella, R.M. & Zuk, M., 2009. Asymmetric mating preferences accommodated the rapid 

evolutionary loss of a sexual signal. Evolution, 63(8), pp.2087–2098. 

van’t Hof, A.E. et al., 2016. The industrial melanism mutation in British peppered moths is a 

transposable element. Nature, 534, pp.102–105. 

Veltsos, P. et al., 2017. Mating system manipulation and the evolution of sex-biased gene 

expression in Drosophila. Nature Communications, 8(1). 

Wagner, G.P. & Altenberg, L., 1996. Complex adaptations and the evolution of evolvability. 



 
 

163 

Evolution, 50(3), pp.967–976. 

Wagner, W.E. & Reiser, M.G., 2000. The importance of calling song and courtship song in 

female mate choice in the variable field cricket. Animal Behaviour, 59(6), pp.1219–

1226. 

Wainberg, M. et al., 2019. Opportunities and challenges for transcriptome-wide association 

studies. Nature Genetics, 51(592–599). 

Ward, L., 1923. The genetics of curly wing in drosophila. Another case of balanced lethal 

factors. Genetics, 8(3), pp.276–300. 

Warner, M.R. et al., 2019. Convergent eusocial evolution is based on a shared reproductive 

groundplan plus lineage-specific plastic genes. Nature Communications, 10(1), p.2651. 

Webb, K.L. & Roff, D.A., 1992. The quantitative genetics of sound production in Gryllus 

firmus. Animal Behaviour, 44(5), pp.823–832. 

Welch, J.J. & Waxman, D., 2003. Modularity and the cost of complexity. Evolution, 57(8), 

pp.1723–1734. 

West-Eberhard, M.J., 2003. Developmental plasticity and evolution. Nature, 424, p.794. 

West-Eberhard, M.J., 2005. Developmental plasticity and the origin of species differences. 

Proceedings of the National Academy of Sciences, 102(2), pp.6543–6549. 

Whitman, D.W., 2008. The significance of body size in the Orthoptera: a review. Journal of 

Orthoptera Research, 17(2), pp.117–134. 

Wiens, J.J., 2001. Widespread loss of sexually selected traits: How the peacock lost its spots. 

Trends in Ecology and Evolution, 16(9), pp.517–523. 

Wilkens, H., 1988. Evolution and genetics of epigean and cave Astyanax fasciatus 

(Characidae, Pisces): support for the neutral mutation theory. In M. K. Hecht & B. 

Wallace, eds. Evolutionary biology. Boston, MA: Springer. 

Wilson, B.A., Pennings, P.S. & Petrov, D.A., 2017. Soft selective sweeps in evolutionary 



 
 

164 

rescue. Genetics, 205(4), pp.1573–1586. 

Wong, B.B.M. & Candolin, U., 2015. Behavioral responses to changing environments. 

Behavioral Ecology, 26(3), pp.665–673. 

Woods, R.J. et al., 2011. Second-order selection for evolvability in a large Escherichia coli 

population. Science, 331(6023), pp.1433–1436. 

Wray, G.A., 2007. The evolutionary significance of cis-regulatory mutations. Nature reviews. 

Genetics, 8(3), pp.206–216. 

Wright, A.E. et al., 2018. Sex-biased gene expression resolves sexual conflict through the 

evolution of sex-specific genetic architecture. Evolution Letters, 2(2), pp.52–61. 

Wright, S., 1922. Coefficients of inbreeding and relationship. The American Naturalist, 

56(645), pp.330–338. 

Wright, S., 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. 

In Proc of the 6th International Congress of Genetics. 

Xie, K.T. et al., 2019. DNA fragility in the parallel evolution of pelvic reduction in 

stickleback fish. Science, 363(6422), pp.81–84. 

Young, L.C. & VanderWerf, E.A., 2014. Adaptive value of same-sex pairing in Laysan 

albatross. Proceedings of the Royal Society B: Biological Sciences, 281(1775). 

Young, L.C., Zaun, B.J. & VanderWerf, E.A., 2008. Successful same-sex pairing in Laysan 

albatross. Biology Letters, 4(4), pp.323–325. 

Zahavi, A., 1975. Mate selection-A selection for a handicap. Journal of Theoretical Biology, 

53(1), pp.205–214. 

Zeyl, C. & Bell, G., 1997. The advantage of sex in evolving yeast populations. Nature, 

388(6641), pp.454–468. 

Zuk, M. et al., 2018. Sexual signal loss: The link between behaviour and rapid evolutionary 

dynamics in a field cricket. Journal of Animal Ecology, 87(3), pp.623–633. 



 
 

165 

Zuk, M., Rebar, D. & Scott, S.P., 2008. Courtship song is more variable than calling song in 

the field cricket Teleogryllus oceanicus. Animal Behaviour, 76(3), pp.1065–1071. 

Zuk, M., Rotenberry, J.T. & Tinghitella, R.M., 2006. Silent night: adaptive disappearance of a 

sexual signal in a parasitized population of field crickets. Biology letters, 2(4), pp.521–

524. 

Zuk, M., Simmons, L. & Cupp, L., 1993. Calling characteristics of parasitized and 

unparasitized populations of the field cricket Teleogryllus oceanicus. Behavioral 

Ecology and Sociobiology, 33(5), pp.339–343. 

 

  



 
 

166 
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167 

The Genomic Footprint of Recent, 
Abrupt Adaptation in the Wild 
 
Sonia Pascoal1†, Judith E. Risse2,3†, Xiao Zhang4†, Mark Blaxter5,6, Timothee 
Cezard5, Richard J. Challis5, Karim Gharbi5,7, John Hunt8,9, Sujai Kumar5, 
Emma Langan5,10, Xuan Liu11, Jack G. Rayner4, Michael G. Ritchie4, Basten L. 
Snoek12,13, Urmi Trivedi5, Nathan W. Bailey4,14 
 

1Department of Zoology, University of Cambridge, CB2 3EJ, United Kingdom. 
2 Bioinformatics, Department of Plant Sciences, Wageningen University & Research, 6708 PB  
  Wageningen, The Netherlands. 
3Animal Ecology, Netherlands Institute of Ecology, PO Box 50, 6700 AB Wageningen, The  
  Netherlands. 
4School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, United Kingdom. 
5Edinburgh Genomics, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom. 
6Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom. 
7Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom. 
8School of Science and Health and the Hawkesbury Institute for the Environment, Western Sydney  
  University, Penrith, NSW 2751, Australia. 
9Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn TR10 9FE,  
  United Kingdom. 
10School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich  
  NR4 7UZ, United Kingdom. 
11Centre for Genomic Research, University of Liverpool, Liverpool L69 7ZB, United Kingdom. 
12Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The  
  Netherlands. 
13Terrestrial Ecology, Netherlands Institute of Ecology, PO Box 50, 6700 AB Wageningen, The  
  Netherlands. 
14E-mail: nwb3@st-andrews.ac.uk 
 
† Contributed equally  
 

Evolutionary adaptation is generally thought to occur through incremental mutational 
steps, but large mutational leaps can occur during its early stages. These are 
challenging to study in nature due to the difficulty of observing new genetic variants 
as they arise and spread, but characterising their genomic dynamics is important for 
understanding factors favouring rapid adaptation. Here, we report genomic 
consequences of recent, adaptive song loss in a Hawaiian population of field crickets 
(Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread 
approximately 15 years ago. Flatwing erases sound-producing veins on male wings. 
These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. 
We sequenced, assembled and annotated the cricket genome, produced a linkage 
map, and identified a flatwing quantitative trait locus (QTL) covering a large region of 
the X chromosome. Gene expression profiling showed that flatwing is associated with 
extensive genome-wide effects on embryonic gene expression. We found that 
flatwing male crickets express feminised chemical pheromones. This male feminising 
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effect, on a different sexual signalling modality, is genetically associated with the 
flatwing genotype. Our findings suggest that the early stages of evolutionary 
adaptation to extreme pressures can be accompanied by greater genomic and 
phenotypic disruption than previously appreciated, and highlight how suites of traits 
that characterise alternative sexual polymorphisms might arise through pleiotropy or 
genomic hitchiking. 
 
KEY WORDS: Adaptation, Feminisation, Genomics, Rapid Evolution, Sexual Signalling, 

Trait Loss 

 
Impact Summary 

What are the genomic consequences of extremely rapid evolution in the wild? The adaptive 

evolutionary loss of male song in Hawaiian field crickets (Teleogryllus oceanicus) protects silent 

“flatwing” males from a lethal eavesdropping parasitoid fly, and invasion and spread of genetic 

variants causing silence was observed to occur over approximately 20 generations in a population on 

the island of Kauai and now appears to be fixed. To investigate the genomic and phenotypic 

consequences of this abrupt bout of adaptation, we first sequenced, assembled and annotated the 

cricket genome – the first annotated reference genome for a field cricket. To provide a genomic 

resource for future work in crickets and allied taxa, we created a new, open-access genome browser 

and database for crickets and katydids (www.chirpbase.org) and curated our data and scripts in it. 

Using RAD-seq, we then constructed a high-density linkage map for the species and found that the 

variant or variants causing flatwing are localised to a large region of the X chromosome, consistent 

with widespread genomic hitchiking. We performed gene expression analysis of embryonic crickets 

and found that flatwing is genetically associated with genome-wide regulatory disruption during 

development. We quantified variation in another sexual signal, chemical pheromones, and discovered 

that flatwing is also strongly genetically associated with male pheromone feminisation. Our findings 

illustrate how strong, widespread genetic and phenotypic effects can accompany the rapid emergence 

and spread of adaptive variants during the very earliest stages of rapid adaptation, and demonstrate 

how suites of traits that characterise alternative sexual polymorphisms might arise through pleiotropy 

or genomic hitchhiking following such genomic alteration.   
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Introduction 

Empirical studies have struggled to characterise genomic dynamics of the earliest stages of 

evolutionary adaptation in natural system, because it is difficult to detect new genetic variants at the 

moment they first appear and then spread in wild populations. However, understanding genomic 

causes and consequences of new adaptive mutations can help to identify and test factors that facilitate 

or inhibit rapid adaptation. For example, R. A. Fisher (Fisher 1930; Orr 2005) developed a 

‘geometric’ model that predicts adaptation should occur via mutations of small effect size, with 

impacts narrowly limited to a small number of phenotypic traits (Bank et al. 2014). Later refinements 

to models of adaptation became more permissive of larger effect mutations, particularly during the 

earliest stages of adaptation under extreme selection (Kimura 1983; Orr 1998). However, questions 

remain about the extent to which novel adaptive variants of large effect are genetically associated 

with changes to other traits, altered gene expression, and potential loss of homeostasis, for example 

through pleiotropy or genomic hitchhiking, (Nadeau et al. 2003). Here, we identified and 

characterised the genomic signature of very recent sexual signal loss in Hawaiian field crickets, 

Teleogryllus oceanicus, and tested the associated genetic consequences of this rapid adaptation for a 

different sexual signal, chemical pheromones. 

 Male crickets sing to attract and court females and to fight with rivals, but approximately 16 

years ago, silent T. oceanicus males were detected in populations on the Hawaiian archipelago (Zuk et 

al. 2006; Zuk et al. 2018) (Fig. 1A). They spread rapidly. First observed in 2003 in a population on 

Kauai, where they were previously not observed, silent male crickets rapidly spread in fewer than 20 

generations (with 3-4 generations per year) to near-fixation under selection imposed by a lethal 

parasitoid fly, Ormia ochracea (Fig. 1B) (Zuk et al. 2006). Female flies acoustically locate male 

crickets by eavesdropping on their songs, but silent flatwing males have feminised wings lacking 

structures used to produce sound and are thus protected (Fig. 1C). The genetic mutation(s) underlying 

the flatwing phenotype have been shown previously using standard genetic crosses to follow discrete 

segregation patterns. Sex determination is XX/XO (female/male), and flatwing’s sex-linked, male 

limited expression indicates it is a variant, or cluster of closely linked variants, that segregate in the 

manner of a single-locus located on the X chromosome (Tinghitella 2008; Pascoal et al. 2014). The 

morph has been observed emerging in parasitized populations on other Hawaiian islands, and in at 

least one case appears to be caused by distinct genetic mechanisms (Tinghitella 2008; Zuk et al. 

2018). The genetic loss of male song in the Kauai population is a canonical example of rapid 

evolution in the wild (Dugatkin 2008), and all males in this population now appear to be flatwing 

(Rayner et al. 2019a). Nevertheless, the continued existence of the population indicates that silent 

males still find mates and must compensate for their inability to sing. The selective environment 

promoting the rapid spread of flatwing crickets is understood, but the genomic causes and 

consequences of this rapid evolutionary event remain open questions. Flatwing males have distinctly 
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feminised wings and cannot produce sexual signals critical for reproductive fitness: how did such a 

spectacularly disruptive phenotypic change invade the genome of crickets so quickly? 

  

Materials and Methods 

CRICKET REARING AND MAINTENANCE 

Laboratory stocks of Teleogryllus oceanicus were originally derived from the population in which the 

flatwing phenotype was first observed on Kauai (Zuk et al. 2006), and a population near Daintree, 

Australia (Pascoal et al. 2016b) which contains no flatwing crickets. Stocks were maintained in 16 L 

plastic containers containing cardboard egg cartons for shelter. All crickets were reared in a single, 

temperature-controlled chamber a 25 °C, on a 12:12 light:dark cycle. They were maintained regularly 

and fed ad libitum with Excel Junior and Dwarf rabbit pellets (Burgess) and provided water in a moist 

cotton pad that also served as oviposition substrate. 

 

GENOME SEQUENCING 

Three Illumina sequencing libraries (paired-end TruSeq libraries with insert sizes of 180, 300 and 600 

bp) were prepared at Edinburgh Genomics using gDNA extracted using a DNeasy Blood & Tissue kit 

(Qiagen) from the head capsule and muscle tissue of a single T. oceanicus female sourced from the 

Kauai stock population. DNA was quality-checked using Nanodrop and Qubit. We supplemented 

reads from the above libraries with additional sequences from two TruSeq Nano Pippin selected 

libraries with insert sizes of 350 bp and 550 bp, one 8 kb Nextera gel-plus mate-pair library, and 1 

PacBio library. For these four libraries, gDNA from a separate, single female cricket from the same 

laboratory population was extracted using a high molecular weight Genera Puregene Cell Kit 

(Qiagen). The TruSeq libraries were sequenced on 5 lanes of an Illumina HiSeq 2000 v3 to yield 100 

bp paired-end reads. NanoPippin libraries and the Nextera mate-pair library were sequenced on 2 

Illumina HiSeq 2500 lanes to yield 250 bp paired-end reads. The PacBio library was constructed by 

purifying the extraction with 1x AMPure beads (Agencourt). DNA quality was checked using 

Nanodrop and Qubit. Average DNA size and degradation was assessed using a high sensitivity 

genomic kit on a fragment analyzer. Size-selected and non-size-selected libraries were made by 

shearing gDNA using g-TUBEs (Covaris). Size selection was performed using the BluePippin DNA 

Size Selection System with 0.75% cassettes and cutoffs between 7 and 20 kb. Preparation of both 

libraries then proceeded using the same protocol. We treated DNA for 15 min at 37 °C with 

Exonuclease V11. DNA ends were repaired by incubating for 20 min at 37 °C with Pacific 

Biosciences damage repair mix. Samples were then incubated with end repair mix for 5 min at 25 °C 

followed by washing with 0.5x AMPure and 70% ethanol. DNA adapters were ligated overnight at 25 

°C. Incubation at 65 °C for 10 min was used to terminate ligation reactions, then samples were treated 

with exonuclease for 1 hr at 37 °C. We purified the SMRTbell library using 0.5x AMPure beads and 
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checked quality and quantity using Qubit. Average fragment size was quantified using a fragment 

analyser. For sequencing, primers were annealed to the SMRTbell library at values determined using 

PacBio’s Binding Calculator. A complex was formed using DNA polymerase (P6/C4 chemistry), 

bound to MagBeads, and then used to set up 43 SMRT cells for sequencing to achieve 10X coverage. 

Sequencing was performed using 240 min movie times. 

 

GENOME ASSEMBLY 

Raw reads from all Illumina libraries were trimmed using cutadapt v1.8.3 (Martin 2011) to remove 

adapters, primers and poor quality bases, and then error-corrected using BLESS v1p02 (Heo et al. 

2014). PacBio reads <1,000 bp were discarded. The original fragment length of the 350 bp library was 

shorter than the sequenced paired read length of 500bp, so reads from this library were merged using 

Vsearch v1.10.1 (Rognes et al. 2016). Platanus v1.2.4 (Kajitani et al. 2014) was used to assemble 

error-corrected reads from all Illumina libraries except the mate-pair library; reads from the latter 

were added at the scaffolding stage. Next, we selected the contigs >1,000 bp and combined these with 

the PacBio data to generate a hybrid assembly using PBJelly v15.2.20 (English et al. 2012). Pilon 

v2.1 (Walker et al. 2014) was used to improve local base accuracy, and BUSCO v2.1 (Simao et al. 

2015) was used to assess genome quality through gene completeness. 

 

REPEAT ANNOTATION  

We used de novo and homology-based approaches to identify repetitive regions. We first built a de 

novo repeat library using RepeatModeler v1.0.10 (Tarailo-Graovac and Chen 2009), with 

dependencies RECON v1.08 and RepeatScout v1.0.5 (Price et al. 2005). To scan and classify 

interspersed repeats and low complexity DNA sequences at the DNA level, we searched the cricket 

genome sequence against the Dfam consensus database (20170127) (Hubley et al. 2016), RepBase 

(20170127) (Bao et al. 2015), and the de novo repeat library using RMBlast v2.6.0+ (Boratyn et al. 

2012) and RepeatMasker v4.0.7 (Smit et al. 2013-2015). Protein-level repeats were identified by 

searching against the TE Protein Database using RepeatProteinMask v4.0.7 (Smit et al. 2013-2015). 

Unclassified repetitive elements were further classified by TEclass v2.1.3 (Abrusan et al. 2009), a 

programme using a support vector machine learning algorithm. Tandem repeats were also identified 

in the cricket genome using Tandem Repeat Finder v4.09 (Benson 1999). 

 

GENE PREDICTION 

Before running gene prediction pipelines, repetitive regions identified above were masked using an 

in-house Perl script. We built a pipeline including ab initio, homology and transcriptome-based 

methods to predict protein-coding genes in the cricket genome (Fig. S1). For ab initio prediction, 

SNAP 2013-11-29 (Korf 2004), Glimmer-HMM v3.0.4 (Majoros et al. 2004), GENEID v1.3 (Blanco 
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et al. 2007), and BRAKER v2.0.4 (Hoff et al. 2016) were used to generate preliminary gene sets from 

the repeat-masked genome. Specifically, reads obtained from the T. oceanicus transcriptome were 

aligned against the repeat masked genome with TopHat2 v2.0.10 (Kim et al. 2013). SAMTOOLS 

v0.1.19 (Li et al. 2009) was used to sort and index the resulting Binary Alignment Map (BAM) format 

file. This BAM file was processed in BRAKER v2.0.4 (Hoff et al. 2016), which used transcriptome 

data to train GENEMARK-ET v4.33 (Lomsadze et al. 2014), generate initial gene structures, and then 

subsequently train AUGUSTUS v3.2.2 (Stanke et al. 2008) and finally integrate RNA-seq 

information into final gene predictions. For other ab initio gene prediction programmes, gene sets 

from Locusta migratoria (Wang et al. 2014), Acyrthosipon pisum (International Aphid Genomics 

Consortium 2010), and Drosophila melanogaster (Gramates et al. 2017) were used for model training. 

For homology-based prediction, we aligned protein sequences of five insect species (L. migratoria 

(Wang et al. 2014), Drosophila melanogaster, Anoplophora glabripennis (McKenna et al. 2016), 

Nilaparvata lugens (Xue et al. 2014), and Cimex lectularius (Benoit et al. 2016)) to the repeat-masked 

cricket genome using TBLASTN v2.2.26 (E < 10-5) (Boratyn et al. 2012). The boundaries of potential 

genes were further identified using BLAST2GENE v17 (Suyama et al. 2004). We then ran 

GENEWISE2 2-4-1 (Birney et al. 2004) to obtain accurate spliced alignments and generate a final, 

homology-based gene set. For prediction based on transcriptome data, a de novo T. oceanicus 

transcriptome assembly generated for a separate study (Rayner et al. 2019b) using Trinity v2.2.0 

(Grabherr et al. 2011) was filtered based on gene expression level, and then passed to Program to 

Assemble Spliced Alignments (PASA v2.2.0) (Xu et al. 2006). PASA performed transcript 

alignments to the cricket genome, generated a new transcript assembly, and predicted gene structures. 

All ab initio, homology, and transcriptome-based gene sets were then combined into a weighted 

consensus set using EVidenceModeler (EVM r2012-06-25) (Haas et al. 2008). We removed genes 

likely to be spurious, those with low EVM support, partial genes with coding lengths shorter than 150 

bp, and genes only supported by a minority (≤ 2) of ab initio methods (Yang et al. 2017). PASA was 

used to further update the filtered consensus gene set to produce a finalised official gene set. The 

completeness of this final gene set was assessed by both BUSCO v2.1 (using the arthropoda dataset) 

(Simao et al. 2015) and transcriptome data. 

 

FUNCTIONAL ASSIGNMENT 
Putative gene functions were assigned using InterPro (InterProScan 5) (Finn et al. 2017), SwissProt 

(Feb.2018) (Bairoch and Apweiler 2000), TrEMBL (Feb.2018) (Bairoch and Apweiler 2000) and 

RefSeq non-redundant (NR) protein (106,376,657 sequences) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) gene (family_eukaryotes) databases. Briefly, we first obtained protein sequences 

from the final gene set using EVM r2012-06-25 (Haas et al. 2008). Functional annotation and gene 

ontology (GO) terms were assigned to genes based on protein sequence, using InterProScan 5 (Jones 
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et al. 2014). These proteins were also blasted against SwissProt, TrEMBL and NR databases 

(BLASTP, E < 10-5), and assigned their best hits as functional annotations. GO terms were assigned 

using GO annotations downloaded (26.03.2018) from the GO Consortium (Adams et al. 2000; The 

Gene Ontology Consortium 2017). BLAST2GO (unix_4_1_x54) (Gotz et al. 2008) was implemented 

to further assign unassigned genes using NCBI databases, and KEGG Orthology (KO) terms were 

assigned using BlastKOALA v2.1 (Kanehisa et al. 2016b). 

 

GENOME ANCHORING 

ALLMAPS v0.7.7 (Tang et al. 2015) was used to detect chimeric scaffolds, anchor the cricket 

genome to the linkage map (see below), and construct pseudo-molecules (reconstructed portions of 

chromosomal sequence). We first built a consensus genetic map based on male and female genetic 

distances obtained from linkage maps, in which equal weighting was applied for both sexes. Then, 

scaffolds for which more than four markers mapped to multiple linkage groups were designated as 

chimeric scaffolds, and split. After this correction was applied, scaffolds anchored to the linkage maps 

were oriented and ordered based on the consensus genetic map. We used a custom Perl script to order 

unanchored scaffolds according to their length, and liftOver (Mar.2018) (Kent et al. 2002) to convert 

genome coordinates based on anchoring results. 

 

CHIRPBASE – A GENOME BROWSER AND DATABASE 

We created ChirpBase, an open-access community genomics resource for singing insects such as field 

crickets and katydids. It can be accessed at www.chirpbase.org where users may view and download 

genomic data and scripts presented in this study in addition to uploading data. An index page links to 

an ensembl page, where assembly statistics can be visualised using a Challis plot or compared in 

tabular format. A plot illustrating codon usage is presented, and BUSCO scores can be visualised. 

Additional linking pages include a basic local alignment search tool (BLAST) page and a download 

page for accessing raw data. We used the GenomeHubs framework (Challis et al. 2017) to set up 

ChirpBase. The databased is hosted using a Linux container (LXC) on a remote computer, linked to a 

cluster via an intermediate import computer. A MySQL docker container was started in the LXC, 

where a database ini file resided to guide additions to the database. An Ensembl-easy mirror Docker 

container was run to import the database into the MySQL container, uploading data designated in the 

ini file from the LXC to the database. The MySQL container links to an Ensembl EasyMirror 

container, BLAST container, and a download container. 

 

LINKAGE AND QTL MAPPING CROSSES  

We constructed a linkage map for T. oceanicus crosses designed to maximise recombination on the X 

chromosome by retaining only families where flatwing-carrying and normal-wing-carrying X 
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chromosomes were present together in dams, as the X is only diploid in females (Fig. S2), combined 

with restriction-site associated DNA sequencing (RAD-seq) to identify markers. Flatwing segregates 

on the X chromosome (Tinghitella 2008; Pascoal et al. 2014), so mapping was performed with F3 

offspring to increase recombination on the X. We set up two parental mapping families by crossing a 

flatwing sire from the Kauai stock line with a virgin dam from the Daintree, Australia stock line. 

Daintree females were used to maximise our opportunity to genetically map segregating variation in 

other phenotypes. Female F1 offspring from parental crosses were heterozygous for flatwing, enabling 

recombination on the X. Full-sib matings were then performed with F1 males, all of which were 

normal-wing. The resulting F2 female offspring were a mix of homozygous normal-wing genotypes 

on the X, or heterozygous with respect to wing morph. Recombination between flatwing and normal-

wing genotypes was similarly possible in the heterozygous F2 females, but their phenotype is not 

externally detectable. We then mated F2 females with full-sib flatwing males from the same 

generation. Screening male morph types in the resulting F3 offspring enabled us to identify F2 crosses 

involving heterozygous females, as all male offspring of homozygous normal-wing females expressed 

normal-wing morphology. The crossing procedure resulted in 10 F3 mapping families from the 

original two parental families, from which a total of 192 females, 113 normal-wing males, and 86 

flatwing males were used for RAD-seq analysis (below). 

 

MARKER IDENTIFICATION USING RAD-SEQ 

RAD-seq was used to identify single nucleotide polymorphisms (SNPs) in F3 offspring (n = 391), P0 

dams and sires (n = 4), and the F2 sires and dams (n = 19) that were used to produce mapping 

individuals in the F3 generation. For each individual, gDNA extraction and quality control was 

performed as described above prior to library preparation. gDNA was digested using SbfI (New 

England BioLabs). We barcoded individuals by ligating P1 adapters (8 nM), then sheared and size 

selected 300-700 bp fragments. After ligating P2 adapters to sheared ends, parents were sequenced to 

an average coverage of 120x and offspring to 30x on an Illumina HiSeq 2000. 

 

LINKAGE MAP CONSTRUCTION 

Reads from all paired end RAD libraries were demultiplexed by sample using process_radtags from 

Stacks v1.46 (Catchen et al. 2013), mapped against the reference genome assembly using BWA-

MEM v0.7.15-r1140 (Li and Durbin 2009) and duplicates marked using PicardTools MarkDuplicates 

v2.9.2 (http://broadinstitute.github.io/picard). Variants were called using samtools mpileup (v1.3, 

parameters -d 2000 -t DP,DPR,DV,DP4,SP -Aef -gu) and bcftools call (version 1.3, parameters -vmO 

z -f GQ). The resulting variants were filtered using vcfutils.pl (included with bcftools) with minimum 

quality 50 and a minimum read depth of 150 (-Q 50 -d 150) to only retain high quality variants. The 

vcf format was converted to the required Lep-MAP2 input format using a custom script of the 
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RADmapper pipeline (RAD_vcf_to_lepmap_with_sexmarker_conversion.py, 

https://github.com/EdinburghGenomics/RADmapper). During this conversion samples that did not fit 

initial relatedness expectations (n = 8, using vcftools relatedness2 and visual inspection of a heatmap) 

and samples from family I (which lacked a genotyped father, n = 59) and P0 parents (n = 4) were 

excluded from linkage map creation. Putative X-linked markers (male_het <=1, female_het > 20, 

het_sire <=1) were converted to biallelic markers in the relevant male offspring and sires using a 

dummy allele (Table S1). The linkage map was then created using the following steps and parameters 

in Lep-MAP2 v0.2 (Rastas et al. 2015) (Filtering: dataTolerance 0.05 keepAlleles=1; 

SeparateChromosomes: losLimit=10 sizeLimit=10 informativeMask=3;JoinSingles: 

lodLimit=5;OrderMarkers: filterWindow=10 polishWindow=100; OrderMarkers evaluateOrder: 

filterWindow=10 polishWindow=100). The resulting linkage map files were merged with the marker 

and sample information using a custom script from the RADmapper pipeline (LG_to_marker.py). 

 

QTL MAPPING  

To identify the flatwing locus on the putative X chromosome (LG1), we performed ANOVA for each 

marker using the lm package in R (v3.1) and 178 male samples (105 normal-wing + 73 flatwing; as 

above excluding all grandparental, parental and female samples together with samples that clustered 

with the wrong family, had insufficient coverage to calculate relatedness or did not have cuticular 

hydrocarbon (CHC) data, see below). Individual p-values were corrected to account for multiple 

testing using Bonferroni correction and markers supported by a log-of-odds (LOD)10 cutoff were 

plotted. QTL for all 26 CHC peaks as well as the principle components from the CHC analysis were 

mapped to the linkage groups using mixed linear models in ASReml v4. Mapping used a GWAS-type 

approach, taking into account genetic relatedness between individuals (Calus 2010). The markers 

mapped to the autosomal linkage groups 2-19 were filtered to contain only bi-allelic SNP markers 

with a MAF <=0.01 and <5% missing samples per marker. Only male samples were selected (the 

same n = 178 as for mapping flatwing above), as our aim was to map male CHCs (not sex-related 

associations) on the putative X (LG1) and autosomes using principle components from the CHC 

analysis as well as individual compounds as traits. The remaining 21,047 markers were used to 

calculate pairwise genetic relatedness with the first normalisation (VanRaden 2008). The resulting 

inverse relatedness matrix was used as random effect in a model: CHC trait ~ mu marker r! 

Giv(animal). P-values for all markers were extracted from the results and corrected for multiple 

testing using Bonferroni correction. The same model was used to assess LG1 separately with the same 

set of samples, for which 6,537 markers were used after filtering. 

 

PURE-BREEDING LINES AND EMBRYO SAMPLING FOR RNA-SEQ 

Kauai lines homozygous for the flatwing and normal-wing genotypes were used for examining 



 
 

176 

differential gene expression. Their establishment has been described previously (Pascoal et al. 2016a). 

Briefly, one generation of crosses was performed, starting with the laboratory population derived 

from Kauai and crossing males of either wing phenotype to virgin females of unknown genotype. 

Because the phenotypic effects of flatwing are sex-limited, family-level screening of the resulting 

male offspring was performed to select homozygous flatwing and homozygous normal-wing lines, 

resulting in a final selection of three pure-breeding lines for each morph genotype. Developing 

embryos were sampled from eggs laid by females from each line. Females were maintained in 

laboratory culture as above, and their oviposition substrates were monitored. Eggs were removed 

from the substrate and immediately preserved in 500 µL of RNAlater (Qiagen) at the stage when eye 

pigmentation first develops, ca. 2 weeks after laying. This time point corresponds approximately to 

embryonic stage 13-14 in the related grylline species Gryllus bimaculatus (Donoughe and Extavour 

2016). After removing the outer egg chorion, the thoracic segment of each nymph was 

microdissected. Nymphs cannot be sexed based on external morphology until a later stage of juvenile 

development, and as chromosomal sex determination is XX/XO, screening for sex-specific markers is 

not possible. To minimise potential variation in sex ratio of samples between lines, and ensure a 

sufficient volume of tissue to extract RNA, thoracic tissue from n = 8 nymphs was pooled for each 

replicate, and 6 biological replicates were produced for each morph type (2 per line). 

 

RNA-SEQ AND GENE EXPRESSION PROFILING 

Total RNA was extracted using the TRIzol plus RNA purification kit (Life Technologies) and DNAse 

treated using PureLink (Invitrogen). RNA was quantified and quality checked using Qubit assessment 

(Invitrogen) and Bioanalyser RNA Nano Chips (Agilent), respectively. To isolate mRNA we depleted 

samples with RiboZero. After verifying depletion, cDNA libraries were constructed using the 

ScriptSeq protocol (Epicentre) with AMPure XP beads for purification. Following barcoding and 

multiplexing, final quality was checked and qPCR performed using Illumina’s Library Quantification 

Kit (Kapa). Sequencing was performed on an Illumina HiSeq 2000 v3, with 1% PhiX DNA spike-in 

controls to produce 100 base paired-end reads. CASAVA v1.8.2 was used to demultiplex reads and 

produce raw fastq files, which were then processed with Cutadapt v1.2.1 (Martin 2011) and Sickle 

v1.200 (Joshi and Fass 2011) to remove adaptor sequences and trim low-quality bases. Further quality 

assessment was performed in FastQC. Expression analysis of RNA-seq data was performed broadly 

following the protocol published by Pertea et al. (2016) (Pertea et al. 2016). Reads were aligned to the 

genome using HISAT2 v2.1.0 with strand-specific settings, and transcripts compiled for each sample 

in StringTie v1.3.4, using the gene annotation file as a reference, which were then merged across all 

samples to produce a single annotated reference transcriptome. Sample transcript abundances were 

estimated with the parameter -e specified to restrict abundance estimation to annotated transcripts. 

Differential expression analysis was performed at the gene level following normalisation of counts by 
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trimmed mean of M-values (TMM), using a generalised linear model (GLM) with negative binomial 

distribution and a single predictor variable of ‘morph’ in the edgeR v3.20.9 package (Robinson et al. 

2010) in R v3.4.1. Only genes with an expression level greater than 1 count per million in at least 3 

samples were included in the analysis. Significance-testing was performed using likelihood ratio tests, 

and genes were considered significantly differentially expressed between morph genotypes if false-

discovery rate (FDR)-adjusted P-values were below a threshold of 0.05. 

 

SCREENING FOR TOP CANDIDATE GENES ASSOCIATED WITH FLATWING 
We adjusted P-values for significant marker associations in the flatwing QTL mapping procedure 

using Bonferroni correction with a cut-off of P < 0.001. Three sources of information were used to 

comprehensively and robustly detect a set of top candidate genes associated with the flatwing 

phenotype. We detected genes (i.e. any overlapping portion of a predicted gene sequence) located in 1 

kb flanking regions of all significant QTL markers after FDR correction as above, and defined these 

as QTL-associated candidates. We then subsetted these genes to retain only those located in the 1 kb 

flanking regions of the most significant (top 1%) of all QTL markers, and defined these as Top 1%-

associated candidates. We also obtained the flatwing-associated sequences from a previously 

published bulk segregant analysis (BSA) of Kauai flatwings (Pascoal et al. 2014), and defined the 

BSA reference sequences containing flatwing-associated SNPs as flatwing-associated BSA 

sequences. We mapped these BSA sequences to the T. oceanicus reference genome using BWA-

MEM with default parameters (Li and Durbin 2009). Coordinates of mapped sequences were 

extracted from the resulting BAM files using SAMTOOLS (Li et al. 2009) and custom Perl scripts, 

and we only retained those sequences that were anchored to LG1. Genes within 1 kb of these retained 

sequences were defined as BSA-associated candidates. Finally, we extracted differentially expressed 

genes from the embryonic thoracic transcriptome analysis above, and defined these as DEG-

associated candidates. To ensure a reliable final candidate gene set for flatwing, we only retained 

genes supported by at least two of these four gene sets. We used KEGG pathway mapping (colour 

pathway) to reconstruct pathways and obtain reference pathway IDs (Kanehisa et al. 2016a). To 

characterise significantly enriched GO terms and KEGG pathways in DEGs, we implemented the 

hypergeometric test in enrichment analyses. P values for each GO and KEGG map term were 

calculated and FDR-adjusted in R. 

 

CUTICULAR HYDROCARBON EXTRACTION AND GAS CHROMATOGRAPHY-MASS 
SPECTROMETRY 

We extracted CHCs from 394 individuals from the F3 mapping generation prior to extracting gDNA 

for RAD-seq. Extraction and analysis of CHCs followed previous methodology (Pascoal et al. 2016b), 

which is briefly described here. Subjects were flash-frozen for several minutes at -20 °C and then 
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thawed. They were individually placed into 4 mL borosilicate glass vials (QMX Laboratories) and 

immersed for 5 minutes in 4 mL of HPLC-grade hexane (Fisher Scientific), then removed from the 

vials and stored for later processing. We evaporated a 100 µL aliquot of each sample overnight in a 

300 µL autosampler vial (Fisher Scientific). CHC extracts were transported to the University of 

Exeter for gas chromatography mass spectrometry (GC/MS) using an Agilent 7890 GC linked to an 

Agilent 5975B MS. Extracts were reconstituted in 100 µL of hexane with a 10 ppm pentadecane 

internal standard, and 2 µL of this was injected into the GC/MS using a CTC PAL autosampler at 5 

°C. The carrier gas was helium and we used DB-WAX columns with a 30 m x 0.25 mm internal 

diameter and 0.25 µm film. Injection was performed in split-less mode. The column profile was 

optimised for separation of the CHC extract (Pascoal et al. 2016b) to start at 50 °C for 1 minute, 

followed by a temperature ramp of 20 °C per minute until finally holding at 250 °C for a total run 

time of 90 minutes. The inlet temperature was 250 °C and the MS transfer line was 230 °C. We 

recorded electron-impact mass spectra using a 70 eV ionization voltage at 230 °C, and a C7-C40 alkane 

standard was run as a standard to enable the later calculation of peak retention indices. 

 

QUANTIFICATION AND ANALYSIS OF CHC PROFILES 
For each individual, we used MSD CHEMSTATION software (vE.02.00.493) to integrate the area 

under each of 26 CHC peaks (Table S2) following (Pascoal et al. 2016b). Peak abundances were 

standardized using the internal pentadecane standard and log10 transformed prior to analysis. After 

accounting for samples that failed during extraction or during the GC run (n = 10), labelling error (n = 

1), and one normal-wing male CHC profile that was identified as an outlier and removed during 

analysis (Fig. S3), we analyzed a total of n = 86 flatwing males, n = 112 normal-wing males, and n = 

185 females of unknown genotype. To test whether CHC profiles differed between males of either 

wing morph, we first performed dimension reduction using principal components analysis (PCA) on 

male data only. JMP Trial v14.1.0 (SAS Institute Inc.) was used to draw a 3D scatterplot of the first 

three PCs. To assess statistical significance, we performed a MANOVA using all principal 

components with eigenvalue > 1.00 (n = 6). This indicated a highly significant difference among male 

morphs which formed the basis of QTL mapping described above. To visualise the difference 

between flatwing and normal-wing male CHC profiles with respect to female CHC profiles, we 

performed a discriminant function analysis (DFA) for all samples and all 26 peaks. DFA highlights 

the maximal difference between pre-defined groups, with maximum group differences indicated by 

the first DF axis. Statistical analyses of CHC data were done in SPSS (v23).  

 

Results and Discussion 

SEQUENCING THE CRICKET GENOME AND MAPPING FLATWING  
We studied the genomic signature of song loss in the Kauai population where flatwing crickets were 
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first discovered, and in which rapid spread has been most thoroughly documented (Zuk et al. 2006). 

Using females from laboratory stock, we sequenced the T. oceanicus genome and generated an 

assembly of 2.045 Gb consistent with flow cytometry size estimates (Tinghitella et al. 2018), with a 

scaffold N50 of 62.6 kb (Table S3). We established an F3 mapping population using crosses designed 

to maximise recombination on the X chromosome (Fig. S2). Mapping offspring and parents were 

sequenced using RADseq, and a map was assembled containing 19 linkage groups. We identified 

linkage group 1 (LG1) as the X chromosome by applying coverage and heterozygosity filters and 

dummy coding putative X-markers prior to constructing the map. LG1 was the largest linkage group, 

with a female recombination length of 379 cM and a male length of 195 cM (Fig. S4). After resolving 

chimeric scaffolds (Table S4), 35.6% of the genome was anchored to a linkage map using a LOD5 

cutoff (Fig. 2A and Table S5). T. oceanicus has a haploid chromosome number of (13+X), so the 

additional 5 linkage groups likely correspond to unjoined chromosomal segments. 

We performed gene prediction and annotation using custom pipelines incorporating ab initio, 

homology, and transcriptome-based approaches (Fig. S1). Evidence from different gene prediction 

and annotation methods was weighted and filtered to predict a final, conservative set of 19,157 genes, 

75% of which had functional annotation (Table S6 and Fig. S5). Gene density was assessed (Fig. 2A 

track i), and we tested whether the putative X linkage group showed a different distribution of repeat 

content relative to the other linkage groups, across eight common categories of repeats. It did not (Fig. 

2A track iii, Table S7, Fig. S6). T. oceanicus gene features were compared to 10 other insect species 

(Table S8), and we contrasted transposable element classifications with three other recently published 

insect genomes (Table S9). The T. oceanicus genome and metadata associated with it are curated in 

ChirpBase (www.chirpbase.org), a GenomeHubs Ensembl genome browser (Challis et al. 2017) that 

we created as an openly available, community-based genomics resource for researchers working on 

singing insects. 

 Flatwing was definitively mapped to the putative X chromosome using markers supported by 

a LOD10 cutoff and a mixed model, ANOVA-based approach designed to control for uneven 

genomic relatedness caused by family structure in the mapping crosses (Fig. 2B; no other linkage 

group had markers showing associations exceeding the genome-wide significance threshold of P < 

0.001). To cope with the particularly high marker association on the putative X chromosome caused 

by the discrete mode of inheritance of flatwing and the different effective population size of the X 

compared to autosomes, we identified the QTL using only the top 1% of markers after FDR 

correction, yielding a prominent peak occupying approximately one third of the X chromosome (Fig. 

2C).  

 

REGULATORY CONSEQUENCES ASSOCIATED WITH FLATWING 

Flatwing morphology is observable in males during mid- to late-instar stages of juvenile development, 
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so we examined early embryonic gene expression differences associated with flatwing. Females 

carrying the genotype cannot be visually distinguished and embryos cannot be readily sexed, so we 

used replicate laboratory lines homozygous for flatwing or normal-wing genotypes to detect 

widespread differential gene expression in the developing thoraces of embryonic crickets. We found 

830 genes differentially expressed (DE), 204 of which had a log2 fold-change > 1, and a predominant 

pattern of down-regulation in flatwing crickets (Table S10 and Fig. S7). DE genes associated with 

flatwing were widely distributed across linkage groups and unmapped scaffolds (Fig. 2A track iv). 

 These physically dispersed expression effects are consistent with a scenario in which flatwing 

acts as a master regulatory switch during early development, with a broad cascade of downstream 

effects. Pathways reconstructed using differential expression data are consistent with a master 

regulatory switch. For example adherens junction activity was enriched, which affects epithelial 

patterning during early development (Tables S11 and S12). Using a stringent and redundant approach 

combining information from gene sets identified in the QTL study, RNA-seq experiment and a 

previously-published bulked segregant analysis (Pascoal et al. 2014), we identified 51 annotated 

protein-coding genes located within LG1 as top flatwing-associated candidates (Table S13). Gene 

ontology (GO) enrichment analysis indicated that positive regulation of developmental process was 

overrepresented in this candidate gene set, with three genes in particular (NBL1, GOGA4, UNC89) 

known to play a fundamental role in the regulation of cell differentiation (Table S14). However, it is 

plausible that loci hitchhiking with the causal genetic variant(s) underlying the flatwing phenotype 

also have regulatory effects. Such joint effects could compound gene regulatory consequences of 

novel adaptive variants. 

  

CANDIDATE GENE DISCOVERY 

In most pterygote insects, wings are derived from imaginal discs formed during development by the 

invagination of embryonic ectoderm (Snodgrass 1993). Previous work mainly in Drosophila 

melanogaster has established that the developmental elaboration of wing venation patterns requires 

the involvement of numerous transcription factors and complex coordination across numerous 

signalling pathways (De Celis 2003). Here, we found that 7 of 51 flatwing associated candidate genes 

have reported involvement in wing development in D. melanogaster. For example, Collier encodes a 

transcription factor required for wing disc patterning (Vervoort et al. 1999), and Myoglianin 

expression is required for normal wing disc development (Hevia and de Celis 2013). ROR1 encodes a 

transmembrane tyrosine-protein kinase receptor involved in phosphorylating MAP kinases (Bicocca 

et al. 2012), and reduction of MAPK activity through ROR1 silencing can lead to a loss of wing 

venation phenotype (De Celis 2003). The protein krasavietz is encoded by PKRA, and establishes 

planar cell polarity in the wing (Carvajal-Gonzalez et al. 2016), disruption of which can lead to wing 

distortion (Adler 2012). Knockouts and mutants in Pelle, Gcn5, and Plexin-A4 show wing shape and 
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venation alterations with features similar to flatwing (Carre et al. 2005; Wu et al. 2015; Okada et al. 

2016).  

 

GENETICALLY ASSOCIATED FEMINISATION OF MALE PHEROMONES 

We tested the consequences of the rapid invasion of flatwing into the T. oceanicus genome for other 

relevant phenotypes by focusing on a distinct, close-range sexual signalling modality that operates 

alongside acoustic signalling in field crickets. Cuticular hydrocarbons (CHCs) are long-chain, waxy 

molecules expressed on insect cuticles. CHCs are thought to have evolved for dessication resistance, 

and they tend to be expressed as a bouquet of numerous individual hydrocarbon compounds. T. 

oceanicus CHCs are sexually dimorphic and function as sexual signals during male and female mate 

choice (Tregenza and Wedell 1997; Thomas and Simmons 2009, 2010), and they have been found to 

vary between flatwing and normal-wing male crickets (Simmons et al. 2014). We characterised the 

CHC profiles of F3 mapping individuals, all of which were raised in a common garden environment, 

by extracting their CHCs and using gas chromatography – mass spectrometry (GCMS) to measure the 

abundance of 26 individual compounds (Fig. 3A) (Table S2). By performing dimension reduction 

using principal components (PC) analysis of the CHC profiles, we first established that, in our 

mapping population, males carrying flatwing showed noticeably different CHC profiles from normal-

wing males (Fig. 3B) (multivariate analysis of variance on 6 principal components with eigenvalues > 

1 describing male CHC blends: F6,191 = 29.769, p < 0.001) (Table S15). 

QTL analysis was performed on the first six CHC PCs using the same set of male mapping 

individuals, to determine whether flatwing-associated variation in male CHC profiles mapped to 

identifiable genomic regions. The putative X chromosome, LG1, was of particular interest, because 

we hypothesized that the striking variation between CHC profiles of flatwing and normal-wing males 

could be due to pleiotropy or hitchhiking associated with flatwing. Genetic mapping of CHCs was 

performed blind to male morphotype. PC1, which explained over a third of the variance in male CHC 

profiles, mapped to a ca. 2.5 cM region strongly co-localised with flatwing (Fig. 3C). PCs 4 and 6 also 

had co-localizing peaks (Fig. S8). As dimension reduction for CHCs can obscure phenotypic patterns 

in the original individual chemical compounds, we mapped each of the 26 compounds separately. Of 

these, 9 showed significant peaks co-localising with flatwing (Fig. 3D). We recovered no autosomal 

QTL peaks for PCs 1-6, and only one QTL peak for one compound on one autosome (compound 11, 

7-C31ene, on LG8). However, the latter peak was weakly supported, with only a single marker 

showing an association at FDR-corrected p < 0.001.  

We interrogated genes on scaffolds under the CHC QTL peaks following a similar procedure 

used to produce the flatwing candidate gene set (Table S16). Of 55 protein-coding genes, a subset of 6 

were implicated for every CHC trait with a significant QTL peak, and these 6 genes were also present 

in the flatwing candidate gene set. These are strong candidates for testing for any pleiotropic or linked 



 
 

182 

effects of evolved acoustic sexual signal loss on chemical sexual signals. Our final step was to explore 

the nature of the phenotypic shift in flatwing male CHC profiles. It is unknown how flatwing males’ 

profiles compare to those of females (Simmons et al. 2014), but given the generally feminising effect 

of flatwing on male wing morphology, we predicted that flatwing males’ CHC profiles would also be 

feminised. We compared them to the profiles of normal-wing males and females using discriminant 

function analysis on profiles from all three groups. Discriminant function 1 (eigenvalue = 2.526) 

explained 78.8 % of the variance, and indicated that flatwing male crickets’ CHC profiles are strongly 

feminised (Fig. 3E). Their CHCs appear to be correspondingly less attractive to females (Gray et al. 

2014). 

 

CONCLUSIONS 

Factors constraining rapid adaptation will be increasingly important to evaluate as natural populations 

are placed under pressure from climate change, anthropogenic disturbances, and the application of 

biological control agents (Tomasetto et al. 2017). The rapid emergence and spread of flatwing crickets 

on Kauai is a textbook example of rapid adaptation in the wild (Dugatkin 2008). Previous work on 

this population of crickets has found differences in the level of phenotypic plasticity, gene expression, 

and other reproductive characteristics such as male testis size between male normal-wing and flatwing 

genotypes (Bailey et al. 2010; Pascoal et al. 2016a; Pascoal et al. 2018), and our present findings 

reveal the genomic footprint of strong, associated effects on sexual signalling in an entirely different 

sensory channel. These consequences of rapid adaptive trait loss are early-acting, genome-wide, and 

impact a range of important fitness traits. The suite of characters affected in flatwing crickets is 

reminiscent of feminised alternative male morphs in ruff (Calidris pugnax) in which a supergene 

controls size, ornament and behavioural traits simultaneously (Kupper et al. 2016), and in feminised 

bulb mites (Joag et al. 2016). What is surprising is that an evolved loss of function could lead to such 

similarly wide-ranging phenotypic impacts so quickly, and yet still be adaptive. Examples of rapid 

adaptive evolution are well-known, from industrial melanism in Kettlewell’s peppered moths (Biston 

betuliaria) (van't Hof et al. 2011), to insecticide resistance in mosquitoes (Ranson et al. 2002), but in 

general, adaptation has been thought to be mutation-limited with negative pleiotropic consequences 

ascribed a prominent impeding role (Barrett and Schluter 2008). Strikingly, at least three independent 

male song-loss variants in the Hawaiian cricket system have been recently described: a less-feminised 

version of flatwing on the island of Oahu (Pascoal et al. 2014), plus “curly-wing” and “short-wing” 

crickets on Oahu and the Big Island, respectively (Rayner et al. 2019a). All of these adaptations 

involve morphological disruption to forewings, and their proliferation under fly selection hints that 

episodes of rapid adaptive evolution might be more likely when adaptation can proceed via secondary 

trait loss rather than gain. Future work would benefit from investigating whether the indirect genomic 

consequences of adaptive trait-loss mutations are less detrimental than those of mutations underlying 
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trait gain. The genomic signature of recent, abrupt song loss in Hawaiian crickets uniquely illustrates 

how genetic variants exerting large effects and accompanying widespread, associated consequences 

on gene expression and other phenotypes can invade genomes in the wild. Our results raise the 

possibility that disruptive genomic consequences of new genetic variants might place fewer 

constraints on rapid adaptation than previously appreciated.  
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Figure 1. Evolutionary loss of song in Hawaiian crickets. (A) The field cricket T. oceanicus is 
thought to have migrated to the Hawaiian archipelago from other islands in Oceania, and is 
attacked by the fatal, acoustically-orienting parasitoid fly Ormia ochracea on Kauai, Oahu and 
Hawaii. We studied crickets from a population in Kauai, highlighted in dark blue, where 
parasitoid infestation rates have historically been highest. (B) Adult female fly and mature 
parasitoid larva. Gravid female flies locate hosts by eavesdropping on singing male crickets, 
then they eject larvae that burrow into the host and consume its viscera before emerging to 
pupate. Infestation is fatal, and the flies exert significant natural selection against male song. 
(C) Normal-wing males (left) of this field cricket species produce advertisement, courtship and 
aggressive songs by elevating and rubbing together forewings that bear specialised sound-
producing venation. A toothed file on the right wing engages with a thickened ridge of tissue 
on the opposite, causing resonators to vibrate and produce sound. Two principal resonators 
are highlighted on this male’s right forewing: the harp in purple and the mirror in turquoise. 
Flatwing males (right) have wings that are feminised and lack, or have severely reduced, 
resonators. They still make wing motions characteristic of singing despite the structural 
inability to produce sound (Schneider et al. 2018), but their silence protects them from the fly 
(Zuk et al. 2006). Currently, 100% of males from the population studied on Kauai exhibit 
flatwing morphology. (Photo credits: N.W. Bailey (cricket antennae drawn by hand))  
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Figure 2. Teleogryllus oceanicus genome and regions associated with the flatwing phenotype. 
(A) Circos plot providing an overview of the genome. Linkage groups (LGs) upon which 
genome scaffolds were anchored are shown in different colours, with unplaced scaffolds in 
gray. LG1 was identified as the X chromosome based on heterozygosity and coverage filters 
(see Main Text). Tracks (i): gene density, (ii): linkage group pseudomolecules, (iii): 
transposable element density, (iv): genes differentially expressed (DE) in the thoracic tissues 
of embryos homozygous for flatwing vs. normal-wing genotypes. Longer bars are DE genes 
for which log2fold-change > 1 between genotypes, and short grey bars are all other DE genes. 
Colours indicate the magnitude of upregulation (red) versus downregulation (blue) in flatwing 
compared to normal-wing embryos.  (B) Genome-wide Manhattan plot of the flatwing QTL. 
Alternating shades of grey and blue indicate different LGs. The horizontal dashed line 
indicates an FDR-corrected significance threshold of (P < 0.001), and the top 1% most 
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significant QTL markers are plotted in red. (C) Enlarged plot for LG1 (X chromosome) showing 
the flatwing-associated peak.   
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Figure 3. Genetic colocalisation of the flatwing phenotype and male chemical pheromone 
feminisation. (A) Diagram of a T. oceanicus cuticular hydrocarbon (CHC) chromatogram, 
with the 26 measured peaks indicated by blue wedges. The asterisk indicates the internal 
standard (pentadecane). (B) Space-filling scatterplot of the first three principal components 
describing male CHC profiles, illustrating differences between flatwing and normal-wing 
males (variance explained for PC1: 35.18%, PC2: 10.14%, PC3: 9.58%). (C) Comparison of 
QTL on the putative X chromosome for CHCs (top; first principal component mapped) and 
flatwing (bottom, same as Fig. 2C). Grey shading indicates the extent (in cM) of the CHC 
peak, showing overlap with the flatwing QTL. Dashed lines indicate FDR-corrected 
significance of p < 0.001, red points the top 1% significant flatwing QTL markers. Note the 
different y-axis scales. (D) Univariate analyses revealed nine individual CHC components 
which also co-localised with flatwing. The original flatwing QTL is plotted at the top of each 
column. Grey shading spans the genetic region of co-localisation. Numbers refer to 
compounds indicated in A, and dashed lines indicate an FDR-corrected significance 
threshold of p < 0.001. (E) Discriminant function scores describing variation in CHC profiles 
among female, flatwing male and normal-wing male mapping individuals. Discriminant 
function 1 explained 78.8% of the variance in CHC profiles between groups. Means ± 2 s.d. 
are indicated by open black-and-white circles and lines, respectively. Points in E) are 
scattered along the X-axis for purposes of visualisation only, with solid outlines representing 
density distributions.  
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