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1  | INTRODUC TION

Animal activity patterns are an important aspect of species ecol-
ogy that affect community interactions and community structure 
(Bridges & Noss, 2011; Farris et al., 2015; Frey et al., 2017; Gerber 

et al., 2012). The way an animal behaves is driven by an energetic 
trade-off between different activities. Being active is necessary 
for sustenance but more costly than resting, and animals need 
to optimize the way that they expend energy relative to the cost 
associated with these activities (Frey et  al.,  2017). For example, 
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Abstract
1.	 Quantifying the distribution of daily activity is an important component of behav-

ioral ecology. Historically, it has been difficult to obtain data on activity patterns, 
especially for elusive species. However, the development of affordable camera 
traps and their widespread usage has led to an explosion of available data from 
which activity patterns can be estimated.

2.	 Continuous-time spatial capture–recapture (CT SCR) models drop the occasion 
structure seen in traditional spatial and nonspatial capture–recapture (CR) models 
and use the actual times of capture. In addition to estimating density, CT SCR 
models estimate expected encounters through time. Cyclic splines can be used 
to allow flexible shapes for modeling cyclic activity patterns, and the fact that 
SCR models also incorporate distance means that space–time interactions can be 
explored. This method is applied to a jaguar dataset.

3.	 Jaguars in Belize are most active and range furthest in the evening and early 
morning and when they are located closer to the network of trails. There is some 
evidence that females have a less variable pattern than males. The comparison be-
tween sexes demonstrates how CT SCR can be used to explore hypotheses about 
animal behavior within a formal modeling framework.

4.	 SCR models were developed primarily to estimate and model density, but the 
models can be used to explore processes that interact across space and time, es-
pecially when using the CT SCR framework that models the temporal dimension 
at a finer resolution.
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predators can maximize their chances of success by hunting when 
prey are most vulnerable whereas prey may adjust their activity 
patterns to avoid predation. Adjustments may occur across space 
when for example wide-ranging predators have been known to 
exhibit local adaptations that match the pattern of their prey. 
Furthermore, adjustments are also known to vary across time for 
example with differences in night-time illumination caused by the 
lunar cycle (Harmsen et al., 2011). Strategies for coexistence usu-
ally involve differential preferences for prey, habitat, or distribu-
tion of activity levels, but apart from sympatry and predator–prey 
dynamics, understanding activity patterns provides insight into 
various other processes such as the effects of local density, an-
thropomorphic disturbances, seasonal fluctuations of resources, 
circadian rhythms, and even the degree of synchronicity between 
peaks in activity (Farris et  al.,  2015; Frey et  al.,  2017; Harmsen 
et al., 2009; Ridout & Linkie, 2009).

Unfortunately, activity is not an easy metric to quantify in nat-
ural settings and consequently has received relatively little atten-
tion. Historically, data on activity patterns were obtained by directly 
observing individual animals in the field or in the laboratory. More 
recently, devices that can track movement (such as radio collars and 
multiaxial accelerometers) have led to improved ways of measuring 
activity (Rowcliffe et al., 2014) although usually the cost and effort 
restricts such studies to a small number of individuals (Harmsen 
et al., 2009). Timing devices can also be fitted with live traps to pro-
vide auxiliary data on the times of capture. For example, Cowan and 
Forrester (2012) used traps with timing devices to study the behav-
ioral response of possums to capture.

Camera trap surveys are a noninvasive way to “capture” or detect 
individuals and can be applied in a wide range of settings to generate 
data on multiple species, including species that are difficult to cap-
ture or observe directly. Compared with traditional approaches, it is 
now easier to collect data on a range of species including carnivores, 
ungulates, and rodents. Camera traps have been used in the field as 
remote sensors since the early 20th century but technological ad-
vancements over the past two decades have made these devices less 
expensive and more effective, becoming a mainstream tool in eco-
logical research. Data obtained from camera traps are being used for 
various types of analyses including studies of species richness, occu-
pancy models, and capture–recapture (CR) models (both spatial and 
nonspatial) (Harmsen et al., 2009; Ridout & Linkie, 2009; Rowcliffe & 
Carbone, 2008; Rowcliffe et al., 2008; Steenweg et al., 2017).

Data from camera traps are generated in continuous-time. They 
usually consist of photographs along with a date and time stamp 
and therefore contain information that can be used to make infer-
ence about activity pattern. Using data from camera trap surveys, 
Harmsen et al.  (2009) examine histograms of hourly capture times 
to make inference about the hourly activity of jaguars and pumas 
(as well as their major prey species (Harmsen et al., 2011)). Others 
have used kernel density estimation for circular data, or fitted cir-
cular distributions (such as the Von Mises distribution) to the data, 
to produce estimators of the continuous activity pattern distribu-
tions (Farris et  al.,  2015; Linkie & Ridout,  2011; Oliveira-Santos 

et al., 2013; Ridout & Linkie, 2009; Rowcliffe et al., 2014). Current 
approaches for quantifying activity patterns from temporal data 
have made progress but exploring how different covariates affect 
activity remains a challenge (Frey et al., 2017) and the lack of a stan-
dardized methodology has limited research into activity patterns.

In the past, researchers conducting surveys of wildlife popula-
tions would sample the population of interest at discrete points in 
time (for example at the start of the breeding season). Such a study 
design leads to clear and well-defined occasions and is the primary 
reason why traditional CR and spatial capture–recapture (SCR) mod-
els have an occasion structure. However, in contrast to these tradi-
tional surveys, devices like camera traps sample continuously in time. 
The growing usage and importance of camera trap surveys have led 
to the development of a continuous-time (CT) SCR model that oper-
ates with times of detection (Borchers et al., 2014; Distiller, 2016; 
Distiller & Borchers, 2015).

While the primary aim of SCR models was to estimate and model 
animal density, it is possible to use these models to learn about other 
processes and the CT SCR framework provides a formal modeling 
framework to explore different hypotheses about activity patterns. 
Furthermore, understanding the complexities of interactions be-
tween space and time use for individuals within populations is im-
portant to understanding variation between populations in terms of 
general ecology and distribution, as we would expect that differences 
in the timing of activity will interact with space use. Understanding 
this interaction is essential for understanding the spatial distribution 
of species ecology in detail.

This paper uses data from a camera trap survey of jaguars in 
Belize to demonstrate how CT SCR models can be used to make in-
ference about animal activity patterns. Initially, models are fitted to 
detections of male jaguars only and then subsequently to data on 
both sexes to illustrate how sex-specific encounter rate functions 
can be estimated. Subsection 2.1 provides further details of the 
data, and Subsection 2.2 introduces the CT SCR model with differ-
ent ways to parameterize the encounter rate function. The results 
are shown in Section 3, and the discussion appears in Section 4.

2  | MATERIAL S AND METHODS

2.1 | Study site and camera trapping of jaguars

The Cockscomb Basin Wildlife Sanctuary in Belize encompasses 490 
km2 of secondary tropical moist broadleaf forest at various stages of 
regeneration following anthropogenic and natural disturbance (for 
more details see Harmsen et al., 2010b). To the west, the sanctu-
ary forms a contiguous forest block with the protected forests of 
the Maya Mountain Massif (≈5,000 km2 of forest). To the east, the 
sanctuary is partially buffered by unprotected forest beyond which 
is a mosaic of pine savannah, shrub land, and broadleaf forest, inter-
dispersed with villages and farms. Jaguars (Panthera onca) are found 
throughout this landscape (Foster et al., 2010). There are 65 km of 
trails, all within the eastern part of the sanctuary (Figure 1).
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Twenty paired camera stations (Pantheracam v3) were deployed 
along the trail network within the eastern basin. Neighboring sta-
tions had an average spacing of 2.0 km (1.1–3.1 km), and digital pho-
tographic data were downloaded every 2 weeks. The data used in 
this paper include 287 detections of 19 individual male jaguars, and 
44 detections of eight individual female jaguars, over a 6-month pe-
riod (August 2013 to February 2014).

2.2 | Continuous-Time Spatial Capture–Recapture 
(CT SCR)

Suppose that data are generated from a survey of duration T that 
uses an array of J camera traps. The primary difference from 
the discrete-time (DT) model is that there are no longer K occa-
sions. For the ith detected individual, instead of a capture history 
of length K there are ωij captures at detector j at times tij =  (tij1, 
…, tijωij). In addition, there are n unique animals where the two-
dimensional coordinates of the ith individual's activity center 
are notated as s i, and the distance from an individual's activity 
center to the jth detector (dj (s i)) affects detectability. Note that 

the dependence of detection on distance through s is not always 
made explicit in what follows.

The observation process in the DT SCR formulation can be 
parameterized to use either a detection function or an encoun-
ter rate function. For an occasion of some specified length, and 
for an individual whose activity center is a certain distance away 
from the camera trap, the detection function estimates the prob-
ability of detecting the individual whereas the encounter rate 
function estimates the expected number of encounters (Efford 
et al., 2013).

CT models generalize the encounter rate function so that, in ad-
dition to space, detectability also depends on time. Consequently, 
the expected encounter rate for the ith individual and the jth detec-
tor at time t now depends on both space and time and is denoted as 
λj (t, s i; θ), where θ is an unknown vector of encounter rate function 
parameters. Note that λ0 is used to denote the intercept of the en-
counter rate function (see Section 2.2.1 below) and not the expected 
encounter rate for the jth detector where j = 0.

The CT framework models the process generating detections 
as a nonhomogeneous temporal Poisson process where the events 
of interest are detections. The “survivor function” for individual i at 

F I G U R E  1   Camera trap survey sites within Cockscomb Basin Wildlife Sanctuary, Belize.
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detector j over the whole survey (the probability of individual i not 
being detected by detector j by time T) is

and hence 1−Sj (T, si;�) is the probability of detection during the pe-
riod (0, T). Similarly, the combined detection hazard over all J detec-
tors at time t is �. (t, si;�) =

∑J

j=1
�j (t, si;�), and the overall probability 

of detection in (0, T) over all detectors is p. (si;�) = 1−S. (T, si;�), where 
S. (T, si;�) = exp (− ∫ T

0
�. (t, si;�)dt) is the overall survivor function.

Assuming that, conditional on the activity center location, the 
times of detection are independent, the detection times for individ-
ual i at detector j can be modeled with pdf:

Furthermore, we assume that the number of individuals de-
tected during the survey is a Poisson random variable with intensity 
Λ (�,�)= ∫

A
D (x;�) p

⋅
(x;�)dx where D () is a function for animal density, 

x is the two-dimensional coordinate of any location in the study area, 
and ϕ is a vector of unknown parameters that govern the intensity 
and hence the distribution of activity centers.

The CT SCR likelihood can then be shown (Borchers et al., 2014; 
Distiller, 2016) to be:

2.2.1 | The CT encounter rate function

Detectability now depends on both space and time. Suitable func-
tional forms for λ as a function of time will depend on the problem 
at hand. In general, the encounter rate is not expected to increase or 
decrease monotonically with time and regression splines may be use-
ful to model flexible forms of dependence (Wood, 2017). The focus 
here is on cyclical functions that repeat themselves after a specified 
cycle duration and are constrained to transition smoothly between 
cycles. With a cycle duration of 24 hr, we can model daily patterns 
in detectability that arise from daily cycles in animal behavior. For 
example, nocturnal animals are more likely to be detected during the 
night than the day, and to transition smoothly between being more 
and less detectable, so that a smooth function of time is appropriate.

There are various ways that one can make the encounter rate 
function depend on time. The most commonly used form is that of 
a half-normal which is defined as λ0 exp (-d2/2σ2)) where λ0 is the 
intercept parameter and σ the scale parameter that determines how 
quickly detectability decreases with distance. It is common practice 
to make one or both of these parameters depend on covariates, and 
as time is just another covariate, we can parameterize dependence 
on time in this way too. Note that the ij notation is suppressed in 
what follows for brevity.

Time-dependent λ0

The standard DT expected encounter rate function has this form:

where �̃ (0) = 1. Here, λ0 is the expected number of encounters per unit 
time of an animal with activity center at the detector and the function 
�̃ (d) is sometimes called a “kernel”; it might have half-normal form, for 
example. We can model the dependence of λ0 on time, using regression 
splines, as follows:

where bv (t) (v = 1, … V) is a set of (possibly cyclic) basis functions. If exp 
{β0} is written as λ0 the encounter rate function can be written as

where �̃ (d) is an encounter rate kernel that depends on distance.
In this case, distance just scales the encounter rate function but 

does not change its shape across time, and exp
�∑V

v= 1
�v bv (t)

�
 de-

termines the shape of the encounter rate function over time. With 
this parameterization, the β0 spline intercept is redundant as it gets 
absorbed into the �̃ (d) term, and a degree of freedom is lost when 
specifying functions with a cyclic cubic spline form.

When the encounter rate function is parameterized as above, it 
can be shown that there is no information in the detection times 
about density (Distiller, 2016). Therefore, if the underlying data are 
being generated from such a process, a DT model estimator that ig-
nores the capture times will not be biased for density (Distiller, 2016). 
However, detection times do still contain information about how ac-
tivity patterns change with time (if detection is by virtue of move-
ment, for example), and this may be of interest in itself.

Time-dependent σ
Models with σ being time-dependent have animals propagating 
themselves over smaller distances at some times than at others. For 
example, an encounter rate function with a half-normal shape and a 
cyclical time effect on the range parameter, σ would be specified as 
follows:

where � (t) = exp (�0 +
∑V

v= 1
�v × bv (t))

Specifying an encounter rate model where the range of the en-
counter rate function changes with time leads to a function in which 
the effects of time and distance interact. Consequently, one needs 
to assess the effect of time (or distance) for a given value of dis-
tance (or time), or else to view the encounter rate function in three 
dimensions.

(1)Sj (T, si;�) = exp (−∫
T

0

�j (t, si;�)dt)

(2)f (t�� |si;�) = Sj (T, si;�)

���∏

r = 1

�j (t���, si;�)

(3)L(�,�|n, t)= e−Λ(�,�)

n!

n∏

i=1
∫
�

D(si;�)

J∏

j=1

Sj(T, si;�)

���∏

r=1

�j(t���, si;�)ds

(4)� (d) = �0 �̃ (d)

(5)�0 (t) = exp

{
�0 +

V∑

v = 1

�v bv (t)

}

(6)� (d, t)=�0 (t) �̃ (d)=�0e

�∑V

v=1
�vbv(t)

�

�̃ (d)=
�
�0�̃(d)

�
e

�∑V

v=1
�vbv(t)

�

(7)� (d, t) = �0 exp
{
−d2∕(2� (t)2)

}
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Equation (7) uses a λ0 intercept that is constant through time. It 
is possible to extend the model to allow both λ0 and σ to depend on 
time. Another option is to use parameterizations similar to those of 
Efford and Mowat (2014) to build in a complementary relationship 
between λ0 and σ as functions of time.

2.2.2 | Ecological distance

Standard SCR models use ordinary straight-line Euclidean distance 
but have been integrated with resource selection information and 
with an ecological distance metric in order to learn about space usage 
and landscape connectivity (Fuller et  al.,  2016; Royle, Chandler, 
Gazenski, & Graves, 2013; Royle, Chandler, Sun, & Fulle, 2013; 
Sutherland et al., 2015). Ecological distance can be calculated using 
least-cost path algorithms that depend on a conductance parameter 
that is associated with a salient landscape feature. For example, jag-
uars routinely walk the trail system as doing so is easier than moving 
through the dense vegetation (Harmsen et al., 2010a) and hence the 
distance to the trail network may be a relevant covariate.

Incorporating ecological distance means that models can take 
account of the habitat in a survey area and recognize that the 
least-cost distance between a detector and activity center de-
pends on the habitat in their vicinity and that this distance may 
be different from the Euclidean distance. Using ecological distance 
also provides the model with the flexibility to move away from 
circular home ranges. Lastly, the conductance parameter can be 
included in the likelihood and estimated in the same way as the 
other parameters.

2.2.3 | Fitted models

The utility of the method presented here is demonstrated by fitting 
several different types of models (Table 1). Firstly, models with dif-
ferent parametrizations and different distance metrics are fitted to 
the data on male jaguars only. The objective of this set of models 
is to illustrate the different types of encounter rate functions and 
inferences that can be made.

Secondly, models are fitted to data on both sexes. In addition 
to the detections of male jaguars, the survey also produced 44 

detections of eight female jaguars and hence these data can be used 
to illustrate the estimation and comparison of sex-specific activity 
patterns. CT SCR models can be used to explore differences in ac-
tivity patterns between different sexes, as well as different species, 
time periods, or locations.

2.2.4 | Model fitting

All models are fitted using a maximum likelihood framework 
using the nlm optimizer in R (R Core Team, 2019), and the Aikaike 
Information Criteria corrected for small sample size (AICc) (Burnham 
& Anderson, 2002) are used to assess the degree of support in the 
data for different hypothesized model structures. The time-depend-
ent component of the encounter rate function is modeled here with 
a cyclic cubic spline with a cycle duration of 24 hr. We used the R 
package mgcv (Wood, 2014) to construct the necessary basis func-
tions. The degrees of freedom (df) that are reported here match the 
actual number of spline parameters that are estimated. The integral 
in Equation 3 is evaluated numerically.

Standard errors for individual parameters are obtained from in-
verting the Hessian matrix. The expected encounter rate depends 
on several parameters, and the Delta method is used to approximate 
the variance on the log scale. The confidence limits on the encoun-
ter rate scale are produced by appropriately transforming the limits 
on the log scale. Lastly, computations are performed using facilities 
provided by the University of Cape Town's ICTS High Performance 
Computing team (http://hpc.uct.ac.za).

3  | RESULTS

The results are presented firstly from fitting models to data on male 
jaguars only. Both parameterizations from subsection 2.2.1 with 
conventional Euclidean distance are included, and Equation 7 is also 
used with ecological distance. Thereafter, results from an analysis 
using the λ0 (t) form on data from both sexes follow.

3.1 | Male jaguars only

Models with λ0 (t)

The best-fitting model of encounter rate used a function with df = 4 
(Table 2, Figure 2) suggesting that an encounter rate function with 
an evening peak that falls away slowly during the early morning is 
most appropriate for modeling the detection of male jaguars in the 
Cockscomb Basin Wildlife Sanctuary in Belize.

The top panels in Figure  2 depict the λ0 (t) component of the 
encounter rate function for a 24-hr cycle, that is, there is no effect 
of distance and the focus is on the shape of the encounter rate 
function through time. Expected encounter rates can also be plot-
ted for a given distance and for any duration of time. The estimated 

TA B L E  1   Models fitted in this analysis

Model Data
Distance 
metric dfs

λ0 (t) Males only Euclidean 2, 4, 6

σ (t) Males only Euclidean 2, 4, 6

σ (t) Males only Ecological 4

λ0 (t) Both sexes Euclidean 2 (F), 4 (M, 
Common)

Note: The various combinations of model parameterization, data, and 
distance metric are shown along with the number of spline parameters 
(dfs) from the encounter rate function that are estimated.

http://hpc.uct.ac.za
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encounter rate function provides a good fit to the temporal pattern 
of detections observed in the data (Figure 2, bottom panels).

Models with σ (t)

We also fit models that use the specification given in Equation (7) for 
three levels of complexity. The density estimates from these models 

TA B L E  2   Density estimates and ΔAICc’s from models with time-
varying λ0. 95% confidence intervals are included

Density (per 100 
km2) 95% CI ΔAICc

df = 4 2.17 1.35–3.49 0.00

df = 6 2.17 1.35–3.49 10.09

df = 2 2.17 1.35–3.49 14.92

F I G U R E  2   Estimated encounter rate functions using the λ0 (t) parameterization with a 24-hr cycle fitted to the male jaguar data. Top left 
panel: λ0 (t) components illustrate how the estimated shape through time changes as df (level of complexity) increases, df = 2, 4, and 6; top 
right panel: the 95% confidence interval for the function with df = 4. Bottom left panel: the observed detection times collapsed on to one 
cycle with the model estimated encounter rate function overlaid (red) and scaled to have the same area under the curve as the histogram. 
Bottom right panel: the empirical and the model implied Cumulative Distribution Functions.
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are now slightly different from each other, and the model with df = 4 
is again selected as the best on the basis of AICc (Table 3).

Visualizing the estimated encounter rate function is more com-
plicated than for the λ0 (t) parameterization because of the inter-
active effect of time and distance on the expected encounter rate. 
The fitted encounter rate function can be viewed as a function of 
both time and distance in a 3-dimensional plot (top panel: Figure 3), 

or 2-dimensional plots can be used to assess the effect of time (or 
distance) for a specified value of distance (or time) (bottom panels: 
Figure 3).

The estimated encounter rate has a peak at around 20:00 though 
the differences between the peaks and troughs increase as distance 
from the detector increases. Similarly, it is apparent that at times of 
the day when an animal does not range far (and so has a low value 
for σ) the expected encounter rate falls away much more quickly 
with distance than at times that correspond to higher values for σ. 
The AICc's suggest that the simpler parameterization is preferred 
(Table 4).

Using ecological distance

A model with the σ (t) parameterization that includes ecological dis-
tance based on a distance to the trail system covariate produces an 

TA B L E  3   Density estimates and ΔAICc's from models with time-
varying σ. 95% confidence intervals are included

Density (per 100 
km2) 95% CI ΔAICc

df = 4 2.13 1.32–3.43 0.00

df = 6 2.18 1.36–3.50 9.28

df = 2 2.08 1.29–3.37 13.96

F I G U R E  3   The time and distance dependent expected encounter rate function fitted to the male jaguar data. Top panel: the function in 3 
dimensions. Bottom panels: the effect of time (distance) for a given value of distance (time).
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estimate for conductance of −1.7, that is, locations further from the 
trail network are less suitable to move through.

If space is discretized into pixels, the probability of detecting an 
individual in a pixel, were there a detector in the pixel, can be used 
as a proxy for the individual's use of the pixel. Figure 4 shows the 

estimated relative space usage at two times of day for two animals 
with activity centers at two different places. Comparing the left and 
right plots, one can see how the animal is expected to roam further 
when it is estimated to be more active. Also an animal with an activ-
ity center close to the network of trails is estimated to roam further 
than one with a center that is away from the trails and that the shape 
of the usage area can be irregular.

3.2 | Sex-specific comparison

The λ0 (t) parameterization given in Equation (6), with a cycle dura-
tion of 24 hr, is used to fit two models. The first model specifies a 

TA B L E  4   Comparing models with λ0 (t) and σ (t). 95% confidence 
intervals are included

Density (per 100 
km2) 95% CI ΔAICc

λ0 (t) 2.17 1.35–3.49 0.00

σ (t) 2.13 1.32–3.43 33.30

F I G U R E  4   Estimated relative space usage at two different times (13:00 and 20:00) for two animals with activity centers at two different 
places marked by red dots. The trail system is shown in white.
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common encounter rate function for both sexes whereas the 2nd 
model estimates a different encounter rate function for each sex. 
A spline with df = 4 is used for models that specify a common en-
counter rate function whereas the sex-specific functions use the 
same value for the male data (df = 4) and df = 2 for the female data. 
Note that models with a variety of different dfs were fitted to the 
female data and clearly showed that df = 2 is appropriate. The mod-
els also specify a different σ value for males and females since it is 
well known that male jaguars tend to range further than females (the 
estimates here are σm = 3,721 m and σf = 1,732 m).

The expected encounter rate for females is less variable than for 
males, and females are more likely than males to be detected during 
the middle part of the day and less likely than males to be detected at 
night. Furthermore, female activity at night peaks later than the male 
activity (midnight rather vs. 21:00) (Figure  5). Based on statistical 

criteria, the two encounter rate functions are not sufficiently differ-
ent to justify estimating extra parameters; for these data, a common 
encounter rate function is preferred (Table 5). Of course, there may 
be biological interest in estimating separate patterns despite the 
AICc results.

4  | DISCUSSION

The emergence and rapid growth in usage of camera traps has 
greatly increased the generation of data that can provide informa-
tion on activity patterns. CT SCR models can be used to estimate 
encounter rates through time from data that contain capture times, 
and to make inference about activity levels in relation to space use. 
The CT SCR framework utilizes the actual times of detection and 

F I G U R E  5   Top panel: estimated λ0 (t) component from the encounter rate function for both sexes together (common, black line) and from 
the model with sex-specific functions (male, blue line; female, red line), separate values for σ are specified in both cases. Bottom panels: 
estimated sex-specific encounter rate functions for a distance of 1 km with 95% confidence intervals.
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provides a flexible model-based method of estimating activity pat-
terns and a rigorous framework for model selection and uncertainty 
quantification. The ability to use standard model selection tools 
within a formal modeling framework allows researchers to evaluate 
the extent of support for competing hypotheses related to animal 
activity across space or time.

The simplest way to estimate an activity pattern from data on 
detection times is to summarize the information with histograms as 
done by Harmsen et al. (2009), for example. Alternatively, it is pos-
sible to use a simpler modeling approach (like fitting a regression 
spline to the histogram data). This discards the information on which 
individuals were detected where and when. By contrast, the CT SCR 
formulation provides a modeling framework that uses data at the in-
dividual level, is able to accommodate models for changes in activity 
patterns with both spatial and nonspatial explanatory variables, and 
provides a framework for testing hypotheses about the drivers of 
activity patterns. We have shown how this can be done using “eco-
logical distance” and modeling the conductance of the environment. 
However, a limitation of the example here is that if a pixel with a 
large distance from the trails is selected, the model estimates that 
the usage will hardly extend beyond that chosen point, for example, 
the model estimates what may be an unrealistically low usage for 
points far away from the trail network. It is likely that this is related 
to the study design because all cameras are on the trails and so there 
is no sampling at distances away from the trail network. The issue of 
what constitutes a good design for drawing inferences about spatio–
temporal activity patterns remains to be explored.

The utility of camera traps for detecting a wide array of species 
means that multi-species analyses of space and time use are also 
possible, enhancing the study of predator–prey interactions and in-
terspecific competition. For example, separate analyses of the use 
of space and time in studies of interspecific avoidance, like those 
found for jaguars and pumas (Harmsen et al., 2009), might be more 
robust using a spatio–temporal framework like that presented here. 
Furthermore, the use of time and space by carnivore species may 
vary with a range of social and demographic factors, some of which 
may be visually distinguishable from camera trap photographs (e.g., 
sex, body size, external body condition). Others may be indistin-
guishable (e.g., reproductive status, health) or only assigned fol-
lowing long-term camera monitoring (e.g., social status, age). Our 
framework has the potential to identify individual variation in the 
use of space through time and hence distinguish individual-level 
characteristics without the need for long-term monitoring.

Ridout and Linkie (2009) present 12 hypothetical activity pat-
terns that represent the sorts of patterns one is likely to see in re-
alistic biological settings, and Farris et al. (2015) present estimated 
activity patterns for nine different species that have very different 

shapes. The key characteristics of these patterns are diurnal versus 
nocturnal, the number of peaks, the intensity of the peak(s), and 
the extent to which activity levels reduce during inactive periods. 
Extensive simulations that explore encounter rate functions of dif-
ferent complexity, in conjunction with different density models, con-
firm that CT models are able to estimate the underlying encounter 
rate functions well (Borchers et  al.,  2014; Distiller,  2016). Hence, 
CT SCR models can accurately estimate a variety of encounter rate 
function shapes and with adequate sample size should be able to 
detect features of interest and to investigate various questions of 
biological interest related to activity. For example, data collected on 
the same species at different times of the year or at different loca-
tions could be used to investigate seasonal differences in activity 
patterns or how local factors affect behavior, whereas data on two 
different species at the same time of year could be used to explore 
sympatric partitioning of time.

The encounter rate functions presented here all used a repeating 
cycle of 24 hr. It is possible that detectability can also depend on 
cycles with a longer duration. For example, a fuller moon leads to 
brighter hunting conditions and Harmsen et  al.  (2011) report that 
the two main prey species of jaguars and pumas both exhibited re-
duced activity under these conditions and discuss different poten-
tial predator strategies in response to this reduction in activity. Note 
however that it is likely that if such a process existed it would be on 
top of a shorter daily detection cycle and both would need to be 
modeled together.

There is evidence that jaguars living in a protected forest in 
Belize are most active in the evening and early morning. There is 
also some evidence that females have a slightly different pattern to 
males with fewer peaks and troughs and with their activity peaking 
later than males. There are various hypotheses that could explain 
such temporal avoidance: males need to maximize their access to 
females and consequently traverse greater distances than females 
and so tend to use the trail system when it is coolest; when females 
are not in estrus they avoid males and may use the trail system less 
extensively during peak male travel times; while females tend to 
hunt smaller prey, they still have to provide food for dependents and 
in order to fulfill their energetic needs may potentially need to be 
active for longer periods than males. It is also apparent that there is 
virtually no difference in the density estimates from the λ0 (t) mod-
els with differing levels of complexity. Recall that a consequence of 
the specification of the encounter rate function used here is that 
the capture times do not have any information about density. It is 
therefore not surprising that the different model specifications for 
the observation process do not lead to different estimates of den-
sity. In contrast to this, the σ (t) models produce slightly different 
estimates for density although model selection statistics suggest 
that the extra complexity of the 3-dimensional encounter rate func-
tion is not necessary (Table 4). Based on patterns from monthly cap-
ture rates across the camera trap array, Harmsen et al. (2009) found 
evidence for temporal avoidance between jaguars and pumas and 
found that both species used the same areas and temporal activity 
patterns but avoided the same location (detector) at the same time. 

TA B L E  5   ΔAICc's from models with λ0 (t)

Common hazard
Separate 
hazard

AICc 0.00 4.48
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In the applications presented here, a single activity schedule is es-
timated for each sex but it is straightforward to extend the model 
to estimate species-specific encounter rate functions for different 
months if required.

Spatial capture–recapture models were developed to estimate 
density; however, these models open up opportunities to learn 
about other spatio–temporal processes (Borchers & Fewster, 2016). 
If the aim is to make inference not only about density but also about 
space usage, movement or some other spatio–temporal process, 
then the estimation of the observation process is of direct interest 
in its own right, and the ability of the CT models to flexibly model 
the observation process adds a new dimension to SCR models. CT 
SCR models have the potential to provide a valuable tool for re-
searchers trying to understand animal activity patterns and space 
usage.
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